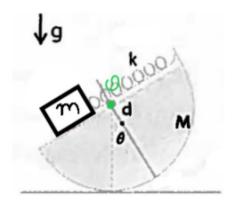

## Auxiliar 15


## P1.

Un tubo horizontal por el que fluye líquido de densidad  $\rho_0$  a razón de Q m<sup>3</sup>/s, se bifurca en dos ramas en el plano vertical, una superior y otra inferior, de secciones transversales  $a_1 = a_2 = a$ , abiertas a la atmósfera (ver figura). Si la distancia entre las ramas es h, determinar:

- (a) Las cantidades  $q_1$  y  $q_2$  de líquido (en  $m^3/s$ ) que fluyen por ambas ramas.
- (b) La condición que debe cumplir Q para que haya flujo en la rama superior.



- **P2.** Un bloque de masa m se encuentra apoyado sobre una semiesfera de radio R y unido a un resorte de constante elástica k y largo natural R. El sistema está inclinado en un angulo  $\theta$ , como se muestra en la figura más abajo. No hay roce entre la superficie de la semiesfera y el bloque. La semiesfera tiene una masa M distribuida homogéneamente, de manera que su centro de masa está ubicado a una distancia  $d = \alpha R$  del borde, sobre el eje de simetría de la semiesfera:
  - a) Determine el ángulo de inclinación  $\theta$  para que el sistema esté en equilibrio estático
  - b) Determine el estiramiento del resorte en esta posición de equilibrio.
  - c) Determine la relación que deben satisfacer m y M para que esta posición de equilibrio estático exista.

