FI1000-5: Introducción a la Física Clásica

Profesor: Marcel Clerc Gavilán

Auxiliares: Manuel Díaz Zúñiga, Eduardo Droguett Mora

Ayudante: Luciano Toro Rojas

Auxiliar 11: Colisiones

11 de junio de 2025

P1.- El hoyo:

Una partícula de masa m
 resbala una distancia d por una pendiente de ángulo de ángulo α hasta ca
er dentro de un hoyo, de ancho a y profundidad L.

- a) Suponiendo que el rebote es elástico, ¿Cuantas veces puede rebotar la partícula antes de caer al piso?
- b) ¿Que ángulo α debe tener la pendiente para que la partícula efectúe solo un rebote y además toque el piso en la esquina Z? Encuentre la ecuación para el ángulo α .
- c) Para el caso anterior, determine la posición y velocidad de la partícula cuando coliciona con la pared.
- d) Para el caso anterior, considere que el rebote es inelástico, caracterizado por un çoeficiente de restitución" $r \leq 1$. Determine la distancia ε con respecto a la esquina Z donde cae la partícula.

El coeficiente de restitución r para una partícula que colisiona con una pared se define como la relación entre la componente perpendicular a la pared de colisión de la velocidad de entrada y salida de la partícula:

$$r = \left| \frac{\vec{v}_{f\perp}}{\vec{v}_{i\perp}} \right| \le 1$$

Para la colisión de dos partículas, el coeficiente de restitución e se define como la razón entre las componentes de la velocidad inicial y final perpendicular al plano de colisión.

$$e = \left| \frac{\vec{v}_{f1\perp} - \vec{v}_{f2\perp}}{\vec{v}_{i1\perp} - \vec{v}_{i2\perp}} \right|$$

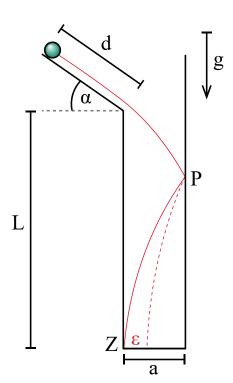


Figura 1: Esquema de partícula cayendo a un hoyo, rebotando en las paredes (caso de un solo rebote).

P2.- Impulso de esferas:

Considere una esfera de radio a y densidad homogénea ρ . La esfera cae por acción de la gravedad desde una altura h. Luego de caer, sufre un rebote elástico contra el suelo en tiempo t_1 . La fuerza que aplica el suelo se puede modelar como

$$\vec{F}(t) = \begin{cases} \frac{F_0}{2\epsilon} \hat{y} & \text{si } ||t - t_1|| \le \epsilon \\ 0 & \text{si } ||t - t_1|| > \epsilon \end{cases}$$
 (1)

Es decir, se aplica una fuerza constante F_0 en un intervalo $[-\epsilon, \epsilon]$ al rededor del tiempo t_1 .

a) Determine el impulso aplicado y la fuerza F_0 aplicada por el suelo. Comente el caso cuando $\epsilon \to 0$.

Considere ahora dos esferas, una arriba de la otra, como se ve en la figura. La esfera superior tiene radio a y la esfera inferior tiene radio 2a. ambas esferas son soltadas del reposo desde una altura h medida desde el centro de la esfera mayo. Asuma que el centro de ambas esferas está alineado con la vertical y que todas las colisiones son elásticas.

- b) ¿Cual es la máxima altura a la que puede llegar la esfera superior?
- c) **Propuesto:**¿Cuál es el impulso total en cada esfera durante todo el movmiento?

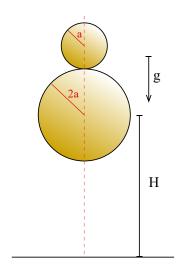


Figura 2: Esquema de dos esferas cayendo.

P3.- Billar de Newton:

Considere un billar circular de radio R centrado en el punto S, en el cual se lanza una bola puntual de masa m, rapidez inicial v_0 , que forma un ángulo α_0 con la recta tangente a la circunferencia en el punto de contacto con la banda (ver figura). La bola choca elásticamente con la banda 1, 2, 3, ...n veces. Considerando que no existe roce entre la mesa y la bola, calcule:

- a) los ángulos α_1 , α_2 , ..., α_n , las velocidades v_1 , v_2 , ..., v_n , las distancias recorridas entre choques sucesivos con la banda d_1 , d_2 ,... d_n y los respectivos tiempos t_1 , t_2 , ..., t_n .
- b) el cambio de momentum (magnitud y dirección) de la bola entre dos choques sucesivos.
- c) **Propuesto:** Calcule la magnitud y dirección de la fuerza que el billar ejerce sobre la partícula, cuando el ángulo $\alpha_0 \to 0$. Comente su resultado.
- d) **Propuesto:** Analice el caso inelástico, donde cada colisión se caracteriza por un coeficiente de restitución r < 1 ¿Como cambian los ángulos α_i , las distancias d_i y los tiempos t_i luego de cada colisión?

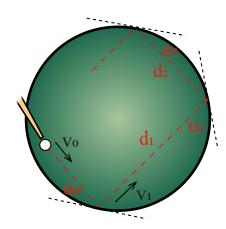


Figura 3: Billar circular.