Synthetic FRB generator

Bruno Pollarolo

Departamento de Astronomía e Ingeniería Eléctrica Universidad de Chile

22 de Abril, 2025

Motivació

Contenido

1 Motivación

- Definiciones básicas
- Objetivos
- Resumen del proyecto CHARTS

2 Metodología

- Modelado de pulsos con fitburst
- Diseño en PL
- Inyección en ARTE y configuración experimental

3 Resultados

4 Conclusiones y pasos futuros

5 References

Motivació

Contenido

1 Motivación

- Definiciones básicas
- Objetivos
- Resumen del proyecto CHARTS
- 2 Metodología
 - Modelado de pulsos con fitburst
 - Diseño en PL
 - Inyección en ARTE y configuración experimental
- **3** Resultados
- 4 Conclusiones y pasos futuros
- 5 References

Definiciones básicas

FRBs

Fast Radio Bursts (FRBs)

Los **FRBs** son estallidos de emisión de radio coherente extremadamente energéticos breves (de solo milisegundos), provenientes de distancias cosmológicas. Las observaciones indican que algunos provienen de fuentes repetitivas, probablemente **magnetares**, objetos con los **campos magnéticos más intensos** del Universo (Zhang 2023).

Fig.: Simulación de pulso en el rango $\Delta \nu$ = 300-500 MHz usando una DM = 1000 pc cm⁻³ con fitburst (Fonseca et al. 2023) Bruno Pollardo (UChile) 22 de Abril, 2025

4/27

Motivación

Definiciones básicas

Digitalizador: RFSoC 4x2

- Zynq UltraScale+ RFSoC: Sistema en chip altamente integrado para radiofrecuencia (RFSoC).
- Combina conversores de datos RF y puertos QSFP+ de alta velocidad.
- Incorpora matriz FPGA (Field Programmable Gate Array).
- Incluye procesadores ARM Cortex para procesamiento embebido.

Fig.: Componentes principales de la placa RFSoC 4x2.

¿Qué es una FPGA?

- **FPGA** = Field Programmable Gate Array.
- Circuito integrado reconfigurable: puedes "reprogramar" su hardware.
- Ideal para tareas paralelas y procesamiento de señales en tiempo real.
- Actúa como un laboratorio de hardware en una sola pieza de silicio.

Fig.: Arquitectura interna: bloques lógicos y rutas reconfigurables.

"No es software corriendo sobre hardware... es hardware que tú defines con software."

FPGAs en Radioastronomía

¿Por qué FPGAs?

- Señales débiles → se requiere procesamiento en tiempo real.
- Espectroscopía, correlación y formación de haces.
- Requiere baja latencia y alta eficiencia energética.

CASPER:

- Plataforma colaborativa para instrumentación astronómica.
- Usa FPGAs y hardware reutilizable.
- Telescopios: HERA, CHIME, MeerKAT...

Fig.: Plataforma CASPER para radioastronomía digital.

Comparación: FPGA vs CPU, GPU, ASIC

Característica	CPU	GPU	FPGA	ASIC
Velocidad		⊘	⊘	\$
Flexibilidad	\bigcirc	⊘	*	8
Consumo energético	8	\bullet	⊘	4
Costo inicial	\bigcirc	\bigcirc	\bullet	8
Tiempo de diseño	⊘	⊘	ightarrow	Θ

 \checkmark excelente, \heartsuit = bueno, \blacklozenge = medio, 𝔅 = malo

O Conclusión

FPGAs ofrecen el equilibrio perfecto entre **velocidad**, **adaptabilidad** y **eficiencia**, ideal para sistemas embebidos y procesamiento en tiempo real.

Motivación y objetivos

 Generador sintético de FRB capaz de transmitir una secuencia de voltaje correspondiente a un pulso simulado de FRB.

 Desarrollar un sistema de inyección capaz de probar las antenas de CHARTS (CHARTS-8) en etapas tempranas.

 Desarrollar un espectrómetro de alto ancho de banda capaz de digitalizar 8 antenas por ADC (Analog to Digital Converter).

Fig.: Pruebas del sistema generador de FRB sintéticos.

CHARTS

CHARTS: Canadian Chilean Array for Radio Transient Studies

- Objetivo del proyecto: Construir un interferómetro de apertura con 256 elementos.
- Filosofía: Optimizar el costo y la tasa de detección de FRBs.
- Digitalización de señales desde 32 antenas en un solo digitalizador ⇒ 8 digitalizadores para toda la matriz.
- Objetivo de la tesis: Diseño e implementación del F-engine (Fourier transform).

Fig.: Antena desarrollada en Cerro Calán por el MSc. Diego Gallardo y construida por la interna Sophie Terán.

Bruno Pollarolo (UChile)

Synthetic FRB

22 de Abril, 2025

10/27

Espectrómetro CHARTS

- FFT única con 8192 canales (desde DC hasta 2457.6 MHz)
- 667 canales por antena ($\Delta
 u = 200 \text{ MHz}$)
- Ancho de banda efectivo de 2.4576 GHz
- Ancho de canal de 300 kHz
- Resolución temporal por trama de 3.33 µs

Fig.: Espectrómetro de 18 bits operando con un tono inyectado de -30 dBm a 1.5 GHz.

Tabla de contenidos

1 Motivación

- Definiciones básicas
- Objetivos
- Resumen del proyecto CHARTS

2 Metodología

- Modelado de pulsos con fitburst
- Diseño en PL
- Inyección en ARTE y configuración experimental
- **3** Resultados
- 4 Conclusiones y pasos futuros

5 References

Modelado de pulsos con fitburst (Fonseca et al. 2023)

Componentes del modelo:

- Distribución espectral de energía dependiente de frecuencia (*F_k*)
- Forma temporal dispersa (*T_{kn}*)
- Amplitud global (A)

Modelo completo: Superposición de pulsos individuales

$$M_{kn} = \sum_{l=1}^{N} A_l F_{k,l} T_{kn,l}$$

donde:

$$F_{k,l} = \left(\frac{\nu_k}{\nu_r}\right)^{\gamma_l + \beta_l \ln\left(\frac{\nu_k}{\nu_r}\right)}$$

$$A_l = 10^{\alpha_l}$$

$$T_{kn,l} = \left(\frac{\nu_k}{\nu_r}\right)^{-\delta} \exp\left(\frac{-\sigma_l^2}{2\tau_k^2} - \frac{(t_{kn} - t_{0,l})}{\tau_k}\right) \left[1 + \exp\left(\frac{t_{kn} - (t_{0,l} + \sigma_l^2 / \tau_k)}{\sigma_l \sqrt{2}}\right)\right]$$

$$\tau_k = \tau_r \left(\frac{\nu_k}{\nu_r}\right)^{\delta}$$

Bruno Pollarolo (UChile)

Ejemplo de parámetros del pulso

Table: Parámetros del pulso y valores de ejemplo para pulso inyectado en ARTE

Parámetro	Descripción	Valor
α_I	Exponente base-10 de la amplitud para el componente /	0.0
t_0	Tiempo medio de llegada al detector	0.15 s
σ_I	Ancho temporal del componente /	0.01 s
DM	Medida de dispersión	$300{ m pc}{ m cm}^{-3}$
ν_r	Frecuencia electromagnética de referencia ("pivot")	1500 MHz
δ	Exponente de dependencia en frecuencia para scattering	-4
$ au_r$	Tiempo característico de scattering en $ u_r$	0 s
γ_I	Índice espectral del componente /	0.0
β_I	Derivada espectral (spectral running) del componente /	-100.0
$N_{ u}$	Número de canales de frecuencia electromagnética	2048
Δu	Ancho de banda total del receptor	1200–1800 MHz
$t_{ m tot}$	Tiempo total de la observación	0.5 s
5	Tamaño del arreglo de voltaje	1.86 GB

Bruno Pollarolo (UChile)

Pulso canalizado

Configuración de prueba en loopback con RFSoC

Fig.: Vista general de alto nivel de un diseño simple en IP Integrator para transmisión y recepción de datos (Crockett et al. 2023).

Diseño en P

Diseño en bloques

Fig.: Vista general del diseño en bloques en Vivado.

Diseño en Pl

Aumentando la memoria

- El núcleo DMA por defecto está limitado a 64 MB por transacción.
- La mejor y más simple solución fue usar DMA en modo Scatter-Gather
- Esto permite transferir datos desde ubicaciones fragmentadas o discontinuas de memoria. El modo Scatter-Gather puede habilitarse en el DMA para permitir transferencias mayores a 64 MB (desde buffers contiguos) 1 .

Component Name axi_dma_	dac				
Enable Asynchronous Clo	ocks (Auto)				
🖉 Enable Scatter Gather En	igine				
Enable Micro DMA					
Enable Multi Channel Sun	port				
_ Enable Multi Channel Sup	port				
Enable Control / Status St	ream				
idth of Buffer Length Regist	er (8-26)	26	bits		
ddress Width (32-64) 40		@ bits			
🖉 Enable Read Channel —			Enable Write Channel		
Number of Channels	1	\sim	Number of Channels	1	\sim
Memory Map Data Width	512	\mathbf{v}	Memory Map Data Width	32	\sim
Stream Data Width	256	\sim	suro Stream Data Width	32	\sim
Max Burst Size	64	\sim	Max Burst Size	16	\sim
Allow Unaligned Trans	sters		Allow Unaligned Transfers		

Fig.: Pantalla de configuración del DMA.

¹https://github.com/cathalmccabe/PYNQ tutorials.git

Synthetic FRB

Diseño en PL

Clocking del sistema en el RFDC

٢

AXI4-Lite Interface Configuration

AXI4-Lite Clock (MHz) 100.0

Tile Clocking Settings

Tile	Sampling Rate (GSPS)	Max Fs (GSPS)	PLL	Reference Clock (MHz)		PLL Ref Clock (MHz)	Ref Clock Divider		Fabric Clock (MHz)	Clock Out (MHz)	Clock Source	Distribute Clock	
ADC 224	1.6	5.000		1600.000	Ŧ		1	Ŧ	0.0	100.000 *	Tile224 👻	Off	Ŧ
ADC 225	1.6	5.000		1600.000	Ŧ		1	Ŧ	0.0	100.000 -	Tile225 👻	Off	Ŧ
ADC 226	2 🛞	5.000		500.000	•	500.0	1	Ŧ	250.000	15.625 *	Tile226 👻	PLL output	*
ADC 227	1.6	5.000		1600.000	Ŧ		1	Ŧ	0.0	100.000 -	Tile227 👻	Off	Ŧ
DAC 228	1.6	10.000		1600.000	Ŧ	•	1	Ŧ	0.0	200.000 -	Tile228 👻	Off	Ŧ
DAC 229	1.6	10.000		1600.000	Ŧ		1	Ŧ	0.0	200.000 -	Tile229 👻	Off	Ŧ
DAC 230	2 🛞	7.000		500.000	•	500.0	1	Ŧ	250.000	62.500 *	Tile230 👻	PLL output	•
DAC 231	1.6	10.000		1600.000	Ŧ		1	Ŧ	0.0	200.000 *	Tile231 👻	Off	Ŧ

Fig.: Pantalla de configuración de clocking del conversor de datos RF para 2 GSPS operando en la segunda zona de Nyquist.

Inyección en ARTE

(a) Ubicada en el edificio Meridiano del Observatorio Astronómico Nacional, la antena ARTE está diseñada para observar constantemente el centro galáctico y capturar eventos FRB locales.

(b) Inyecciones de 5 minutos variando la potencia de salida y la atenuación.

Configuración experimental

(a) RFSoC transmitiendo el pulso (filtro analógico de 1200-1800 MHz entre medio).

(b) Antena log-periódica en el techo del edificio Meridiano.

Tabla de contenidos

1 Motivación

- Definiciones básicas
- Objetivos
- Resumen del proyecto CHARTS
- 2 Metodología
 - Modelado de pulsos con fitburst
 - Diseño en PL
 - Inyección en ARTE y configuración experimental

3 Resultados

4 Conclusiones y pasos futuros

5 References

Resultado

Pulso recibido

(a) Datos crudos.

Waterfall Plot at 2024-11-04 15:57:41.580

(b) Normalizado por canales de frecuencia.

Resultado

Dedispersión incoherente

Candidate at 47.1 s with Sigma: 34.28 from file 2024-11-04_15_56_54.580043

Fig.: Dedispersión incoherente aplicada al pulso recibido, con un DM resultante de 260 pc cm⁻³ (el valor simulado fue fijado en 300 pc cm⁻³).

Bruno Pollarolo (UChile)

Synthetic FRB

Resultado

Diferencia

Waterfall Plot at 2024-11-04 15:58:24.580

Fig.: Diferencia entre el pulso enviado y el recibido (con el mismo ancho temporal).

Conclusión y próximos pasos

- Realizar inyecciones directas en el nuevo espectrómetro CHARTS.
- Probar el sistema en el ancho de banda de CHARTS con CPT (espectrómetro de una antena) y CHARTS-8 que pronto será desplegado.
- Explorar otras combinaciones de parámetros del pulso y verificar cómo se traducen estas diferencias al analizar los pulsos recibidos.

Fig.: Telescopio Path Finder CHARTS (CPT).

References

Crockett, L. H., Northcote, D., & Stewart, R. W. 2023, Software Defined Radio with Zynq UltraScale+ RFSoC, ed. U. o. S. Department of Electronic & Electrical Engineering (Glasgow, Scotland, UK: Strathclyde Media)
Fonseca, E., Pleunis, Z., Breitman, D., et al. 2023, arXiv e-prints, arXiv:2311.05829, doi: 10.48550/arXiv.2311.05829
Zhang, B. 2023, Reviews of Modern Physics, 95, 035005, doi: 10.1103/RevModPhys.95.035005