

Predicción AMD

Marco geotectónico	Tipo de yacimiento	Sulfuros	PN	Elementos
	Skarns	Alto	Medio – Alto	Au, Fe
Intrusivo	Pórfidos Cu-Au-Mo	Alto	Bajo – Medio	Cu, Mo, Zn
	Sn granitoides y pegmatitas	Bajo – Medio Bajo		Sn, W, Fe
Volcánico	Au epitermales SA	Medio – Alto	Bajo	Au, Hg, Fe, Cu, As, Sb
continental	Au epitermales AC	Bajo	Medio – Alto	Au, Ag
Volcánico oceánico	Kuroko (VMS)	Alto	Medio	Fe, Au, Pb, Zn, Ni, Co, Cu
Ofiolítico	Cromita "podiform"	Medio	Medio – Alto	Cr, Pt
Sedimentario	MSV Zn – Pb	Alto	Alto	Zn, Pb, Cu, Fe, Cd
Scumentario	Estratiforme Cu	Alto	Bajo – Medio	Cu, Fe, Co



BOTADEROS DE MATERIAL ESTÉRIL (<0,2% Cu) Más de 3.000.000 ton/día en Chile

RELAVES Más de 1.000.000 ton/día en Chile

FILTRACIONES SUBTERRÁNEAS INCONTROLADAS

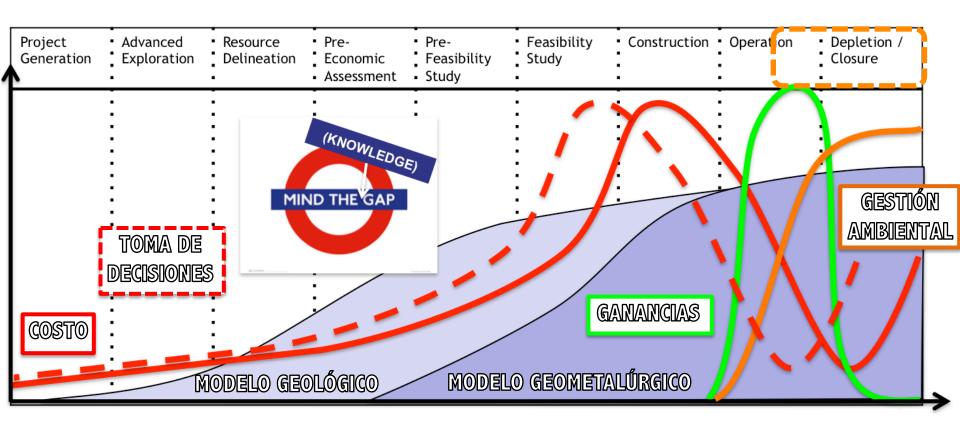
BOTADEROS DE SULFUROS DE BAJA LEY (0,2-0,4% Cu)

RAJOS MINEROS Y CRÁTERES DE HUNDIMIENTO

RIPIOS DE LIXIVIACIÓN

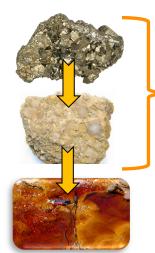
¿DÓNDE Y CUÁNDO SE PODRÍAN PRODUCIR PROBLEMAS DE AMD? ¿QUÉ CARACTERÍSTICAS TENDRÍA EL AMD GENERADO?

¿CUÁLES SERÍAN LOS IMPACTOS AMBIENTALES DEL AMD GENERADO?


¿EL RESIDUO MINERO ANALIZADO ES O NO POTENCIAL GENERADOR DE ÁCIDO?

> ¿ CÓMO AFECTARÁN LAS CONDICIONES DE MANEJO DEL RESIDUO EN LA GENERACIÓN DE AMD?

> > ¿ CUÁL SERÍA EL RESULTADO ESPERADO DE LA APLICACIÓN DE DISTINTAS MEDIDAS ESPECÍFICAS DE PREVENCIÓN Y CONTROL DE LA GENERACIÓN DE AMD?



La gestión ambiental de los proyectos mineros es tradicionalmente relegada al final de la etapa de operación y, principalmente, a la etapa de cierre y post-cierre de la faena minera

Condiciones del entorno:

- Clima
- Geología
- Hidrología
- Hidrogeología
- Geoquímica
- Geomorfología

Mediciones intrínsecas al residuo minero:

- Caracterización química y mineralógica
- Potencial neto de generación de ácido (PA, PN, PNN)
- pH NAG (reactividad)
- Curva ABCC
- Test Cinéticos de lixiviación
- Granulometría y liberación
- Permeabilidad

El estudio ambiental (estabilidad química) de los residuos mineros es tradicionalmente muy limitado y se centra particularmente en la evaluación mediante test de laboratorios que buscan predecir la capacidad del residuo de generar AMD

¿CÓMO REFLEJAR EN EL LABORATORIO O EN EL MODELO LA COMPLEJIDAD DE LOS FENÓMENOS NATURALES?

¿CÓMO SIMULAR EN UN TIEMPO CORTO PROCESOS QUE EN LA REALIDAD DEMORAN DECENAS DE AÑOS?

¿CÓMO ESCALAR DESDE LA ESCALA DEL LABORATORIO A LA ESCALA REAL?

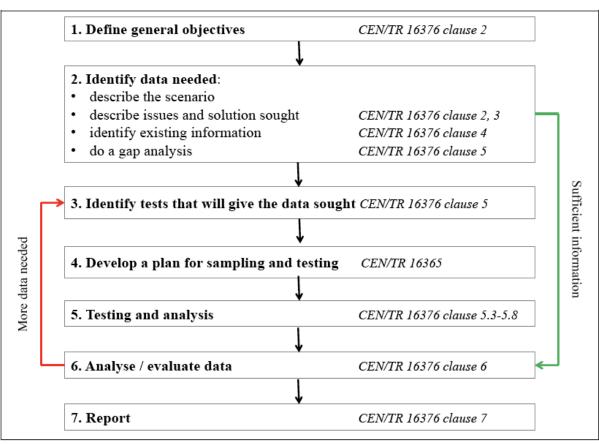


Figure 4.1: Flow chart of the characterisation process, with references to the clauses in CEN/TR 16376 (adapted from CEN/TR 16376)

Fuente: Garbarino, E., Orveillon, G., Saveyn, H., Barthe, P. and Eder, P., Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industriesin accordance with Directive 2006/21/EC, EUR 28963 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-77179-8, doi:10.2760/201200, JRC109657.

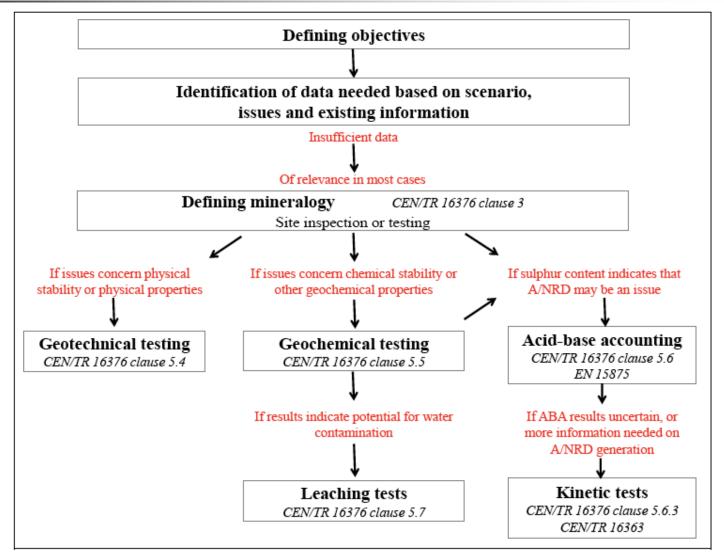
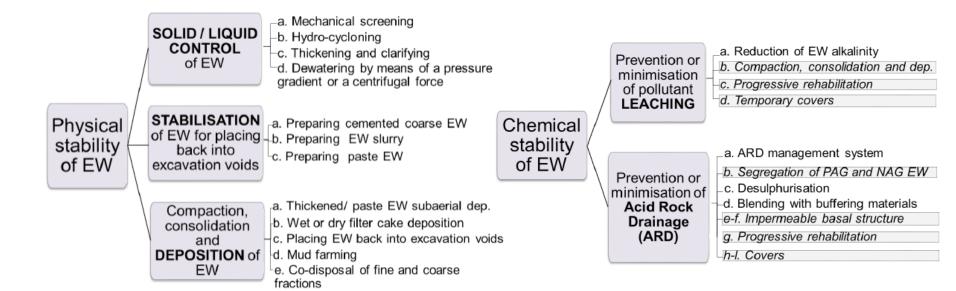
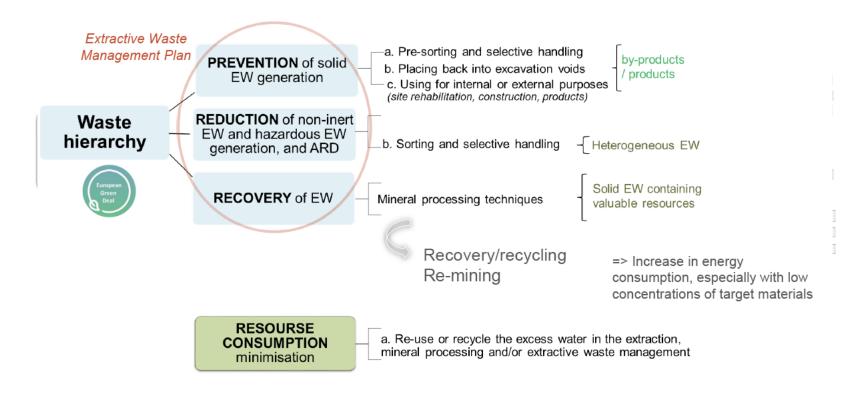
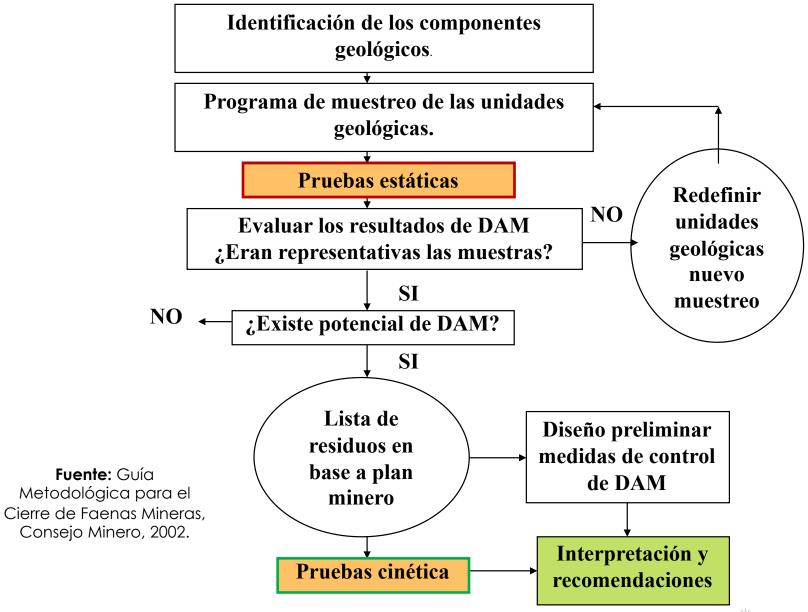



Figure 4.2: Example of a testing sequence in extractive waste characterisation, with references to the clauses within CEN/TR 16376 (adapted from CEN/TR 16376)

BAT ON PHYSICAL & CHEMICAL STABILITY



Fuente: Garbarino et al., 2018

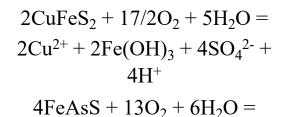

_

BAT ON RECOVERY, PREVENTION AND REDUCTION (2/3)

Ingeniería de Minas
FACULTAD DE CIENCIAS FÍSICA:
Y MATEMÁTICAS UNIVERSIDAD
DE CHILE

Meteorización	Reactividad (0-1)	Buffering pH	PN (0-10)
Muy rápida	1 6-11		7-10
Rápida	0,6	0,6 5,5-11	
Media	0,4	4,8-7,3	1,5-5
Lenta	0,02	2,4-5,1	0,5-3
Muy Lenta	0,01	2,2-4,1	0,2-1
No reactivo	0,004	3,3-3,5	0,01
	Muy rápida Rápida Media Lenta Muy Lenta	Meteorización (0-1) Muy rápida 1 Rápida 0,6 Media 0,4 Lenta 0,02 Muy Lenta 0,01	Meteorización (0-1) pH Muy rápida 1 6-11 Rápida 0,6 5,5-11 Media 0,4 4,8-7,3 Lenta 0,02 2,4-5,1 Muy Lenta 0,01 2,2-4,1

OXIDACIÓN DE SULFUROS



$$FeS_2 + 7/2O_2 + H_2O = Fe^{2+} + 2SO_4^{2-} + 2H^+$$

 $Fe_{(1-x)}S + (2-x/2)O_2 + xH_2O = (1-x)Fe^{2+} + SO_4^{2-} + 2xH^+$

 $4Fe^{2+} + 4H_2AsO_4^- + 4SO_4^{2-} + 4H^+$

Arsenopirita

		las abundancias			l:/DD
I I A DIA /	Daciiman da I	lac ahiindanciac	minaralac	· actimadac m	Adianta VDII
i ana 7	RESIDENCE	IAS ADDIDICIANICIAS		, evilliadas II	emanie ver

	Ру	Сру	Qtz	Hem	Mag	Msc	Fld	Сс	Dol	Aug	Diop	Flog	Hed	Apa	Total
Cola 25	81		19												100
Relave 2	88		12												100
AEL-33	74		25						1						100
ACL-49			18	82											100
Tailing CM	63		37												100
Tailing PAL					2			41	26.2	27		3.8			100
Tailing FOS			13.8								48	16.2	21	1	100
Tailing CAU	0.8	0.2	30			30	39								

Py: pirita (Fe₂S), Qtz: Cuarzo (SiO₂), Hem: hematita (Fe₂O₃), Mag: magnetita (Fe²⁺Fe³⁺₂O₄), Cc: calcita (CaCO₃), Dol: dolomita (CaCO₃), Aug: augita ([Ca,Mg,Fe]₂(Si,Al)₂O₆), Diop: diópsido (CaMgSi₂O₆), Flog: flogopita (K(Mg,Fe,Mn)₃Si₃AlO₁₀(F,OH)₂), Heden: hedenbergita, Apa: apatito

Alto potencial de generación de ácido.


Potencial bajo a medio de generación de ácido.

Potencial bajo a nulo de generación de ácido.

Fuente: Paula Martínez Ramírez, 2018. Protocolo de Caracterización para Predicción de Drenaje Ácido en Depósitos de Relaves Mineros. Trabajo Fin de Master, Universidad Internacional de Andalucía.

Pruebas estáticas: para determinar el balance entre producción y consumo de ácido de los componentes minerales en las muestras individuales. Rápidas y sencillas.

Pruebas cinéticas: para todas las muestras potencialmente generadoras de ácido. Permiten definir el potencial real para generación de ácido en el tiempo y la calidad del drenaje esperado. Requieren largo tiempo.

Prueba	Características y alcance	Información generada	Parámetros
Análisis químico	 Análisis del contenido de azufre total (IR) y de sulfato (gravimetría) 	• Contenido de azufre sulfuro	 S_{sulfuro} = S_{tot} - S_{sulfato} S_{pirita} = S_{sulfuro} - S_{calco}
	 Análisis de cobre total y de cobre soluble 	 Contenido de cobre sulfurado (cobre calcopirítico 	pinta sanaro careo
Análisis mineralógico	Análisis semicuantitativo de los sulfuros	 Razón pirita/calcopirita Razón pirita/sulfuros totales 	• $S_{pirita} = S_{sulfuro} - S_{calco}$
pH en pasta	Muestra pulverizadaRespuesta inmediataMuy bajo costo	 Caracteriza el estado actual de la muestra Permite identificar presencia de alcalinidad o acidez acumulada 	• pH inicial del sistema

Prueba	Características y alcance	Información generada	Parámetros
Test ABA	 Muestra <60 mesh Basado en supuestos fuertes: reacción completa de los sulfuros; consumo de ácido máximo Requiere análisis químico del sólido Respuesta rápida Diferentes formas de determinar el consumo de ácido 	 Determina el potencial neto de generación de ácido basado en la composición Permite determinar cuanto debería reaccionar la muestra antes de producirse un drenaje ácido 	 PA y PN PNN = PN - PA
Consumo ácido BC	 Titulación de 10 g de muestra con ácido sulfúrico 1 N Se registra el consumo vs el pH de equilibrio 	• Evolución del pH de equilibrio a medida que se agota la capacidad de neutralización	• Valores de pH en las distintas etapas del proceso
Test NAG	 Muestra < 60 mesh Reacción con H₂O₂ No requiere análisis químico del sólido Respuesta inmediata 	 Determina el potencial neto de generación de ácido basado en la reactividad No permite determinar cuanto reaccionó la muestra 	 Contenido de azufre sulfurado reactivo: S_{reactivo} Potencial neto de generación

Prueba	Características y alcance	Información generada	Parámetros
Celda de humedad	 Muestra de baja granulometría < ¹/₂" Pruebas de mínimo 20 semanas Mayor costo 	Determina la velocidad relativa de oxidación, de consumo de ácido y de disolución de los principales iones	 Cinética inicial de oxidación del sulfuro Cinética de disolución de distintos elementos
Celda de humedad modificada	 Muestra previamente tratada con ácido Se alimenta agua destilada 	 Determina la velocidad de oxidación bajo condiciones similares a una etapa más avanzada del proceso Solo permite evaluar el comportamiento de material superficial 	 Cinética de oxidación del sulfuro en etapa II y III Cinética de disolución de distintos elementos
Pruebas en columnas	 Gran variedad de condiciones Pruebas de larga duración Mayor costo Requiere mayor cantidad de muestra 	Determina la velocidad de oxidación, de consumo de ácido y de disolución de los principales iones en función de distintos parámetros: granulometría, temperatura, flujo y composición de la solución	 Efecto de la granulometría Efecto de la temperatura Efecto de los gradientes
Prueba piloto	 Prueba en tamaño real, bajo condiciones controladas Larga duración Dificultad de monitoreo 	 Permite calibrar el modelo Entrega parámetros cinéticos que integran distintos factores 	Calibración del modelo
Prueba in situ	 Prueba en tamaño real y bajo condiciones reales Muy larga duración Dificultad de muestreo 	Permite validar el modelo de simulación	Validación del modelo

Test ABA (Acid-Base Accounting)

- El test ABA es uno de los ensayos geoquímicos más utilizados para predecir el potencial de generación de drenaje ácido de residuos mineros, desde su creación (Sobek et al., 1978).
- Busca establecer el potencial de generación de ácido (PA) y el potencial de neutralizar acidez (PN) de una muestra (kg CaCO3 eq/ton).
- En función de esos dos parámetros, entrega una clasificación cualitativa respecto a dos categorías:
 - Potencial Neto de Neutralización de la Muestra (PNN = PN-PA).
 - Relación PN/PA.

PNN PN/PA		PN/PA	Interpretación		
>20		>3	Bajo o Nulo Potencial de Generación de Ácido		
<20		1 a 3	Potencial Marginal de Generación de Ácido		
Negativo <1		<1	Alto Potencial de Generación de Ácido		
20 : 20 Interpretación >3 Bajo Riesgo de Formar Dro		Bajo Riesgo de Formar Drenaje Ácido.			
-20 y 20	dificultosa	entre 1 y 3	Zona de Incertidumbre		

- El año 2011 la Unión Europea generó una guía para estandarizar y escoger la mejor práctica para determinar el potencial de generar drenaje ácido (Kaartinen y Wahlström, 2011).
- Para ello se consideró: simplicidad del método, popularidad en su uso en la industria minera e investigación, bajo coste y condiciones sencillas de realización en laboratorio.
- Según ello, fue determinado que la mejor metodología para este fin sería el test ABA modificado de Lawrence y Scheske (1997), que es una versión del mismo test de Sobek et al. (1978), que incorpora mejoras al protocolo de valoración para el PN.

Potencial Neutralización:

- 1. En primer lugar se deben separar 1 a 2 gramos de muestra pulverizada (80% bajo malla 200 astm) que deben ser dispuestos sobre una lámina de papel aluminio. Se deben verter algunas gotas de HCl al 25% sobre la muestra y observar el grado de reacción al contacto con el ácido o "Fizz Rate" (tasa de efervescencia) clasificando las muestras según su reacción haya sido nula (none), ligera (slight), moderada (moderate) o fuerte (strong).
- 2. Separar aproximadamente **2 gramos de muestra** pulverizada y disponerlos en un recipiente adecuado (vaso precipitado) adicionando **90 ml de agua** destilada para **formar una pulpa**.
- 3. [t=0 horas] Al iniciar la prueba se debe añadir un volumen de HCl 1N, según el *Fizz Rate* asignado y se coloca la solución del recipiente en un agitador magnético por un total de 22 horas.

Potencial Neutralización:

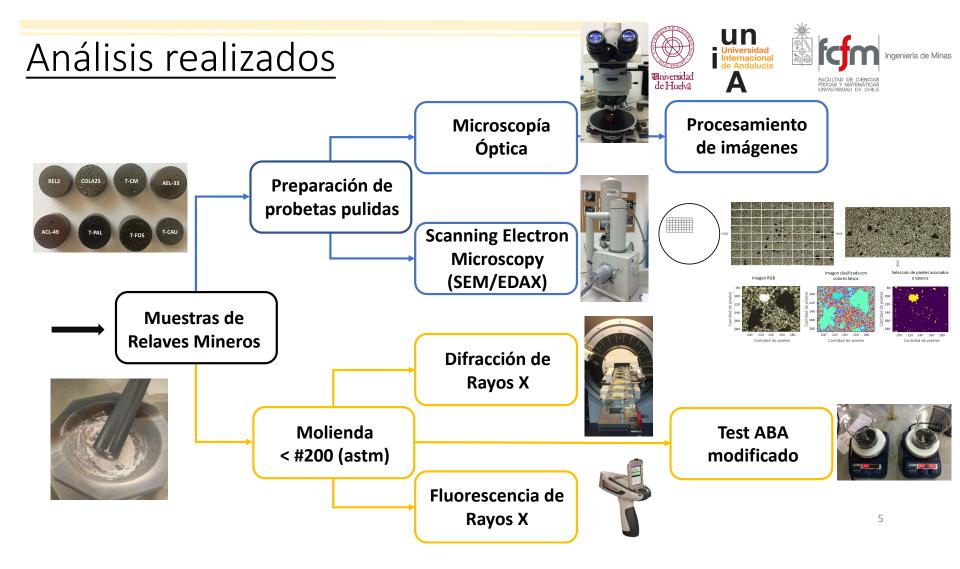
- 4. [t=22 horas] Se mide el pH de la solución. Si el pH de la solución es mayor a 2.5 se debe agregar nuevamente HCL 0.1N esto hasta que el pH alcance un rango de 2.0 –2.5. Si el pH es menor a 2.0 se debe repetir el punto anterior con menor cantidad de ácido.
- 5. [t=24 horas] Se le debe agregar a la solución agua destilada hasta completar un volumen total de 125 ml. Se registra el pH para verificar que esté se encuentre en un rango de 2.0 2.5. Si no se encuentra en ese rango se le debe agregar otra cantidad e HCL al 1N.
- 6. Luego, se **titula la solución con NaOH** al 0.1N hasta alcanzar el **pH de 8.3**.
- 7. Finalmente, se calcula el potencial neutralizador (PN):

$$NP = \frac{50 * (N_{HCL} * V_{HCL} - N_{NaOH} * V_{NaOH})}{W_m}$$

N = Normalidad V = Volumen Wm = Masa de muestra

Test	ABA	Contenido de S obtenido mediante XRF portable		Contenido de S obtenido mediante ICP- ES/MS				
Muestra	PN (kg CaCO ₃ eq/ton)	PA (kg CaCO ₃ eq/ton)	PNN =PN-PA	PN/PA	PA (kg CaCO ₃ eq/ton)	PNN =PN-PA	PN/PA	Clasificación ABA
ACL-49	48.50	52.75	-4.25	0.92	63.09	-14.59	0.77	Alto potencial de generación de ácido.
AEL-33	8.64	375.69	-367.06	0.02	312.50	-303.86	0.03	Alto potencial de generación de ácido.
Tailing CM	4.92	267.63	-262.71	0.02	312.50	-307.58	0.02	Alto potencial de generación de ácido.
Tailing PAL	294.70	b.d.l	b.d.l	b.d.l	2.57	292.13	114.59	Bajo o nulo potencial de generación de ácido.
Tailing FOS	40.08	b.d.l	b.d.l	b.d.l	1.25	38.83	32.07	Bajo o nulo potencial de generación de ácido.
Cola 25	0	336.28	-336.28	0.00	312.50	-312.50	0.00	Alto potencial de generación de ácido.
Relave 2	7.48	380.70	-373.21	0.02	312.50	-305.02	0.02	Alto potencial de generación de ácido.
Tailing CAU	43.43	n.m	n.m	n.m	25.63	17.81	1.69	Potencial marginal o medio de generación de ácido.

PNN	PN/PA	Clasificación ABA						
>20	>3	Bajo o nulo potencial de generación de ácido.						
<20 1-3		Potencial marginal o medio de generación de ácido.						
<0	<1	Alto potencial de generación de ácido.						


Fuente: Daniel Villanueva Escobar, 2019. METODOLOGÍA DE CARACTERIZACIÓN APLICABLE EN FAENA PARA EL RESGUARDO AMBIENTAL Y GESTIÓN DE RESIDUOS MINEROS. Trabajo Fin de Grado Geología, Universidad de Chile.

Muestra	PN (kg CaCO3 eq/ton)	PA (kg CaCO3 eq/ton)	PNN = PN-PA	PN/PA	Clasificación ABA
Cola 25	0	336.28	-336.28	0.00	Alto potencial de generación de ácido.
Relave 2	7.48	380.70	-373.21	0.02	Alto potencial de generación de ácido.
ACL-49	48.50	52.75	-4.25	0.92	Alto potencial de generación de ácido.
AEL-33	8.64	375.69	-367.06	0.02	Alto potencial de generación de ácido.
Tailing CM	4.92	267.63	-262.71	0.02	Alto potencial de generación de ácido.
Tailing CAU	43.43	25.63	17.81	1.69	Potencial marginal o medio de generación de ácido.
Tailing PAL	294.70	2.57	292.13	114.59	Bajo o nulo potencial de generación de ácido.
Tailing FOS	40.08	1.25	38.83	32.07	Bajo o nulo potencial de generación de ácido.

	Alto potencial de generación de	Potencial medio a bajo de	Potencial bajo a nulo de
	acidez	generación de acidez	generación de acidez
Mineralogía predominante	Sulfuros	Silicatos, óxidos o hidróxidos	Carbonatos
(asociaciones minerales)	Sullulos	Silicatos, oxidos o fildroxidos	Silicatos, óxidos o hidróxidos
			Mineral minoritario o traza
Modo de ocurrencia de			(mineralogía primaria carbonatos)
sulfuros	Mineral mayoritario	Mineral minoritario	Mineral traza (mineralogía
Sulluios			primaria silicatos, óxidos o
			hidróxidos)
	Cristales libres y/o con texturas	Cristales libres, con o sin texturas	Cristales incluidos o en contacto
	que expongan altas áreas	·	por otros minerales, sin texturas
Ocurrencia de minerales	superficiales,	que expongan altas áreas	que expongan altas áreas
críticos	granulometría	superficiales,	superficiales,
	predominantemente muy fina	granulometría promedio fina a	granulometría promedio media a
	(<50 μm)	muy fina (<100 μm)	fina (<1mm)
	Sulfuros > Asociaciones de		Sulfuros < Carbonatos
Abundancias relativas entre	silicatos, óxidos o hidróxidos	Sulfuros < Asociaciones de	Sulfulos < Carbonatos
asociaciones minerales			Culturas de Assaississas de
relevantes	Sulfuros ≥ ó ≤ Asociaciones de	silicatos, óxidos o hidróxidos	Sulfuros << Asociaciones de
	silicatos, óxidos o hidróxidos		silicatos, óxidos o hidróxidos

Fuente: Paula Martínez Ramírez, 2018.

Ingeniería de Minas
FACULTAD DE CIENCIAS FÍSICAS
Y MATEMÁTICAS UNIVERSIDAD
DE CHILE

Relación con resultados del Test ABA

Muestra	Clasificación ABA	Clasificación Mineralógico-Textural			
Cola 25	Alto potencial de generación de ácido.	Alto potencial de generación de ácido.			
Relave 2	Alto potencial de generación de ácido.	Alto potencial de generación de ácido.			
AEL-33	Alto potencial de generación de ácido.	Alto potencial de generación de ácido.			
ACL-49	Alto potencial de generación de ácido.	Potencial bajo a medio de generación de ácido.			
Tailing CM	Alto potencial de generación de ácido.	Alto potencial de generación de ácido.			
Tailing PAL	Bajo o nulo potencial de generación de ácido.	Potencial bajo a nulo de generación de ácido.			
Tailing FOS	Bajo o nulo potencial de generación de ácido.	Potencial bajo a medio de generación de ácido.			
Tailing CAU	Potencial marginal o medio de generación de ácido.	Potencial bajo a medio de generación de ácido.			

Test ABA sobreestimaría potencial de generación de DAM para ACL-49, pues si bien ella contiene minerales críticos, estos se encuentran en muy bajas cantidades y en su mayoría aislados al estar incluidos dentro de otros minerales no sulfurados

Test ABA subestimaría potencial de generación de DAM para Tailing FOS, cuyo comportamiento se espera similar al de la muestra Tailing-CAU, con contenidos bajos de sulfuros (py, liberada, grano fino) ante alta abundancia de otros minerales como óxidos y silicatos.

Test NAG (Net acid generation)

- El test entrega el resultado neto de acido generado. Se basa en la adicción de peróxido de hidrogeno H_2O_2 a la muestra, para oxidar el sulfuro presente en la muestra a ácido sulfúrico, el cual luego es neutralizado por los componentes de la misma muestra AMIRA (2002).
- Las muestras son clasificada de acuerdo al pH NAG obtenido de la prueba:

pH NAG	Observación					
> 4.5	No es potencial generador ácido					
< 4.5	Es potencial generador ácido					

- Ventajas del test: Es de fácil implementación, utiliza pocos reactivos y equipos, demanda poco tiempo y entrega un resultado en poco tiempo (aproximadamente 3 horas).
- Desventajas: No permite diferenciar entre el PN y el PA de la muestra.

Protocolo test NAG

- Pesar 2.5 gramos de una muestra pulverizada < 75 μm en una balanza analítica e introducir esta en una vaso Erlenmeyer o precipitado.
- Medir 250 ml del hidróxido de peróxido (15%) y agregar a la muestras.
- Colocar la preparación debajo de una campana extractora de gases y tapar el frasco con un vidrio de reloj o papel aluminio.
- D. Dejar que la solución reaccione hasta que cese la efervescencia o hervor.
- Colocar la solución en una plancha calefactora a una temperatura media de 50° C permitiendo que hierva suavemente, esto un mínimo de 2 horas e idealmente tapado el frasco para que no existe perdida de la solución.
- Dejar que la solución se enfrié a temperatura ambiente.
- Medir y registrar el pH de la solución lo cual será conocido como el pH NAG.
- Luego de eso titular o valorar la solución con NaOH como lo indica la siguiente tabla, esto hasta alcanzar un pH 4.5 y luego un pH 7.0, registrando el volumen añadido.

pH NAG	Reactivo
pH ≥ 2	Titular con NaOH 0.1 M
pH < 2	Titular con NaOH 0.5 M

Luego realizar los cálculos (*) necesarios e interpretarlos usando la ecuación:

Donde: NAG: Ácido neto generado (Kg H₂SO₄/tonelada de muestra); V: Volumen de NaOH utilizado para titular (ml); M: Concentración molar del NaOH utilizado para titular (moles/litro); W: peso de la muestra (g).

- (*) Sí el valor del NAG es > 25 Kg H_2SO_4/t , repetir usando menos muestra.
- (**) NAP: Ácido neto producido, se calcula con peso equivalente 50 y con volumen de NaOH a pH 7.0

 $NAG(**) = \frac{49 * V * M}{M}$

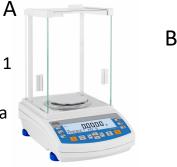
Prueba (*)								
NAG	ACL-49	AEL-33	CM	Palabora	Foskor	Cola 25	Relave 1 (**)	Cauquenes
Peso [gr]	2.51	1.02	1.00	2.50	2.53	1.04	1.00	2.52
Temperatura [°C]	50	50	50	50	50	50	50	50
				Resultad	os			
pH	3.5	2.25	2.11	7.62	7.02	2.14	1.71	2.83
Resultado	PAG	PAG	PAG	NPAG	NPAG	PAG	PAG	PAG
Cálculos NAG [Kg H ₂ SO ₄ /t]	2.15	170.17	333.42	0	0	341.92	574.26	12.06
Cálculos NAP [Kg CaCO ₃ /t]	4.98	210.33	316.8	0	0	378.97	640.83	18.25

^(*) Las muestras con NAG > 25 H_2SO_4 Kg /t fueron repetidas con menor cantidad de muestras (el resultado es el final).

^(**) Relave 1: Titulado con NaOH 0.5 M, los demás 0.1 M.

ABCC (acid buffering caracteristic curve)

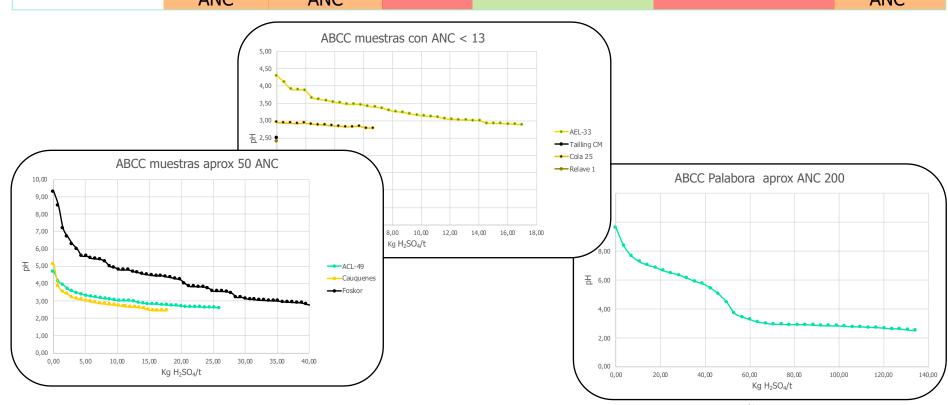
- Este test consiste en la titulación lenta de una muestra con HCI mientras se va midiendo el pH, esto permite ver la porción dentro de la muestra que se encuentra en condiciones para neutralizar el ácido AMIRA (2002).
- El experimento consiste en <u>titular la muestra hasta un pH inferior a 3</u>, a través de la adición de volúmenes de HCL cada 15 minutos para diferentes rangos de ANC, luego se grafica el H_2SO_4/t versus pH AMIRA (2002).
- Ventajas: Este test permite apreciar como se consume el ácido a medida que disminuye el pH, lo cual no se puede ver en la prueba de ANC como tal, lo cual hace que el ABCC proporcione más confianza.
- Desventajas: requiere conocer el NP o ANC, puede demandar bastante tiempo.


Protocolo test ABCC

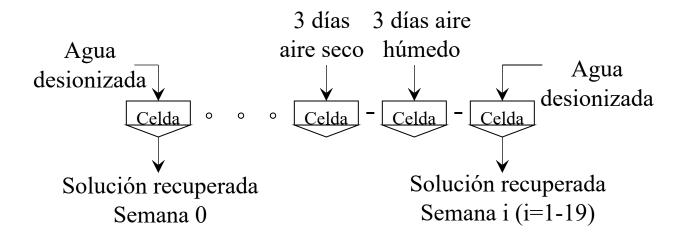
- Después de cada incremento de HCL añadido esperar aproximadamente 1 minutos y luego registrar el pH.
- B. Convertir el HCL añadido a su equivalente de H2SO4 añadido utilizando la formula:

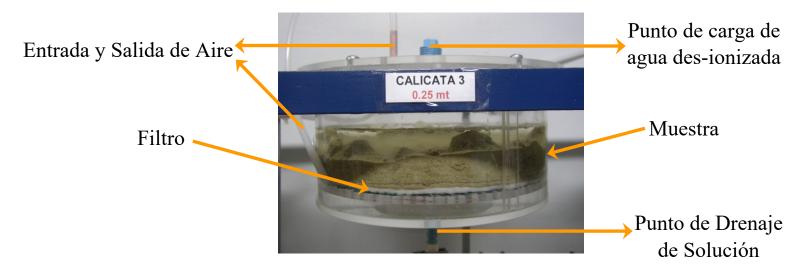
$$H_2SO_4\left(\frac{Kg}{t}\right) = \frac{49 * HCL * M}{P}$$

Donde: HCL: Cantidad de volumen de ácido clorhídrico añadido (ml); M: Concentración molar del ácido clorhídrico añadido (M); P: Peso de la muestra (gr).


Finalmente graficar el pH versus el ácido añadido (Kg H₂SO₄/t)

					•	1				
Prueba										
ABCC	ACL-49	AEL-33	CM	Palabora	Foskor (*)	Cola 25	Relave 1	Cauquenes		
Peso [gr]	1.98	2.02	1.98	2.08	2.01	2.06	2.02	2.00		
ANC [CaCO ₃ /t]	47.53	8.47	4.92	294.7	39.28	0	7.48	42.56		
	Resultados Company de la Compa									
pΗ _o	4.69	4.29	2.50	9.62	9.29	2.95	2.4	5.12		
pH final	2.57	2.88	2.50	2.51	2.85	2.78	2.4	2.45		
Resultado	Muy bajo	Muy bajo	Nulo ANC	Bajo ANC	Bajo ANC	Nulo ANC	Nulo ANC	Muy bajo		
	ANC	ANC						ANC		
ABCC muestras con ANC < 13										

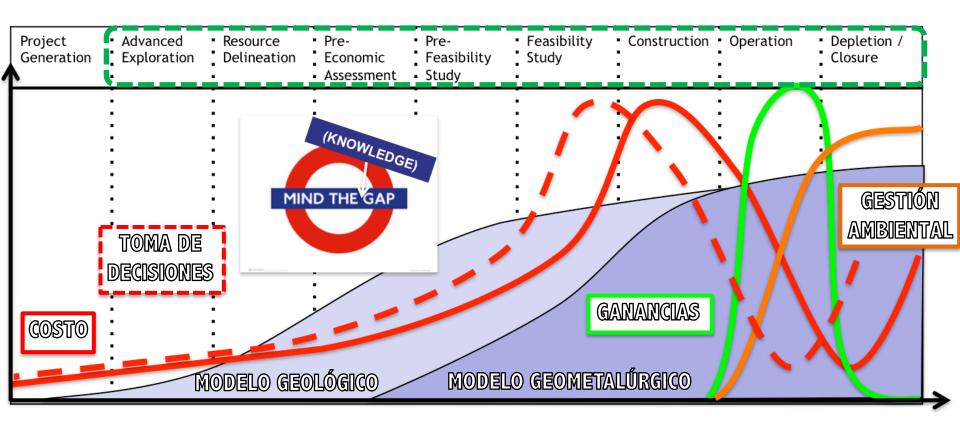

- > Mientras los test estáticos entregan sólo una información cualitativa y permiten evaluar el potencial de generación de ácido, las pruebas cinéticas buscan determinar la dinámica del proceso y la velocidad relativa de las distintas reacciones involucradas. Pueden proveer la siguiente información:
 - Velocidad relativa de generación del ácido y neutralización, lo cual determina cuando una muestra producirá acidez.
 - Tiempo para que comience el AMD, lo que determinará cuanto puede retrasarse una acción preventiva.
 - Composición química del drenaje y cual será la carga resultante de la corriente de agua.


Celda de Humedad

- > Objetivo: evaluar la reactividad de los sulfuros (velocidad de oxidación) y la velocidad con la cual se neutraliza la acidez producida.
- > Generalmente, estas pruebas no son muy representativas de las condiciones reales a las cuales pueden verse sometidos los residuos. Esto de debe a las diferencias de escala (granulometría, altura de columna) y tiempo (pruebas de algunas semanas o meses).

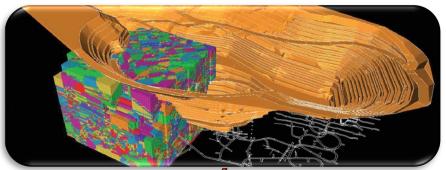
ASTM International. 2001. Standard Test Method for Accelerated Weathering of Solid Materials Using a Modified Humidity Cell. ASTM D 5744 –96 (reapproved 2001)

Columnas de Laboratorio

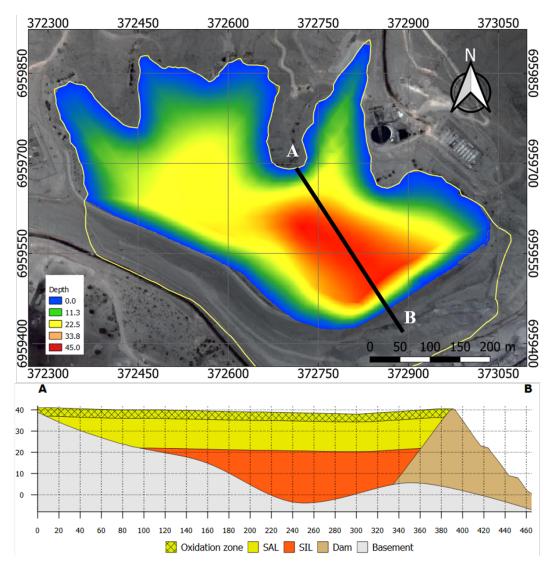

- > Permite acercarse a la escala real. Generalmente son pruebas de larga duración (meses o años).
- La tasa de irrigación puede simular condiciones reales (lluvia). Además, se puede alimentar solución ácida, simulando una etapa más avanzada del proceso.
- > Se puede trabajar a diferentes temperaturas.

- INAP: International Network for Acid Prevention: http://www.inap.com.au/
- Gard Guide: http://www.gardguide.com/
- ICARD-IMWA: International Conference on Acid Rock Drainage: http://www.imwa.info/imwa-meetings/proceedings/293-proceedings-2015.html
- MEND / NEDEM: http://mend-nedem.org
- PADRE: Partnership for Acid Drainage Remediation in Europe: http://www.padre.imwa.info/

La gestión ambiental de los proyectos mineros debería comenzar en las etapas tempranas de exploración minera mediante la incorporación de un enfoque ambiental a la información mineralógica y química generada para la caracterización del depósito



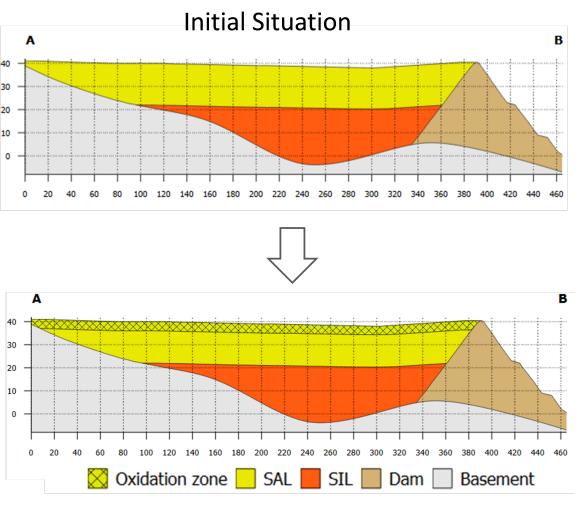
Actualmente, la exploración se centra en los minerales mena y no en los estériles. Así, el volumen de material disponible para la caracterización geo-ambiental suele ser limitado.

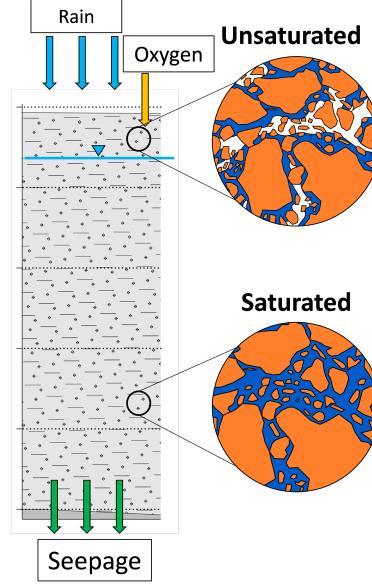


MODELIZACIÓN UNIDADES GEOAMBIENTALES

El reconocimiento temprano y modelización de unidades geoambientales (antes del diseño) recae en una identificación mineralógica de detalle de todo el material que conforma el estéril.

La información generada puede ser complementada por el diseño e instalación de pruebas cinéticas de caracterización in situ (e.g., botaderos experimentales)

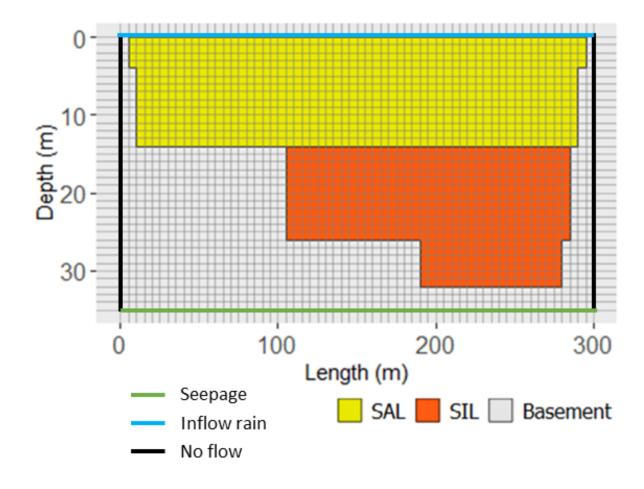


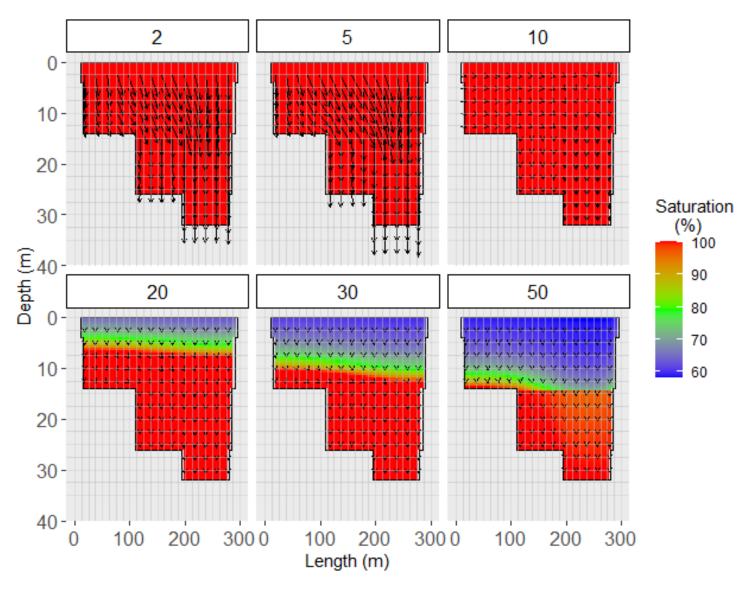


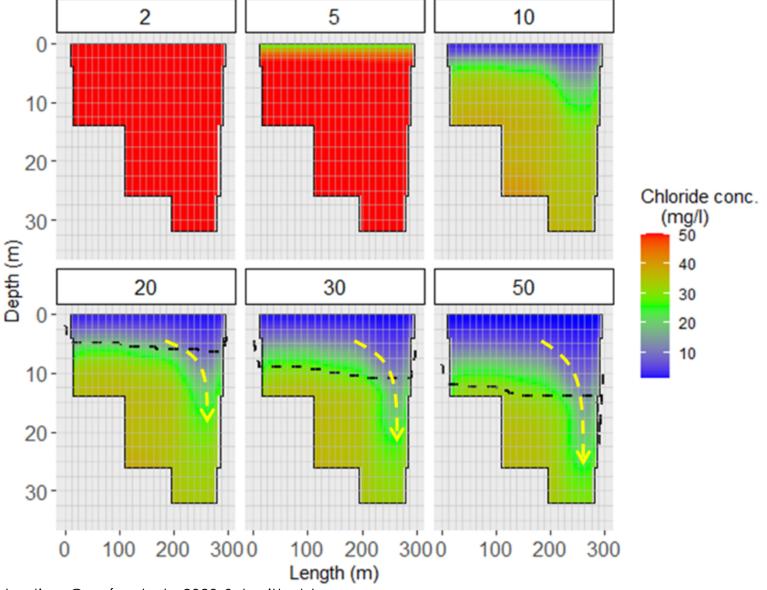
FACULTAD DE CIENCIAS

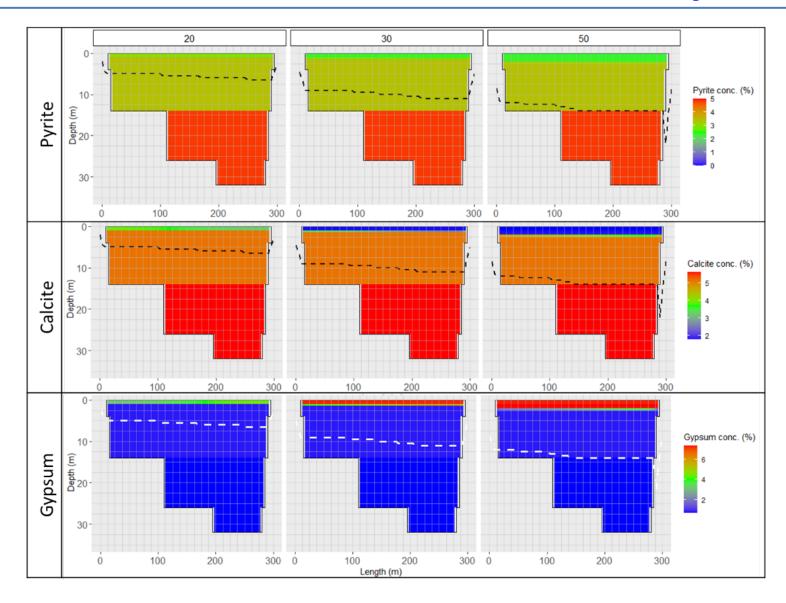
UNIVERSIDAD DE CHILE

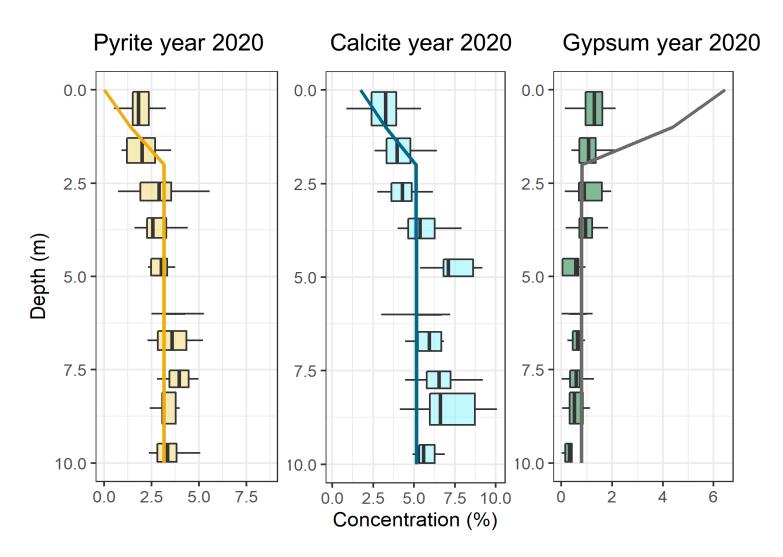
Fuente: Sebastian García et al., 2023 Submitted to International Journal of Hydrology




Hidrogeología Aplicada a la Minería y Medio Ambiente Módulo 7: Contaminación de Recursos Hídricos Dr. Manuel A. Caraballo


FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS UNIVERSIDAD DE CHILE




FACULTAD DE CIENCIAS

UNIVERSIDAD DE CHILE

Fuente: Sebastian García et al., 2023 Submitted to International Journal of Hydrology

