AA0030 - Taller de Ayudante de Corrección en Cursos Masivos

Pauta Corrección Simulada y Consolidación

- **P1.** [FI1100] Un tren de largo propio L se mueve con velocidad c/2 respecto del suelo en la dirección del eje x. Una pelota es lanzada desde la parte trasera hacia la parte delantera del tren, con una velocidad c/3, con respecto al tren, en la misma dirección de su movimiento.
 - i) ¿Cuánto tiempo demora la pelota en llegar a la parte delantera del tren y qué distancia recorre en el sistema de referencia del tren?

Solución:

Notemos que en el sistema de referencia del tren, el mismo tren mide L y que respecto a ese mismo sistema la pelota se mueve a velocidad c/3.

$$v = \frac{d}{t} \quad \Rightarrow \frac{c}{3} = \frac{L}{t}$$
$$\Rightarrow t = \frac{3L}{c}$$

(1.5 pts.)

ii) ¿Cuánto tiempo demora la pelota en llegar a la parte delantera del tren y qué distancia recorre en el sistema de referencia del suelo?

Solución:

Si consideramos S' el sistema de referencia del tren, y S el del suelo, usemos las transformaciones de Lorentz del sistema S' a S (ya que estos datos ya los tenemos en S').

$$\Delta x = \gamma (\Delta x' + v \Delta t')$$
$$\Delta t = \gamma (\Delta t' + \frac{v}{c^2} \Delta x')$$

Luego,

$$v = c/2 \implies \gamma = \sqrt{\frac{1}{1 - (c^2/4)/c^2}}$$
$$\Rightarrow \gamma = \sqrt{\frac{1}{1 - 1/4}}$$
$$\Rightarrow \gamma = \sqrt{4/3}$$

Así,

$$\Delta x' = L$$
 distancia recorrida en S'
 $\Delta t' = \frac{3L}{c}$ tiempo medido en S'

$$\Rightarrow \Delta x = \sqrt{4/3} \left(L + \frac{c}{2} \cdot \frac{3L}{c} \right) \\ = \sqrt{4/3} L \cdot \frac{5}{2}$$

Con esto, $\Delta x = L\sqrt{25/3}$ es la distancia recorrida en S (sistema fijo en el suelo). Por otra parte tenemos

$$\Delta t = \sqrt{4/3} \left(\frac{3L}{c} + \frac{c}{2} \cdot \frac{1}{c^2} \cdot L \right)$$
$$= \sqrt{4/3} \frac{L}{c} \cdot \frac{7}{2}$$

Finalmente, $\Delta t = \frac{7}{\sqrt{3}} \frac{L}{c}$ es el tiempo medido en S. (1.5 pts.)

iii) ¿Cuánto tiempo demora la pelota en llegar a la parte delantera del tren y qué distancia recorre en el sistema de referencia de la pelota?

Solución:

Si consideramos S'' el sistema de referencia de la pelota, tenemos que hacer la transformación desde S' a S''. Notemos que acá el signo en las transformaciones es negativo.

$$\Delta x'' = \gamma_2 (\Delta x' - v_2 \Delta t')$$

$$\Delta t'' = \gamma_2 (\Delta t' - \frac{v_2}{c^2} \Delta x')$$

Luego,

$$v_2 = c/3 \implies \gamma_2 = \sqrt{\frac{1}{1 - (c^2/9)/c^2}}$$

$$\Rightarrow \gamma_2 = \sqrt{\frac{1}{1 - 1/9}}$$

$$\Rightarrow \gamma_2 = \frac{3\sqrt{2}}{4}$$

Así,

$$\Rightarrow \Delta x'' = \frac{3\sqrt{2}}{4} \left(L - \frac{c}{3} \cdot \frac{3L}{c} \right) \\ = 0$$

Con esto, $\Delta x=0$ siempre está en el origen de S'' (sistema de la pelota). Por otra parte tenemos

$$\Delta t'' = \frac{3\sqrt{2}}{4} \left(\frac{3L}{c} - \frac{c}{3} \cdot \frac{1}{c^2} \cdot L \right) = \frac{3\sqrt{2}}{4} \frac{L}{c} \cdot \frac{8}{3}$$

Finalmente, $\Delta t = \frac{2\sqrt{2}L}{c}$ es el tiempo medido en S''. (1.5 pts.)

iv) Muestre que los tiempos en los sistemas de referencia del suelo y del tren no están relacionados por el factor γ . ¿Por qué?

Solución:

Notemos que en la parte ii) $\Delta t = \gamma(\Delta t' + \frac{v}{c^2}\Delta x')$. Así, los tiempos no están relacionados directamente por γ , osea no son $\Delta t = \gamma \Delta t'$ debido a que el segundo término $(\frac{v}{c^2}\Delta x')$ no es nulo, ya que se está analizando el movimiento de una partícula que si se desplaza en el sistema S'.

(1.5 pts.)

- **P2.** [MA1101] Sea $X \subseteq \mathbb{R}$ que satisface las siguientes condiciones:
 - i) $0 \in X$,
 - ii) $\forall r, t \in X, r + t \in X$.

(Se sabe que tanto \mathbb{N} como \mathbb{Z} satisfacen las condiciones anteriores).

Dado el subconjunto X, se define en \mathbb{R} la relación \mathcal{R}_X como sigue:

$$\forall x, y \in \mathbb{R}, \quad x \mathcal{R}_X y \iff (x - y) \in X.$$

a) (3 pts.) Demuestre que, para todo $X \subseteq \mathbb{R}$ que satisface las condiciones i) y ii), \mathcal{R}_X es una relación refleja y transitiva.

Solución:

Veamos primero que \mathcal{R}_X es refleja. Sea $x \in \mathbb{R}$. Tenemos que $x\mathcal{R}_X x \iff (x-x) \in X \iff 0 \in X$ (0.75 pts.), lo que es verdadero por la condición i). Concluimos que \mathcal{R}_X es refleja (0.75 pts.)

Veamos ahora que \mathcal{R}_X es transitiva. Sean $x, y, z \in \mathbb{R}$. Supongamos que $x \mathcal{R}_X y$ y que $y \mathcal{R}_X z$. Esto es, supongamos que $(x - y) \in X$ y que $(y - z) \in X$ (0.5 pts.). Tomemos r = x - y y t = y - z. Por lo anterior, $r, t \in X$. Luego, por la condición ii), $r + t \in X$ (0.5 pts.) Por otro lado,

$$r + t = (x - y) + (y - z) = (x - z)$$

lo que muestra que $(x-z) \in X$. Así, $x \mathcal{R}_X z$. Concluimos que \mathcal{R}_X es transitiva (0.5 pts.)

b) (1 pto.) Demuestre que $\mathcal{R}_{\mathbb{N}}$ es una relación de orden.

Solución:

Usando la parte s), falta demostrar que $\mathcal{R}_{\mathbb{N}}$ es antisimétrica (0.2 pts.) Sean $x, y \in \mathbb{R}$. Supongaos que $x\mathcal{R}_{\mathbb{N}}y$ y que $y\mathcal{R}_{\mathbb{N}}x$. Esto es, supongamos que $(x-y) \in \mathbb{N}$ y que $(y-x) \in \mathbb{N}$ (0.2 pts.) Si tomamos r=x-y, tenemos entonces que $r \in \mathbb{N}$ y que $-r \in N$. Esto muestra que r=0, porque 0 es el único número natural cuyo inverso aditivo también es un número natural (0.2 pts.) Por lo tanto, tenemos que r=x-y=0. Concluimos que x=y y obtenemos, así que $\mathcal{R}_{\mathbb{N}}$ es antisimétrica (0.2 pts.) Finalmente, tenemos que $\mathcal{R}_{\mathbb{N}}$ es una relación de orden (0.2 pts.)

c) (2 pts.) Demuestre que $\mathcal{R}_{\mathbb{Z}}$ es una relación de equivalencia. Además, demuestre que $[p]_{\mathcal{R}_{\mathbb{Z}}} = \mathbb{Z}$ para todo $p \in \mathbb{Z}$.

Solución:

Veamos primero que $\mathcal{R}_{\mathbb{Z}}$ es una relación de equivalencia. Por la parte a), falta demostrar que $\mathcal{R}_{\mathbb{Z}}$ es simétrica (0.2 pts.) Sean $x, y \in \mathbb{R}$. Supongamos que $x \mathcal{R}_{\mathbb{Z}} y$. Esto es, supongamos que $(x - y) \in \mathbb{Z}$. Tomemos r = x - y (0.2 pts.) Como $r \in \mathbb{Z}$, tenemos que $-r \in \mathbb{Z}$, porque el inverso aditivo de un número entero también es un número entero (0.2 pts.) Vemos que $-r = -(x - y) = y - x \in \mathbb{Z}$, lo que muestra que $y \mathcal{R}_{\mathbb{Z}} x$. Así, $\mathcal{R}_{\mathbb{Z}}$ es simétrica (0.2 pts.) Finalmente, tenemos que $\mathcal{R}_{\mathbb{Z}}$ es una relación de equivalencia (0.2 pts.)

Veamos ahora que $[p]_{\mathcal{R}_{\mathbb{Z}}} = \mathbb{Z}$ para todo $p \in \mathbb{Z}$. Demostraremos esta igualdad de conjuntos por doble inclusión.

 \subseteq | Si $q \in [p]_{\mathcal{R}_{\mathbb{Z}}}$, tenemos que $(p-q) \in \mathbb{Z}$. Esto significa que existe $n \in \mathbb{Z}$ tal que p-q=n (0.2 pts.) Por lo tanto, $q=n-p \in \mathbb{Z}$, ya que la resta de dos números enteros también es un número entero (0.2 pts.)

 \supseteq Si $q \in \mathbb{Z}$, tenemos que $(p-q) \in \mathbb{Z}$, porque la resta de dos número enteros también es un número entero (0.2 pts.) Así, $p \mathcal{R}_{\mathbb{Z}} q$, por lo que $q \in [p]_{\mathcal{R}_{\mathbb{Z}}}$ (0.2 pts.)

Obtenemos entonces que $[p]_{\mathcal{R}_{\mathbb{Z}}} \subseteq \mathbb{Z}$ y que $[p]_{\mathcal{R}_{\mathbb{Z}}} \supseteq \mathbb{Z}$, por lo que $[p]_{\mathcal{R}_{\mathbb{Z}}} = \mathbb{Z}$ (0.2 pts.)

<u>Indicación</u>: Recuerde que puede usar las partes anteriores incluso si no las ha resuelto.