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ABSTRACT

This report documents the flow failure of the Las Palmas tailings dam that was induced by the 27
February 2010 Maule Chile M8.8 earthquake. The Las Palmas site is located in Central Chile in
Region VII near the town of Talca. Construction of the tailings dam occurred between 1998 as
part of a gold mining operation and was no longer in active use.

The ground shaking from the earthquake induced liquefaction of the saturated tailings
material and resulted in a flow failure that ran out upwards of 350 m, flowing downslope in two
directions. This report is broken into three sections:

1. A summary of the construction and flow failure of the Las Palmas tailings dam;

2. Details on the field investigations at the site, including the 2010 GEER
reconnaissance, 2011 litigation support [DICTUC 2012], and the recent PEER—
NGL-funded 2017 investigation; and

3. Back-analysis of the flow failure by Gebhart [2016] to estimate the residual
strength.

The goal of this work is to provide a “high-quality” flow-failure case history to augment
the existing database. The existing database is composed of roughly thirty case histories of
varying quality (e.g., Weber et al. [2015] and Kramer and Wang [2015]). Herein, the term “high-
quality” means that the in sifu measurements were made in a controlled and repeatable manner,
and that the back-analysis of the residual strength was performed considering static and dynamic
effects of the slide mass. The results from this research indicate that the median back-analyzed
residual strength of the liquefied material is ~8.3 kPa (~173 psf) at a pre-earthquake vertical
effective stress of 2 atm (~200 kpa or 4000 psf), which is correlated to a median SPT blow count
of N 60~2.5, a median CPT tip resistance of g.;~1.3 MPa, and a median shear-wave velocity of
VS1~172 m/sec. The back analyzed residual strength has a nominal coefficient of variation of
5.5% determined using a sensitivity analysis.
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1 Introduction

The 27 February 2010 Maule, Chile, earthquake is the seismic event that resulted in the failure
for this case history. The sixth largest recorded earthquake since 1900, this event occurred at
3:34 am local time with a moment magnitude of 8.8 and was centered off the coast of Bio Bio,
Chile. The hypocenter was located at an approximate depth of 35 km (21.7 miles), 95 km (60
miles) off the coast, and 335 km (210 miles) southwest of the capital of Santiago.

Maximum recorded acceleration was 0.94 g at a station located in the city of Angol,
Chile (www.terremotosuchile.cl/red archivos/RENAMAULE2010R2.pdf). Strong earthquake
shaking exceeded a minute in some locations for a total duration up to nearly two minutes. The
rupture occurred on the shallow-inclined fault conveying the Nazca plate eastward and
downward beneath the South American plate. Thrust faulting occurred on the interface between
both plates due to a plate convergence of approximately 7 m (23 ft) per century. The fault rupture
at depthplane exceeded 100 km (60 miles) in width and nearly 500 km (300 miles) parallel to the
coast [Hayes 2010]. Rupture initiated beneath the coast and propagated westward, northward,
and southward, causing tectonic deformation that triggered a tsunami.

The ground shaking resulted in pervasive damage of lifelines, e.g., roadways, bridges,
railroads, and road embankments. In total, approximately 523 people were killed, 12,000 injured,
and 800,000 displaced, and 370,000 houses, 4000 schools, and 79 hospitals were damaged or
destroyed [USGS 2010]. The tailings dam of the Las Palmas gold mine experienced liquefaction-
induced flow failure due to strong ground shaking, which produced a run out of a third of a
kilometer [GEER 2010]. The flow failure resulted in fatalities and caused environmental
degradation of the surrounding area.

This report summarizes the following:
e Construction and subsequent failure of the Las Palmas tailings dam
e Reconnaissance investigations performed by the GEER team [GEER 2010]

o Field investigations performed by Professor C. Ledezma and colleagues [DICTUC
2012] where standard penetration test (SPT) measurements were made

e PEER (Pacific Earthquake Engineering Research Center)-NGL (next generation
liquefaction)-funded field investigations where cone penetration tests (CPT) and
shear-wave velocity (VS) measurements were made



e Back-analysis of the failure by Gebhart [2016] that estimated the liquefied residual
strength, and effective stress at the time of failure.

The objective of this report is to provide a “high-quality” flow-failure case history to add to the
existing liquefied residual strength database.



2 Las Palmas Tailings Dam Construction and
Failure

The construction of the Las Palmas gold mine tailings dam (Figure 2.1) began in 1981 [DICTUC
2012]. The dam was built upon existing ground that was downward sloping toward the south and
east, with approximate maximum upper slope of 4:1 (horizontal to vertical) above the dam and
maximum lower slope of 15:1 (horizontal to vertical) below. The dam was constructed in four
phases (Figure 2.2), which occurred between 1981-1998. Each stage included initial construction
of containment embankments and hydraulic fill placement of tailings materials. Construction of
containment walls or embankments typically utilize the sandy, more granular fraction of the
tailings material to provide increased strength

Construction documents indicate use of both upstream and centerline construction
methods to build containment embankments. Stage 1 construction spanned from the end of
1981-1986, covering the upper half of the slope. Stage 2 construction spanned from 1986—1992,
initiating the covering of the lower half of the slope. Stage 3 construction continued from 1992—
1997, containing the largest volume of material and spanning the entire length of the slope,
covering both Stages 1 and 2. The final construction of Stage 4 spanned from 1997-1998,
covering approximately the same area as Stage 1 [DICTUC 2012]. After closure of the facility,
the tailings area was partially covered with a thin 6-in. layer of gravelly material.

Limited available information indicates that during Stage 4, the down-slope embankment
was built nearly atop the down-slope embankment built during Stage 1 [DICTUC 2012]. Stage 3
covered the entire area, which resulted in a continuous potentially weak horizontal plane between
the lower and upper material. During the earthquake Stage 4 acted as a driving mass at the head
of the slope. The boundary between Stage 3 and the material below it became the zone in which
liquefaction occurred.

The strong ground shaking resulted in liquefaction of susceptible tailings material. The
flow failure took two paths: an easterly and southerly direction. The leading edge of the easterly
flow traveled approximately 165 m (540 ft), whereas the southerly flow traveled roughly 350 m
(1150 ft) based on air photos rendered into CAD [Gebhart 2016]. Approximately 231,660 m’
(303,000 yds®) of material displaced in roughly two equal halves; see the slope stability analyses
presented herein.



Strong ground shaking as measured in the town of Talca is shown in Table 2.1 below
(after Boroschek et al. [2012]). The Las Palmas site is located roughly 20 km NNW from Talca
in a direction closer to the 2010 rupture plane, so ground shaking at the site [ignoring two-
dimensional (2D) site response effects] can reasonably be assumed to be in line with that
recorded in Talca.

Table 2.1 Ground shaking recorded in Talca (after Boroschek et al. [2012]).

Code 0 Arias  Significant Central
Station  Channel P(G f (IC)SV\;) }(’gg S dempedPiais) Intensity ~ Duration  Freq.
(Rrup) g 0.1sec 0.2sec lsec 2sec 3sec  (m/s) (sec) (Hz)

TAL L 0.48 28 = 0.77 122 031 0.13 0.05 11.61 69.9 5.14
(66 km) T 0.42 34 7 1.01 1.79 038 0.19 0.08 11.06 71.9 5.14
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Figure 2.1

Location of Las Palmas tailings dam; regional inset and local with coordinates.



Figure 2.2

Construction Stages 1-4 of tailings embankments (from DICTUC [2012]).



3 GEER Investigations

The Las Palmas site was investigated by GEER personnel on 11 March 2010, with a follow-up
visit on 28 March 2010 to collect LIDAR and V'S measurements. The reconnaissance team found
the flow failure marked by a large scarp (Figures 3.1-3.3) and sand boils throughout the failed
material (Figure 3.4) and other locations. Figure 3.5 shows the ground cracking and layered
nature of the underlying tailings materials. The only eyewitnesses of the flow failure were killed;
therefore, it is not known if the event was primarily co-seismic or post-seismic in nature.
Because of the observed sand boils and the large distance of runout, the subsequent analysis
assumed that this failure could be characterized as liquefaction initiation, followed by post-
liquefaction flow-failure deformations that were not seismic-loading dependent.

Figure 3.1 Upper scarp of failed tailings impoundment looking southwest (from
GEER [2010]).



Figure 3.2 Upper scarp of failed tailings impoundment looking northeast (from GEER [2010]).

Bottom of
Embankment

Figure 3.3 Aerial photograph showing scarp, longitudinal cracks, and the location of
the tailings dams (after DICTUC [2012] and Gebhart [2016]).



Figure 3.4 Sand-boil tailings along flow path (S35.18872, W71.75777) looking up
towards the scarp is shown in Figures 3.2 and 3.3 (from GEER [2010]).



Figure 3.5 Gravelly cover layer over oxidized and unsaturated tailings, $35.184679 S,
W71.759410 (from GEER [2010]).

LIDAR measurements of the failed slope were performed. The terrestrial LIDAR
technique [three-dimensional (3D) laser scanning] consists of sending and receiving laser pulses
to build a point file of 3D coordinates of the scanned surface. The time of travel for a single
pulse reflection is measured along a known trajectory that computes the distance from the laser
and the position of a point of interest. Using this methodology, data collection occurs at rates of
thousands of points per second, generating a “point cloud” of 3D coordinates. LIDAR
measurements were conducted by Dr. Rob Kayen as part of the reconnaissance efforts, and the
point-cloud data was processed by the third author, Professor David Frost.

A laser scanner was used to conduct a tripod-mounted survey (Figure 3.6). Multiple scans
were collected during each site survey to fill in “shadow zones” of locations not directly in the
line-of-sight of the laser and to expand the range and density of the point data. Data were
collected at a rate of 8000 points per second, scanning a range of 360° in the horizontal direction
and 80° in the vertical direction. For all sites, a project coordinate system was used to register
and reference multiple scan locations into one large project file. No global geo-referencing using
differential GPS was performed. Scanning and registration were performed using Riscan-Pro.
Point-cloud processing and surface modeling of the data was performed using I-SiTE software
specifically designed to handle laser-scan data.

10



Figure 3.6 Terrestrial laser scanning with a Riegl z420 LIDAR unit at the Las Palmas
Mine tailings dam failure. The system uses a PC for data acquisition and a
car battery to power the laser (from GEER [2010]).

The registration of LIDAR data involves merging two, or more, individual scans data to
form a single model of the reconnaissance site area, termed the “registration process.” A best fit
translation and rotation registration process—using millions of points—aligns the overlapping
data within a pair of point-cloud datascans.

Point data from each set of scans were subjected to a series of filters to remove non-
ground surface and extraneous laser returns from the point clouds. Points reflected from
vegetation and other non-ground conveyance features were manually cropped from each of the
point clouds. Next, an isolated point filter was used to remove single-point instances occurring
above the land surface. These isolated points are usually a result of reflections from moisture in
the atmosphere. Topographic filters that select the lowest point in the point clouds were used to
remove vegetation from point clouds. Here, the entire dataset was divided into 5 to 10 cm square
bins, and only the lowest points within the bins were selected.

1"



The final product of LIDAR data processing is 3D surface models. A linear interpolation
method is used to process the surface models to generate surface edges of the triangular irregular
network (TIN) facets between points. Triangular irregular network models represent a
topographic surface of each area. After filtering, a TIN surface was generated from each scan file
using either a spherical surface algorithm (curved facets) or a linear topographic algorithm (flat
facets); see Figure 3.7.

Figure 3.7 Detailed LIDAR of head scarp of Las Palmas tailings dam failure (from
GEER [2010]).

12



4 Litigation-Supported Field Investigations

In support of ongoing litigation concerning this flow failure, the fourth author (Professor
Christian Ledezma) and colleagues performed field investigations to gather subsurface
information on the failure material [DICTUC 2012]. Between June 2-26, 2011, they conducted
geotechnical exploration including borings with SPT measurements. Five 4-in. diameter
exploratory borings were advanced to depths ranging from 8.5-21.0 m (28-70 ft) below ground
surface, typically terminating in the competent native material below the tailings. As indicated in
Figure 4.1, these locations are within the non-displaced portion of the dam. Borings B-1 and B-5
were located within the containment embankments, and borings B-2, B-3, and B-4 were located
within the tailings material. The drill rig was equipped with an automatic safety hammer to
obtain blow counts, with an estimated efficiency of approximately 60%. Corrected (N 60) SPT
blow counts for fine and coarse-grained materials were between single digits to the lower teens
range: see Figure 4.2. The field crew encountered groundwater in four of five SPT borings at
depths ranging from 5-13 m (17-43 ft) below the ground surface, which is thought to be not
grossly dissimilar to the ground water present at the time of the earthquake. Vane shear testing
was also performed in conjunction with some of the borings to measure the peak strength of the
intact material (see Table 4.1). Subsequent laboratory testing was performed on samples acquired
from the drilling operation. The following bore logs (Figures 4.3—4.7) and laboratory data (see
Table 4.1) were compiled by Gebhart [2016] and used to guide subsequent investigations.
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Table 4.1

Summary of field and lab data performed by DICTUC [2012]; from Gebhart [2016].

Depth Strength Unit Wt. (pcf) Lab Strength Testing
Location [Field Test| Location (m) [ (ft) [Soil Type[Cohesion (psf)[® ()] Total [ Dry|Fail Strain (%) CU [ Cyclic Triaxial | UC| Sample Method
vl | 665 20| oM 300 26| 100 9 55 X . Shelby
SPT 16.0-16.5 54 ML - - - - - -
Bedrock 18.5-19.25 62 | SC-SM 7000 138 127 0.8 X | HQ3 cutting tip
20.0-21.0 67 SC 19500 131 116 1 X | HQ3 cutting tip
B-1 5 17 SM 520 - - - -
Vane 7 23 SM 1486 - - - -
Shear "Wall" 9 30 SM 1486 - - - -
12 40 ML 520 - - - -
14 46 VL 632 - - - -
Vane | .. . 7 23 ML 780 : : = .
82 | Shear | ™ 13 a3 m 818 - : ; :
Vane " " 5 17 ML 780 - - - =
B3 | shear | "™ 8 26| mL 502 - - - :
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Figure 4.3 Boring B1 performed by DICTUC [2012]; from Gebhart [2016].
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BORING LOG
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Figure 4.4 Boring B2 performed by DICTUC [2012]; from Gebhart [2016].
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Figure 4.5 Boring B3 performed by DICTUC [2012]; from Gebhart [2016].
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BORING LOG
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Figure 4.6 Boring B4 performed by DICTUC [2012]; from Gebhart [2016]).
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BORING LOG
BORING NO. B-5
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Figure 4.7 Boring B5 performed by DICTUC [2012]; from Gebhart [2016].
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5 PEER NGL-Funded Investigations

The field investigations funded by PEER-NGL occurred over the time frame of 2017 June 20—
23. The goal was to augment the existing SPT measurements with CPT and surface-wave
measurements. Participants in the field investigations included the four authors of this report.

An initial site visit was conducted on June 20". The CPT equipment was subsequently
mobilized for three full days of field testing and included a portable CPT “ramset” (Figure 5.1),
which is deployable in locations not accessible by typical CPT trucks, and a geophysical array of
twelve geophones and accompanying seismograph for performing passive surface-wave
measurements. Three CPT soundings were performed per ASTM 5778; the locations are shown
in Figure 5.2, two of which were collocated with the SPT measurements.

*V.—‘ - 'A , ‘-y‘ - .
[ foai 2
E o
Figure 5.1 Portable “ramset” mobilized for Las Palmas field investigations because

of the difficult access conditions. The reaction weight was provided by
water tanks and truck. The ramset is the white hydraulic jack in the
middle. The black box with orange cord to the right is the hydraulic pump.
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Figure 5.2 Location of CPT soundings with respect to prior SPT borings.

Passive surface-wave measurements were made using circular arrays of twelve 4.5 Hz
vertical geophones (Figure 4.10). The locations of the passive measurements are shown in Figure
4.11. G1, G2, and G3 were collocated with the CPT measurements in the intact tailings. G5 and
G6 were collocated in the failed portion of the tailings, where G5 was located in the flow failure
and G6 in an intact block that was transported in the flow failure. The diameters of the arrays
were Sm, 10 m, and 20 m (16.40 ft, 32.81 ft, and 49.21 ft, respectively) ftm, depending on the
depth and resolution required. Recordings were made at a 2 m/sec sampling rate for 32 sec, with
10 of these recordings made for each array and concatenated for processing. Different array
diameters were combined into single dispersion curves in those cases when it provided clearer
resolution. Dispersion curves were arrived at using SPAC [Aki 1957] as coded in Geogiga
Surface Plus [Geogiga 2017]. Dispersion curve picking and shear-wave velocity profile fittings
were performed within Geogiga. To minimize interpretation uncertainty given the lack of prior
knowledge of the stratigraphy, layering within a VS profile was typically limited to three layers.
The estimated shear-wave velocity profiles are shown in Figures 5.8-5.13, with a nominal
coefficient of variation of 10% [Moss 2008]. The dispersion curve picks and profile fitting
details are provided in the Appendix. Table 5.1 shows how the SPT, CPT, and V'S measurements
are co-located with respect to each other.

Figures 5.5-5.7 show the results of the CPT, and Figures 5.8-5.13 shown the VS data
collected at the site. The CPT data was collected and processed by LMMG Geotecnia Limitada.
The VS data was collected and processed by the first author. Full reporting of the CPT and VS
measurements can be found in the Appendix.
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Table 5.1 Showing co-location of different field tests.

CPT &) SPT Coordinates
CPT1 G1 SPT4 $35.184242 W71.759540
CPT2 G2 $35.184297 W71.760284
CPT3 G3 SPT2 $35.184350 W71761197
SPT1
SPT3
SPT5
G5 $35.185729 W71.758658
G6 $35.186669 W71.758161

Figure 5.3

Shown is a 10-m circular array at location G5. Passive measurements
were made of ambient noise from a generator, foot falls, etc.
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Figure 5.4 Locations of passive circular array measurements with respect to CPT

soundings and SPT borings.
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CPT1 cone tip, sleeve, and pore pressure measurements. Location
S$35.184242 W71.759540; elevation ~155 m.



LMMG GEOTECNIA LTDA CPT: CPT-02
WWW.LMMG.CL Total depth: 5.70 m, Date: 27-06-2017

CONTACTO@LMMG.CL Surface Elevation: 0.00 m
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Figure 5.6 CPT2 cone tip, sleeve, and pore pressure measurements. Location

S$35.184297 W71.760284; elevation ~155 m.
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CPT3 cone tip, sleeve, and pore pressure measurements. Location
S$35.184350 W71.761197; elevation ~153 m.
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Figure 5.8 Location G1 VS measurements. Location S35.184242 W71.759540;
elevation ~155 m.
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Figure 5.9 Location G2 VS measurements. Location $35.184297 W71.760284;
elevation ~155 m.
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Figure 5.10 Location G3 VS measurements. Location $35.184350 W71.761197;
elevation ~153 m.
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Figure 5.11 Location G5 VS measurements of flow slide material. Location

$35.185729 W71.758658; elevation ~140 m.
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Figure 5.12 Location G6 VS measurements of translated block material. Location
S$35.186669 W71.758161; elevation ~134 m.
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Figure 5.13 Comparison of G5 and G6 VS measurements.
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6 Back-Analysis of Residual Strength

This section presents a back-analysis of the flow failure to estimate the residual strength of the
liquefied material. A full description of this analysis and the details can be found in Gebhart
[2016]. The strong ground shaking from the 2010 event resulted in liquefaction of some portion
of the tailings material. The liquefied flow failure took two paths: an easterly and southerly
direction. The leading edge of the easterly flow traveled approximately 165 m (540 ft), whereas
the southerly flow traveled roughly 350 m (1150 ft). Based on the failed geometry plan view and
the depth of the failed material, a total of approximately 231,660 m® (303,000 yards®) of material
displaced in roughly two equal halves; see Figure 6.1. The flow failure debris was approximately
1.5-4.0 m (5-13 ft) thick in some locations.

Boring logs indicate groundwater was located between depths of 5-13 m (1743 ft)
below the ground surface across the undisturbed portion of the tailings. This ground water table
at the time of drilling is considered roughly representative of the ground water table at the time
of the earthquake. This was corroborated by the location of seepage exiting the exposed failure
slope in reconnaissance observations. Sand boils were also observed in numerous locations
(Figure 6.2) throughout the failed mass, indicating saturated conditions of that material during
failure.

Development of pre- and post-failure, 2D and 3D models of the Las Palmas tailings dam
used AutoCAD Civil 3D (Auto Desk) and Slope/W (Geo-Slope International) was undertaken.
These models considered:

e 2D and 3D detailed modeling of the wall geometry used for earthwork quantities
e Flow failure runout length estimation

o Creation of tailings dam cross sections

« Static and pseudo-static slope stability analysis

Pre-failure geometry was estimated using as-built information, aerial images, and existing
intact embankments as a guide. Post-failure geometry is based on aerial images of the failed
mass. The pre-and post-failure geometries were then used for “time” stepping from the beginning
to the end of the failure event, mapping the change in geometry following the incremental
momentum methodology (IMM) presented in Weber et al. [2015]. An initial intact slope cross-
section area of approximately 33,000 ft* (3065 m?) is stepped through progressively more failed
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slope geometries converging on the final failed slope cross-section area of approximately 12,000
ft* (1115 m?). This also applies to advancement of the toe of the slope, with displacement
constrained to converge on a final observed displacement of approximately 165 m (540 ft). This
yields an initial set of “time” steps that were treated as linear between each step because of the
lack of prior knowledge.

The mass-property function of AutoCAD was used to calculate the centroid of mass for
each step. This helped establish linear trends with respect to the following: (1) area loss and (2)
centroid displacement of the failed mass. This process is iterative and requires repeated
adjustment of cross-section geometry to converge upon a final solution. A typical step sequence
for fully liquefied material can be seen in Figure 6.3. A similar analysis was performed for the
situation where a weak layer liquefied, causing blocks of intact material to be carried downslope
in the flow.

UNDISPLACED VOLUME

DISPLACED "FLOW" VOLUME

SOUTH FLOW PERIMETER
474,000 Ft?

Figure 6.1 Marked image showing flow failure runout following two directions, east
and south (from Gebhart [2016]).
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Figure 6.2 Evidence of sand boils in the flow-failure debris (from GEER [2010]).
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Figure 6.3 Modeled slope failure progression sequence in AutoCAD (from Gebhart [2016].
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The material properties used in the Slope/W model, which were based on the subsurface
drilling investigations and IMM back-analysis, are shown in Table 6.1. The Morgenstern and
Price method was used to solve the limit equilibrium problem with a pre-defined slip surface; see
Figure 6.4.

The average of pre- and post-failure strengths are approximated for an initial run. This
strength value is used for each step to execute a series of static LEM slope stability analyses
without seismic effects. Slope/W produces the following output for further IMM analysis:
driving force, resisting force, slide area, slide weight, and factor of safety.

Figure 6.4 Modeled slope failure progression sequence in Slope/W (from Gebhart [2016]).

38



Table 6.1 Summary of materials and properties used in modeling the tailings failure.

Material type Condition P (°) Cohesion (psf) | Unit Wt. (pcf)
Competent Native Material - (Unyielding) (Unyielding) (Unyielding)
Containment Walls - 26 500 100
Undrained 0 500 95
Non-Liquefied / Unsaturated Tailings
Drained 21 0 95
Liquefied / Saturated Tailings - 0 (Varies) 100

A series of iterative calculations are performed, then the slide mass displacement for each
step is calculated. This IMM process follows Newton’s second law of physics, rearranged to
solve for acceleration as a function of the calculated force and calculated mass for each
individual step:

a=F/m=F/(w/g) (6.1)

where w is the weight of slide mass, g is gravity, and F' is the net force, which equals the driving
force—resisting force

Velocity is estimated through integration of the calculated acceleration; subsequently,
displacement is determined through integration of the velocity function, both using the
trapezoidal rule. These three parameters (acceleration, velocity, and displacement) are functions
of time and are plotted on the y-axis; see Figure 6.5.

The parameter time (¢) is estimated through the goal seek function in Excel and plotted on
the x-axis. To accomplish this, a time value is selected to integrate each function (in order:
acceleration, velocity, displacement) yielding a displacement of known value for each individual
step. Each step is converged before proceeding to the next. This procedure is performed through
all (7) steps, to converge on a final velocity of zero and the known final displacement.

The input residual strength is systematically changed, and the procedure repeated for
each step in the analysis. Too large a residual strength value results in a premature reduction in
velocity to zero and too small of a displacement; too small a residual strength value produces the
opposite. The value best satisfying the final boundary conditions of zero velocity and known
displacement represents the estimated post-liquefaction residual strength mobilized within the
displaced mass. All of these analyses considered two possible failure modes: full-flow failure
and layered liquefaction failure. As shown in Figures 6.3 and 6.4, full-flow failure is where the
entire mass of the tailings liquefied. Layered liquefaction failure is where the weakest layer (as
identified in the subsurface investigations)—which also “daylights” along the face of the slope—
liquefied and carried block of intact material along with it downslope.
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Figure 6.5 Example trial of incremental momentum method (IMM) after Weber [2015].
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7 Comprehensive Results

The results in this report fall into three categories;

1. Resistance measurements representative of the pre-failure conditions of the material that
liquefied and produced the flow failure;

2. Residual strength estimates of the liquefied material; and

3. Effective stress estimates of the pre-failure conditions at the depth of failure.

7.1 RESISTANCE MEASUREMENTS

Selection of a representative penetration resistance value of the Las Palmas dam for establishing
post-liquefaction strength predictive correlations considered blow counts within what is
interpreted as the saturated portion of the tailings material. Blow counts were corrected for
factors related to overburden pressure and fines content; see Figure 7.1. Fines correction was per
Equations (7.1) and (7.2) put forth by Cetin et al. [2004] to transform SPT N, ¢ values to N s0.cs
values. This fines correction accounted for two factors: (1) increased resistance to liquefaction as
a function of fines content; and (2) adjustment of blow counts as a function of granular and fine
grain material in situ resistance.

Nigsocs = Nigo X Cfines (7.1)
Cines =(1+0.004x FC)+0.05x(FC/ Ny ) (7.2)

In these equations, FC = percent fines content (by dry weight) expressed in percent (e.g.,
20% fines is represented as F'C = 20.0). Fines content less than 5% are represented as FC = 0,
and fines content exceeding 35% are represented as FC = 35.0.

The averaged blow counts from the SPT measurements of intact material representative
of liquefiable flow failure tailings were estimated at N; ¢ = 2.5 and N, 60,CS = 5 (Figure 6.6),
with an estimated coefficient of variation of 25% [Kulhawy and Mayne 1990].
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Figure 7.1 Histogram of blow counts in saturated tailings material, with fines

correction (borings B-2, 3, and 4).

For the CPT, overburden corrections were performed using the equation below to arrive
at gc; and also corrected with the subsequent equation to arrive at the dimensionless O,
[Robertson and Cabal 2015].

qe1t = 4. (Bz /O-\'/)n 9o =4. (Bl /0\'/)" (73)

where ¢, is the overburden stress normalized tip resistance (MPa); g, is the raw tip resistance;
P, is one atmosphere of pressure ~ 100 kPa — 0.1 MPa; o, is the vertical effective stress (kPA);
and # is the normalization exponent ~ 0.5.

Although the normalization exponent varies by soil type and stress conditions, a median
value of 0.5 is typical for young normally consolidated sandy soils [Moss et al. 2006].

Ou|(q.—0,)/P.]-(R/o)) (7.4)

where ¢, =g.+u(l—a) is the pore pressure corrected tip resistance; u is the pore pressure

measurement at the u, position; a is the cone factor ~ 0.8 (typical for Gregg drilling cones; and
o, is the vertical total stress (kPa).

The VS values have been overburden corrected (VS;) for Holocene sands using the
equation below, which uses a typical median normalization exponent of » = 0.25 [Andrus and
Stokoe 2000].

VS, =VS-(R/ol) (7.5)
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The processed cone measurements are shown in Figures 7.2-7.4. Water table depths at
the time of the measurements were estimated based on the pore pressure measurements and are
shown in the figures with a triangle. The depth ranges thought to represent potentially liquefiable
material with continuous stretches of low normalized penetration resistance are boxed. The
histograms of the boxed regions are shown below each figure. CPT1 was located closest to the
scarp where the material failed, CPT2 was positioned to intercept wall material, and CPT3 was
located near the thickest portion of ponded tailings material.

Table 7.1 shows the stress normalized shear-wave velocity for the “weak” layers of the
profiles measured. G2 was omitted because it appears to be non-liquefiable based on the CPT
and V'S profiles. Based on analysis of the normalized CPT and VS measurements, it appears the
CPT3 and G3 are the most representative of intact material that resulted in flow failure in the
unrestrained portion of the tailings. The interpreted measurements for this case history are then;
ga~1.3 MPa (Qn~11.7) and VS,~172 m/sec, with an estimated coefficient of variation of 10%

for the CPT [Kulhawy and Mayne 1990] and the same for V'S [Moss 2008].

Table 7.1 Shear-wave velocity of "weak" layers for each profile.
Profile Depth range (m) Average VS, (m/sec)
G1 Oto5 211
G2 na na
G3 Oto8 172
G5 Oto3 222
G6 3to9 175
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Figure 7.2 CPT1 overburden corrected tip resistance with histogram of boxed region
thought to best represent the tailings material susceptible to liquefaction
and flow failure. The mean and median are approximately 1.83 MPa with a
CoV of 0.40.
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Figure 7.3 CPT2 overburden corrected tip resistance. This sounding is thought to

represent material not highly susceptible to liquefaction because of wall
material and interlayering. The boxed region mean is 2.94 MPa, median
1.86 MPa, with a CoV of 0.52.
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Figure 7.4 CPT3 overburden corrected tip resistance. This sounding is in the center

of a region that experienced liquefaction but did not exhibit failure in a
flow failure. The boxed regions have a mean of 1.3 MPa, median 1.4 MPa,
with a CoV of 0.06.
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7.2 RESIDUAL STRENGTH

A post-liquefaction residual strength = 7.8 kPa (163 psf) and = 8.7 kPa (181 psf) represent
bounds for a layered failure analysis, and a residual strength =~ 8.4 kPa (175 psf) represents a
complete flow-failure analysis. The average of these three residual strengths = 8.3 kPa (173 psf),
which represents the estimated mobilized post-liquefaction residual strength for this case study,
with a nominal coefficient of variation of 5.5% estimated from the sensitivity analysis.

To provide confidence in this value, a sensitivity analysis was conducted; the results
shown in Figure 7.5. The sensitivity analysis included alternate failure modes, differing ground
water conditions, and variable unit weight of the uncompacted tailings embankment and ponded
material.

Sensitivity Analysis: Residual Strength

Baseline Average = 173 psf

Unit Weight: 5 pcf = 163 _— 183
Layered Failure: Undrained, Su=500 psf = 163 _
Layered Failure: Drained, ¢p(Residual)=21° _ 181
-

Layered Failure: Drained, ¢p(Peak)=29° 80

Debris Flow Failure . 175

160 165 170 175 180 185
B Above M Below

Figure 7.5 Tornado plot sensitivity analysis of post-liquefaction residual strength
(from Gebhart [2016]).

7.3 EFFECTIVE STRESS

For this study, the location selected to represent initial vertical effective stress (or soil
overburden) was the assumed failure interface between tailings and underlying competent native
material. Values and geometry used for calculation are per Figure 7.6. An initial vertical
effective stress of approximately 2.0 atmospheres (202.5 kPa or 4,300 psf) was the best estimate
for this case history, with an estimated coefficient of variation of 5% [Kulhawy and Mayne
1990].
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Figure 7.6
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Geometry used to estimate the effective stress on the failure plane at the
time of failure (from Gebhart [2016]).

7.4 COMPARISON WITH EXISTING DATABASE

The results are plotted against prior case histories in the format of residual strength predictive
plots: Seed and Harder [1990] (Figure 7.7); Olson and Stark [2002] (Figures 7.8 and 7.9);
Kramer and Wang [2015] (Figure 7.10); and Weber et al. [2015] (Figure 7.11). The data from
this case history is shown as an ellipse capturing the quantified uncertainty in penetration
resistance and residual strength.
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Figure 7.7 Las Palmas data ellipse with respect to Seed and Harder [1990].
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Figure 7.8 Las Palmas data point (SPT) with respect to Olson and Stark [2002].
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Figure 7.11 Las Palmas data point with respect to Weber et al. [2015].
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8 Summary and Conclusions

The goal of this study was to provide a well-documented case history of a liquefaction flow
failure. The 2010 Maule, Chile, event triggered the flow failure in the Las Palmas tailings dam,
resulting in a run out of upwards of 350 m. The documentation herein includes; reconnaissance
information by GEER [2010], drilling and standard penetration measurements (SPT) by
DICTUC [2012], and back analysis of the residual strength by Gebhart [2016], as well as the
results of cone penetration tests (CPT) and shear-wave velocity (VS) measurements presented
here for the first time.

Based on the information evaluated, analyzed, and measured, the Las Palmas flow failure
can be summarized with the following mean values and estimated coefficients of variation.

Table 8.1 Summary mean and coefficient of variation.
SPT Nigo=2.5and Ny, CS=5 COV~25%
Resistance CPT ge1 = 1.3 MPa and Qi = 11.7 10%
IS VS =172 m/sec 10%
Residual strength Sur = 8.3 kPa (173 psf) 5.5%
Effective stress O, = 2.0 atmospheres (202.5 kPa, 4300 psf) 5.0%
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Appendix Geophysical Data Processing

This appendix shows the passive surface wave geophysical data analysis used to arrive at the
shear-wave velocity profiles. The data processing was carried out using the Surface Plus module
in the Geogiga software suite. Measured and estimated dispersion curves are shown. All data was
recorded using;

e circular arrays
e 12 geophones (4.5Hz)
e 2 m/sec sampling rate

e 32 sec recording length x 10 recordings all concatenated

CPT1 (G1) s35.184242 w71.759540 (coincident with SPT4)
1000-1009 is a 10-m array
1100-1109 is a 20-m array

CPT2 (G2) 35184297 w71.760284
2000-2009 is a 20-m array
2100-2109 is a 10-m array

CPT3 (G3) s35.184350 w71.761196 (coincident with SPT2)
3000-3009 is a 20-m array
3100-3109 is a 10-m array

G5 (debris flow material) $35.185729 w71.758658
5000-5009 is a 10-m array

5100-5109 is a 20-m array

5200-5209 is a 5-m array

G6 (translated mass) s35.186669 w71.758161
6000-6009 is a 10-m array

6100-6104 is a 20-m array

6200-6209 is a 5-m array
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CPT3 (G3) s35.184350 w71.761196 (coincident with SPT2)
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10-m + 20-m circle
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G5 (flow failure material) s35.185729 w71.758658
5000-5009 is a 10-m array
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5200-5209 is a 5-m array

ce Dispersion nversion  Section  Curves. Help
DEedé “WE\«_ S i INH®R Ean ks -0 =
Shot, Locaton / Chamnel e - e a1satie)
00 1500 00 <00 a00 S
¢ g . [PUNAN
A = . .
= Velocity
53 = 00 600 1200 180.0 2400 3000 360.0 4200 480.0 S40.0 600.0 €60.0 7200 780.0 840.0 900.0 9600
= — = 0.0
=% =+ = = " ey
6 3 ; =
1
= )
e 80
o £ %
=2
_—
128 120
L
= 3 16.0
- L ~
160 = t g
> & { 3 10
% :. + 3
192 2
=
200
— 200 |
24 =3 t \
= {
¥
3 | \
288 ] 20
3 + 20
28
3 ERNE 3
2 = 280
= 4p b < » 0.0
Trace: 6, Time: 4374 (s), Value: 10.7398 Licensed to: California Polytechnic State University

L= ]

File Trace Dispersion nversion Section Curves

DEd& W ALK oAb
Initial Model R R
Models Dispersion Curves
Depth (m) Vs (m/s) Fixed
Velocty (ms)
1 20543 152562 5 o 2000 12000 o
of + Observed
2 sast 360791 %0 % + Modeled
3 12815 24492 1
4 30 888481 w0 \
N
0 240 S
g E S
z ¥ Fos o+
£ 180 N
2 .
I e SN S
80 )
&
120 9 60 120 80 240 30.0 %0
Frequency (12)
€ 9
£ Misfit
< 160 —
Mean Finess
20 + BestFiness
Wemum: 3.70%
20
20
2160
3
g 20
20 —
80
—~——
w0 —— —
20
8365 0% s 12 18 2 0
— Reration
Ready Licensed to: Calforia Polytechnic State Universty

69



Depth (m)
N
(@)

[ERY
w

30

35

0 100 200 300 400 500 600 700 800 9001000

Shear Wave Velocity (m/s)

!

3

r

I

=#-5m + 10m + 20m circle

70




G6 (translated block) s35.186669 w71.758161
6000-6009 is a 10-m array

6100-6104 is a 20-m array

6200-6209 is a 5-m array
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