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ABSTRACT 

This report documents the flow failure of the Las Palmas tailings dam that was induced by the 27 
February 2010 Maule Chile M8.8 earthquake. The Las Palmas site is located in Central Chile in 
Region VII near the town of Talca. Construction of the tailings dam occurred between 1998 as 
part of a gold mining operation and was no longer in active use. 

The ground shaking from the earthquake induced liquefaction of the saturated tailings 
material and resulted in a flow failure that ran out upwards of 350 m, flowing downslope in two 
directions. This report is broken into three sections: 

1. A summary of the construction and flow failure of the Las Palmas tailings dam; 

2. Details on the field investigations at the site, including the 2010 GEER 
reconnaissance, 2011 litigation support [DICTUC 2012], and the recent PEER–
NGL-funded 2017 investigation; and 

3. Back-analysis of the flow failure by Gebhart [2016] to estimate the residual 
strength. 

The goal of this work is to provide a “high-quality” flow-failure case history to augment 
the existing database. The existing database is composed of roughly thirty case histories of 
varying quality (e.g., Weber et al. [2015] and Kramer and Wang [2015]). Herein, the term “high-
quality” means that the in situ measurements were made in a controlled and repeatable manner, 
and that the back-analysis of the residual strength was performed considering static and dynamic 
effects of the slide mass. The results from this research indicate that the median back-analyzed 
residual strength of the liquefied material is ~8.3 kPa (~173 psf) at a pre-earthquake vertical 
effective stress of 2 atm (~200 kpa or 4000 psf), which is correlated to a median SPT blow count 
of N1,60~2.5, a median CPT tip resistance of qc1~1.3 MPa, and a median shear-wave velocity of 
VS1~172 m/sec. The back analyzed residual strength has a nominal coefficient of variation of 
5.5% determined using a sensitivity analysis. 
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1 Introduction 

The 27 February 2010 Maule, Chile, earthquake is the seismic event that resulted in the failure 
for this case history. The sixth largest recorded earthquake since 1900, this event occurred at 
3:34 am local time with a moment magnitude of 8.8 and was centered off the coast of Bio Bio, 
Chile. The hypocenter was located at an approximate depth of 35 km (21.7 miles), 95 km (60 
miles) off the coast, and 335 km (210 miles) southwest of the capital of Santiago. 

Maximum recorded acceleration was 0.94 g at a station located in the city of Angol, 
Chile (www.terremotosuchile.cl/red_archivos/RENAMAULE2010R2.pdf). Strong earthquake 
shaking exceeded a minute in some locations for a total duration up to nearly two minutes. The 
rupture occurred on the shallow-inclined fault conveying the Nazca plate eastward and 
downward beneath the South American plate. Thrust faulting occurred on the interface between 
both plates due to a plate convergence of approximately 7 m (23 ft) per century. The fault rupture 
at depthplane exceeded 100 km (60 miles) in width and nearly 500 km (300 miles) parallel to the 
coast [Hayes 2010]. Rupture initiated beneath the coast and propagated westward, northward, 
and southward, causing tectonic deformation that triggered a tsunami. 

The ground shaking resulted in pervasive damage of lifelines, e.g., roadways, bridges, 
railroads, and road embankments. In total, approximately 523 people were killed, 12,000 injured, 
and 800,000 displaced, and 370,000 houses, 4000 schools, and 79 hospitals were damaged or 
destroyed [USGS 2010]. The tailings dam of the Las Palmas gold mine experienced liquefaction-
induced flow failure due to strong ground shaking, which produced a run out of a third of a 
kilometer [GEER 2010]. The flow failure resulted in fatalities and caused environmental 
degradation of the surrounding area. 

This report summarizes the following: 

 Construction and subsequent failure of the Las Palmas tailings dam 

 Reconnaissance investigations performed by the GEER team [GEER 2010] 

 Field investigations performed by Professor C. Ledezma and colleagues [DICTUC 
2012] where standard penetration test (SPT) measurements were made 

 PEER (Pacific Earthquake Engineering Research Center)-NGL (next generation 
liquefaction)-funded field investigations where cone penetration tests (CPT) and 
shear-wave velocity (VS) measurements were made 
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 Back-analysis of the failure by Gebhart [2016] that estimated the liquefied residual 
strength, and effective stress at the time of failure. 

The objective of this report is to provide a “high-quality” flow-failure case history to add to the 
existing liquefied residual strength database. 
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2 Las Palmas Tailings Dam Construction and 
Failure 

The construction of the Las Palmas gold mine tailings dam (Figure 2.1) began in 1981 [DICTUC 
2012]. The dam was built upon existing ground that was downward sloping toward the south and 
east, with approximate maximum upper slope of 4:1 (horizontal to vertical) above the dam and 
maximum lower slope of 15:1 (horizontal to vertical) below. The dam was constructed in four 
phases (Figure 2.2), which occurred between 1981–1998. Each stage included initial construction 
of containment embankments and hydraulic fill placement of tailings materials. Construction of 
containment walls or embankments typically utilize the sandy, more granular fraction of the 
tailings material to provide increased strength 

Construction documents indicate use of both upstream and centerline construction 
methods to build containment embankments. Stage 1 construction spanned from the end of 
1981–1986, covering the upper half of the slope. Stage 2 construction spanned from 1986–1992, 
initiating the covering of the lower half of the slope. Stage 3 construction continued from 1992–
1997, containing the largest volume of material and spanning the entire length of the slope, 
covering both Stages 1 and 2. The final construction of Stage 4 spanned from 1997–1998, 
covering approximately the same area as Stage 1 [DICTUC 2012]. After closure of the facility, 
the tailings area was partially covered with a thin 6-in. layer of gravelly material. 

Limited available information indicates that during Stage 4, the down-slope embankment 
was built nearly atop the down-slope embankment built during Stage 1 [DICTUC 2012]. Stage 3 
covered the entire area, which resulted in a continuous potentially weak horizontal plane between 
the lower and upper material. During the earthquake Stage 4 acted as a driving mass at the head 
of the slope. The boundary between Stage 3 and the material below it became the zone in which 
liquefaction occurred. 

The strong ground shaking resulted in liquefaction of susceptible tailings material. The 
flow failure took two paths: an easterly and southerly direction. The leading edge of the easterly 
flow traveled approximately 165 m (540 ft), whereas the southerly flow traveled roughly 350 m 
(1150 ft) based on air photos rendered into CAD [Gebhart 2016]. Approximately 231,660 m3 
(303,000 yds3) of material displaced in roughly two equal halves; see the slope stability analyses 
presented herein. 
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4 Litigation-Supported Field Investigations 

In support of ongoing litigation concerning this flow failure, the fourth author (Professor 
Christian Ledezma) and colleagues performed field investigations to gather subsurface 
information on the failure material [DICTUC 2012]. Between June 2–26, 2011, they conducted 
geotechnical exploration including borings with SPT measurements. Five 4-in. diameter 
exploratory borings were advanced to depths ranging from 8.5–21.0 m (28–70 ft) below ground 
surface, typically terminating in the competent native material below the tailings. As indicated in 
Figure 4.1, these locations are within the non-displaced portion of the dam. Borings B-1 and B-5 
were located within the containment embankments, and borings B-2, B-3, and B-4 were located 
within the tailings material. The drill rig was equipped with an automatic safety hammer to 
obtain blow counts, with an estimated efficiency of approximately 60%. Corrected (N1,60) SPT 
blow counts for fine and coarse-grained materials were between single digits to the lower teens 
range: see Figure 4.2. The field crew encountered groundwater in four of five SPT borings at 
depths ranging from 5–13 m (17–43 ft) below the ground surface, which is thought to be not 
grossly dissimilar to the ground water present at the time of the earthquake. Vane shear testing 
was also performed in conjunction with some of the borings to measure the peak strength of the 
intact material (see Table 4.1). Subsequent laboratory testing was performed on samples acquired 
from the drilling operation. The following bore logs (Figures 4.3–4.7) and laboratory data (see 
Table 4.1) were compiled by Gebhart [2016] and used to guide subsequent investigations. 
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Figure 4.2 Histogram of corrected SPT blow counts, (N1)60, from the field 
investigations (from Gebhart [2016]). 
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Figure 4.6 Boring B4 performe
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Figure 5.8 Location G1 VS measurements. Location S35.184242 W71.759540; 
elevation ~155 m. 
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Figure 5.9 Location G2 VS measurements. Location S35.184297 W71.760284; 
elevation ~155 m. 
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Figure 5.10 Location G3 VS measurements. Location S35.184350 W71.761197; 
elevation ~153 m. 
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Figure 5.11 Location G5 VS measurements of flow slide material. Location 
S35.185729 W71.758658; elevation ~140 m. 
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Figure 5.12 Location G6 VS measurements of translated block material. Location 
S35.186669 W71.758161; elevation ~134 m. 
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Figure 5.13 Comparison of G5 and G6 VS measurements. 
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6 Back-Analysis of Residual Strength 

This section presents a back-analysis of the flow failure to estimate the residual strength of the 
liquefied material. A full description of this analysis and the details can be found in Gebhart 
[2016]. The strong ground shaking from the 2010 event resulted in liquefaction of some portion 
of the tailings material. The liquefied flow failure took two paths: an easterly and southerly 
direction. The leading edge of the easterly flow traveled approximately 165 m (540 ft), whereas 
the southerly flow traveled roughly 350 m (1150 ft). Based on the failed geometry plan view and 
the depth of the failed material, a total of approximately 231,660 m3 (303,000 yards3) of material 
displaced in roughly two equal halves; see Figure 6.1. The flow failure debris was approximately 
1.5-4.0 m (5-13 ft) thick in some locations. 

Boring logs indicate groundwater was located between depths of 5–13 m (17–43 ft) 
below the ground surface across the undisturbed portion of the tailings. This ground water table 
at the time of drilling is considered roughly representative of the ground water table at the time 
of the earthquake. This was corroborated by the location of seepage exiting the exposed failure 
slope in reconnaissance observations. Sand boils were also observed in numerous locations 
(Figure 6.2) throughout the failed mass, indicating saturated conditions of that material during 
failure.  

Development of pre- and post-failure, 2D and 3D models of the Las Palmas tailings dam 
used AutoCAD Civil 3D (Auto Desk) and Slope/W (Geo-Slope International) was undertaken. 
These models considered:  

 2D and 3D detailed modeling of the wall geometry used for earthwork quantities 

 Flow failure runout length estimation 

 Creation of tailings dam cross sections 

 Static and pseudo-static slope stability analysis 

Pre-failure geometry was estimated using as-built information, aerial images, and existing 
intact embankments as a guide. Post-failure geometry is based on aerial images of the failed 
mass. The pre-and post-failure geometries were then used for “time” stepping from the beginning 
to the end of the failure event, mapping the change in geometry following the incremental 
momentum methodology (IMM) presented in Weber et al. [2015]. An initial intact slope cross-
section area of approximately 33,000 ft2 (3065 m2) is stepped through progressively more failed 
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Table 6.1 Summary of materials and properties used in modeling the tailings failure. 

Material type Condition Φ (°) Cohesion (psf) Unit Wt. (pcf) 

Competent Native Material - (Unyielding) (Unyielding) (Unyielding) 

Containment Walls - 26 500 100 

Non-Liquefied / Unsaturated Tailings 
Undrained 0 500 95 

Drained 21 0 95 

Liquefied / Saturated Tailings - 0 (Varies) 100 

 

A series of iterative calculations are performed, then the slide mass displacement for each 
step is calculated. This IMM process follows Newton’s second law of physics, rearranged to 
solve for acceleration as a function of the calculated force and calculated mass for each 
individual step: 

 / / / ga F m F w   (6.1) 

where w is the weight of slide mass, g is gravity, and F is the net force, which equals the driving 
force–resisting force 

Velocity is estimated through integration of the calculated acceleration; subsequently, 
displacement is determined through integration of the velocity function, both using the 
trapezoidal rule. These three parameters (acceleration, velocity, and displacement) are functions 
of time and are plotted on the y-axis; see Figure 6.5. 

The parameter time (t) is estimated through the goal seek function in Excel and plotted on 
the x-axis. To accomplish this, a time value is selected to integrate each function (in order: 
acceleration, velocity, displacement) yielding a displacement of known value for each individual 
step. Each step is converged before proceeding to the next. This procedure is performed through 
all (7) steps, to converge on a final velocity of zero and the known final displacement. 

The input residual strength is systematically changed, and the procedure repeated for 
each step in the analysis. Too large a residual strength value results in a premature reduction in 
velocity to zero and too small of a displacement; too small a residual strength value produces the 
opposite. The value best satisfying the final boundary conditions of zero velocity and known 
displacement represents the estimated post-liquefaction residual strength mobilized within the 
displaced mass. All of these analyses considered two possible failure modes: full-flow failure 
and layered liquefaction failure. As shown in Figures 6.3 and 6.4, full-flow failure is where the 
entire mass of the tailings liquefied. Layered liquefaction failure is where the weakest layer (as 
identified in the subsurface investigations)—which also “daylights” along the face of the slope—
liquefied and carried block of intact material along with it downslope. 
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Figure 6.5 Example trial of incremental momentum method (IMM) after Weber [2015]. 
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7 Comprehensive Results 

The results in this report fall into three categories;  

1. Resistance measurements representative of the pre-failure conditions of the material that 
liquefied and produced the flow failure; 

2. Residual strength estimates of the liquefied material; and 

3. Effective stress estimates of the pre-failure conditions at the depth of failure. 

7.1 RESISTANCE MEASUREMENTS 

Selection of a representative penetration resistance value of the Las Palmas dam for establishing 
post-liquefaction strength predictive correlations considered blow counts within what is 
interpreted as the saturated portion of the tailings material. Blow counts were corrected for 
factors related to overburden pressure and fines content; see Figure 7.1. Fines correction was per 
Equations (7.1) and (7.2) put forth by Cetin et al. [2004] to transform SPT N1,60 values to N1,60,CS 
values. This fines correction accounted for two factors: (1) increased resistance to liquefaction as 
a function of fines content; and (2) adjustment of blow counts as a function of granular and fine 
grain material in situ resistance. 

1,60, 1,60CS finesN N C   (7.1) 

   1,601 0.004 0.05 /finesC FC FC N      (7.2) 

In these equations, FC = percent fines content (by dry weight) expressed in percent (e.g., 
20% fines is represented as FC = 20.0). Fines content less than 5% are represented as FC = 0, 
and fines content exceeding 35% are represented as FC = 35.0. 

The averaged blow counts from the SPT measurements of intact material representative 
of liquefiable flow failure tailings were estimated at N1,60 ≈ 2.5 and N1,60,CS ≈ 5 (Figure 6.6), 
with an estimated coefficient of variation of 25% [Kulhawy and Mayne 1990]. 
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The processed cone measurements are shown in Figures 7.2–7.4. Water table depths at 
the time of the measurements were estimated based on the pore pressure measurements and are 
shown in the figures with a triangle. The depth ranges thought to represent potentially liquefiable 
material with continuous stretches of low normalized penetration resistance are boxed. The 
histograms of the boxed regions are shown below each figure. CPT1 was located closest to the 
scarp where the material failed, CPT2 was positioned to intercept wall material, and CPT3 was 
located near the thickest portion of ponded tailings material. 

Table 7.1 shows the stress normalized shear-wave velocity for the “weak” layers of the 
profiles measured. G2 was omitted because it appears to be non-liquefiable based on the CPT 
and VS profiles. Based on analysis of the normalized CPT and VS measurements, it appears the 
CPT3 and G3 are the most representative of intact material that resulted in flow failure in the 
unrestrained portion of the tailings. The interpreted measurements for this case history are then; 

1cq ~1.3 MPa (Qtn~11.7) and VS1~172 m/sec, with an estimated coefficient of variation of 10% 

for the CPT [Kulhawy and Mayne 1990] and the same for VS [Moss 2008]. 

Table 7.1 Shear-wave velocity of "weak" layers for each profile. 

Profile Depth range (m) Average VS1 (m/sec) 

G1 0 to 5 211 

G2 na na 

G3 0 to 8 172 

G5 0 to 3 222 

G6 3 to 9 175 
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Figure 7.2 CPT1 overburden corrected tip resistance with histogram of boxed region 
thought to best represent the tailings material susceptible to liquefaction 
and flow failure. The mean and median are approximately 1.83 MPa with a 
CoV of 0.40. 
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Figure 7.3 CPT2 overburden corrected tip resistance. This sounding is thought to 
represent material not highly susceptible to liquefaction because of wall 
material and interlayering. The boxed region mean is 2.94 MPa, median 
1.86 MPa, with a CoV of 0.52. 
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Figure 7.4 CPT3 overburden corrected tip resistance. This sounding is in the center 
of a region that experienced liquefaction but did not exhibit failure in a 
flow failure. The boxed regions have a mean of 1.3 MPa, median 1.4 MPa, 
with a CoV of 0.06. 
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7.2 RESIDUAL STRENGTH 

A post-liquefaction residual strength ≈ 7.8 kPa (163 psf) and ≈ 8.7 kPa (181 psf) represent 
bounds for a layered failure analysis, and a residual strength ≈ 8.4 kPa (175 psf) represents a 
complete flow-failure analysis. The average of these three residual strengths ≈ 8.3 kPa (173 psf), 
which represents the estimated mobilized post-liquefaction residual strength for this case study, 
with a nominal coefficient of variation of 5.5% estimated from the sensitivity analysis. 

To provide confidence in this value, a sensitivity analysis was conducted; the results 
shown in Figure 7.5. The sensitivity analysis included alternate failure modes, differing ground 
water conditions, and variable unit weight of the uncompacted tailings embankment and ponded 
material. 

 

 

Figure 7.5 Tornado plot sensitivity analysis of post-liquefaction residual strength 
(from Gebhart [2016]). 

7.3 EFFECTIVE STRESS 

For this study, the location selected to represent initial vertical effective stress (or soil 
overburden) was the assumed failure interface between tailings and underlying competent native 
material. Values and geometry used for calculation are per Figure 7.6. An initial vertical 
effective stress of approximately 2.0 atmospheres (202.5 kPa or 4,300 psf) was the best estimate 
for this case history, with an estimated coefficient of variation of 5% [Kulhawy and Mayne 
1990]. 
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8 Summary and Conclusions 

The goal of this study was to provide a well-documented case history of a liquefaction flow 
failure. The 2010 Maule, Chile, event triggered the flow failure in the Las Palmas tailings dam, 
resulting in a run out of upwards of 350 m. The documentation herein includes; reconnaissance 
information by GEER [2010], drilling and standard penetration measurements (SPT) by 
DICTUC [2012], and back analysis of the residual strength by Gebhart [2016], as well as the 
results of cone penetration tests (CPT) and shear-wave velocity (VS) measurements presented 
here for the first time. 

Based on the information evaluated, analyzed, and measured, the Las Palmas flow failure 
can be summarized with the following mean values and estimated coefficients of variation.  

Table 8.1 Summary mean and coefficient of variation. 

Resistance 

SPT N1,60 ≈ 2.5 and N1,60,CS ≈ 5 COV~25% 

CPT qc1 ≈ 1.3 MPa and Qtn ≈ 11.7 10% 

VS VS1 ≈ 172 m/sec 10% 

Residual strength Sur ≈ 8.3 kPa (173 psf) 5.5% 

Effective stress v  ≈ 2.0 atmospheres (202.5 kPa, 4300 psf) 5.0% 
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Appendix Geophysical Data Processing 

This appendix shows the passive surface wave geophysical data analysis used to arrive at the 
shear-wave velocity profiles. The data processing was carried out using the Surface Plus module 
in the Geogiga software suite. Measured and estimated dispersion curves are shown. All data was 
recorded using; 

 circular arrays 

 12 geophones (4.5Hz) 

 2 m/sec sampling rate 

 32 sec recording length x 10 recordings all concatenated 
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