{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"**Taller de Proyecto de Datos**\n",
"\n",
"**INFORME FINAL**\n",
"\n",
"***Persiguiendo el clima: conocimientos y predicciones basados en datos***\n",
"\n",
"Integrantes:\n",
"Daniela Mancilla,\n",
"Gabriela Martínez,\n",
"Francisca Quijada"
],
"metadata": {
"id": "tuxwR3blCufU"
}
},
{
"cell_type": "markdown",
"source": [
"**INTRODUCCIÓN**\n",
"\n",
"El clima afecta a Chile de diversas maneras debido a su geografía única. Para entender y abordar estos impactos, es esencial analizar los datos climáticos, ya que su alcance se extiende a múltiples aspectos fundamentales de la sociedad, incluyendo:\n",
"\n",
"* **Recursos hídricos**: los patrones de precipitación determinan la cantidad de agua que fluye a ríos y embalses.\n",
"\n",
"* **Agricultura**: las temperaturas extremas, ya sean altas o bajas, pueden dañar los cultivos.\n",
"\n",
"* **Desastres naturales**: por un lado lluvias intensas pueden provocar inundaciones y deslizamientos de tierra, mientras que condiciones secas y cálidas pueden aumentar la probabilidad de incendios forestales.\n",
"\n",
"\n",
"El comprender mejor los efectos del clima, permite tomar decisiones informadas y desarrollar estrategias para proteger los recursos, fortalecer la agricultura y garantizar una planificación adecuada de medidas de prevención y respuesta ante desastres.\n",
"\n",
"\n",
"\n",
"El objetivo general del proyecto es *estudiar y comprender cómo las variables atmosféricas y oceánicas influyen en las condiciones climáticas*. Para ello se proponen responder las siguientes preguntas:\n",
"\n",
"- ¿Se pueden realizar pronósticos o estimaciones basados en los patrones observados? Se buscará responder preguntas como: ¿cuál será la temperatura?, ¿cuánto lloverá?.\n",
"\n",
"- ¿Existen patrones complejos entre las variables? El objetivo es dividir los datos climáticos en grupos significativos y buscar relaciones no evidentes entre las variables.\n",
"\n",
"- ¿Se pueden detectar anomalías? Esto podría ser utilizado como una herramienta para anticipar eventos climáticos extremos.\n",
"\n",
"Principalmente, el éxito del proyecto se medirá en base a si se pueden responder las preguntas planteadas, para lo cual es esencial analizar los valores de las métricas de cada uno de los modelos utilizados. Adicionalmente, el ser capaz de plantear nuevas preguntas a partir de lo concluido, también aportará a este aspecto."
],
"metadata": {
"id": "QbzetI7GCkds"
}
},
{
"cell_type": "markdown",
"source": [
"**Datos**\n",
"\n",
"La atmósfera y el océano son sistemas interdependientes, lo que significa que los eventos en uno de ellos desencadenan cambios en el otro. Para comprender con precisión el clima, es esencial analizar datos de ambos.\n",
"\n",
"Los datos que se utilizarán son registros correspondientes a la ciudad de Valparaíso durante el año 2022.\n",
"\n",
"\n",
"Los archivos iniciales que contienen los datos a analizar son:\n",
"- 2 archivos .CSV asociados a los atributos atmosféricos, que fueron obtenidos en https://agrometeorologia.cl/, correspondientes a la Estación Rodelillo, Valparaíso.\n",
"- 12 archivos .CSV asociados a los atributos oceánicos, que fueron solicitados a cendoc@shoa.cl, correspondientes al Faro Extremo Molo de Abrigo, Valparaíso.\n",
"\n",
"En total, luego de unir todos los archivos, se obtiene un dataframe con 8270 registros (filas) y 9 atributos (columnas), donde 7 de ellos son atributos atmosféricos y 2 océanicos. Los registros corresponden a mediciones realizadas cada una hora, durante el año 2022.\n",
"\n",
"Los atributos del dataframe son:\n",
"\n",
"- Temperatura del aire (TA) en ºC,\n",
"- Humedad relativa (HR) en %,\n",
"- Precipitación acumulada (PP) en mm, \n",
"- Presión atmosférica (PA) en mbar,\n",
"- Velocidad del viento (VV) en km/h,\n",
"- Ráfaga de viento (RV) en km/h,\n",
"- Dirección del viento (DV) en º,\n",
"- Nivel del mar (PRS) en m, y\n",
"- Temperatura del agua (TW) en ºC."
],
"metadata": {
"id": "q9yadkz2lM6u"
}
},
{
"cell_type": "markdown",
"source": [
"El dataframe final, luego del preprocesamiento, se ve de la siguiente manera:"
],
"metadata": {
"id": "UstGejbMplf0"
}
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"df=pd.read_csv(\"datos2022.csv\", sep=\",\")\n",
"df['fecha']= pd.to_datetime(df['fecha'])\n",
"df.head(2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
},
"id": "t1S-ySBxQdbF",
"outputId": "429ce009-d05e-45e9-ff11-a4bd3747778d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" fecha TA HR PP PA VV RV DV PRS TW\n",
"0 2022-01-01 00:00:00 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47\n",
"1 2022-01-01 01:00:00 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90"
],
"text/html": [
"\n",
"
\n"
]
},
"metadata": {},
"execution_count": 55
}
]
},
{
"cell_type": "markdown",
"source": [
"**Guardar datos**\n",
"\n",
"Finalmente, se guardan los datos en un archivo .CVS."
],
"metadata": {
"id": "kul5iIwAcmp8"
}
},
{
"cell_type": "code",
"source": [
"df.to_csv('datos2022.csv',index=False)"
],
"metadata": {
"id": "fJ8PZ80mctaH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**RESULTADOS**"
],
"metadata": {
"id": "NRrzwdv6vBDz"
}
},
{
"cell_type": "markdown",
"source": [
"Con el objetivo de tener una idea preliminar de cómo se comportan los datos, se extraerá información de las siguientes visualizaciones: gráficos de series temporales, histogramas y diagramas de cajas, y mapas de calor."
],
"metadata": {
"id": "tc4YUzQ4znnI"
}
},
{
"cell_type": "markdown",
"source": [
"Se cargan las librerías que se podrían utilizar para realizar las visualizaciones."
],
"metadata": {
"id": "2PUdLVbtHatV"
}
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import scipy.stats as stats\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"from plotly.subplots import make_subplots\n",
"import datetime"
],
"metadata": {
"id": "U4ZvzPfzSUBs"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se parte leyendo los datos procesados anteriormente."
],
"metadata": {
"id": "V0gk4aQ7HWec"
}
},
{
"cell_type": "code",
"source": [
"df=pd.read_csv(\"datos2022.csv\", sep=\",\")\n",
"df['fecha']= pd.to_datetime(df['fecha'])"
],
"metadata": {
"id": "ma0s0VEZ0FmW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Visualizaciones de la temperatura atmosférica**\n",
"\n",
"La temperatura atmosférica es crucial ya que sirve como indicador de cambios climáticos. Bajo esta idea, se comenzará mostrando algunas visualizaciones que den cuenta de cómo la temperatura varía a lo largo del año."
],
"metadata": {
"id": "9-QQCi7UnWh6"
}
},
{
"cell_type": "markdown",
"source": [
"**Registros agrupados semanalmente**\n",
"\n",
"Se pueden realizar agrupamientos diarios ('D'), semanales ('W'), mensuales ('M'), etcétera.\n",
"\n",
"A continuación se agruparán los datos semanalmente:"
],
"metadata": {
"id": "k7jha7atnw9s"
}
},
{
"cell_type": "code",
"source": [
"df_week=df.resample('W', on='fecha').mean().round(2)\n",
"df_week=df_week.reset_index()\n",
"df_week_max=df.resample('W', on='fecha').max().round(2)\n",
"df_week_max=df_week_max.reset_index()\n",
"df_week_min=df.resample('W', on='fecha').min().round(2)\n",
"df_week_min=df_week_min.reset_index()"
],
"metadata": {
"id": "ULrs6LL9n36E"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Temperatura promedio, mínima y máxima**"
],
"metadata": {
"id": "OzOFkQxcokrm"
}
},
{
"cell_type": "code",
"source": [
"fig = go.Figure()\n",
"\n",
"fig.add_trace(go.Scatter( x=df_week_max[\"fecha\"], y=df_week_max[\"TA\"],\n",
" mode='lines+markers',\n",
" name='máxima'))\n",
"fig.add_trace(go.Scatter( x=df_week_min[\"fecha\"], y=df_week_min[\"TA\"],\n",
" mode='lines+markers',\n",
" name='mínima'))\n",
"fig.add_trace(go.Scatter( x=df_week[\"fecha\"], y=df_week[\"TA\"],\n",
" mode='lines+markers',\n",
" name='promedio'))\n",
"fig.update_layout(\n",
" title=\"Temperatura ambiente promedio, máxima y mínima semanal\",\n",
" xaxis_title=\"Fecha\",\n",
" yaxis_title=\"Temperatura (ºC)\",\n",
" height=400, width=700, yaxis_range=[0,35])\n",
"\n",
"fig.show()"
],
"metadata": {
"id": "wcvp3K79n_DX",
"outputId": "da23d029-69e3-401d-a44b-44ea7c1ed00a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 417
}
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En este gráfico, el eje x representa la fecha, mientras que el eje y la temperatura ambiente. Se grafican las temperaturas máxima (azul), promedio (verde) y mínima (roja) por semana.\n",
"\n",
"Se observa que la temperatura máxima ocurrió durante la semana del 18 de diciembre, correspondiente a 32.6ºC, mientras que la temperatura mínima ocurrió durante la semana del 5 de junio, correspondiente a 3.1ºC. En cuanto a la temperatura promedio, su máximo es de 19.7ºC en la semana del 11 de diciembre, mientras que su mínima es de 8ºC en la semana del 17 de julio."
],
"metadata": {
"id": "Ne6e0nZQoGm5"
}
},
{
"cell_type": "markdown",
"source": [
"**Estaciones del año**\n",
"\n",
"Se añade una nueva columna al dataframe que represente la estación del año."
],
"metadata": {
"id": "ucO2LbO7oyIj"
}
},
{
"cell_type": "code",
"source": [
"def estacion(fecha):\n",
" if pd.to_datetime(\"2022-01-01\")<= fecha<= pd.to_datetime(\"2022-03-20\"):\n",
" return 'verano'\n",
" elif pd.to_datetime(\"2022-03-21\")<= fecha<= pd.to_datetime(\"2022-06-21\"):\n",
" return 'otoño'\n",
" elif pd.to_datetime(\"2022-06-22\")<= fecha<=pd.to_datetime( \"2022-09-23\"):\n",
" return 'invierno'\n",
" elif pd.to_datetime(\"2022-09-24\")<= fecha<= pd.to_datetime(\"2022-12-21\"):\n",
" return 'primavera'\n",
" else:\n",
" return 'verano'\n",
"\n",
"df['estación'] = df['fecha'].map(estacion)\n",
"df.head(2)"
],
"metadata": {
"id": "maJ2PwSWo0KH",
"outputId": "e4c82453-e3f9-4825-8b46-e0286f4cd701",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
}
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" fecha TA HR PP PA VV RV DV PRS TW \\\n",
"0 2022-01-01 00:00:00 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47 \n",
"1 2022-01-01 01:00:00 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90 \n",
"\n",
" estación \n",
"0 verano \n",
"1 verano "
],
"text/html": [
"\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que, como era de esperar, la mediana mínima se observa en el invierno (9.6ºC) mientras que la máxima en verano (15.3ºC). Los rangos intercuartílicos más grandes corresponden a la primavera y verano, lo que indica que los datos se encuentran más dispersos. Mientras que el menor rango intercuartílico corresponde al invierno. En cuanto a los valores outliers, para el otoño se observa un valor outlier bajo el bigote inferior. En cuanto a valores outliers sobre el bigote superior, se observan para todas las estaciones del año."
],
"metadata": {
"id": "r_nOMLHPpKAh"
}
},
{
"cell_type": "markdown",
"source": [
"**Variación de la temperatura por hora y día**"
],
"metadata": {
"id": "cTUC0PrXp76Y"
}
},
{
"cell_type": "code",
"source": [
"df[\"hour\"]=df.fecha.dt.hour\n",
"df[\"date\"]=df.fecha.dt.date\n",
"table = df.groupby(['date', 'hour']).mean(numeric_only=True)[['TA']].reset_index()\n",
"table = table.pivot(index=\"hour\", columns=\"date\", values=\"TA\")\n",
"table.head(2)"
],
"metadata": {
"id": "V7EVPKzkqA3o",
"outputId": "b4209664-4d78-40c2-b5fe-dea9dc57b82a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 210
}
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"date 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 \\\n",
"hour \n",
"0 11.2 12.8 14.0 14.3 12.6 12.7 \n",
"1 11.0 12.5 NaN 14.3 12.0 12.6 \n",
"\n",
"date 2022-01-07 2022-01-08 2022-01-09 2022-01-10 ... 2022-12-22 \\\n",
"hour ... \n",
"0 11.7 NaN NaN 14.2 ... 15.2 \n",
"1 11.6 NaN 13.5 13.7 ... 15.2 \n",
"\n",
"date 2022-12-23 2022-12-24 2022-12-25 2022-12-26 2022-12-27 2022-12-28 \\\n",
"hour \n",
"0 16.5 14.2 11.2 14.3 14.1 15.4 \n",
"1 15.9 13.9 11.2 14.4 14.0 14.5 \n",
"\n",
"date 2022-12-29 2022-12-30 2022-12-31 \n",
"hour \n",
"0 14.5 13.6 14.7 \n",
"1 14.0 13.8 NaN \n",
"\n",
"[2 rows x 360 columns]"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
date
\n",
"
2022-01-01
\n",
"
2022-01-02
\n",
"
2022-01-03
\n",
"
2022-01-04
\n",
"
2022-01-05
\n",
"
2022-01-06
\n",
"
2022-01-07
\n",
"
2022-01-08
\n",
"
2022-01-09
\n",
"
2022-01-10
\n",
"
...
\n",
"
2022-12-22
\n",
"
2022-12-23
\n",
"
2022-12-24
\n",
"
2022-12-25
\n",
"
2022-12-26
\n",
"
2022-12-27
\n",
"
2022-12-28
\n",
"
2022-12-29
\n",
"
2022-12-30
\n",
"
2022-12-31
\n",
"
\n",
"
\n",
"
hour
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
11.2
\n",
"
12.8
\n",
"
14.0
\n",
"
14.3
\n",
"
12.6
\n",
"
12.7
\n",
"
11.7
\n",
"
NaN
\n",
"
NaN
\n",
"
14.2
\n",
"
...
\n",
"
15.2
\n",
"
16.5
\n",
"
14.2
\n",
"
11.2
\n",
"
14.3
\n",
"
14.1
\n",
"
15.4
\n",
"
14.5
\n",
"
13.6
\n",
"
14.7
\n",
"
\n",
"
\n",
"
1
\n",
"
11.0
\n",
"
12.5
\n",
"
NaN
\n",
"
14.3
\n",
"
12.0
\n",
"
12.6
\n",
"
11.6
\n",
"
NaN
\n",
"
13.5
\n",
"
13.7
\n",
"
...
\n",
"
15.2
\n",
"
15.9
\n",
"
13.9
\n",
"
11.2
\n",
"
14.4
\n",
"
14.0
\n",
"
14.5
\n",
"
14.0
\n",
"
13.8
\n",
"
NaN
\n",
"
\n",
" \n",
"
\n",
"
2 rows × 360 columns
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 67
}
]
},
{
"cell_type": "code",
"source": [
"fig = px.imshow(table,text_auto=True,\n",
" color_continuous_scale=\"orrd\",\n",
" title=\"Tamperatura ambiente según el día y la hora para el año 2022\",\n",
" aspect=\"auto\",\n",
" origin=\"lower\",\n",
" width=650,height=550)\n",
"\n",
"fig.update_yaxes(title_text=\"Hora del día\")\n",
"fig.update_xaxes(title_text=\"Día del año\")\n",
"fig.show()"
],
"metadata": {
"id": "k7umLmudqFv2",
"outputId": "30572f76-a497-43e0-f7d7-208d9626e181",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 567
}
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En el gráfico, el eje x corresponde al día del año, mientras que el eje y representa la hora del día. La escala de temperatura representa la temperatura atmosférica medida en ºC, donde mientras más fuerte el color representa mayor temperatura, y mientras más débil el color representa menor temperatura."
],
"metadata": {
"id": "nggzroFdqidN"
}
},
{
"cell_type": "markdown",
"source": [
"Se observa que las temperaturas más altas se registran entre noviembre y marzo y dismiuye entre abril y octubre. Esto, coincide con las características climáticas de nuestro país.\n",
"\n",
"En cuanto a la relación entre la hora y la temperatura, se observa cómo las temperaturas máximas en todo el año se concentra entre las 10 de la mañana hasta las 8 de la tarde, siendo las 3 de la tarde (aproximadamente) donde se concentran las máximas temperaturas del día y las mínimas se concentran en la mañana.\n",
"\n",
"Los datos NaN corresponden a horas del día que no tienen registro, ya sea porque los sensores no lo registraron o porque hayan sido borrados debido a registros erróneos."
],
"metadata": {
"id": "hZFq2v-UqPB_"
}
},
{
"cell_type": "markdown",
"source": [
"**Precipitación**"
],
"metadata": {
"id": "lwuCMIu1sBZz"
}
},
{
"cell_type": "code",
"source": [
"df_day=df.resample('D', on='fecha').mean().round(2)\n",
"df_day=df_day.reset_index()"
],
"metadata": {
"id": "hlp7Qw27sAwD",
"outputId": "38d302e7-c174-4844-8fb9-34fff4c4684e",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":1: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
"\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"fig = px.scatter(df_day, x=\"fecha\", y=\"PP\",\n",
" labels={'fecha':'Fecha', 'PP': 'Precipitación (mm)'},\n",
" width=700,height=400,\n",
" title='Precipitación por día',\n",
" ).update_traces(mode=\"lines\")\n",
"\n",
"fig.show()"
],
"metadata": {
"id": "c4M6rW30sRkC",
"outputId": "77712377-cd99-437c-86af-c965a04d0e03",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 417
}
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que los días lluviosos se concentran principalmente entre junio y agosto, es decir, en el invierno. En tan sólo 6 días el agua caída supera el 1mm. El día más lluvioso corresponde al 14 de julio con 2mm.\n",
"\n"
],
"metadata": {
"id": "hQsv1C9ks7Uq"
}
},
{
"cell_type": "markdown",
"source": [
"**Visualizaciones de más atributos**"
],
"metadata": {
"id": "jFFHj5yxqAnt"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación, se muestra un **mapa de calor** con las correlaciones de todos los atributos de la base de datos, en el cual será posible visualizar, en términos generales, cómo se relacionan las variables entre sí."
],
"metadata": {
"id": "D-NF_EVsyTAP"
}
},
{
"cell_type": "code",
"source": [
"df_sin=df.drop(columns=\"fecha\")\n",
"df_sin"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
},
"id": "tsrBPsUNXLwU",
"outputId": "b6b1a2ea-180e-4e05-c39f-f089ff342f99"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" TA HR PP PA VV RV DV PRS TW\n",
"0 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47\n",
"1 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90\n",
"2 10.4 95.4 0.0 974.0 3.0 8.6 196.0 2.84 13.55\n",
"3 9.5 100.0 0.0 973.0 1.6 8.6 155.0 2.57 13.42\n",
"4 9.2 100.0 0.0 974.0 1.5 9.4 0.0 2.27 13.34\n",
"... ... ... ... ... ... ... ... ... ...\n",
"8265 14.8 88.2 0.0 976.0 4.2 7.9 297.0 2.70 16.93\n",
"8266 14.7 86.1 0.0 977.0 3.8 7.6 230.0 2.70 16.96\n",
"8267 14.8 85.9 0.0 977.0 4.2 8.3 247.0 2.62 16.95\n",
"8268 14.8 85.5 0.0 977.0 5.7 8.3 296.0 2.49 16.84\n",
"8269 14.7 85.4 0.0 977.0 7.1 10.8 301.0 2.36 16.80\n",
"\n",
"[8270 rows x 9 columns]"
],
"text/html": [
"\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que, algunas *correlaciones positivas* que se podrían destacar, corresponden a los pares de variables:\n",
"- grande (sobre 0.5):\n",
" - temperatura ambiente y rapidez del viento,\n",
" - temperatura ambiente y ráfaga de viento,\n",
" - dirección del viento y rapidez del viento\n",
"\n",
"- mediana (entre 0.3 y 0.5):\n",
" -temperatura del agua y temperatura del mar\n",
"\n",
"Mientras que, algunas *correlaciones negativas* que se podrían destacar, corresponden a los pares de variables:\n",
"- grande (menor a -0.5):\n",
" - temperatura ambiente y humedad relativa\n",
"- mediana (entre -0.5 y -0.3):\n",
" - temperatura ambiente y presión atmosférica,\n",
" - humedad relativa y rapidez del viento,\n",
" - humedad relativa y ráfaga de viento"
],
"metadata": {
"id": "f-XCSUwQ8eP5"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación, se realizarán algunas visualizaciones de atributos que presenten correlaciones positivas y negativas medianas o altas."
],
"metadata": {
"id": "HLeGMm8x-mjj"
}
},
{
"cell_type": "markdown",
"source": [
"**Temperatura ambiente y rapidez del viento**\n",
"\n",
"A continuación, se graficarán la temperatura ambiente y rapidez del viento en un gráfico de **serie temporal**."
],
"metadata": {
"id": "WnnGD_iB_F_X"
}
},
{
"cell_type": "code",
"source": [
"fig = make_subplots(specs=[[{\"secondary_y\": True}]])\n",
"\n",
"fig.add_trace(\n",
" go.Scatter( x=df_week[\"fecha\"], y=df_week[\"TA\"], name=\"Temperatura ambiental\",mode='lines+markers'),\n",
" secondary_y=False)\n",
"\n",
"fig.add_trace(\n",
" go.Scatter(x=df_week[\"fecha\"], y=df_week[\"VV\"], name=\"Rapidez del viento\",mode='lines+markers'),\n",
" secondary_y=True)\n",
"\n",
"fig.update_layout(\n",
" title_text=\"Temperatura ambiental y rapidez del viento durante el año\",height=400, width=800)\n",
"\n",
"fig.update_xaxes(title_text=\"Fecha\")\n",
"fig.update_yaxes(title_text=\"Temperatura ambiental (ºC)\", secondary_y=False)\n",
"fig.update_yaxes(title_text=\"Rapidez del viento (km/h)\", secondary_y=True)\n",
"\n",
"fig.show()"
],
"metadata": {
"id": "Rq0IFXSD_IiY",
"outputId": "c042532b-89a1-4c2a-c8a9-7bd355c09677",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
}
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En el gráfico, el eje x representa la fecha, mientras que el eje y representa la Temperatura ambiental (escala al lado izquierdo, color azul) y Rapidez del viento (escala al lado derecho, color rojo).\n",
"\n",
"Se observa que en términos generales, ambas variables se comportan similar. Ente los meses de enero a mayo, aproximadamente, ambas variables tienden a disminuir, mientras que entre septiembre y diciembre, tienden a aumentar.\n",
"\n",
"Por otra parte, entre los meses de junio a septiembre, que coindice con el periodo de invierno, se observan las mayores diferencias en el comportamiento de estos atributos, donde la rapidez del viento se mantiene alta y la temperatura ambiente se mantiene baja.\n",
"El valor más alto para la rapidez del viento ocurre la semana del 10 de julio, con un valor de 7.4 km/h, mientras que el valor más bajo de la temperatura ambiental, ocurre en la siguiente semana, la del 17 de julio, con un valor de 8ºC."
],
"metadata": {
"id": "rGSM3fycBUDO"
}
},
{
"cell_type": "markdown",
"source": [
"**Humedad relativa y rapidez del viento**\n",
"\n",
"La mediana de la humedad relativa es 80.8%, en base a eso, se decidió categorizar a los datos en \"humedad alta\" para humedades superiores a la mediana, y \"humedad baja\" en el caso contrario."
],
"metadata": {
"id": "Cl5j27TSHaE1"
}
},
{
"cell_type": "code",
"source": [
"def sensacion(humedad) -> str:\n",
" if humedad<80.80:\n",
" return 'Humedad baja'\n",
" return 'Humedad alta'\n",
"df['humedad'] = df['HR'].map(sensacion)\n",
"df.head(3)"
],
"metadata": {
"id": "NmNvwfahHeNW",
"outputId": "624fab41-3ba6-4034-d1cf-a9e64c6f4b80",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 247
}
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" fecha TA HR PP PA VV RV DV PRS TW \\\n",
"0 2022-01-01 00:00:00 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47 \n",
"1 2022-01-01 01:00:00 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90 \n",
"2 2022-01-01 02:00:00 10.4 95.4 0.0 974.0 3.0 8.6 196.0 2.84 13.55 \n",
"\n",
" estación hour date humedad \n",
"0 verano 0 2022-01-01 Humedad alta \n",
"1 verano 1 2022-01-01 Humedad alta \n",
"2 verano 2 2022-01-01 Humedad alta "
],
"text/html": [
"\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que en términos generales, cuando la humedad es alta, la rapidez del viento es menor. Por el contrario, cuando la humedad es baja, la rapidez del tiempo es mayor. En específico, la mediana de la humedad alta es 2.7 km/h, mientras que la mediana de la humedad baja es 6.78 km/h. Estos resultados tienen sentido ya que cuando la humedad es baja, el clima se siente más \"seco\", y la rapidez del viento tiende a secar el aire.\n",
"\n",
"Adicionalmente, se observa que sobre los bigotes superiores hay un número considerable de valores outliers, mientras que bajo los bigotes inferiores no hay.\n",
"\n",
"Se observa que el rango intercuartílico es mayor para cuando la humedad es baja, lo que indica una mayor dispersión de estos datos, si se compara con los de humedad alta."
],
"metadata": {
"id": "CiWdc_64IGOS"
}
},
{
"cell_type": "markdown",
"source": [
"**Temperatura ambiente, presión atmosférica y humedad relativa**\n",
"\n",
"A continuación, se realizará un **mapa de calor** que representará los valores de estos tres atributos.\n",
"\n"
],
"metadata": {
"id": "2eqq44w9DakT"
}
},
{
"cell_type": "code",
"source": [
"table = df.groupby(['PA', 'HR']).mean(numeric_only=True)[['TA']].reset_index()\n",
"table = table.pivot(index=\"PA\", columns=\"HR\", values=\"TA\")"
],
"metadata": {
"id": "UBhqZghnb_0x"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"fig = px.imshow(table,text_auto=True,\n",
" color_continuous_scale=\"orrd\",\n",
" title=\"Tamperatura ambiente según presión y humedad relativa\",\n",
" aspect=\"auto\",\n",
" width=650,height=550)\n",
"\n",
"fig.update_yaxes(title_text=\"Presión atmosférica (hPA)\")\n",
"fig.update_xaxes(title_text=\"Humedad relativa (%)\")\n",
"fig.show()"
],
"metadata": {
"id": "3TF1oisdDzgH",
"outputId": "b33c6d70-c96a-4de6-bf80-9cc4a26f779a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 567
}
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En el eje x representa la humedad relativa, el eje y la presión atmosférica y el color la temperatura ambiente.\n",
"\n",
"Se observa que a medida que disminuye la humedad relativa tiende a aumentar la temperatura ambiente (color más rojo). Adicionalmente, se observa un leve aumento de la presión atmosférica a medida que la humedad relativa disminye (los datos tienden a estar más agrupados en la zona superior).\n",
"\n",
"Como comentario extra, los valores graficados correspondientes a humedad relativa menor a 20% podrían indicar que los sensores pudieran haberse \"pegado\", en el sentido que muestran la misma temperatura para muchos pares de presión atmosférica y humedad relativa.\n",
"\n",
"Los datos NaN corresponden a pares de variables de (presión atmosférica, humedad relativa) que no son observados."
],
"metadata": {
"id": "t9MVgptxEGB6"
}
},
{
"cell_type": "markdown",
"source": [
"**Visualizaciones de variables oceanográficas**"
],
"metadata": {
"id": "Sl9aPQf7t6NH"
}
},
{
"cell_type": "code",
"source": [
"df_day=df.resample('D', on='fecha').mean().round(2)\n",
"df_day=df_day.reset_index()\n",
"fig=px.violin(df_day,\n",
" y=\"TW\" ,\n",
" width=700, height=400,\n",
" labels = {'TW': 'Temperatura del mar (ºC)'},\n",
" box=True,\n",
" points='all',\n",
" title=\"Temperatura del mar\",)\n",
"fig.show()"
],
"metadata": {
"id": "2jumwsNpuEo0",
"outputId": "417ad0b9-d68e-492c-9a50-7b14cf6a61cb",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 506
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":1: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se puede observar que la mediana es 12.94ºC, el primer cuartil corresponde a 12.46ºC y el tercer cuartil a 13.78ºC.\n",
"\n",
"Se observa que sobre el bigote superior hay un número considerable de valores outliers, mientras que bajo el bigote inferior no hay.\n",
"\n",
"El que la mediana está más cerca del fondo de la caja, y el bigote sea más corto en el extremo inferior de la caja, indica que la distribución es asimétrica y está sesgada positivamente, así la media se situará sobre la mediana."
],
"metadata": {
"id": "M0pdIZhwuKoY"
}
},
{
"cell_type": "code",
"source": [
"def get_day_moment(hour) -> str:\n",
" if 6 <= hour < 18:\n",
" return 'Día'\n",
" return 'Noche'\n",
"df['Momento_día'] = df['fecha'].dt.hour.map(get_day_moment)\n",
"df.head(2)"
],
"metadata": {
"id": "ce-gE9AFuUK7",
"outputId": "e0564288-ff57-4e03-e072-a2b6e2f927a9",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 201
}
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" fecha TA HR PP PA VV RV DV PRS TW \\\n",
"0 2022-01-01 00:00:00 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47 \n",
"1 2022-01-01 01:00:00 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90 \n",
"\n",
" estación hour date humedad Momento_día \n",
"0 verano 0 2022-01-01 Humedad alta Noche \n",
"1 verano 1 2022-01-01 Humedad alta Noche "
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
fecha
\n",
"
TA
\n",
"
HR
\n",
"
PP
\n",
"
PA
\n",
"
VV
\n",
"
RV
\n",
"
DV
\n",
"
PRS
\n",
"
TW
\n",
"
estación
\n",
"
hour
\n",
"
date
\n",
"
humedad
\n",
"
Momento_día
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2022-01-01 00:00:00
\n",
"
11.2
\n",
"
81.8
\n",
"
0.0
\n",
"
975.0
\n",
"
3.9
\n",
"
14.0
\n",
"
177.0
\n",
"
3.11
\n",
"
15.47
\n",
"
verano
\n",
"
0
\n",
"
2022-01-01
\n",
"
Humedad alta
\n",
"
Noche
\n",
"
\n",
"
\n",
"
1
\n",
"
2022-01-01 01:00:00
\n",
"
11.0
\n",
"
81.5
\n",
"
0.0
\n",
"
974.0
\n",
"
2.3
\n",
"
8.6
\n",
"
208.0
\n",
"
3.04
\n",
"
14.90
\n",
"
verano
\n",
"
1
\n",
"
2022-01-01
\n",
"
Humedad alta
\n",
"
Noche
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 79
}
]
},
{
"cell_type": "code",
"source": [
"day=df.loc[df[\"Momento_día\"]==\"Día\"].resample('W', on='fecha').mean().round(2)\n",
"day=day.reset_index()\n",
"night=df.loc[df[\"Momento_día\"]==\"Noche\"].resample('W', on='fecha').mean().round(2)\n",
"night=night.reset_index()\n",
"day[\"Momento\"]=\"Día\"\n",
"night[\"Momento\"]=\"Noche\"\n",
"dia_noche = pd.concat([day, night])\n",
"\n",
"fig=px.violin(dia_noche,\n",
" y=\"TW\" , color=\"Momento\",\n",
" width=700, height=500,\n",
" labels = {'TW': 'Temperatura del mar (ºC)', 'Momento':''},\n",
" box=True,\n",
" points='all',\n",
" title=\"Temperatura del mar en el día y la noche\",)\n",
"fig.show()"
],
"metadata": {
"id": "8v90ZLvnuQTl",
"outputId": "7356b1e5-1f23-4549-e030-0ee1681622e4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 676
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
":1: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
"\n",
":3: FutureWarning:\n",
"\n",
"The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que en términos generales, la temperatura del mar no muestra variaciones significativas entre el día y la noche, ya que la mediana del día es 12.98 ºC, mientras que de noche es 13.04ºC.\n",
"\n",
"Adicionalmente, la dispersión de los datos es similar en ambos gráficos de violín, dado que los rangos intercuartílicos son similares. En cuanto a los valores outliers, sólo se observan por sobre los bigotes superiores.\n",
"\n",
"\n"
],
"metadata": {
"id": "cD62CVA0urjO"
}
},
{
"cell_type": "markdown",
"source": [
"**Nivel del mar y presión atmosférica**"
],
"metadata": {
"id": "By05_YnIS2TS"
}
},
{
"cell_type": "code",
"source": [
"fig = make_subplots(specs=[[{\"secondary_y\": True}]])\n",
"\n",
"fig.add_trace(\n",
" go.Scatter( x=df_week[\"fecha\"], y=df_week[\"PA\"], name=\"Presión atmosférica\",mode='lines+markers'),\n",
" secondary_y=False)\n",
"\n",
"fig.add_trace(\n",
" go.Scatter(x=df_week[\"fecha\"], y=df_week[\"PRS\"], name=\"Nivel del mar\",mode='lines+markers'),\n",
" secondary_y=True)\n",
"\n",
"fig.update_layout(\n",
" title_text=\"Presión atmosférica y nivel del mar\",height=400, width=800)\n",
"\n",
"fig.update_xaxes(title_text=\"Fecha\")\n",
"fig.update_yaxes(title_text=\"Presión atmosférica (hPa)\", secondary_y=False)\n",
"fig.update_yaxes(title_text=\"Nivel del mar (m)\", secondary_y=True)\n",
"\n",
"fig.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
},
"id": "akQg7g-9p4Vo",
"outputId": "3606f86e-3b8d-45b6-d1df-7fc96f34dc9a"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"\n",
"\n",
"\n",
"
\n",
"
\n",
"\n",
""
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En el gráfico, el eje x representa la fecha, mientras que el eje y representa la presión atmosférica (escala al lado izquierdo, color azul) y nivel del mar (escala al lado derecho, color rojo).\n",
"\n",
"No se observa una relación directa entre ambas variables, dado que en algunos tramos ambas aumentan, mientras que en otros tramos una aumenta mientras la otra disminuye. El nivel del mar máximo se alcanzó en febrero siendo 2.39m, mientras que el mínimo se alcanzó en septiembre con 2.17m. La presión atmosférica máxima se observa en septiembre, con 983 hPA, mientras que la mínima en marzo con 975 hPA."
],
"metadata": {
"id": "4VgOX2kZummk"
}
},
{
"cell_type": "markdown",
"source": [
"**Análisis de datos**"
],
"metadata": {
"id": "REp5dYxNxmAg"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se utilizarán las distintos algoritmos de clustering y regresión para intentar de responder las preguntas planteadas al inicio del proyecto."
],
"metadata": {
"id": "CRkHegXm0fuB"
}
},
{
"cell_type": "markdown",
"source": [
"**CLUSTERING**"
],
"metadata": {
"id": "SX1oBw-FvjKy"
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "cZoA5tqhrtaj"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"df=pd.read_csv(\"datos2022.csv\", sep=\",\")\n",
"df['fecha']= pd.to_datetime(df['fecha'])"
]
},
{
"cell_type": "markdown",
"source": [
"Se elimina la columna fecha, ya que no será utilizada para los análisis posteriores."
],
"metadata": {
"id": "bVoL3U5V0ung"
}
},
{
"cell_type": "code",
"source": [
"df_new=df.drop(columns=['fecha'])\n",
"df_new.head(2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
},
"id": "Kn35LuZbstha",
"outputId": "8f8f1ab3-325c-416f-b235-013b5c3d94c2"
},
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" TA HR PP PA VV RV DV PRS TW\n",
"0 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47\n",
"1 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
TA
\n",
"
HR
\n",
"
PP
\n",
"
PA
\n",
"
VV
\n",
"
RV
\n",
"
DV
\n",
"
PRS
\n",
"
TW
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
11.2
\n",
"
81.8
\n",
"
0.0
\n",
"
975.0
\n",
"
3.9
\n",
"
14.0
\n",
"
177.0
\n",
"
3.11
\n",
"
15.47
\n",
"
\n",
"
\n",
"
1
\n",
"
11.0
\n",
"
81.5
\n",
"
0.0
\n",
"
974.0
\n",
"
2.3
\n",
"
8.6
\n",
"
208.0
\n",
"
3.04
\n",
"
14.90
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "markdown",
"source": [
"**K-MEANS**"
],
"metadata": {
"id": "_Rom18KrN6Ld"
}
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZH5aquJWjizK"
},
"source": [
"Para determinar el número óptimo de grupos al utilizar el algoritmo K-means, se utiliza el método del codo."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "tL2mOfTa3Pds",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 819
},
"outputId": "cd11a593-3c10-4949-adc2-e4940d8f0f66"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRK0lEQVR4nO3de1zT9f4H8Nc2xsYdkTuioNnxAqhZGlqZJZKa5Tml3TUrT7+OnlROnaRSRE2y0uximZ4sT2WaVnayMslSu5iXlLxfUtRELqLCuDO2z+8P2GQyYION73fs9Xw8eMi++373fW+fAS8/38/nM4UQQoCIiIhIIkqpCyAiIiL3xjBCREREkmIYISIiIkkxjBAREZGkGEaIiIhIUgwjREREJCmGESIiIpIUwwgRERFJimGEZGXbtm2YM2cOiouLpS6FiIjaCMMIycbp06cxZswY+Pn5ISAgoE3OuWXLFigUCmzZssWp53n//fehUChw6tQpu4+dPXs2FAqF44tqgbaq5eGHH0ZMTIzTz+OObr75Ztx8881Sl0FkgWGEWs30h1ahUOCnn35qcL8QAtHR0VAoFLj99tutPoZer8c999yDhx9+GNOnT29w/1tvvYX333/f0aWTm8jNzcWMGTMwdOhQ+Pn5tUkAre+FF17AHXfcgbCwMCgUCsyePbvRfXNycjBu3DgEBgbC398fd955J06ePNlmtbbW/PnzsX79eqnLIBfDMEIOo9VqsWrVqgbbt27dirNnz0Kj0TR67MGDB3Hvvfdi4cKFVu9nGKHWOHr0KBYsWICcnBzEx8e3+fmff/557Nq1C/369Wtyv9LSUgwdOhRbt27Fs88+i/T0dOzduxdDhgzBhQsX2qja1mEYoZbwkLoAaj9GjhyJtWvX4vXXX4eHx+W31qpVq9C/f38UFhY2emzfvn3Rt2/fNqiS3FH//v1x4cIFBAUFYd26dRg7dmybnj87OxsxMTEoLCxESEhIo/u99dZbOH78OHbu3InrrrsOADBixAjExcVh4cKFmD9/fluVLCuVlZXw9PSEUsn/P7dXbFlymPvuuw8XLlxAZmameVt1dTXWrVuH+++/3+oxRqMRixcvRu/evaHVahEWFobHH38cly5dMu8TExODgwcPYuvWrebLQfWveZ88eRJjx45FUFAQvL29cf311+Orr75qcK6zZ89izJgx8PHxQWhoKKZPn46qqiqrda1duxb9+/eHl5cXgoOD8eCDDyInJ8em1+HgwYO45ZZb4OXlhU6dOmHevHkwGo1W9/3mm29w4403wsfHB35+fhg1ahQOHjxo03ms2bFjB0aOHIkOHTrAx8cHCQkJeO211yz2+f77783nDAwMxJ133onDhw83eKyffvoJ1113HbRaLbp164Z33nnH6jlramowd+5cdOvWDRqNBjExMXj22WcbfW2vtH79esTFxUGr1SIuLg6ff/651f1sea80xs/PD0FBQTbVY82PP/6IsWPHonPnztBoNIiOjsb06dNRUVFh0/G2jn9Zt24drrvuOnMQAYAePXrg1ltvxSeffGLTY3z44YcYMGAAvL290aFDB9x0003YtGlTo/s3Np7J2niq48eP46677kJ4eDi0Wi06deqEe++91zzgXKFQoKysDCtXrjT/rD788MPm43NycvDII48gLCwMGo0GvXv3xooVK6yed/Xq1Xj++ecRFRUFb29v6HQ66PV6pKeno3v37tBqtejYsSNuuOEGi9855JrYM0IOExMTg8TERHz88ccYMWIEgNo/tsXFxbj33nvx+uuvNzjm8ccfx/vvv4+JEyfiySefRHZ2Nt58803s3bsXP//8M9RqNRYvXox//vOf8PX1xXPPPQcACAsLAwDk5+dj0KBBKC8vx5NPPomOHTti5cqVuOOOO7Bu3Tr89a9/BQBUVFTg1ltvxZkzZ/Dkk08iMjISH3zwAb7//vsGNZnque6665CRkYH8/Hy89tpr+Pnnn7F3714EBgY2+hrk5eVh6NChqKmpwYwZM+Dj44Nly5bBy8urwb4ffPABJkyYgOTkZCxYsADl5eV4++23ccMNN2Dv3r12D+DMzMzE7bffjoiICEydOhXh4eE4fPgwNmzYgKlTpwIAvvvuO4wYMQJdu3bF7NmzUVFRgTfeeAODBw/Gnj17zOfcv38/hg8fjpCQEMyePRs1NTVIS0szv+71PfbYY1i5ciXuvvtu/Otf/8KOHTuQkZGBw4cPNxosTDZt2oS77roLvXr1QkZGBi5cuICJEyeiU6dODfa15b3iLGvXrkV5eTmeeOIJdOzYETt37sQbb7yBs2fPYu3atQ45h9FoxL59+/DII480uG/AgAHYtGkTSkpK4Ofn1+hjpKenY/bs2Rg0aBDmzJkDT09P7NixA99//z2GDx/eqvqqq6uRnJyMqqoq/POf/0R4eDhycnKwYcMGFBUVISAgAB988AEee+wxDBgwAH//+98BAN26dQNQ+7N6/fXXQ6FQYMqUKQgJCcE333yDRx99FDqdDtOmTbM439y5c+Hp6YmnnnoKVVVV8PT0xOzZs5GRkWE+h06nw+7du7Fnzx4kJSW16vmRxARRK7333nsCgNi1a5d48803hZ+fnygvLxdCCDF27FgxdOhQIYQQXbp0EaNGjTIf9+OPPwoA4qOPPrJ4vI0bNzbY3rt3bzFkyJAG5542bZoAIH788UfztpKSEhEbGytiYmKEwWAQQgixePFiAUB88skn5v3KysrEVVddJQCIH374QQghRHV1tQgNDRVxcXGioqLCvO+GDRsEADFr1qwmXwtTPTt27DBvKygoEAEBAQKAyM7ONtcYGBgoJk2aZHF8Xl6eCAgIsNielpYmmvtRrampEbGxsaJLly7i0qVLFvcZjUbz93379hWhoaHiwoUL5m2///67UCqVYvz48eZtY8aMEVqtVpw+fdq87dChQ0KlUlnUkpWVJQCIxx57zOKcTz31lAAgvv/++ybr7tu3r4iIiBBFRUXmbZs2bRIARJcuXczb7HmvNGft2rUWbW4L0/u5voyMDKFQKCxeo+acP39eABBpaWmN3jdnzpwG9y1ZskQAEEeOHGn0sY8fPy6USqX461//an7fm9R/DwwZMsTiZ8n082t6b5r88MMPFq/T3r17BQCxdu3aJp+jj4+PmDBhQoPtjz76qIiIiBCFhYUW2++9914REBBgfo1N5+3atWuD171Pnz4Wv0Oo/eBlGnKocePGoaKiAhs2bEBJSQk2bNjQ6CWatWvXIiAgAElJSSgsLDR/9e/fH76+vvjhhx+aPd/XX3+NAQMG4IYbbjBv8/X1xd///necOnUKhw4dMu8XERGBu+++27yft7e3+X9vJrt370ZBQQH+8Y9/QKvVmrePGjUKPXr0sHr558p6rr/+egwYMMC8LSQkBA888IDFfpmZmSgqKsJ9991n8dxVKhUGDhxo03Ovb+/evcjOzsa0adMa9NyYpuLm5uYiKysLDz/8sMUli4SEBCQlJeHrr78GABgMBnz77bcYM2YMOnfubN6vZ8+eSE5ObvB8ASAlJcVi+7/+9S8AaPL1MtUzYcIEi6ncSUlJ6NWrl8W+jnivtEb9nq2ysjIUFhZi0KBBEEJg7969DjmH6ZKPtYHepvdiU5eF1q9fD6PRiFmzZjUYW+GI6dimNvr2229RXl5u17FCCHz66acYPXo0hBAWbZicnIzi4mLs2bPH4pgJEyY06FEMDAzEwYMHcfz48dY9GZIdlwoj27Ztw+jRoxEZGQmFQtGiEdvffvstrr/+evj5+SEkJAR33XVXi9Z+IOtCQkIwbNgwrFq1Cp999hkMBoNFAKjv+PHjKC4uRmhoKEJCQiy+SktLUVBQ0Oz5Tp8+jb/85S8Ntvfs2dN8v+nfq666qsEv5SuPNe1v7TF79Ohhvr+perp3795g+5WPZ/plessttzR47ps2bbLpudd34sQJAEBcXFyTtVmrBah9vQoLC1FWVobz58+joqLCpudx+vRpKJVKXHXVVRbbw8PDERgY2OTrZbrP1terte+V1jhz5ow5xPn6+iIkJARDhgwBAIct0Gf6w2ttrE1lZaXFPtacOHECSqWyQZBzlNjYWKSkpOA///kPgoODkZycjCVLltj0/M+fP4+ioiIsW7asQftNnDgRABq0YWxsbIPHmTNnDoqKinD11VcjPj4eTz/9NPbt2+eYJ0iScqkxI2VlZejTpw8eeeQR/O1vf7P7+OzsbNx5551ISUnBRx99hOLiYkyfPh1/+9vfGqRyarn7778fkyZNQl5eHkaMGNHoGAuj0YjQ0FB89NFHVu9vataBqzMNaP3ggw8QHh7e4P76s5FcgbMXQpPyvWIwGJCUlISLFy/imWeeQY8ePeDj44OcnBw8/PDDjQ5OtldQUBA0Gg1yc3Mb3GfaFhkZ6ZBz1ddY2xkMhgbbFi5ciIcffhhffPEFNm3ahCeffBIZGRn49ddfrY7zMTG9Rg8++CAmTJhgdZ+EhASL29aC10033YQTJ06Yz/+f//wHr776KpYuXYrHHnus0fOT/LnUb7wRI0aYB0ZaU1VVheeeew4ff/wxioqKEBcXhwULFphnXvz2228wGAyYN2+euRvzqaeewp133gm9Xu/UAXDu5K9//Ssef/xx/Prrr1izZk2j+3Xr1g3fffcdBg8e3OT/+IDGf2F26dIFR48ebbD9yJEj5vtN/x44cABCCIvHuvJY0/5Hjx7FLbfcYnHf0aNHzfc3pkuXLla7kK88j2lQX2hoKIYNG9bkY9rC9HgHDhxo9PHqP7crHTlyBMHBwfDx8YFWq4WXl5dNz6NLly4wGo04fvy4uTcKqB2sWFRU1OTrZbrP1tfL1veKo+3fvx/Hjh3DypUrMX78ePN2R8/gUCqViI+Px+7duxvct2PHDnTt2rXJwavdunWD0WjEoUOH7Jom36FDBwBAUVGRxfbGerXi4+MRHx+P559/Hr/88gsGDx6MpUuXYt68eQCs/6yGhITAz88PBoOh1e/3oKAgTJw4ERMnTkRpaSluuukmzJ49m2HExbnUZZrmTJkyBdu3b8fq1auxb98+jB07Frfddpv5l13//v2hVCrx3nvvwWAwoLi4GB988AGGDRvGIOJAvr6+ePvttzF79myMHj260f3GjRsHg8GAuXPnNrivpqbG4pejj49Pg1+WQO3aJjt37sT27dvN28rKyrBs2TLExMSYu6xHjhyJc+fOYd26deb9ysvLsWzZMovHu/baaxEaGoqlS5dadJd/8803OHz4MEaNGtXkcx85ciR+/fVX7Ny507zt/PnzDf5Hn5ycDH9/f8yfPx96vb7B45w/f77J81zpmmuuQWxsLBYvXtzgdRJCAAAiIiLQt29frFy50mKfAwcOYNOmTRg5ciQAQKVSITk5GevXr8eZM2fM+x0+fBjffvttg+cLAIsXL7bYvmjRIgBo8vWqX0/9rv7MzEzzWB8Te94rjqZSqQBcfh1N3185ZdoR7r77buzatcsikBw9ehTff/99s2ujjBkzBkqlEnPmzGnQW1O/9iuZguy2bdvM2wwGQ4OfDZ1Oh5qaGott8fHxUCqVFj8r1n5WVSoV7rrrLnz66ac4cOBAgxpsfb9fufCbr68vrrrqKpunkZOMSTd2tnUAiM8//9x8+/Tp00KlUomcnByL/W699VaRmppqvr1lyxYRGhpqnhWQmJjYYPYB2af+bJqmXDmbRgghHn/8cQFAjBgxQrz66qvizTffFFOnThWRkZEWo/b/8Y9/CIVCIebOnSs+/vhjsXnzZiFE7eyTsLAwERAQIGbOnCleffVV0bdvX6FQKMRnn31mPt40c0ar1YpnnnlGLF68WPTv318kJCQ0mFlhej4DBw4UixcvFqmpqcLb21vExMQ0+145d+6c6Nixo+jQoYOYPXu2ePnll0X37t3N56k/Y+Gjjz4SSqVSxMXFiXnz5ol33nlHPPfcc6Jv375i8uTJ5v1smU0jRO3MErVaLbp06SJmz54t3nnnHTF9+nQxfPhw8z6ZmZnCw8ND9OjRQ7z88stizpw5IiQkRHTo0EGcPHnSvN/vv/8utFqt6Ny5s3jxxRfFvHnzRFhYmPl51DdhwgQBQIwbN04sWbLEfHvMmDHN1vzNN9+YX4NFixaJ559/XgQEBIjevXtbzKYRwvb3SmPmzp0r5s6dK+69914BQDzyyCPmbU2prq4W3bp1E8HBweKFF14Qb7zxhrj55ptFnz59BADx3nvvNXvu//73v2Lu3LkiNTVVABBDhw41n/vUqVPm/XQ6nejWrZsIDQ0VL730knj11VdFdHS0iIyMFAUFBc2eZ+bMmQKAGDRokHjllVfEG2+8IcaPHy9mzJhh3ufK2TRCCHH99dcLb29vkZaWJl577TWRmJgo+vfvb/Gz8fnnn4uoqCgxbdo08dZbb4nXX39dXHfddUKtVovt27ebH2vkyJHCx8dHLFy4UHz88cfi119/FULU/qx26dJFeHt7i6lTp4p33nlHZGRkiLFjx4oOHTqYjzfNprHWpqGhoWLcuHFiwYIFYvny5eLxxx8XCoVC/POf/2z2tSF5azdhxDT10sfHx+LLw8NDjBs3TgghRG5urujevbt4+umnxZ49e8TWrVvFkCFDxK233mox9Y3s05owIoQQy5YtE/379xdeXl7Cz89PxMfHi3//+9/i3Llz5n3y8vLEqFGjhJ+fnwBg8cv0xIkT4u677xaBgYFCq9WKAQMGiA0bNjQ4z+nTp8Udd9whvL29RXBwsJg6dap5auiV0zzXrFkj+vXrJzQajQgKChIPPPCAOHv2rE2vx759+8SQIUOEVqsVUVFRYu7cueLdd99tdPpkcnKyCAgIEFqtVnTr1k08/PDDYvfu3eZ9bA0jQgjx008/iaSkJOHn5yd8fHxEQkKCeOONNyz2+e6778TgwYOFl5eX8Pf3F6NHjxaHDh1q8Fhbt24V/fv3F56enqJr165i6dKlVmvR6/UiPT1dxMbGCrVaLaKjo0VqaqqorKy0qeZPP/1U9OzZU2g0GtGrVy/x2WefiQkTJjQII0LY9l5pDIBGv5pz6NAhMWzYMOHr6yuCg4PFpEmTxO+//25zGBkyZEij577yvffnn3+Ku+++W/j7+wtfX19x++23i+PHjzd7DpMVK1aY37sdOnQQQ4YMEZmZmRa1XBlGTpw4IYYNGyY0Go0ICwsTzz77rMjMzLSo7+TJk+KRRx4R3bp1E1qtVgQFBYmhQ4eK7777zuKxjhw5Im666Sbh5eUlAFhM883PzxeTJ08W0dHRQq1Wi/DwcHHrrbeKZcuWmfdpKozMmzdPDBgwQAQGBgovLy/Ro0cP8cILL4jq6mqbXx+SJ4UQTfTfyZhCocDnn3+OMWPGAADWrFmDBx54AAcPHjR3q5r4+voiPDwcM2fOxMaNG7Fr1y7zfWfPnkV0dDS2b9+O66+/vi2fAhEREcHFBrA2pV+/fjAYDCgoKMCNN95odZ/y8vIG8+9NwcVRI+KJiIjIPi41gLW0tBRZWVnIysoCUDtVNysrC2fOnMHVV1+NBx54AOPHj8dnn32G7Oxs7Ny5ExkZGeaFl0aNGoVdu3Zhzpw5OH78OPbs2YOJEyeiS5cuzX6aJhERETmHS12m2bJlC4YOHdpg+4QJE/D+++9Dr9dj3rx5+O9//4ucnBwEBwfj+uuvR3p6uvljw1evXo2XXnoJx44dg7e3NxITE7FgwQL06NGjrZ8OERERwcXCCBEREbU/LnWZhoiIiNofhhEiIiKSlEvMpjEajTh37hz8/Pyc/hkYRERE5BhCCJSUlCAyMrLBbNb6XCKMnDt3DtHR0VKXQURERC3w559/Nvlhii4RRkwfDvXnn3/C399f4mrkR6/XY9OmTRg+fDg/Y0cm2CbywvaQF7aHvDizPXQ6HaKjo5v8kEfARcKI6dKMv78/w4gVer0e3t7e8Pf35w+2TLBN5IXtIS9sD3lpi/ZobogFB7ASERGRpBhGiIiISFIMI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSbnEomfOYDAK7My+iIKSSoT6aTEgNggqJT/3hoiIqK25ZRjZeCAX6V8eQm5xpXlbRIAWaaN74ba4CAkrIyIicj92X6bZtm0bRo8ejcjISCgUCqxfv77J/T/77DMkJSUhJCQE/v7+SExMxLffftvSeltt44FcPPHhHosgAgB5xZV44sM92HggV6LKiIiI3JPdYaSsrAx9+vTBkiVLbNp/27ZtSEpKwtdff43ffvsNQ4cOxejRo7F37167i20tg1Eg/ctDEFbuM21L//IQDEZrexAREZEz2H2ZZsSIERgxYoTN+y9evNji9vz58/HFF1/gyy+/RL9+/ew9favszL7YoEekPgEgt7gSO7MvIrFbx7YrjIiIyI21+ZgRo9GIkpISBAUFNbpPVVUVqqqqzLd1Oh2A2k8W1Ov1LT53blGZzfvp9a7z6cCm16Q1rw05FttEXtge8sL2kBdntoetj9nmYeSVV15BaWkpxo0b1+g+GRkZSE9Pb7B906ZN8Pb2bvG5TxYrAKia3+9gFr4+2/aXkVorMzNT6hLoCmwTeWF7yAvbQ16c0R7l5eU27acQQrR4gIRCocDnn3+OMWPG2LT/qlWrMGnSJHzxxRcYNmxYo/tZ6xmJjo5GYWEh/P1b3mNhMArcvHAb8nVVVseNKACEB2jwQ8pNLjXNV6/XIzMzE0lJSVCr1VKXQ2CbyA3bQ17YHvLizPbQ6XQIDg5GcXFxk3+/26xnZPXq1Xjsscewdu3aJoMIAGg0Gmg0mgbb1Wp1q14oNYDZd/TGEx/ugQKwCCSm6JE2uje0Gs8Wn0NKrX19yPHYJvLC9pAXtoe8OKM9bH28NlmB9eOPP8bEiRPx8ccfY9SoUW1xykbdFheBtx+8BuEBWovtwX4avP3gNVxnhIiIqI3Z3TNSWlqKP/74w3w7OzsbWVlZCAoKQufOnZGamoqcnBz897//BVB7aWbChAl47bXXMHDgQOTl5QEAvLy8EBAQ4KCnYZ/b4iKQ1CscO7MvYsan+3D6YjmeG9mTQYSIiEgCdveM7N69G/369TNPy01JSUG/fv0wa9YsAEBubi7OnDlj3n/ZsmWoqanB5MmTERERYf6aOnWqg55Cy6iUCiR264ibrg4BABw8VyxpPURERO7K7p6Rm2++GU2NeX3//fctbm/ZssXeU7Sp+E61vTP7zjKMEBERScHtP7U3oS6MHMgphpErrxIREbU5tw8jV4X4QqtWoqzagJOFti2KRkRERI7j9mHEQ6VE78jLvSNERETUttw+jABAfBTHjRAREUmFYQSXw8j+nCJpCyEiInJDDCOoP4hVBwMHsRIREbUphhEAXUN84e2pQoXegBPnS6Uuh4iIyK0wjKB2AbS4ukGs+zluhIiIqE0xjNSJM48bYRghIiJqSwwjdRLMK7EWSVsIERGRm2EYqWNaFv5Qrg41BqPE1RAREbkPhpE6sR194KvxQKXeiD84iJWIiKjNMIzUUSoViIvyB8DFz4iIiNoSw0g95sXPGEaIiIjaDMNIPfGdAgEA+zijhoiIqM0wjNSTUNczcjhXBz0HsRIREbUJhpF6unT0hp/WA9U1RhzLL5G6HCIiIrfAMFKPQqEwrzfCcSNERERtg2HkCqaVWDluhIiIqG0wjFwhISoQAHtGiIiI2grDyBVMl2mO5OlQVWOQuBoiIqL2j2HkCp06eCHQWw29QeBYHldiJSIicjaGkSsoFArz4mf7coqkLYaIiMgNMIxYwZVYiYiI2g7DiBWmcSP8jBoiIiLnYxixwrQs/LH8ElTqOYiViIjImRhGrIgM0KKjjydqjAJH8rgSKxERkTMxjFihUCgQb16JtUjaYoiIiNo5hpFGmGfUcNwIERGRUzGMNMI8o4bLwhMRETkVw0gjEuoNYq2o5iBWIiIiZ2EYaUSYvwYhfhoYBXAoVyd1OURERO0Ww0gjFAoFEqI4iJWIiMjZGEaaEGdeFp7jRoiIiJyFYaQJCZ24LDwREZGzMYw0wTSj5o/zpSirqpG4GiIiovaJYaQJof5ahPtrITiIlYiIyGkYRpoRzw/NIyIiciqGkWbEc0YNERGRUzGMNMPcM8IZNURERE7BMNIMU8/IyfNlKKnUS1wNERFR+8Mw0oxgXw2iAr0AAAfPcRArERGRozGM2ODyuBFeqiEiInI0hhEbcNwIERGR8zCM2IAzaoiIiJyHYcQGpjBy6kI5iis4iJWIiMiR7A4j27Ztw+jRoxEZGQmFQoH169c3e8yWLVtwzTXXQKPR4KqrrsL777/fglKl08HHE9FBdYNYeamGiIjIoewOI2VlZejTpw+WLFli0/7Z2dkYNWoUhg4diqysLEybNg2PPfYYvv32W7uLlVJCVCAAjhshIiJyNA97DxgxYgRGjBhh8/5Lly5FbGwsFi5cCADo2bMnfvrpJ7z66qtITk629/SSiYsKwFf7czmjhoiIyMHsDiP22r59O4YNG2axLTk5GdOmTWv0mKqqKlRVVZlv63S163vo9Xro9dKM2egV7gMA+P1skWQ1NMZUj9zqcmdsE3lhe8gL20NenNketj6m08NIXl4ewsLCLLaFhYVBp9OhoqICXl5eDY7JyMhAenp6g+2bNm2Ct7e302ptSnkNAHjg7KUKrP3ia/ioJSmjSZmZmVKXQFdgm8gL20Ne2B7y4oz2KC8vt2k/p4eRlkhNTUVKSor5tk6nQ3R0NIYPHw5/f3/J6lp64iecvliOiN4DccNVHSWr40p6vR6ZmZlISkqCWi3DlOSG2CbywvaQF7aHvDizPUxXNprj9DASHh6O/Px8i235+fnw9/e32isCABqNBhqNpsF2tVot6Rs3IToQpy+W41BeKYb2DJesjsZI/fpQQ2wTeWF7yAvbQ16c0R62Pp7T1xlJTEzE5s2bLbZlZmYiMTHR2ad2uPio2l4ZDmIlIiJyHLvDSGlpKbKyspCVlQWgdupuVlYWzpw5A6D2Esv48ePN+//f//0fTp48iX//+984cuQI3nrrLXzyySeYPn26Y55BG4qvm967n9N7iYiIHMbuMLJ7927069cP/fr1AwCkpKSgX79+mDVrFgAgNzfXHEwAIDY2Fl999RUyMzPRp08fLFy4EP/5z39calqvSVxdz0hOUQUulFY1szcRERHZwu4xIzfffDOEEI3eb2111Ztvvhl79+6191Sy46dVo2uID06eL8P+nGLc/JdQqUsiIiJyefxsGjtd/tA8XqohIiJyBIYRO5nCCJeFJyIicgyGETsldAoEwJ4RIiIiR2EYsVPvSH8oFECerhIFJZVSl0NEROTyGEbs5KPxwFUhvgCAA7xUQ0RE1GoMIy1gHjfCSzVEREStxjDSAvGdOKOGiIjIURhGWiCh0+UZNU2tuUJERETNYxhpgV4RAVAqgPMlVcjXcSVWIiKi1mAYaQEvTxWuDvMDwM+pISIiai2GkRaKM6/EWiRtIURERC6OYaSF6o8bISIiopZjGGmh+p9Rw0GsRERELccw0kI9I/zhoVTgQlk1zhVzJVYiIqKWYhhpIa263iBWrjdCRETUYgwjrWC+VJNTJG0hRERELoxhpBVMK7FyWXgiIqKWYxhpBdOMmv1ciZWIiKjFGEZa4S/hflCrFCgq1+PspQqpyyEiInJJDCOtoPFQoUe4PwCuxEpERNRSDCOtZFqJleNGiIiIWoZhpJUujxspkrYQIiIiF8Uw0krx9XpGOIiViIjIfgwjrXR1mB88PZQoqazB6QvlUpdDRETkchhGWsnTQ4meERzESkRE1FIMIw4QH8UwQkRE1FIMIw6QEBUIANh3tkjSOoiIiFwRw4gDmJaFP5Cjg9HIQaxERET2YBhxgO6hvtB4KFFaVYPsC2VSl0NERORSGEYcwEOlRO/I2nEjBzhuhIiIyC4MIw4Sz5VYiYiIWoRhxEHiOwUCAPYzjBAREdmFYcRBTMvCHzhXDAMHsRIREdmMYcRBuoX4wkutQnm1AdmFpVKXQ0RE5DIYRhxEpVQgrm7xM44bISIish3DiAPFcRArERGR3RhGHMg0boTLwhMREdmOYcSB4uuWhT94rhg1BqO0xRAREbkIhhEH6hrsAx9PFSr1Rpw4z5VYiYiIbMEw4kBKpaLeuJEiaYshIiJyEQwjDmZaiZXjRoiIiGzDMOJgpk/w5YwaIiIi2zCMOFhC3bLwh3J10HMQKxERUbMYRhysS5A3/LQeqK4x4ng+V2IlIiJqDsOIgymVinrjRoqkLYaIiMgFMIw4QTxXYiUiIrIZw4gTxHMlViIiIpu1KIwsWbIEMTEx0Gq1GDhwIHbu3Nnk/osXL8Zf/vIXeHl5ITo6GtOnT0dlZWWLCnYFCXUrsR7JLUF1DQexEhERNcXuMLJmzRqkpKQgLS0Ne/bsQZ8+fZCcnIyCggKr+69atQozZsxAWloaDh8+jHfffRdr1qzBs88+2+ri5So6yAsBXmpUG4w4ll8idTlERESy5mHvAYsWLcKkSZMwceJEAMDSpUvx1VdfYcWKFZgxY0aD/X/55RcMHjwY999/PwAgJiYG9913H3bs2NHoOaqqqlBVVWW+rdPpAAB6vR56vd7ekiURF+mPn09cwN7TF/GXUG+nnsv0mrjKa+MO2CbywvaQF7aHvDizPWx9TLvCSHV1NX777TekpqaatymVSgwbNgzbt2+3esygQYPw4YcfYufOnRgwYABOnjyJr7/+Gg899FCj58nIyEB6enqD7Zs2bYK3t3P/sDuKV4USgBJf/3oA/uf3tck5MzMz2+Q8ZDu2ibywPeSF7SEvzmiP8vJym/azK4wUFhbCYDAgLCzMYntYWBiOHDli9Zj7778fhYWFuOGGGyCEQE1NDf7v//6vycs0qampSElJMd/W6XSIjo7G8OHD4e/vb0/JklEezMd3q39HsSoAI0cmOvVcer0emZmZSEpKglqtduq5yDZsE3lhe8gL20NenNkepisbzbH7Mo29tmzZgvnz5+Ott97CwIED8ccff2Dq1KmYO3cuZs6cafUYjUYDjUbTYLtarXaZN26/LkEAgGP5pTBACa1a5fRzutLr4y7YJvLC9pAXtoe8OKM9bH08u8JIcHAwVCoV8vPzLbbn5+cjPDzc6jEzZ87EQw89hMceewwAEB8fj7KyMvz973/Hc889B6Wyfc4ujgr0QpCPJy6WVeNoXgn6RAdKXRIREZEs2ZUEPD090b9/f2zevNm8zWg0YvPmzUhMtH4pory8vEHgUKlqewmEEPbW6zIUissrse7jeiNERESNsrtbIiUlBcuXL8fKlStx+PBhPPHEEygrKzPPrhk/frzFANfRo0fj7bffxurVq5GdnY3MzEzMnDkTo0ePNoeS9sq8LPzZImkLISIikjG7x4zcc889OH/+PGbNmoW8vDz07dsXGzduNA9qPXPmjEVPyPPPPw+FQoHnn38eOTk5CAkJwejRo/HCCy847lnIlGklVi4LT0RE1LgWDWCdMmUKpkyZYvW+LVu2WJ7AwwNpaWlIS0tryalcWkJdGDleUIpKvaFNBrESERG5mvY5elQmwv21CPbVwGAUOJRr2/QmIiIid8Mw4kQKhcLcO7Kfl2qIiIisYhhxsrgojhshIiJqCsOIkyWYZtTkFElbCBERkUwxjDiZaUbNHwWlKK+ukbgaIiIi+WEYcbIwfy3C/DUwCuDQOQ5iJSIiuhLDSBuI57gRIiKiRjGMtIH4qEAAwH4uC09ERNQAw0gbSDCvxFokbSFEREQyxDDSBkzTe08WlqG0ioNYiYiI6mMYaQMhfhpEBmghBHCQl2qIiIgsMIy0kTjzeiMMI0RERPUxjLSRBH6CLxERkVUMI20kvlMgAPaMEBERXYlhpI2Y1hrJLiyDrlIvcTVERETywTDSRoJ8PNGpgxcA4AB7R4iIiMwYRtqQqXdkP8eNEBERmTGMtCHTh+btY88IERGRGcNIG0owLQvPnhEiIiIzhpE2ZLpMc+ZiOYrKqyWuhoiISB4YRtpQgLcaXTp6AwAO5OgkroaIiEgeGEbamGkl1n05RdIWQkREJBMMI20sgTNqiIiILDCMtLF4LgtPRERkgWGkjZku0+QUVeBiGQexEhERMYy0MX+tGl2DfQDwc2qIiIgAhhFJxJnHjRRJWwgREZEMMIxIIIHjRoiIiMwYRiRg/owaXqYhIiJiGJFC76gAKBRAbnElzpdUSV0OERGRpBhGJOCr8UC3EF8AwAH2jhARkZtjGJGI6VINx40QEZG7YxiRyOVxI0XSFkJERCQxhhGJcEYNERFRLYYRifSK9IdSARSUVCFfVyl1OURERJJhGJGIt6cHuof6AeCH5hERkXtjGJGQaSXWfZxRQ0REboxhREKmcSNcFp6IiNwZw4iE4jtdXolVCCFxNURERNJgGJFQrwh/qJQKFJZWI7eYg1iJiMg9MYxISKtW4eqwukGsHDdCRERuimFEYvFR/gA4o4aIiNwXw4jE4jsFAuCMGiIicl8MIxJLiLo8o4aDWImIyB0xjEisR4Qf1CoFLpXrcfZShdTlEBERtTmGEYlpPFT4S3jtINYDvFRDRERuqEVhZMmSJYiJiYFWq8XAgQOxc+fOJvcvKirC5MmTERERAY1Gg6uvvhpff/11iwpuj+K5EisREbkxu8PImjVrkJKSgrS0NOzZswd9+vRBcnIyCgoKrO5fXV2NpKQknDp1CuvWrcPRo0exfPlyREVFtbr49iI+KhAAZ9QQEZF78rD3gEWLFmHSpEmYOHEiAGDp0qX46quvsGLFCsyYMaPB/itWrMDFixfxyy+/QK1WAwBiYmJaV3U7k3DFSqwKhULiioiIiNqOXWGkuroav/32G1JTU83blEolhg0bhu3bt1s95n//+x8SExMxefJkfPHFFwgJCcH999+PZ555BiqVyuoxVVVVqKqqMt/W6XQAAL1eD71eb0/JLiE2SAu1SoHiCj1OFujQOcjbruNNr0l7fG1cFdtEXtge8sL2kBdntoetj2lXGCksLITBYEBYWJjF9rCwMBw5csTqMSdPnsT333+PBx54AF9//TX++OMP/OMf/4Ber0daWprVYzIyMpCent5g+6ZNm+Dtbd8falcRoVXhTJkCH2zYin7BLZvim5mZ6eCqqLXYJvLC9pAXtoe8OKM9ysvLbdrP7ss09jIajQgNDcWyZcugUqnQv39/5OTk4OWXX240jKSmpiIlJcV8W6fTITo6GsOHD4e/v7+zS5bErzWHcGbXWXiEdcPI5KvtOlav1yMzMxNJSUnmS2EkLbaJvLA95IXtIS/ObA/TlY3m2BVGgoODoVKpkJ+fb7E9Pz8f4eHhVo+JiIiAWq22uCTTs2dP5OXlobq6Gp6eng2O0Wg00Gg0Dbar1ep2+8bt27kDPt51FgfPlbT4Obbn18dVsU3khe0hL2wPeXFGe9j6eHbNpvH09ET//v2xefNm8zaj0YjNmzcjMTHR6jGDBw/GH3/8AaPRaN527NgxREREWA0i7so0o+ZATjGMRq7ESkRE7sPuqb0pKSlYvnw5Vq5cicOHD+OJJ55AWVmZeXbN+PHjLQa4PvHEE7h48SKmTp2KY8eO4auvvsL8+fMxefJkxz2LdqB7mC80HkqUVNXg9EXbrrERERG1B3aPGbnnnntw/vx5zJo1C3l5eejbty82btxoHtR65swZKJWXM050dDS+/fZbTJ8+HQkJCYiKisLUqVPxzDPPOO5ZtANqlRK9Iv2x90wR9p0tQmywj9QlERERtYkWDWCdMmUKpkyZYvW+LVu2NNiWmJiIX3/9tSWncivxUQHYe6YI+88W486+XBSOiIjcAz+bRka4LDwREbkjhhEZSegUCAA4yEGsRETkRhhGZKRbiA+81CqUVRtwsrBM6nKIiIjaBMOIjHiolOgdWbuo2/6cImmLISIiaiMMIzITZxo3wk/wJSIiN8EwIjPmT/BlGCEiIjfBMCIzpjBy8JwOBg5iJSIiN8AwIjOxwb7w8VShQm/AifOlUpdDRETkdAwjMqNSKtCb40aIiMiNMIzIkGnxs/1ni6QthIiIqA0wjMiQadwIV2IlIiJ3wDAiQ6aekUPndKgxGCWuhoiIyLkYRmQopqMP/DQeqKox4ngBB7ESEVH7xjAiQ0qlAr2j6lZi5SBWIiJq5xhGZMr0oXn7uCw8ERG1cwwjMnV5Rg17RoiIqH1jGJEp04yaw7klqK7hIFYiImq/GEZkqnOQN/y1Hqg2GHEsv0TqcoiIiJyGYUSmFAoF4k0fmsf1RoiIqB1jGJGx+KhAAFwWnoiI2jeGERlLMPeMFElbCBERkRMxjMiYaUbN0bwSVNUYJK6GiIjIORhGZKxTBy908FZDbxA4msdBrERE1D4xjMiYQqFAXF3vCMeNEBFRe8UwInPmcSMMI0RE1E4xjMiceUYNp/cSEVE7xTAic6aekWP5JajUcxArERG1PwwjMhcRoEWwrycMRoHDuTqpyyEiInI4hhGZqz+IlSuxEhFRe8Qw4gISOKOGiIjaMYYRFxDfKRAAZ9QQEVH7xDDiAkyDWI8XlKC8ukbiaoiIiByLYcQFhPlrEeqngVGAg1iJiKjdYRhxEfEcN0JERO0Uw4iLiOdKrERE1E4xjLgI07gRrsRKRETtDcOIizCtNXLifClKqziIlYiI2g+GERcR6qdFRIAWQgCHznEQKxERtR8MIy4kzjyItUjaQoiIiByIYcSFJHBZeCIiaocYRlwIZ9QQEVF7xDDiQkxrjZwsLIOuUi9xNURERI7BMOJCOvpqEBXoBQA4mMNBrERE1D4wjLiYePO4kSJpCyEiInIQhhEXYxo3wmXhiYiovWAYcTGmlVg5o4aIiNqLFoWRJUuWICYmBlqtFgMHDsTOnTttOm716tVQKBQYM2ZMS05LuHyZ5vSFchSXcxArERG5PrvDyJo1a5CSkoK0tDTs2bMHffr0QXJyMgoKCpo87tSpU3jqqadw4403trhYAgK9PdE5yBsAcOAce0eIiMj12R1GFi1ahEmTJmHixIno1asXli5dCm9vb6xYsaLRYwwGAx544AGkp6eja9eurSqYLveOcNwIERG1Bx727FxdXY3ffvsNqamp5m1KpRLDhg3D9u3bGz1uzpw5CA0NxaOPPooff/yx2fNUVVWhqqrKfFunq53Gqtfrodfz0kSvCF98tR/4/c9LFq8JXxv5YJvIC9tDXtge8uLM9rD1Me0KI4WFhTAYDAgLC7PYHhYWhiNHjlg95qeffsK7776LrKwsm8+TkZGB9PT0Bts3bdoEb29ve0pul8qLFQBU2PlHHr7+Ose8PTMzU7qiyCq2ibywPeSF7SEvzmiP8vJym/azK4zYq6SkBA899BCWL1+O4OBgm49LTU1FSkqK+bZOp0N0dDSGDx8Of39/Z5TqUm6o0GPJoR9wsUqBxJuHwVetQGZmJpKSkqBWq6Uuj1D7vwG2iXywPeSF7SEvzmwP05WN5tgVRoKDg6FSqZCfn2+xPT8/H+Hh4Q32P3HiBE6dOoXRo0ebtxmNxtoTe3jg6NGj6NatW4PjNBoNNBpNg+1qtZpvXAAd1WrEBvsgu7AMR/LLkRgbCICvjxyxTeSF7SEvbA95cUZ72Pp4dg1g9fT0RP/+/bF582bzNqPRiM2bNyMxMbHB/j169MD+/fuRlZVl/rrjjjswdOhQZGVlITo62p7TUz1x/ARfIiJqJ+y+TJOSkoIJEybg2muvxYABA7B48WKUlZVh4sSJAIDx48cjKioKGRkZ0Gq1iIuLszg+MDAQABpsJ/skRAXgy9/PYd/ZIgBdpC6HiIioxewOI/fccw/Onz+PWbNmIS8vD3379sXGjRvNg1rPnDkDpZILuzqbaVn4/ZzeS0RELq5FA1inTJmCKVOmWL1vy5YtTR77/vvvt+SUdIXekf5QKIBzxZW4UFrV/AFEREQyxS4MF+WnVaNrsA8A4MA520YrExERyRHDiAuLNw9iZRghIiLXxTDiwuI7BQJgzwgREbk2hhEXllA3iPUAe0aIiMiFMYy4sF4R/lAqgPySKhRXS10NERFRyzCMuDAfjQeuCvUFAPxZppC4GiIiopZhGHFxvSNrP6tnR4ECO7IvwmAUEldERERkH4YRF7bxQC42Hy4AAOy7qMSDK3bjhgXfY+OBXIkrIyIish3DiIvaeCAXT3y4B7rKGovtecWVeOLDPQwkRETkMhhGXJDBKJD+5SFYuyBj2pb+5SFesiEiIpfAMOKCdmZfRG5xZaP3CwC5xZXYmX2x7YoiIiJqIYYRF1RQ0ngQacl+REREUmIYcUGhflqH7kdERCQlhhEXNCA2CBEBWjS1skhEgBYDYoParCYiIqKWYhhxQSqlAmmjewFAo4HkyVuvgkrJhdCIiEj+GEZc1G1xEXj7wWsQHmB5KUatqg0gX/6eCyNn0xARkQvwkLoAarnb4iKQ1Csc2/8owKYfd2D4jQMRFuCNO978Gb+cuIAVP2fjsRu7Sl0mERFRk9gz4uJUSgUGxgahf7DAwNggdA/zw/O39wQAvLTxKA6d4yf6EhGRvDGMtEP3D+iMYT1DUW0wYtqavajUG6QuiYiIqFEMI+2QQqHAi3clINjXE8fyS7Fg4xGpSyIiImoUw0g7FeyrwUt3JwAA3vv5FLYdOy9xRURERNYxjLRjt/QIw4PXdwYAPLX2d1wqq5a4IiIiooYYRtq550b2QtcQHxSUVCH1s/0QgtN9iYhIXhhG2jkvTxVeu6cfPJQKbDyYh7W/nZW6JCIiIgsMI24gvlMAUoZfDQBI/99BnL5QJnFFRERElzGMuInHb+qGATFBKKs2YPqaLNQYjFKXREREBIBhxG2olAosuqcP/DQe2HOmCEt+OCF1SURERAAYRtxKpw7emDsmDgDw+vfHsefMJYkrIiIiYhhxO3f2jcToPpEwGAWmr8lCWVWN1CUREZGbYxhxMwqFAvPujENkgBanL5Rj7oZDUpdERERujmHEDQV4q/HKuD5QKIDVu/7ExgN5UpdERERujGHETQ3qFoy/39gVAJD62T4U6ColroiIiNwVw4gbSxl+NXpF+ONSuR5PrdvH1VmJiEgSDCNuTOOhwmv39oXGQ4ltx85j5S+npC6JiIjcEMOIm+se5ofUET0AABnfHMGx/BKJKyIiInfDMEKYMCgGQ64OQVWNEdNWZ6GqxiB1SURE5EYYRggKhQIv352AIB9PHMrVYdGmY1KXREREboRhhAAAof5aZPwtHgCw7MeT+OVEocQVERGRu2AYIbPk3uG497poCAH865PfUVyul7okIiJyAwwjZGHm7b0Q09EbucWVeG79fk73JSIip2MYIQs+Gg+8ek9fqJQKbNiXiy+yzkldEhERtXMMI9RAv84d8OQt3QEAM9cfwJ8XyyWuiIiI2jOGEbJq8tBuuKZzIEqqavCvT36HwcjLNURE5BwMI2SVh0qJV+/pCx9PFXaeuoh3tp2QuiQiImqnGEaoUV06+iDtjt4AgEWbjmH/2WKJKyIiovaIYYSaNLZ/J4yIC0eNUWDqmr2oqObqrERE5FgMI9QkhUKB+X+NR6ifBifPl2H+14elLomIiNqZFoWRJUuWICYmBlqtFgMHDsTOnTsb3Xf58uW48cYb0aFDB3To0AHDhg1rcn+Snw4+nlg4rg8A4INfT+P7I/kSV0RERO2J3WFkzZo1SElJQVpaGvbs2YM+ffogOTkZBQUFVvffsmUL7rvvPvzwww/Yvn07oqOjMXz4cOTk5LS6eGo7N3YPwSODYwEA/163D4WlVRJXRERE7YWHvQcsWrQIkyZNwsSJEwEAS5cuxVdffYUVK1ZgxowZDfb/6KOPLG7/5z//waefforNmzdj/PjxVs9RVVWFqqrLf+x0Oh0AQK/XQ6/nEuVXMr0mzn5tUm7tih+PF+B4QRmeXpuFdx7oB4VC4dRzuqq2ahOyDdtDXtge8uLM9rD1MRXCjvW+q6ur4e3tjXXr1mHMmDHm7RMmTEBRURG++OKLZh+jpKQEoaGhWLt2LW6//Xar+8yePRvp6ekNtq9atQre3t62lktOkFMGLNyvgkEoMK6rAYPDuP4IERFZV15ejvvvvx/FxcXw9/dvdD+7ekYKCwthMBgQFhZmsT0sLAxHjhyx6TGeeeYZREZGYtiwYY3uk5qaipSUFPNtnU5nvrzT1JNxV3q9HpmZmUhKSoJarXb6+VSRp5Cx8Rj+96caj96eiK4hPk4/p6tp6zahprE95IXtIS/ObA/TlY3m2H2ZpjVefPFFrF69Glu2bIFWq210P41GA41G02C7Wq3mG7cJbfX6TLrpKmz74wJ+/uMCnv7sAD59YhDUKk7MsobvWXlhe8gL20NenNEetj6eXX9BgoODoVKpkJ9vOZsiPz8f4eHhTR77yiuv4MUXX8SmTZuQkJBgz2lJZpRKBV4Z2wcBXmrsO1uM1747LnVJRETkwuwKI56enujfvz82b95s3mY0GrF582YkJiY2etxLL72EuXPnYuPGjbj22mtbXi3JRkSAF+b/NR4A8NaWP7Dr1EWJKyIiIldld996SkoKli9fjpUrV+Lw4cN44oknUFZWZp5dM378eKSmppr3X7BgAWbOnIkVK1YgJiYGeXl5yMvLQ2lpqeOeBUliVEIE/nZNFIwCmL4mC7pKjownIiL72R1G7rnnHrzyyiuYNWsW+vbti6ysLGzcuNE8qPXMmTPIzc017//222+juroad999NyIiIsxfr7zyiuOeBUkm/Y7e6NTBC2cvVWD2/w5KXQ4REbmgFg1gnTJlCqZMmWL1vi1btljcPnXqVEtOQS7CT6vG4nv6Ytw72/HZnhzc0iMUtydESl0WERG5EE6BoFa7NiYIk4deBQB49rP9yC2ukLgiIiJyJQwj5BBP3todCZ0CoKuswb8++R1GIxdDIyIi2zCMkEOoVUosvqcvvNQq/HLiAt79KVvqkoiIyEUwjJDDdA3xxczbewEAXv72KA6ds23lPSIicm8MI+RQ9w2IxrCeoag2GDFtzV5U6g1Sl0RERDLHMEIOpVAo8OJdCQj29cSx/FIs2GjbZxYREZH7Yhghhwv21eDlu/sAAN77+RS2HTsvcUVERCRnDCPkFEN7hOKh67sAAJ5a+zsulVVLXBEREckVwwg5zbMje6JbiA8KSqqQ+tl+CMHpvkRE1BDDCDmNl6cKr93bDx5KBTYezMPa385KXRIREckQwwg5VVxUAFKGXw0ASP/fQZy+UCZxRUREJDcMI+R0j9/UDQNig1BWbcC0NVmoMRilLomIiGSEYYScTqVUYNG4PvDTeGDvmSIs+eGE1CUREZGMMIxQm+jUwRtzx8QBAF7//jj2nLkkcUVERCQXDCPUZsb0i8IdfSJhMApMX5OFsqoaqUsiIiIZYBihNjV3TBwiA7Q4faEcczcckrocIiKSAYYRalMBXmosHNcXCgWwetef2HggT+qSiIhIYgwj1OYSu3XE32/qCgBI/WwfCnSVEldERERSYhghSaQkXY1eEf64VK7HU+v2cXVWIiI3xjBCktB4qPDavX2h8VBi27HzeO/nbGw/cQFfZOVg+4kLMBgZToiI3IWH1AWQ++oe5odnR/ZE2v8OYs6Gwxb3RQRokTa6F26Li5CoOiIiaivsGSFJhfpprG7PK67EEx/uwcYDuW1cERERtTWGEZKMwSgwp5HpvaaLNOlfHuIlGyKido5hhCSzM/sicosbn0kjAOQWV+KD7adwrqiCoYSIqJ3imBGSTEGJbVN6Z395CLO/PAQPpQLhAVpEBXohqoMXOtX9GxXojagOXogI0EKrVjm5aiIicjSGEZJMqJ/Wpv1C/DxxqUyPGqPA2UsVOHupAshubF9NbVgxB5V633fwgr9W7cBnYJ3BKLAj+yJ+K1SgY/ZFJF4VCpVS4fTzEhG5KoYRksyA2CBEBGiRV1wJaxdgFADCA7T46ZlbANT2pORcqkBOUW0gySmqMN/OuVSBCr0B50uqcL6kCll/Flk9p5/WA1GBXujUoX5g8TYHl2BfTygULQ8OGw/kIv3LQ3WXn1T47/HdnBlERNQMhhGSjEqpQNroXnjiwz1QABaBxBQH0kb3MvcqRAR4ISLAC9daeSwhBC6V6+vCSXnDsFJUgaJyPUoqa3AkrwRH8kqs1qTxUFrvVan7N9xfCw+V9aFWGw/k4okP9zQIVqaZQW8/eA0DCRGRFQwjJKnb4iLw9oPX1OtNqBVuZ2+CQqFAkI8ngnw8Ed8pwOo+ZVU1OFdUgbNX9KiY/s0vqURVjREnC8twsrDM6mOolAqE+2sbhJQIfy1mrj9gtYdHoDZcpX95CEm9wnnJhojoCgwjJLnb4iKQ1CscO7MvoqCkEqF+WgyIDXL4H20fjQe6h/mhe5if1fura4zIK67E2aLyhmGlqALniiqgNwjzbZyy/dymmUGLMo/i2pggBHqpEejtiQ7eavhp1bIMKAajcHqbEBEBDCMkEyqlAondOkpag6eHEp07eqNzR2+r9xuNAudLq664BFQbXA7n6pCnq2r2HEt+OAHghMU2hQLw16oR6K1GoJcaAd6edWFFbQ4tgd61twO8PC/v56Vu9JJRa1mOfanFsS9E5CwMI0Q2UioVCPPXIsxfi/5dOljct/3EBdy3/NdmHyMu0h8CQFG5HsUVepRW1UAIoLii9vZpO2vy03gg0EeNwLqQEmAOMfVv1/bAmMJMgJcanh6Nh5j2NvaFs5uI5I9hhMgBbJ0Z9MWUGyz+EOoNRhRX6FFUrkdReXXtvxW135u317t9qW6fksoaAEBJVQ1KqmrwJyrsqtfHU4VAb8/L4cW7NrT4az3w0Y4z7WbsC2c3EbkGhhEiB7B3ZpCJWqVEsK8Gwb7WP6OnMTUGI3SVNbUBpkKP4nI9iipqg8qlcj2K67abwozpdnGFHkIAZdUGlFXXjX2xg2nsS++0jfDXquGj8YCPRgVvTw/4eKpqb3t6wFujgq/Go3a7RgUfz3r7aepv84C3pwoaD2WrplRb0x57eDiGh9orhhEiB3HUzCBbeKiU5tlD9jAaBUoqa1BUUY1L5Vf0wJTrsefMRWw9Vtjs41TqjajUVwElzY+TsYVKqTCHGW/PK4KM6XtT2KkLNb51+9Zuq73fW+MBX08PaNRKpH95qJ328NRy1R4eXjYjaxhGiBzINDNo+x8F2PTjDgy/caCsftkqlQoEeKsR4K1GFyvjhbefuGBTGFl8Tx90D/NDebUBpVU1KK8yoKy6BmVVNSivNqCsqvb7smoDyqtrUFplQHnd7dp9alBWZUCF3gCg9g+UrrIGurrLT85m6uH5vw9+Q2yID7RqFbw9VfBS135pPVXwVqvg5amyvK/ebbWTBg9fqT318PCyGTWGYYTIwVRKBQbGBuHCYYGBLtaVbuvYl9F9ohzyvAxGgfLqGotQU2oKK/VCjTngVNff53IAKqsymANOtcFo8/kzD+cDh1tWu4dSYQ4oXnVhpX5wqR9oLO67MuCY9q1323SMQqFoNz087SlUAe3nsplceqoYRojIrKVjX1pzPj9t7VorYQ55xNr1YrYdO4/H/ru72X3/dk0Ugn01KK+uQUW1EZX62t6a8uoaVOiNqKw23Tagsm676cOja4zCPIDYWVRKoKlsZerhuX/5doQHeEGtUkKtUkLjoYRapTDf9rzytkoJtccVt1V1+3hccbvu+Npj6rYplVDa8R4wGEW7CVVA+7lsJqeeKoYRIrLQlmNfnMHTQ4mhPUJt6uF5+e4+dv3xE0Kg2mBEZbURFfWCS6XegIpqY12IMdTdNqBcbzAHmvqhpqK63vemr+rLx4i6om3t5NmRfQnAJZufhyN4KBXmwFIbdhoGGNPtsqoai/fSlUyh6pl1+xAb4lMXhhTwqBecPJSmYFX7+B7KRr431VTve3vDU1PaSw+P3J4HwwgRNdBWq+I6i7N6eBQKBTQeKmg8VAiAcz4BWgiBqpraXpqf/yjE5FV7mz1m4uAYRAV6QW8Q0BuM0BuMqDYYoa+54rZBQF9T/3bttuort9UdV38fg9Hyz1aNUaDGaECF3nHPfd2es457sCuolIrLQUmlhIeV7+uHqYbfK6FSAhv25TbawwMA/163D+dLq6BRqeChUtSdV2kOb9a2mWrzUF6uRaWsDVEeKkXtNgcGKjn2VDGMEJFVclgVtzVctYdHoVBAWzfG5La4CEQEHG62h+f5UY67dNYYg/FysDGFHlOIMd82GOvCTu3tqrr7D+fq8NaWE82eY1jPUAT5eFqEqiu/rzEYUV1vW41BmENT/e/FFS+YwVgbqCr1to8pagldZQ1mrj/olMdWKHA5oFgEmYbbPFRKqJWKuu1K879qlQJFFXqbeqp2Zl9ss98BDCNE1G7JfXZTc9p6DE9ztaiUtSHJXiPjI/D53pxmQ9U7D13rsOdiCk/VdSHFFJ5qjJZBqsZY21tksV+97+sHon1ni/DV/rxmzx0f5Y8QPy30BiMMRlH7WMbLj2kwCnMdNQZR18t0+f4aY8OeKAAQAqg2GFFtcMhL1KyCksYDi6MxjBBRu+bKs5sA1+3hqU+KUNWa8NSY7Scu2BRGnh3Zq9U9CkLUhZR6QcYUWKxuM16+nHY55FyxzVjbs3Q8vxT//bX5D58I9dO26jnYg2GEiEjmXH0MD9A+QpWtU98HxAa1+lwKhWmMC+AFxwUqoLbXKPNwfps8D1sxjBARuQBXH8MD8LKZXMjxebTNEoJERES4fNmsf7BrXzYLD7C8hBEeoHWZab2A/J5Hi3pGlixZgpdffhl5eXno06cP3njjDQwYMKDR/deuXYuZM2fi1KlT6N69OxYsWICRI0e2uGgiIiKptIfLZoC8eqrs7hlZs2YNUlJSkJaWhj179qBPnz5ITk5GQUGB1f1/+eUX3HfffXj00Uexd+9ejBkzBmPGjMGBAwdaXTwREZEUTJfN7uwbhcRuHV0uiJjIpafK7jCyaNEiTJo0CRMnTkSvXr2wdOlSeHt7Y8WKFVb3f+2113Dbbbfh6aefRs+ePTF37lxcc801ePPNN1tdPBEREbk+uy7TVFdX47fffkNqaqp5m1KpxLBhw7B9+3arx2zfvh0pKSkW25KTk7F+/fpGz1NVVYWqqssfTa7T6QAAer0eer0Dl/trJ0yvCV8b+WCbyAvbQ17YHvLizPaw9THtCiOFhYUwGAwIC7P8SKuwsDAcOXLE6jF5eXlW98/La3yudkZGBtLT0xts37RpE7y9ve0p2a1kZmZKXQJdgW0iL2wPeWF7yIsz2qO8vNym/WQ5tTc1NdWiN0Wn0yE6OhrDhw+Hv7+/hJXJk16vR2ZmJpKSkqBWO+fzMsg+bBN5YXvIC9tDXpzZHqYrG82xK4wEBwdDpVIhPz/fYnt+fj7Cw8OtHhMeHm7X/gCg0Wig0WgabFer1XzjNoGvj/ywTeSF7SEvbA95cUZ72Pp4dg1g9fT0RP/+/bF582bzNqPRiM2bNyMxMdHqMYmJiRb7A7VdQY3tT0RERO7F7ss0KSkpmDBhAq699loMGDAAixcvRllZGSZOnAgAGD9+PKKiopCRkQEAmDp1KoYMGYKFCxdi1KhRWL16NXbv3o1ly5Y59pkQERGRS7I7jNxzzz04f/48Zs2ahby8PPTt2xcbN240D1I9c+YMlMrLHS6DBg3CqlWr8Pzzz+PZZ59F9+7dsX79esTFxTnuWRAREZHLatEA1ilTpmDKlClW79uyZUuDbWPHjsXYsWNbcioiIiJq52Q5m+ZKQtR+jI+to3LdjV6vR3l5OXQ6HQeDyQTbRF7YHvLC9pAXZ7aH6e+26e94Y1wijJSUlAAAoqOjJa6EiIiI7FVSUoKAgIBG71eI5uKKDBiNRpw7dw5+fn5QKFxz/X9nMq3D8ueff3IdFplgm8gL20Ne2B7y4sz2EEKgpKQEkZGRFuNJr+QSPSNKpRKdOnWSugzZ8/f35w+2zLBN5IXtIS9sD3lxVns01SNiYvcH5RERERE5EsMIERERSYphpB3QaDRIS0uzuoQ+SYNtIi9sD3lhe8iLHNrDJQawEhERUfvFnhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMuLCMjAxcd9118PPzQ2hoKMaMGYOjR49KXRbVefHFF6FQKDBt2jSpS3FbOTk5ePDBB9GxY0d4eXkhPj4eu3fvlrost2UwGDBz5kzExsbCy8sL3bp1w9y5c5v9EDVyjG3btmH06NGIjIyEQqHA+vXrLe4XQmDWrFmIiIiAl5cXhg0bhuPHj7dJbQwjLmzr1q2YPHkyfv31V2RmZkKv12P48OEoKyuTujS3t2vXLrzzzjtISEiQuhS3denSJQwePBhqtRrffPMNDh06hIULF6JDhw5Sl+a2FixYgLfffhtvvvkmDh8+jAULFuCll17CG2+8IXVpbqGsrAx9+vTBkiVLrN7/0ksv4fXXX8fSpUuxY8cO+Pj4IDk5GZWVlU6vjeuMtCPnz59HaGgotm7diptuuknqctxWaWkprrnmGrz11luYN28e+vbti8WLF0tdltuZMWMGfv75Z/z4449Sl0J1br/9doSFheHdd981b7vrrrvg5eWFDz/8UMLK3I9CocDnn3+OMWPGAKjtFYmMjMS//vUvPPXUUwCA4uJihIWF4f3338e9997r1HrYM9KOFBcXAwCCgoIkrsS9TZ48GaNGjcKwYcOkLsWt/e9//8O1116LsWPHIjQ0FP369cPy5culLsutDRo0CJs3b8axY8cAAL///jt++uknjBgxQuLKKDs7G3l5eRa/twICAjBw4EBs377d6ed3iU/tpeYZjUZMmzYNgwcPRlxcnNTluK3Vq1djz5492LVrl9SluL2TJ0/i7bffRkpKCp599lns2rULTz75JDw9PTFhwgSpy3NLM2bMgE6nQ48ePaBSqWAwGPDCCy/ggQcekLo0t5eXlwcACAsLs9geFhZmvs+ZGEbaicmTJ+PAgQP46aefpC7Fbf3555+YOnUqMjMzodVqpS7H7RmNRlx77bWYP38+AKBfv344cOAAli5dyjAikU8++QQfffQRVq1ahd69eyMrKwvTpk1DZGQk28TN8TJNOzBlyhRs2LABP/zwAzp16iR1OW7rt99+Q0FBAa655hp4eHjAw8MDW7duxeuvvw4PDw8YDAapS3QrERER6NWrl8W2nj174syZMxJVRE8//TRmzJiBe++9F/Hx8XjooYcwffp0ZGRkSF2a2wsPDwcA5OfnW2zPz8833+dMDCMuTAiBKVOm4PPPP8f333+P2NhYqUtya7feeiv279+PrKws89e1116LBx54AFlZWVCpVFKX6FYGDx7cYKr7sWPH0KVLF4kqovLyciiVln92VCoVjEajRBWRSWxsLMLDw7F582bzNp1Ohx07diAxMdHp5+dlGhc2efJkrFq1Cl988QX8/PzM1/UCAgLg5eUlcXXux8/Pr8F4HR8fH3Ts2JHjeCQwffp0DBo0CPPnz8e4ceOwc+dOLFu2DMuWLZO6NLc1evRovPDCC+jcuTN69+6NvXv3YtGiRXjkkUekLs0tlJaW4o8//jDfzs7ORlZWFoKCgtC5c2dMmzYN8+bNQ/fu3REbG4uZM2ciMjLSPOPGqQS5LABWv9577z2pS6M6Q4YMEVOnTpW6DLf15Zdfiri4OKHRaESPHj3EsmXLpC7Jrel0OjF16lTRuXNnodVqRdeuXcVzzz0nqqqqpC7NLfzwww9W/2ZMmDBBCCGE0WgUM2fOFGFhYUKj0Yhbb71VHD16tE1q4zojREREJCmOGSEiIiJJMYwQERGRpBhGiIiISFIMI0RERCQphhEiIiKSFMMIERERSYphhIiIiCTFMEJERESSYhghIiIiSTGMEBERkaQYRoiIiEhS/w+UfUtLH1s6UQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.cluster import KMeans\n",
"\n",
"sse = []\n",
"\n",
"clusters = list(range(1, 11))\n",
"for k in clusters:\n",
" kmeans = KMeans(n_clusters=k, random_state = 10).fit(df_new)\n",
" sse.append(kmeans.inertia_)\n",
"\n",
"plt.plot(clusters, sse, marker=\"o\")\n",
"plt.title(\"Método del codo de 1 a 10 clusters\")\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que el punto de inflexión ocurre para k=3, por lo que este será el número de grupos escogido. Adicionalmente, se mide el coeficiente de silhouette para algunos números de grupos:"
],
"metadata": {
"id": "OZzsOOZi1KTk"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import silhouette_score\n",
"random_state = 20\n",
"k=2\n",
"while k < 6:\n",
" kmeans= KMeans(n_clusters=k, n_init=20, max_iter=300, random_state=random_state)\n",
" kmeans.fit(df_new)\n",
" y_pred = kmeans.predict(df_new)\n",
" print(\"Kmeans silhouette para k =\",str(k), silhouette_score(df_new, kmeans.labels_))\n",
" k=k+1"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hTpncNeFYP9c",
"outputId": "aa5919d2-3db8-4c82-c62a-7041ce1b8555"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Kmeans silhouette para k= 2 0.6148754891283655\n",
"Kmeans silhouette para k= 3 0.6921952814682361\n",
"Kmeans silhouette para k= 4 0.576422473389696\n",
"Kmeans silhouette para k= 5 0.5060160426548631\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x1lHWlA7kqgT"
},
"source": [
"El coeficiente de silhouette también es máximo para k=3, por lo que se propone utilizar 3 clusters. Su valor es de 0.692."
]
},
{
"cell_type": "code",
"source": [
"random_state = 20\n",
"kmeans = KMeans(n_clusters=3, n_init=40, max_iter=500, random_state=random_state)\n",
"kmeans.fit(df_new)\n",
"y_pred = kmeans.predict(df_new)"
],
"metadata": {
"id": "-mqbW_zjGBAA"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"El tamaño de cada uno de los cluster es:"
],
"metadata": {
"id": "ELatdgSb-OBK"
}
},
{
"cell_type": "code",
"source": [
"counts = np.bincount(y_pred)\n",
"print(counts)"
],
"metadata": {
"id": "h2W8ct0bX2M6",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f2e63b9f-81a8-46aa-a679-c89fd75a7252"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[3121 2283 2866]\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que la cantidad de datos por cluster es del mismo orden de magnitud, bastante similares entre sí."
],
"metadata": {
"id": "rRCpc9PP0LQL"
}
},
{
"cell_type": "markdown",
"metadata": {
"id": "TwD2fgUO9uPh"
},
"source": [
"A continuación se reduce la dimensionalidad de los datos a 2 y se grafican los datos transformados para tener una representación visual de los clusters."
]
},
{
"cell_type": "code",
"source": [
"from sklearn.decomposition import PCA\n",
"reduX = PCA(n_components=2, random_state=0).fit_transform(df_new)\n",
"plt.scatter(reduX[:, 0], reduX[:, 1], c=kmeans.labels_)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 430
},
"id": "6HfR0VsGHeRu",
"outputId": "0e170ad1-4ed4-4b52-a094-9a4de231f314"
},
"execution_count": 9,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hURReH37m76T2hht470jtKB0FRQIqigA27fnaxYMWuYBfEQhOkSBGkF+m9906oCaT37O6d749NAiFbk00IOu/zRMneuTNnN7t7zz1zzu8IKaVEoVAoFAqFogSi3WgDFAqFQqFQKOyhHBWFQqFQKBQlFuWoKBQKhUKhKLEoR0WhUCgUCkWJRTkqCoVCoVAoSizKUVEoFAqFQlFiUY6KQqFQKBSKEotyVBQKhUKhUJRYjDfagMKi6zoXLlwgKCgIIcSNNkehUCgUCoULSClJTk4mMjISTbMfN7npHZULFy5QqVKlG22GQqFQKBSKAnD27FkqVqxo9/hN76gEBQUB1icaHBx8g61RKBQKhULhCklJSVSqVCn3Om6Pm95RydnuCQ4OVo6KQqFQKBQ3Gc7SNlQyrUKhUCgUihKLclQUCoVCoVCUWJSjolAoFAqFosSiHBWFQqFQKBQlFuWoKBQKhUKhKLEoR0WhUCgUCkWJRTkqCoVCoVAoSizKUVEoFAqFQlFiuekF3xQKRcG5ciGOvf8cRLfo1GtTiwo1y99okxQKhSIPylFRKP6DpCWn8/WTP7F6xgZ0i577eIuet/Dyr08RXi7sBlqnUCgUVxFSSnmjjSgMSUlJhISEkJiYqCT0Ff96pJQc2nyUrX/vwpRlpnbz6rS7uyVe3l4uz2ExW3ipyzsc3HQ0j5MCYDBqlK1ahu+3fUxASICHrVcoFIqruHr9VhEVheImIT4mkXf6fcrBTUcxGDUQAovJQkjpYN6e/RKNOtZzaZ6NC7azf/1hm8csZp2LJ6P5e+IqBr54pyfNVygUigKhkmkVipsAi9nCaz3e58i249m/61hMFgCSY5MZ1esDog6fd2mu5ZPWoBnsf/SlLln888rCG61QKBQeQDkqCsVNwOaFOzi59wwWs57vmK5LzCYzs7/8y6W5rpyPy7flcz3x0QkFMVOhUCg8jnJUFIqbgLWzNzmMgljMOmv+2ODSXKUrRTicCwGlIsPdNVGhUCiKBOWoKBQ3AamJaU6jIBmpmbiSG9/roS4O5xIIbn+kq9s2KhQKRVGgHBWF4iagUp0K1gRaewgoX70sQginc7Xq3ZRm3RohtPxjNYNG5XoVuP3hLoUxV6FQKDyGclQUipuA3o92tZmfkoMQgr5P9HRpLoPBwHvzX6XPyO4Yva8W/glN0KFfK7785z38Av0KbbNCoVB4AqWjolDcJEx5dxaT352JEHDtp1YzaNRtXYvPVozG29fbrTmT4pI5sOEIukWnTssalKoQ4WGrFQqFwjauXr+Vo6JQ3EQsn/IPv3/4J+eOXAAgIMSfOx/vwdC37sHX3+cGW6dQKBSuoxwVheJfipSSy2evkJVppkzlUnj7uK5Kq1AoFCUFpUyrUPxLEUJQpnLpG22GQqFQFAvKUVEoFB5F13X2/nOQmKgrhJQKomm3xirqo1AoCoxyVBQKRYE5feAsyyetIfZiPGFlQylfvSx/fDqPmKgruWOCwgJ4+KOh9BnZ/QZaqlAoblaUo6JQKNzGYrHw9VMT+XvCCgxGLbcKyZaQXHJ8KuMen4DFrNP3SddKqBUKhSIHpaOiUCjcZsq7s/j7pxWAVb5ft+hOlXMnjppKRlpmcZinUCj+RShHRaFQuEV6agZzxi4EN+sF05Mz2LJwR9EYdQ3nj19k/4bDXDwVXeRrKRSKokdt/SgUCrfYu+YAGanuR0aEJoi7lOB5g7LZt+4QE16ezOGtx3Mfa9C+Do99Ppx6rWsV2boKhaJoUREVhULhFpnpWQU6T+qSUhWKpivzzpX7eLnrOxzZfiLP44c2HeWF20azf8PhIllXoVAUPcpRUSgUblG9cZUCnRcQ4k/rPs08bI21HHrcY+PRdYnU5XXHJLrZwldPTHCps7RCoSh5KEdFoVC4RcXakdzSqQGawb2vj8e/HOF2LyJXOLDhCBdPRudzUnLQdcnp/Wc5vuuUx9dWKBRFj3JUFAqF27zw0+MEhQeiGfN+hWgGDU0TeR6LiAxj1NRn6fVg5yKx5dKpGJfGXTypkmsVipsRlUyrUCjcJrJGOX7Y8SkzP53Pkl9XkZGaiY+fNz2Gd2LQK3eReCWZmDOXCS4VRMMOdTEYDEVmS1B4oEvjgiOCiswGhUJRdKimhAqFolBYLBYyUjPxDfApUofEHlkZWQyOHElKQqrdMWHlQpke9SMGY/Hbp1AobOPq9Vtt/SgUikJhMBgICPa/IU4KgLevN8PfG+xwzENj7lNOikJxk6IcFYVCcdNz11O9eOzzYfj4WZN1cxJ9fQN8eObbR4osP0ahUBQ9autHoVA4JD46gSW/rObojhMYvY206tWU2wa1LZIKnsKSmpTGhrlbibuUQKkK4bTv1wq/AN8bbZZCobCBq9dv5agoFAq7/DNzIx8/8DUWiw5SIjQN3aJTqkI4Hy97iyr1Kt5oExUKxU2KylFRKBSF4si244y5bxxmkwWpS6S82h057lICr3Z/TzUZVCgURY5yVBQKhU1mfflXPk2UHHSLTuyFeNb8sbGYrVIoFP81lKOiUChssnnBdixm3e5xoQm2LCr6bsgKheK/jXJUFAqFTcwms8PjUpdkZZiKyRqFQvFfRSnTKhSKPJw7dpETu09Tpkppq+y8nXR7zaBRq1m14jVOoVD851COikKhACD6zGW+eOQHdq3c5/I5vR/tVoQWKRQKRTFs/Zw/f57777+fiIgI/Pz8aNSoEdu3b889LqVk9OjRlC9fHj8/P7p168axY8eK2iyFQnEN8dEJPNf+Dfb+c8DpWM2ogYDnxz9GmUqlisE6hULxX6ZIIyrx8fG0b9+ezp07s3jxYkqXLs2xY8cICwvLHfPpp5/y9ddfM2nSJKpVq8Zbb71Fz549OXjwIL6+SqhJoSgOZn+5kPjoxNzyY3sYjBotb2/KwBf70vjW+sVkXdGTnprBst/WsOSXVcReiCMiMpxeD3Whx4hOSjBOobjBFKng22uvvcaGDRtYt26dzeNSSiIjI3nxxRd56aWXAEhMTKRs2bL89ttvDBkyxOkaSvBNoSg8/Us9SHJcit3jBqPG7Q935dnvH0UI2yXLhSUrIwtTlhn/IL8iW8MWiVeSeLHzO5w5eNb6gASyl6/aoBJfrH5XdV5WKIqAEiH4tmDBAlq0aMHAgQMpU6YMTZs25aeffso9furUKS5dukS3blf3uUNCQmjdujWbNm0qStMUCkU2FovFoZMCYDHrxF1KKBIHYueKvbzc7V36+A/l7tDhDK36BDM/m48pq3gqisY+Np6zh89bHZSc27bsf0cdPs+4x8cXix0KhcI2ReqonDx5kh9++IFatWqxdOlSnnjiCZ599lkmTZoEwKVLlwAoW7ZsnvPKli2be+x6MjMzSUpKyvOjUCgKjsFgICgswPEYo0Z4udB8j+u6TkzUZWKiLqPrjreNbLH455W82vN99v5zMPexy2djmThqGm/0+ajInZWYqMtsnLfN7paXbtZZ/+dWLp+LLVI7FAqFfYrUUdF1nWbNmvHhhx/StGlTRo4cyaOPPsqPP/5Y4Dk/+ugjQkJCcn8qVarkQYsViv8mvR7qkttx2BYWs0734Z1yf9d1nXnfLOaBGk8ztOqTuT+zv/wLi8Xi0ppXLsTx1RMT4Bpp/hykLtm9aj9/fb+sQM/HVQ5tPoaz3W8pJYc2Hy1SOxQKhX2K1FEpX7489evnTbirV68eUVFRAJQrVw6A6OjoPGOio6Nzj13PqFGjSExMzP05e/ZsEViuKClIKZGZG9ETX0ePfwI96UOkSV00XCElIZXoM5fJTHfej+eeF+8kpHSwtaLnOoQmaNHzFk7sOsWC75dyfNcpxo78ke+e+4WYM5dzx105F8v4lyfzybBvXYquLP1lNY58BIlk3rd/O52nMAg7LQLyj1PamArFjaJIq37at2/PkSNH8jx29OhRqlSpAkC1atUoV64cK1eupEmTJoA1uWbLli088cQTNuf08fHBx8enKM3ORcpMSF+ETJ8Degxo5RH+A8G3F0J4FYsN/2WknoKMfwJMWwADYAEMyLTfkP4jEEGjijXp8mbhyLbjTH53JlsX7wIJXr5edBt6K8PeGUipChE2zwkvF8ZXGz7g84e+z7MNY/Q2EF4+nO1L97B92R4EwnEEQsLq6evpPKQ9be9s4dDOU/vPOJ3r4skYVv6+jh3L92DKNFOzSTV6PtiJ0NIhDud2lYYd6qIZNIfVTgajRsP2dTyynkKhcJ8irfrZtm0b7dq1491332XQoEFs3bqVRx99lAkTJjB06FAAPvnkEz7++OM85cl79+51uTy5qKp+pJ6IjBsG5kNYSwAk1gCUDl7NEGE/IzTH+/qKwqHHPw2ZKwDbFxER9DoiYESx2lTS2blyH2/0HoOuyzwXX82oEVo6hG82f+hU+yTq8HmO7zqF0ATT3p/N2SMXnJYtX09I6WBGvDeErkM74BfoZ3PMpw9+y8pp69Ad9BPKwWDUrB2cAYPRwKuTnqbT4PZu2WSPT4Z9w6rp620+R82g0XVoR1757WmPrKVQKK5SIqp+WrZsydy5c5k+fToNGzbk/fffZ9y4cblOCsArr7zCM888w8iRI2nZsiUpKSksWbLkhmuoyMQ3wJyzxZDjy2V/kZl2I5PG3Aiz/jNI8xnIXIY9JwVApk5ASsf9aP5LWMwWPnngaywWPd9FVzfrJFxO5McXJjmdp3LdCnS5twPmLDNnDp5z20kBSLycxFdPTmBYzWc4tT/K5pj2d7Vy7qRkB8wsZh1dl0hdYs4y8+HQrzjoobyRZ757hLqtawHk5unk/L9em1o88+3DHllHoVAUjCKNqBQHRRFRkZbzyMtdsNvkBAAjosx6hBbukTUVeZGpk5HJY3D8NwAR8SfCq2HxGFXC2bhgG2/f/anDMZpBY8b5CYSVcb518mqP99i9aj+6XvCvCM2gEVIqiO+2foy3nzfBEUG523UWs4VHG7/IheMXHXZptoXBqNG2b0venv1SgW27FrPJzIa5W1nyyyoun4+jdMUIej3UhfZ3t8TopTqNKBRFgavXb/UJtEXWDpxdIMEMWbvBt0sxGPRfxMTVLTcHyKziMOam4OzhC07zLXSLzoXjl1xyVOKjEwvlpOSsFx+dyH1VrDlnFWuXZ+CLfbn9ka4YjAY+WfYWo3p9wJmD59AMmjV5WpcIkf2Xt7O8xayz6a/tSCk9kqdk9DJy26B23DaoXe5jp/ad4fvnfuXI9hP4+HnTtm9Lej7YieBwJf6mUBQnKpXdJq5+Od/UwaiSjbEejrZ9rHiBsUZxWHNT4Bfoi3TBsfALdG1btXz1sg5LlgvCuWMXGfvYeMY9MQEpJaUrRvDd9o9pdXtTdF1H6hJNE9ZqICdPxWKy2K0uOnfsIj88/xsP1X+OEXWeZezIHzmx57TLds76fAEjb3mJvyeu4Oj2E+xbd4ifXpnCiNrPcnzXKdefsEKhKDTKUbGFVzNyN8ftYgCvW4rDmv8m3m3AUBlrtY8tDOB7J0LzTPXHv4F2d7Vw+rYtX70MVRu6pj3U+5GuBcpPcUi28/H3hBXsWL4XgB9fmMS2Jbtzj7kSxRECqtSviMGQ//2xfu4WHmnwPPO/W8zZwxc4f+wiS39bzePNXmbh+OVO5962ZBcTXpkCkGdLSkpJamIar/X6gIw05yXfCoXCMyhHxQbCWAl8OmP/IqlZL5IG1TnWU0jzCfSkMeixg9HjhkHaFAj+EIQf+f8OGhiqIIJfuxGmllhKVYjg9oe7OtQGGfbOYDQXNUFa3t6UNnc0tzmfZtCo27om78x9mdAyIc79+usR8OadH9HLezALf1zuVHTteiRw9zO98z1+6XQMY4aMxWKx5HEyLGYdJHz15ASObDvucO6Zny2wG0nSLTqJl5NYPX29W/YqFIqCoxwVO4iQD8FQ1fZBrSwEvVWs9vybkamTkVd6Q9pUMO2CrM3I5A8h4WkI+Rz8B4Pwtw7WyiACn0ZEzEJooTfU7pLI0988RNehHQGrM2H0MiA0gcFo4PEvhtPt/ltdnkvTNEbPfpGBL/bF95rtIi8fL3o/0pVPl4+m/V2tGPnZA+7vgkrr1o27SbQI60+7vi25/eH8+WELf1xmjcjYscdg0Jj7jX0ROV3X2fPPAYeRJE3T2Llyn3t2KxSKAqOqfuwgZToydgiYD2PzW8//QbTgUR5b77+KzNyIjB9h56gGIgRRejVC80dKC0LYi3IpriXq8HnWzNhAUmwy5aqVodsDtxZKJC09NYNjO04idUmNJlUJDL2qISSl5KmWr3JsZxHmbmTnVZevUZYBz93BHY93x2DM/154uvVrHNl2wuFUYeVCmXnhJ5vHLBYLvbwcd20XmqDjgDa89ccLLpuvUCjyo6p+Ckva7/adFIC0X5F+/RBedYvVrH8bMvVnrqrOXo8OMh4yFoL/IOWkuEHluhUY9s4gj83nF+BL41vr2zy2YuraInVSNING6zuasXXRTi6eiObX0dOJOXuFwa/ela8Cp7C3XQaDgVrNq3N81yn7ickSGrRVSrUKRXGhtn7sINN+x3E824BMn1Vc5vwrkVJC1kZsOyk5aMisDcVlksINsjJN7N9wmK+ftB2d8AQ5JctbFu3M3SZKTUhj9pd/8Uyb10m4nJhnfNMuDR1WKhmMGs26NnK45j3P32HXSRFC4OPnTffht7n5TBQKRUFRjoo9LOedDQDz6eKw5F+MxHkJsgTpWjdet1eXkt2r9/P7h38y45N5HN+tyk5dYd+6gzzS8Hn6+N3H8x3fIiPVhQoYgdt6J0LL7iskZT4FW92ic+lUDGNHjufS6RhSk9IAuOPxHtbkXztLWSw6dz9zu8N1O9/bgTuf6AGQx+nRDBpGbwOj57xEUFigW89FoVAUHJWjYgc9ugXIJAcjDODbGy30C4+t+V9Ev3IPmPdj32ERiKCXEQGPeHTd0wfO8u49n3PuyIXci5Fu0Wl8a33enPmCS4Jo/0WW/LqaLx7+3u3zgsIDadShLhsXbC8Cq6w0urUeD4weSHJcCmPuHZcrHgfWSIrFovPst49w5xM9nc4lpWTzwh3M/3YxR3ecxNvXi/Z3t6Lfs72pWDuyyJ6DQvFfwtXrt3JU7KAnvQdp03G0LSFCf0QoZdpCIdP/Qia+aOeoALwRZf7xaKuC2IvxjGz8IikJqfmqOwxGjUp1K/D99k/w8lYdsq8l+sxlHqjxlEuictfTolcTPlz0Ok+1eo2Te067X+3jBgEh/qQmpuX+LoSgRpOqPD/hMWo3VwKBCkVJoUQ0JbyZEf4PgvDF9ktkAGND8FH71IXG9w7wy6myuPa1NgAGROhXHu+nNP/bxTadFLDqbZzef5Z1c7Z4dM1/A3//tMJtvZMc7n2tH0II3l/wGhVqlQdAc6D3UhiudVLAGh05vusUq6atK5L1FApF0aIcFTsIYyUIfhubom+G6ojwX1QVigcQQiCC30WEfgferUAEgQgHv3sQEfOLJGK1YspahzoZQhOs+l1d1K7n2M6TBeoaUaNJVRp1rAdARPkwxu/+nDdnPE+bO1t42ELHzPlqEdFnLhfrmp7k3NELfPvMzwyuMJL+ESN4pft7bJi3tcDOo0Jxs6DKk+0gTQch8S1sbv1YjkHGUqsQmaLQCCHAtzvCt3uxrJeSkOrwuNQlyXEpRWqDxWLh+M5TZKRlUrluBcLKhhbpep7A6O3+10XFOpF8sebdPIm0OQ0AOwxoTd/gYWSlF09jSU3TWDF1LUPfGFAs63mS7cv2MPquj9Eteu622Z41B9i1ch+9H+3K/358zCPNGRWKkohyVOwgkz/G2sHX9p23TP4ou9eMf7HapSg85WuU5dTeKLt3ogajlrs94WmklCz8cRnTxswh9kI8YK0maX93K54cN4JSFSKKZF1P0KZPcza5mQz73vxXuHw2Fq2KwOBlZP2czWxauIOs9Cxq3FKVDv1as3rG+gLlvRSEuIvxHpvLYrZw/vglpJRUqFkOo1fRfJ2mJqby7oDPMJsseV6nnKjg3z+tpGH7enQfpraiFf9OlKNiA2m5AFmbnQxKg8zl4HdX8Rh1k2EtK03AWpcaUqLu9u58vCdfPTnB7nGLWaf3I12LZO0p785iynt59Xd0i87G+Vs5tOUY32/7uMRGVzrf14Ff35pOQoyjari8PFT3fwB4eRsx+hhJT85AMwh0i7WqBqwNBovDTdEtOvHRic4HOsFisTDrswXMGbeIhBjrfMERQfR7tjdDXrvb4w7L8slryUzLsutYC00wZ9xC5ago/rWoHBVbWKJdGGQAy8UiN+VmQ0odmTYDeaUHMqY1MqYV8sodyLQ/S8xeeo8RnWjQro5dYbBeD3WmQXvPKw5Hn7nM1Pdn2zxmMevEXYzn9w+tr9OBjUf486tF/PXDUi6edOX9WPT4BfjywNsFU7s1ZZlJT84AQLfI7P/r2T/F975Y/+dmzh8v+OdWSsnH93/Nz6//nuukACTFJjPp7T94Z8Dn6LpnK5oObj6CIz9f6pITu09jyjJ5dF2FoqSgIiq2cKnKxILUQtxuGvtvRkqJTHwTMmaTR3HLchyZ9BqYDyOCX79h9uXg7ePFx0vf4rc3p7No4koyUqwX0NAyIdzzwp0MfOnOIokALZu0xipiZufCrFt0Fv+8kt2r93N6/1mrcJmUSKD93a14+denCAh2f6vRlGXiyrk4vHyMRESGO31uWZkmTBlZ+AX55em0LKXkz3GL3F7fGUITxbb1IzSNv35YxuNfDC/Q+Vv/3smaPzbaPb5l4Q7W/LGBLvd2LKiJ+dAMmjXs5CTu5GpXbIXiZkM5KjYQxipIEWbtM+OIpM+RWgTCt0fxGFbSyVyT7aRA3i/V7H+n/Yb07Y7wblnMhuXH19+Hx78cwYgP7iXq0DkMRgNV6lcssjwDgOjTlx3eGQNkpmURdciqinztxXvTgu28ecdHfLHmXZcvSOmpGUx7fzYLxy/PLdmt2rASQ98YQKfB7fONP7j5KNM/+pMti3YidUlomRDufLwHA1+6E79AP47uOMn5Y56PIhaXkwJWZ3D/+kO5v8ddiufYzlMYjAbqtanl1BGc9eVfTteY/PZMjzoqzbo2ZuVU+1VomkGjQfs6Nps0KhT/BpSjYgOppzhRpc0hGZnwLIT9gvBpV+R2lXRk2jTsNxgEMCDTppcIRyUHX3+fYhMBC45wTXbdVum09QJ7mO1L99Dq9qZO58hIy+SVru9ydMfJPPOdOXCOMfeOI/rMFQa/cjW/asO8rbw30KqynOM4JMQkMu2D2WxeuIMv1rxD/KUEl+wvbirVq4hA5jp4zjAYDSTFJvP1UxNZN2dz7uvj4+fNHY/34OGP7rMr9ndi12mn8188FeOy7a5w26C2THxtKolXku2+Nwa9pHLlFP9eVKzQFpazOG6UlxeZMq7ITLmpMB/B8etmAdMhB8dvXnRdJzUxFbPJbHdMl/s6FkqRVTNorJy21qWx875ZzJHtJ/Jd2HLyhCaOmsrFU9bcl7TkdD5+4Gt0Xc83XtclJ/ac5vcxfxIRGVZg291FuCEGN/ydgUzcP5aZlybScUBrhINvNU0T3NKpAc/f+lYeJwUgMz2LP79axAeDx9rNp5IupP3qFt2jeSo+fj58tORNAkMD8mzbGYzWJ/rwR0Npc0dzj62nUJQ0lKNiAyntX2zyo4Npt7VS6L+OcCF/wpUxNxHJ8Sn8PGoa95R+iLvDRnBHwFA+GPIlJ/aczje2ZtNq3HpPG5sXYUcdf3PQLbrLFTd/fb/U4ZaKpmksnrgSgNXT15ORlmk3BUK36Cwcv5yqDStRqW6Foq/gEuDl4+WysxIcEYQQgrAyIdz3xgDsdSQUAgzeRjSDxtkjF2xGJ6Qu2Th/G7tW7bc5R4WazsvWDV4Gj+eL1LilKpOOfcPjXw6n8W31qdOyBr0f6cb43Z8z5NW7PbqWQlHSUI6KLaQL3WCvR0/wuBk3Hb634/gtJRB+jjvX3kwkxSbzbNvXmfn5ApLjrSJyFrPO+j+38EybUexZcyDfOa9OeZaeIzrndvjNcVBKV4ogvLzjiIXBqFG+WhmndplNZmLOXnE4Jidx968fl3Fsx0mMTvIbUhJSSYhJ4slxDxaoE7JbSMhKz3IpdyUwNIAG7erk/m7KNFOrWTXb00owZZiY8ck8h3MbjBpLfllp89g9L97p1KbbBhXNNnBgaAD9n+vDF6vf5dstH/Ps949SvXGVIllLoShJKEfFBkLzcfMMDQxFIxB2MyH8782OmNh6W2kgQsHv5lMFtcfEUdO4cCI63525xaxjNlkYc+/YfFtB3j5evDjxCX4/8wP/+2Ekj302jE+WvcXk49/S79neDqMIFrNOr4edtxQwGA0uqcgmxCTx9VM/sfL3dVgctBTIwcfPmxY9bmHMotcpX6Os0/HX4xvo4/EL68CX+uLt683x3ad4ps1rPNv2dY5uP+nwHIvJ8bauxawTc8a2o3frPW2oUr+i3XO9vI3c93p/54YrFAqXUY6KLYz1QCvl4mAD+HRHaMW3f19SEYayiPBJkPtaGMnN19ZKI8KnlKjX6fzxi/zw/G8Mq/U0Q6s+wZj7xrJ/w2GXzk1NSmPFlH/s9gySuiQ+OjFX1Ox6SlWIoM/I7vT/Xx+adWuMpmn0fbInletVtL0NJKDXw12o26qWU9tiL8a7HvGQ1kojh9ELAfXa1iY4IgiAlj2b8NuRr/lqwwd0HdrR3k5LHgY8fwdV6lXk5N4zrtnlAr0e7sKQ1+5m/ndLeKLZKxzeesIj82oGjbDyoTaPGQwGvljzLg06WHV2hLiaTxNSKohPlo+mSj37joxCoXAfVfVjAyGMEPAYMnmMk5EGEEGIoJeLxa6bAeHVCEr/AxlLkVnbAYHwaQ0+3RDCdiXFjWDLoh254lx6doJr7IU41szYyIMf3Ov0rvjiiWhMmY5zmQxGA6f2RdGhX+vcx7IyTWyav42ow+fxC/Slfb9WlK9mjU74B/kxdu17/PDCb6z+fT3m7Dv/oLAABrxwJ/eO6ufScxv72HhMma6LfzkV4pNw5VwsiyYs5/ZHuqJpGkII6retw/kT0ax00pXY29eLDfO2ctnJdpS77Fl9gO1Ld/PtMz97dF7dotNjWCe7x0NKBTNu7fsc2XaczQt3YMo0Uat5Ddrf3bJIy9sViv8qQpYUudACkpSUREhICImJiQQHB3tsXt10EWI7Y6/XDwDenRDBbyKMlT22rqLoibsUz/3VnsKcZcLeu//jpW/SvPstdueIOnyeh+v/z+E6mkHj4Q/vY9DL1tLRLYt28Mnwb0mOS8HgZUC36Egp6Xb/rTw//jG8fb1zz02KTebU/ii8vI3UbFYdbx/XnLxLp2N4oMZTHtekF1btOToNbseoac+haRo7V+zltV4fOIzGCE3QqGM99q496HmbNEFk9bJcPBXtMXXbHE2Sz1a+jcGgdEkUiqLE1eu3cv/tkfwWDp0UAJ/Oykm5CVk8cRVmk9muk6IZNOaMW+TQUalUJ5LIGmW5cDLaYbVM274tANi/4TCj7/4096J+bZ7EymnrSElIpWKtSLYv242uS265tT59n+pF1QaV3Hpux3edKpLGOTmv1Zo/NtKyV1MatK/DG30+dJrwqmmCjLQMnOuqFsAmXXL++CWPzSc0wW2D2vK/Hx/zuJOi6zqbFmxn4fjlnDtygaDwALrc15FeD3UhMDTAo2spFP82lKNiAyklZG1wPjB9OgTcW/QGKTzK3rUHHF5gdYvOvrUHHc4hhOD+twby6YhvbR7XDBpt72xBpToVAJj8zkzA9jaL1CWb/9qB0Hbm2nX+6AUWjl/O8xMe4/aHXW+Q6OVCEm1hEJpg3reLObbzJGazc60hi1nn2PaTdp3CG4VmEJSpXJq6rWqRkZpBxTqRJGTnFA0o9SCRNctx5xM96f1oN5ejWfawmC18MGQs6//cgmbQ0C06l07D8V2nmTNuEV+ueZfy1d1PTlYo/isoR8UWejQuCb7pl/P8Ki2XIH020nQQhDfCpzP49kIId6uIFEWJS4mmLozpPuw2Yi/E8cub03PnFEJgMVto2qUhr05+GoCkuGR2rdzndL5rnaccYbgvR/5IjSZVXVbPbdihLt6+XmRlFE2DOqlLTu09Q+yFeJdDJK46KTkX8aJGCGtjxEunY7h8Nhap69ak52vCPlGHz/P9c7+wdvYmPlr8Bj5+Bf8MT/9oLhvmbgXyqg5LKYm/FM/b/T5l/O7PS1SHcYWiJKGqfmziqiptSO6/ZPpc5OXOyJRvIXMFZCxBJr6MvNwDaT5VNGYqCkSTzg0di4kJqFirPFkuJKQOea0fU09+x/1v3kOX+zpw5+M9GLf+Az5a8iZ+gX4AuX12CoLBoDH3679dHh8QEkDfJ3sVeD1XMPp4kZWR5dE5hSYwuCB65wlyHSdpjXboOQ7ide2ppIQD6w/z+5g/C7yWKcvE3K//tpuwbDHrnNoXxb51/07FZoXCEyhHxQZShLo20LuxdXzWdmTia1gdnJw7puz/6zHIuAeR0rNf7IqC0+vhLnj7etu/g5XWXI8nm79CfHSC0/nKVC7NA28P5NVJz/DU1w/RoF2dPHOHlQ3Fy7dg2wcWs87OFXvdOufhj+6jRU/7+TWFwWDUaH9XSyJrlvPovFKXmLLcUYR2jxcnPsGbM18gMMy1fks56LpkwQ9LMWUVLEJ1/tglkmKTHY7RDBp7/3G81ahQ/JdRjooNhOWcawO1SABk6kTsv5QW0C9AxjKP2KYoPKGlQ3hv/qt4+Xo5DLefPXKBDwaPLfR6vv4+9HjgNpdk8m3haOskIy2T5ZP/YeJrU5k2Zg5nDp3j7JELHNh4pMDrOcJi1qnTqiYn93hOD6WoKVetDD0f7Ez5amVIiU9x+/yU+FSi7QjAeQLdohN12LWGigrFfxGVo2ID6aL/JjQfa0g38x8cbxdpyMxVCL87PGKfovA069qIn/Z+wcjGL5KZbjvapVt09q49yPHdp6jZxLYsu6s88M4gtizeRdzFeLfyMAxGjaZdGto8tmHeVj4d8S1pSekYvQzouuS3t2YQHBFIZlpWkeR7CAETXp5cqOaKxU3s+TimfzwXH39v54PtUNAk5Qq1yhEcEeQ0qrJ29iaeHDeC0NIhDscpbgx7oy8x78ghrqSlUi4gkAH1G1InwlVRUEVhUY6KLXTXGr/h0wHrFo+znBYJauunxJGWlG7XSclB0wS7VuwrtKMSUT6MbzZ/yMRXp7Lmj41YsitmImuU49Kp6Kt5EtdhMevc/Uzv3N/PHDrHpgXbOXv4HMsnr83t5mu+ptw5Kdb9qIGrSAnmLNc7i5cETFlmfn1jOnVbO1f1zYewNiIsU7lgFyUvby/6PdubSW//4XCcxWxhyS+rPdpgMN1kYsHRwyw+dpSUrEzqlCrNkIaNaVRGVRi5SpbFwkvLFrPw2BEMQiCx5lxP3LWD+xvdwjuduqKpJOgiRzkqtkgb78IgAcaGCCGQxlpgPo79MgiB8GrgQQMVnsCV/jZkV/F4glKR4bw25Vme/OpBok9fxi/Qlwq1yrN21iY+HPoVCHJVcg1GDYtZ56mvH6Je61qkJafz8QNfs2nBdmt1jK4XiV7Kv5nDW465f5K0JkwXpiJn8Kt3OXVUAA5vLYB9djiXlMh9c2ZyLjkpt5hpT/Qlpu/fy+PNW/Fyuw43ZZXRocsxLDh6mISMDCoGB9O/bgPKBwUV2Xpj1q1h0bEjAFiu24Odum8PpQMCeKZV2yJbX2FFOSq2yMrf9TY/EjAB3gj/YciktxyM1cDvHs/YpvAYletVwDfAh4xU+92ydYtOvba1PbpucHgQweFXv1xvG9SOqo0qM//bJWxfugvdIrmlUwPueroXtZvXQErJuwM+Y/fqA7k2KYqH1n2a0XNEp0LNYfQyohmEQ/VcIQQGBx2sk+KS+eePjVw5H0dY2VBuG9SWsLKhNsfqUvLQ/D+5mGLdbspZNedC++OOrdQID2dAPfs3T5lmM/svR2Oy6NSJKEWYn5/jJ1nEZJrNvLx8SW5kQwiBLiVfbtrA/9q04+mWbTzueMWlpzF9/16H9wM/7dzOo81a4GssOe1B/o0oR8Um6S6MEQiRveftdw9kboTMxeQRY8AASETIJwhD6SKxVFFw/AJ86fNoN+Z+/bfNrRfNoFGpTiSNb61f5LZUqVeRZ797JM9j6SnpbF+2hxO7T7NzhXMdFoXn2fL3Tg5sOEzDDvUKPIcQguY9mrBj2R6HTSxb9LBdqTX7y7/4+fXfsZgs1kibRefHF39jyKv9GP7e4HwX6PVRZzgeH2ffHmD89q30r1s/37kWXee7bVv4edcOkrOsDrxR07irTj3e7NiJEF9fN56553hnzUr+Pn7UaqOUeTLMx27eSISfP/c18myl27qoM5h1xzcFKVlZ/HP6FD1revZmRpEXVfVjCy3c+RhxtQuwEAZE6JeI4DFgrIX1q8ALfLoiwmcg/O4sMlMVhWPEB/dSv10dgDzaKppBIyg8kLfnvFTsIXKL2cLPo6YxqPyjjOr1ARNfm1ok6wgBnYa0d0Xb7j+L0AQzP19Q6HkGvninXSdFM2iElg6m05D2+Y4tmrCc8S9NxpxlRkqJ2WRB6hKLWWfamDlM/2huvnPWRZ3GqNn/apfA8fg4rqTl1feRUvLaymWM27Ix10kBMOs68w4fZPCcP0jNKv5cu0spycw6dADdQfnbN1s3Y3HiVLhLhtm1cvmXli/h0OUYj66tyItyVGzh44JglqFMnl+FMCD8B6KVWogoewhRdj9a2LcI7yZFY+MNQlqikam/oCd/hkydjNTt37ndDPj6+/DJ8tE8P/4xatxSlYAQf8pWLc19r/fnp71f5ErgFxdSSj4Z9g1/fDrf4ZZUYRDCqmD727FvGDX1Wbo76BT8X0daJFv/3um8w7QTmnZpxDPfPoIQ4mrZuLD+BIUF8PGyt/ALyButMJvM/PrWDIfzTv/oT9JT8kaAr8+lsMf10YJdly4y55DtbW+LlByPi2Xavj0uze1JVp066fT1j05N4eCVy1ZnzkMOS71SrkXB00wmhs+fQ6aLjo3CfdTWjy0sLmgamI8jpbR5ty3Ev8//k1JHpnwBqT9nP6IhsUDyxxD4HASMvCmT8wC8fbzo/Wg3ej/a7UabwsFNR1k9w4U+UwUgINSfDxaO4sCGI2z+azvv9PuMlMRULkfFFsl6/xYsZh1d1wvdqLDvkz1p1q0RC8cv5+j2E3j5etH2zhZ0f+BWAkLyNybcOH8riZcdVyBmpGayfekeOg5ok/tYk7Ll+M3JxbqMfwBlAvKuOfPAPgxC2HV0dCn5ff8eRjZv6XBuT5NmMlmLFpw4K59vXMfW8+fItFioEBTM/Y1vYfgtTQucP9K4bDkalC7D4SuXHTp/EriSlsaiY0fo7yDvR1FwlKNiC9NWFwaZkfqV/07uSer3kPrTNQ/kfBGakSlfILRA8B96Iyz7V7H019W5FT+eJjUhjRdufQupcnHdolKdSA5vOU5I6WAq1ipfqLkq1o7k8S+G53vcYrFgzjLnKiZLKfnljekuzXl9i4aeNWoR4edHfEaGze0SAfSpVYf31q5mf0w0fkYvuteowamEeKfRmIvJjvVgioI6EaUcbvvksPFsVK7955OT+HTDepYcP8a0/oPw9yqYs/Jlj94MnD2dpEzH0U2DEGw8G6UclSJCOSq20F39MN6cEQR3kXoKMmWC4zEp34DfIIRQ2e+F4fK5K245KZpBo3z1MrTp05w5Xy1yWrKsnBT3OXvkAv/r8CYAtZpV45FPHqBZ10YemfvojhPM+HgeG+dvxWLWiYgMo++TvWjQvg7nj11yaY7r2xn4GI1MuONuHpg7m0yLOffirWVXytQIC+fXPTtzoycC2HQuCi+DAY2rtyC2uBHJtO0rV6FCUDAXU5IdOizXO1kSyb6YaL7ZuolX29/qdJ3dly7y864d/HPmFBZd0rRcOUY0acace+6l+7TfHJ4rbayv8Bz/vj2KYkMgtIgbbUTxkLUeyHA8Ro+DrJ0eW1LqaUhLzH+uR1JY2VA0o2sfSy9fL25/qAtfb/qQVr2bKV2VYuD47tO81vN9a7flQrJl0Q6ebftGrpMCEHshnt9Gz+DjB75GGJzfCJWuFEGjjvkrkpqWj2Tx0OEMv6UZpf0DCPDyplGZsjzcpHluRVDOhVVm/5h13aGTYhDCYUlzUaEJwdievfHSNAxubi/rUvL7vr1kWRxrIc05dIABM39nyfGjpGRlkW42seX8OUYunM/MQ/upHe74u16XkublI92yTeE6ylGxxXWJsjYR4UWakyH1JKTpINJ8utCJfIXG1QiTLLwiqjTtR49/EhnTDHm5AzKmJXrS+0jLfyOPotsDt+WKvtlCM2j0HtmN8bs/Z3b0z/xv/GMEhwfRpEtDylYt/V8J8t0wpG4tjR372PhCCQGmp2bw4dCv0C16vgia1CWx5+PBjlrxtQx7Z5Dd76FKISG8eWsntjzyOPueeIa5g4eyN+aSXSXVnGiFraMGIQjx9eXBJs2c2lQUtIiswNzBQ+lZo5bbb/HkrEyHW1ZRiQm8umJpvqhIzr9/2rmddpUq2z1fE4IAL2/urlv0Mgb/VZSjYgtfF3ryBIwskqWl5TJ6wsvImDbI2LuRV3ogr9yOzFhcJOu5hLGqi+OqFGoZmbkJGTsYMleTG4CW6ZD2OzK2P9Ly7y8BbNqlIS163IKm5f86Nhg1QkoFMfydQVRvXAX/oKsiXJqm8dqUZ9EclKUqPIOUEHcxnh3L3etqfS3//LGRtKR0uzchUkqHzSgBfAN86HJvB5fXzLJY2HbhvMPtE4MQlA8KyilIynUKakeUYuY9QygT4F73aU9St1Rp6pUuXaDAobeDROjp+/c6dH4MQnAsLpZ7GzbO/f3aY16agQl33EWgd8F7SSkco3JUbOE3GFJ/xOFurVcdjy8rLbHI2IGgR5Onf5DlFDLhOQiKRQTc7/F1neLVAgxVwHIW26+JBl6NEcaaBV5CSjMy8UWsz/v6NSygxyCTP0GEflHgNW4GhBC8M/dlvn5qIiumrM2jvVG7RU1GTX2W8HJhNs9t2L4uw94ZxG9OSloVhUcIuHSqYI5zeko6f361yLV1NGGN4th4/O5neuPt6/rF0ZXIrARaRlbk+TbtsgXPLDQuU44m5crf8Kq+C8lJjN280a1zBFAzPIJygfYdrF0XLzrML7FIye5Ll5h89z10qVqdSXt3cfByDD4GI7fXrM2wW5pQOSTULbsU7qEcFVuYj+I4pQxIeg9KL/HosjL1m/xOivWI9b/JH4Jfb4QrgnQeRAgBIR8j44Zn23atfQYQvojg9wu3SOY/oF9xMMACGYuR+psIzfaF+t+Cj58PL//yFA9/eB87V+zDnGWmdosaVG9sO2J1+sBZDm85hsFooPOQ9swZu5DkuKJrTKiwRlWCwt2PLmRlZPFK9/c4tT/KpfGBof6kJqbnOqw5jkuTzg154O2Bbq3tYzRSKzyC43GxdqMSUkqalitP5ZBQhjYKdWv+okRKyYh5c1yq/slzHvBUy9YOnSxH4ng5GDSrbH/X6jXoWr2GWzYoCo9yVGyR+qPzMZaT6HoWmuaZcJ+UWZD2J447MeuQPh8CHvTImu4gvJtDxB/I5LGQtQ7rV4BmVd8Neh5hLOSH13wMa8sBR8/fDOYo8P53Oyo5hJcLo9v99qsVos9c5uNh37B/3aHcx4QmqNOyBoe3HC8OE/+z+Pj70LqP+/kaS39bw+Gtx50mPmuaoGaz6nzw12v89cMyVkxdS0pCKhVqleeOx7rTdWhHjF7uf30/1LQ5o1Yus3lMAH5eXiUy12LbhfMO2wJcjyG7wunFth3oW8dx+4NOVaux6VyU3T+JQQi6VK3uhrUKT6McFVuYD7s2Lv0vCBjgmTX1WJxW1qAhLVE3LF9SeDVAhE+0qtHqcaCVQmihHprcH6dRLABxY5ujgVUxdN+6Q6QkpFGhZjm7kY7CkpqYisWsExQemO+OMPFKEv/r+BZxF/J+eUtdcmTriSKxR3GV+98ckCdHyFUWTViOQCCdeCq6Lhn6xgDCyoYy7J1BDHtnUEFNzcPA+g3ZfuE8cw4dyC1XBuvF2KBp/NC7L8E+Ph5Zy5OsPHXCoRjdtbSMrECzcpF0qVaDKqEhdoU5c7infgO+2bqJVJPJZsRGAg82bV4Y8xWFRDkqtpAuSpenTPacoyICydvQ0BYSRLBn1isEQgt3rR+SO/h0geQxjscYKmf3Urpx/PXjMiaNnkHilatVBLWaVed/40dSu7lnQsJrZm5kyruziDp0DoCyVUrT/7k+3PV0r9wOuwu+W0rs+TibeQc3vErsX06DdnUY/OrdXDodw5o/NpIcl0L56mXpPKSdTYXZa7l0Osalv89TXz1Eu7s8rwCrCcGn3XrSpVp1Ju+x5lp4G4zcXrMWI5o0o3pY8W4ru0qWxWJ1Npy8dlVDQulctRq/7dnF+J3bAKgRFs5jzVsyoF4Dmw5LqK8fk+6+hxHz55CcmZn7DawJgQA+73E7jcqU9fAzUriDkDf5t1pSUhIhISEkJiYSHOyZi7h+qQmQ5mwYEIFWbpNH1gTQ4x6GrA04iiyIiIUIr39np0494RXIWIC95y9CPkH49Steo65h1ucLmPDKlHyPawYNL28jX20cQ41bqhZqjQ+HfsXq6ettHuvQvzVv/vE8BoOBIZUeI/b8zd1n6WalzZ3NCS8fxt8/rUDTNDRNYDHrePkYeXLcg/QZ2d3uucNqPs3Fk9H2JxdwS6cGfL7ynQLbF5+ezl9HDxOdmkJp/wD61K5DaX/HDlRJZ+aBfbxmZ8sqBwG0rlCBLefP57ndy7n9G9m8Ja85EH5Lysxg9sED/HPmFGZdp3n5Cgxp2IjIoBt/c/hvxdXrt3JUbKDH3An6EecDtWpoZZZ6ZE0AmbUbGXcv1gv19X8WDXx6oIV97bH1ShpSZiITXoLMpVjzVQQ5TosIegkR8MgNsy05PoVB5R/FnGW78Zhm0GjWvTEf/f2G23NLKdk4fxs/vjSJSycdV5K8OvkZWvdpxj1lHrbbjVdRtFSsE8n5oxftRkbe/OMFbhvY1uaxKe/NYup7s9AdaKSMmvacW2XHOUgpmbBzG19s2oBF1zFqGhZdIgQ80aI1z7dpd8MrdwpKmslEm59/JDUry2bMWQAdKldhXdQZh/PMGzyUxmXLORyjKD5cvX4r0QVbyHjXxvl28eiywrsJIuwHECHZjxix/okE+PZBhH7q0fVKGkL4oIV9g4iYDwEPgV9/ROALiNLrbqiTAvDPzE1YTPYTfXWLzvalu4mPTnBrXikl3z33C+/0/8ypkwLww/O/MajcI8pJuYGcP2bfSRECfhs9w+7xvk/2JLRs6NUOytegGTRq3FKFjgNaF8iuafv28MmGdZh1HQmYdB0diUVKvt22mR+2u9LDrGTi7+XFN73usCtW5+/lxZW0VLvHwZqH8/sN6P6sKDzKUbkOKXWQLuoj+Pb2+PrCpxOizHpEyDhE4BOIoJcRpZajhX6BEMXfZ+NGILzqoQW9jBbyASJwZIlo/HjlfKxzaXsJsRdddHKzWf/nFuZ/63qZe1JsMmYHDpOiaAkI8bepa5KDlHDuyIXc/KLrCSkVzLh17+cmYIvssleApl0b8cny0Xh5u98vy2SxONUY+W7bFtJMJrfnLil0qFyFeqVsfxdkmM0cvnLFaS+gI7GOJBAUJZViS6b9+OOPGTVqFM899xzjxo0DICMjgxdffJEZM2aQmZlJz549+f777ylb9kYmLrkeGhWicG3f7c/rDX6ed4IUBSesbKhDafscQsuEOB1zLX9+tQjNoKkIyU3C9Z2K7XFq/1mq1K9k81j56mX5fvsnHN56nEObjqIZNJp2a0SVehWdzpuRlsmaGRvYvXo/uq5Tv20dug+7jT2JV4jPSHd4brrZxLqo0/SscWMT0gvKP2dOs/+y7ZtIV6qBBBDkXfIqmhTOKRZHZdu2bYwfP57GjRvnefz5559n0aJFzJo1i5CQEJ5++mn69+/Phg0bisMsmwghkPjivFQYMBSu5bvi5qHT4Hb8+MJvdqMZmkHjltvqUyrSvaqJI9uOKyflX8icL/+i06B2do8LIajXuhb1WrvuNBzbeZJRvcaQeCUpd+to9YwN/PL67/SePNylOZIzXaxovEEkZWay4MghjsfF4uflRa8atbilnPV79s9DB1wuUbaFBPrUcq0Q4WxiIguOHiI2LY1ygUHcVaceZR2o2yqKliJ3VFJSUhg6dCg//fQTH3zwQe7jiYmJ/Pzzz/z+++906WLN9fj111+pV68emzdvpk2bNkVtmgO8cMVR+bcrpP7XOb77FOePXsQvyI8mnRtw3xsDmPzOzPwDs5uitL2rJWnJ6W7pa2gGA2A7QVdx83J463HOHLQfVXGXpNhkXun+HmlJ1qjJtc5tRloms56fDs87F2qrEhrqEXuKgr+OHubVFUvJNJsxaBpSwvgd22hfqTLf9e7L5bRUl5yUa/VhcjAIQdnAQO50Iv5m0XXGrFvDpD27EELkzvXpxnU806oNz7Zqy/7LMRy+chlfo5EOlaoQ5nfjtZ3+7RS5o/LUU0/Rp08funXrlsdR2bFjByaTiW7duuU+VrduXSpXrsymTZvsOiqZmZlkXnNXkJSUVARWuxBNAWTan6AFg0+H/0z+yH+BYztP8uWjP3J816ncxwJDA7jvzQE88vFQpo2ZQ3ryNe8RCbpZ5/vnfuXnUb/T94kePDjmXpdyDVr2asKmBdvyddBV3Pyc2hflMUdlyS+rSE1Ms5kfI3WJ8VwK5TKNxPhabOZpaEJQOSSEFuUreMQeT7PpbBT/W2LtfyQBs37187D53Fme/HsBAV7OVcDLBQZisujEpqflSuObdZ2qoWH80rc//l6OP5MvLV/C/CNWpWcpZZ7X8qstm/hj/z4upV5tT+GlaQxtdAujOtyGl4PGh4rCUaSOyowZM9i5cyfbtm3Ld+zSpUt4e3sTep2HX7ZsWS5dumR3zo8++oh3333X06ZehxFwnnQmk16z/kMEQuCz4D/cbvmflCbIXA/6JatYms9tyrkpgZzaH8Xzt47GlJn375+SkMqElyYz7O1BzLw4kU0LtvHji5NJiE7IU2qamZbJ7C8XcuFkNG/PfslpOeg9L9zJ+rlbiuS5KG4s8TGJHptr/bytDpN4dYtOmVmnSBpRnUyLOU/kIUd19pNuPW9YefLJ+DjOJSUR4utLozJl81XnfLttM8JGJASs+Scbz0bh58QREMCIW5oxokkzlp04xs5LFzEKQftKVehYparDiiCAD9auznVS7HGtkwLWyqpJe3YRn5HO2J59HJ6rKDhFVvVz9uxZnnvuOaZNm4avr+cuyKNGjSIxMTH35+zZsx6bOxfhZsKVTLE2DEz9yfbh9EXImA7IhMeQSW8jE55BxrRDpv3uAWMVnuTXN6djyjTZzRuZNmY26cnpXD4bS/x1TkoOUko2zN3KnjUHnK7XoF0dXvzpCXdyuN3Gx8+bbg/YF7pSFA2TRv9BTNRlj8yVmeY8t8T7bApzBt9Hp6rVct9OAmhXqTKzBt5Ly0jnybqeZn9MNANm/k63Kb8yYv4c+v0xjU6/TWTR0as6VUmZGWw6d9ZhxY6GIN3iuNotws+fexs2xttg4I7adRl9a2de79iJ26pWc+qkLDtxjF9273TvyWUjgflHDnPQTqKvovAUWURlx44dxMTE0KzZ1cZdFouFtWvX8u2337J06VKysrJISEjIE1WJjo6mXDn7gjw+Pj74FGEvCiktIBMKdm7K1+A/BKFdFa6RGUuRic/bGoxMegcQCP97C7SewrMkxSWz+a8dDiXOdV2yevoGFv20wuEdrmbUWPLLKpp0buh03V4PdeHgpqMs+WWlM4XwXIQmrHa6MD4zPQtNuzmFvm5m0lMzmP3lQp4cZ7uJqJSSI9uOs/XvXZiyO2S3vbO5zWaDdVrU4MyBs3a3CDWDRs2m1agTUYqf7uxHXHoal9PSCPfzu2GqtAcvxzBo9gyyrnMwziUn8cyShaSZTQys35B0k/McLd2FN3pkUBBBBbw2/Lxrh9MGJo4wCI0/Dx2kfukyBZxB4Ygic1S6du3Kvn378jz24IMPUrduXV599VUqVaqEl5cXK1euZMAAa7+cI0eOEBUVRdu2tlUdiwOpJxTibBNkLAV/a/t1KXVk8ic46uEjkz+3Cpu5G8UpAqQ5Cpn2K6QvBJkKhsoI//vAf3CJsM+TnD9+kbOHL+AX6Ev9drXx8vYiISbJaR8Wg0Ej9kIcsRccy9frZp3oM67fTd/xeHcW/7zS5fED/ncHpSqE0/L2Jsz8bAFLf13tcPyaPzY6byWl8Ci6WWf55H9sOirxMYm8O+BzDmw4jMGogRBYTBbCy4UyevZLNGhXJ8/4O5/oyeKfV9lfy6Jz19O35/4e7udPuJ9/4eyXkjOJCZgsFiqHhOBrdE/fZcy6NWRZbOfMALy/djV31KpDuJ8fQd7eJGdlFcreNHPBNGKklOy8eKFQHw2J5Ep6aiFmKDxSSnZcvMC5pERCff1oV6ky3v+SvJkic1SCgoJo2DDv3WRAQAARERG5jz/88MO88MILhIeHExwczDPPPEPbtm1vbMWPTHE+xi4a6NcICpn2gsW28NPV9ZIhcx34dnM8roiRWXuQ8cNAZgHZd0CWU8jkMZDxN4T/iigBnYsLy9kj5/nqiZ/ybMsERwQx9M0BdB3a0Vqe7kg0yqITXj6MkFLBxETZF4/SDBph5UJdtqt28xq079eSDXPz53Plku1oPPrJ/Qx6+a7ch5t3v8Wpo5KVYaJW8+qc2H1alUO7iBACzaBhMRdcYC81MTVf916L2cKonu9z6sDZ7N+v/j0SYhJ5tcf7/LjrMyrWuip/UKtZdUa8N4TfRs/Io7sjNIHUJXc91YtWtzctsJ3XIqVk5oF9fLd9C+eyixUCvLwY0rAx/2vdjgBv50mt55OT2HTO8bZ8SlYW/f6YRrWwMFpGVmT16ZOFiGgIaoWXKuDZuNTw0OH5QLnAoAKfX1g2no3izdXLOZ2QkPtYqK8vL7Rpz/2Nm9wwuzzFDe2ePHbsWDRNY8CAAXkE324osjBf4hbQrhGr011sGqfHFmLNwiOlGZnwVHbX6Guff/YH17QbmfItIujlG2GeTaS0gGmn9TU2RIKxodNEwYunonmu3RukJuUVxkqKTeaH538jOS6F1n2asXXxLrsXc6lLmnRpSFpSOlM/mG13nG7R6TGsk1vPqWmXxg4dFSEEL/3yBD2Gd87zuL3+Q9fT9b6ORB08hynLrJwVF5BSOndSnESpSlWMyPe+3LxwByf22O5Jo+sSc5aJP8cu5NnvH81zbOibA6jWuDKzPl/A/vWHAajZpCr9/3dHrpPtCb7YtIHvt2/JkzaVajLx6+6dbLtwnhkDBjmNrlxMTnZ4PIejcbEcj49Dl7JQaVoWKbmvUWPnA20ghKBNhYpsOne2wBotFim5p14Dl8YmZWbw97Gj7IuOJszPj+aRkdxauSoGrWApo9sunGPE/Dn5IlcJGRmMXrMSk67zYJNmds6+OShWR2XNmjV5fvf19eW7777ju+++K04zHGO5WIiTfcG3x9VfDS42v7rRwnGZq0F3lAimQ9p0ZOBzVtXcIsJaGbUSmbkGpAnh1RD8+iG00Lzj0hdat9T0a7rQGqpD8LsIH/t9Uia/M5O05HQHibJz+HDxG2xbssu+kQLG3DuOT5a9xd8/ryT+Uny+vAHNoNGgfR1a3t4EXdfZsXwvJ/ecwdvXi9Z9mhFZ4+r7wmwys3LaOv76YSlHd5y0vy5WJ8mUmd8pqdW8usPzcuzu0L81DTvWY9xj4/OUXisKgYPrmtAEdzzWI9/ja2ZudKhGbDHrrPx9fT5HBaBd35a069sSi9mClNJmPkthOBp7he+3W6vQrn9qupTsi77E1L17eKRZC4fzhLuhLZJzgXXmIvgYDGTaSagdVL8h7SpWdnnN63mkWUvWn42ye9wABPv6kpSZadOZeaDRLdQMj3C4RnJmJm+vWcn8I4fyPdfIwCDG33EXDcq4r8r+4bp/0K8rpb6WzzeuY2D9hgS6EAkrqaheP9djSSjwqSLoZYR2jXqhsR4Ya2P/ZRaglQJv+wqWxYE07cOpzypTwGL/g1xoG8xRyCs9kQnPQvp8yFiETP4YGdMRmXG1vbtMn4dMfCGvkwLWbar4Ecgs243X0lMzWDNjg0O9EiEEC75b6ljTRMLZw+fZvXo/49a9T722eXMJhCboNLgdYxaO4tiOkwyr8TSv3z6GX974nR9e+I3htZ7hvUFfkJ6STlZGFq/3/pDPH/qeI9tPOEzOBWuC7oFN+bt6V21QiYYd6tpsdJdzXpNODVk4fjlfP/kTQhN0u/9W2vdr5XA9RcHRDBqV61bgrqd75TuWmpDqNKKVkepYy8lgNHjcSQH448A+DA4iMxKYsne303mqh4XTsHQZjxazZVosPNikGWWuSQ6ODAri7ds682HXHi5HlDLN5nzbu7dWqcpr7a2Vcdc+fwH4G72Yfs8Q5g+5n7YV8+riBHp783ybdrzdqavDNdNNJu6d8wfzbDgpABdSkrl3zh+cT3ZPF+x0Qjx7oi85rJhKN5tZfuK4W/OWNG7o1k+JRBZgP1orZe3y63/P1WmkDjIdgt6E+IeyH732y8n6YRDBbyPEjf0zCOGFdGl3uGg8cikzkXHDrnE+rv0bZCETnoOI2WCshUwaY28WQCKTPkSUmpfvaLILzfyEJtix3Hl3VaEJVk1fT/cHbmPsP+9xan8UR7Yex2A00KRLQ0pXjODskfO83PVdsjKsCYLXXpg2zN1KakIqtZpVZ/fq/VfNd7YuYLCTHPfKpKf5X4e3SIhJzLOWZtAIDg9i3/pD7F17MPfY8V2nnDpGCtfIaSyY89oavY10va8Dj30xnIDg/AmtFWtHsnPFXvsOsYDy1W5M9cjphHin2x/nkhLz5d3Y4pX2tzJi/hyQrn27uIIAetaohaYJularTrtKVZyWHoM1mvHr7p1M27eby2lpeGkat1apRtdq1WlSrjx1IkoxsnlL2leqzJS9u9kdfRFvg5Hu1WswpEFjSgdYnaPJ/QYSlZjA0dgr+BiNtIys4FKS8fT9ezl0xXFyfZrJxKTdO3m9YydXXgoALqc5T+A1CEFMWmFyL288ylG5HuFm51K/exHBb+U6G9ISi0z9CdJnZifm+oB3B7CcBcuJq+cZqiCCRiF8O9uetzjxvhX4xsEAAYaK1p+iIGMJ6BfsHMwOC6f+jPC9HaQjES0dzAeRpmMIr7w9VALDAtE0YVP3JHcli06WC52JpS5Jjr36wa/WsDLVGuYNO//x6fxsPZb86+kWnZ0r9rHnn4NuOQsWs06zbo1JvJLEvG8Ws+SXVSRcTiK8bCi3P9KVz1e9zbJJ/7D011UkXk4ipEwwlepUYN/ag/nyBP9rTkpO0mlRIHWJRPLSL09SoWY5KtevSHC4/cTK3o92Y+7Xf9s9LoSg75P5IzHFQZCPj9N+OgHe3i5FLzpUrsL4Pnfx+qrlXE5L9UjR2a+7d2bL60sm7dlF3zp1+aRrT3yM9i9lSZkZDJo1IzcXBqxCbStPnWDlKet3ct1SpRl9a2faVKzEM63aMmnPThYePcJPO7Yx6+B+aoVH0Lx8Be6oXYfKIaFUDgl1y+7f9+91+tx1YN7hQ245KmX8nfcfskhJ2YCbu0+RclSux6ume+PTZyC921mrdvTLyNhBoF/malQgE7LWgfCDkK8Qmp91u8fY4IapRObDqzF4NbVWKWHrQi0RASMRomh2CmXmKqzbY/bC4RbIWA5ezXCWvXj5ghd/fz2XjQsvYco0U7d1Tfo+2Yv6bWrT7u5WbJy/zX4CrIsXMqEJKtaxn1ckpWTV9PVOZfEtLjhFOWgGjfDyYdRuUZ1HG71AQkxirvMRc/YKk9+dybJJaxi3/n0e/vA+lvyyiq+f+om9/xx0eY1/M1KXRVqeLYQgPTmDhh0c95IB61bdfa/35/cP/8xnk6Zp1Gldkzse7140hjrhjlp1WHDksN3jBiHo66RfzrV0rV6DDVWrsS7qNGcSEvhy0wZSTAUvQ75eXv+vI4fZEBWFQROE+frRv159BjdoRLDPVZHRzzau58Q1Tootjl65zANzZzH6ti58umEdGWZTrrOWYjJxLimJ1adP8cWm9Qyo14APunR3q/T3gotbOu6+NlVCQ2larrzD7R9/oxfdq7t5XSthqByV67Gcd/MECYnPIC93QsY/dZ2TkjupdRso5Rvwvg3h5bxCpTgRQiBCvwNjjexHct4W2R/EgEfBb1DRGaBnYN9JycGE1CJwdKXZtzmAR26tw4zPtnN6/1nOH7vImhkbeK7dG0z7YA7D3hmEl7fRtviZwGX1VqlLej9iv5zclGnClFEwTQebCAgpFcRHi9/g1e7vEx+daDNCEn3mMmMfG8/GBdv44pEfbCbe/qcpwiCSRFr1UFxkxPtDeHHiE3kSq/2D/bnnhTv4dPlovH1vTOJj56rVaVi6jM08FU0IfAxGHm7a3K05jZpG56rVGdGkGY82b4Gwk7mS86jmRmaLBGLT04hJTeVI7BU+Xr+W3r9P5nx2WXVqVhazDx5wup2lY03qfe+fVaSZsuyOl8CcQwd4a/UKl20ECPFxTZ3d3UgNwBsdO2EQwu7F/JX2HV0qKS/JqIjK9WRtKNh5enT+BM88WMByHJm1HeHTsmBrFCHCUAoi5kLmKmTG36AngbEawm8Qwqtuka0rzWfAEI7jiIoAYy2Eb2dkUqBNrZuURI23hlUjM0PLE+LPiWr8NnoGNZtW5fPV7/DpiG85e/jqVpOXrxcDnuvDiA+GEH8pgZ0r9zncJuj5YGcadbR/V5mZXjjhqmup1awaPYZ3puOA1iz+eaVDETndorP5rx2cPeyus60oNBKadb9aHqvr2YJ/EspULoXBmPfuWwhBr4e60PPBzlw6FYMpy0y5qqVvmIOSg0HT+O3uATz1919sOX8Og7Dm35h1nVL+/vzQuy/VQgveNX5ks5ZsO3+O9Wej8gSTcvoR+RgMhRJ+k0B0SgpPLf6LeYOHciYxgUyLaw67BJfKkyUw6+B+nmnVhorBIbmPH4m9wu/79rA/Jho/oxc9atSkX936BPn40L9efcbv2OYwqgNwf6NbXLL1WpqVj2RKv4G8uWo5x+OvSmJE+PnzUtv2DG5YsLLtkoSQzqQ4SzhJSUmEhISQmJhIcHCw8xOcoCd/B6lfecAyB3h3tG6lOCil/bcjM/9BJn8JZsdNwHIQwR8g/Ach02Ygk0bnOz7tyzJM/rwc9prmaAaNxrfW57OVbyOl5MDGI0QdOo9foC8tezUhMNSaLHf++EWebfsGKQkpNvNL7nqqF09+9SCaA82DVdPX89HQwr2HDEaNms2qc+fjPZgzdiGn9hVdxZWicAghaHNHc96b/yq6rjP/2yXM+mIBl89a9ZHCyoXS/7k+DHzxznwOy40gy2LhaOwVLFJSKzzCbkfhfTHRrDl9EpNFp2GZMnSpViO3I3FhMFkszDq4nyl7d3MyPg4/Ly961qjF8hPHSc6yXf5bEOYOHkqglxfdp/7mkfmu53+t2/Jsa2vF5vgdW/lkw7rc/J6cb6EIf3+m9htIqK8vvX+fTHx6ut3AXvNykUztP5CoxETOJiUS6utLk3LlXUoWBuuW896YaM4lJhLq50uryIolvqOzq9dv5ahch548FVLf84BljjAAOiL4Q4T/gCJeq3iReopVi0b4gaGCzS0umb7IWmJs/c3BbNn3XD7dEaFfI4T1QyfTZiCTvwCZSMIVI9+MqsD6RSE46+ynGTSWZM1wuu0WfeYyU96dycrf12POMiMENOnSkEc/eYBazZxrlvz90wrGPjbe6Thb5CR9RtYsR6OO9ayKs0r6vkQTERnOxP1fEhDiz9jHxrN4Yv5WCEJA+36teWvmCw6d3KLEouv8uGMrP+/aQUKGtfzZz+jFkIaN6FK1Oifi4/A1GrmtSjXKBhZd8mVsWhoLjh7mYnIS4X7+3FmnLitPnuDdf1Z57G2uCcGr7TpSt1Rpnl2ykMRM500d3aVdxcpM7T+QlSdP8OjCeTbHGISgtH8Aq4c/zLmkRJ5evJAjsVfyjbm/cRN616zNmHVr2BtzNTIfGRjEK+07upUXdDOhHJUCoieNhbQfPGCZK2gQ/jua982tGggg9Thk8lhInwtkh26NtRGBzyKuEcGTMgMZ0z57+8bJW89QBeE/3Nro8boSbimzSIlexdMd/+DS6VSb0Y/r0TTBEtMfLucHZaRlknQlicCwQPyDXBew2r/+EM/fmj/q44yKtctTulIputzbgdAywbzV9xO351AUP69OeppuD9zGzpX7eLW745uc0bNepOOA4m8RIqXkxWWLmXfEeQRTE4IB9RrwXqeuDqtpCsL4HVv5YtMGdF1i0KzRByklkUFBXEhO9qg/HurjS0JmRpH5+dVDw1gx7CEGzZrBzksXHG7rjO3Zm7vq1Mvtx7P70kUSMzJoUr487StV5lhcHINmTcek6zbn+ahrDwY3aFQEz+LG4ur1W+WoXI+hQjEupkPcEHSvFojgNxBerkkwexIp0639fURwgRN8pR5vrXaynCdPIrH5GDLhaQh+x9rcECBjhbW/kTNKrUIz2i+HFsKbBT+nculUqhvVOhrpKRkuOx2+/j5YQvw5su04UkLt5tVzt4gc0aB9XcLLhxJ3McGldTSDRqU6kfy070trPoDJzPMdRxdpSa3CNeq3rcORbcdsV3AJCAj259aB1iaqi8Yvw2DUHHY4XvDD0hviqGw6d9YlJwWsSaVzDh0gISOdH/vc5bHE/+n79/LJhnVX17nmvX3eRcl9d0jItEaNiuoTFOjtQ7rZxPaLjnPCDEKwPuoMd9WphxCCFpEVaBGZ9zozZu0au04KwAdr19C3dl387GzTFZQraWlM2buLPw8dJDEzg0rBIdzX6BbuqdfA405qYSg5lpQU9LRCTuADZGLd3nGx/NS0Exk7BCJmFJuzIjM3IVPHQ9ZG6wNaWfC/HwJGuN0pWab8kN9JsR6x/jfpA/DthdDCrXoyLrw2Qo8FHOu2/P3TCpedFLA2g1s5bR13Pp5f1hwgNSmNlVPXcWznSYQQxF2KZ+eKfZgyrRU8Xr5e3P5QFx799AF8/e2/RkIIWvVuxhIH3W5z0AwaXt5GXv71KYQQbJi3lXGPTyAhxpFejKI48Av05eVfn+B/HUeTHJ+Cfo0DIjQBEp6f8HhuAuyZg+cclqTrFp2oQ06alBYRM/bvdaqPci26lCw/eYI90ZdoUq7wLT7Mus64zQUsVCgCNCGcJrY6QgA+RgNdJv3sdKzEuu0mpeRKWhpmXadMQEBub59zSYlsveD4fZFqymL5yeMe3QI6GR/H4Nl/EJ+RnvtaHL5ymbdWr2DOoQNMufueElMtpByV67E47vjpnCwIegMsMZA2Edf8eR0wIZPeR0TMKOT6jpHSgkz6CNInX2dCNDLlS2sn5/BfXO7pI2UWpM/CseNhgfR5EPAQaME4L0Ume5xjYi/Gu2RjDkIIti3ZZdNR2bxwB2PuHUtGWiaaZrsPiynDxMIfl3H6wFk+WfaWQwnzSrUjXYqINO3aiMc+H0a1hpXZvmwP7w743EWVYEVR06RLQyrWrsB3Wz/mqycmsH3Znty/Z52WNRnx3mCad79apREQ4u80n8iWUm1xcCYxwe0kVYPQmHf4oEccld2XLnI5rbA3gZ7BIDRK+fkRk5Za4E+aBLZdcK26zqriCz2n/pZblVPa359htzRjZLMWXExxHk0yCOHSOFeRUvLU33+RcI2TAlffunujL/HZxnW846Q1QHGhdFSuR3rAd0v5EhH4JPh0JVeLxCm6NbJitt1V1RNIPcW6RXO9k3J1BJi2QZq94zbQ40E6k3E2XH1ePj1wnPQqwFgHDFWdLh0S4V5bdWs33PwOyPHdp3in/2dkpmWCxGEfFl2X7P3nIGtnb3a4Vru7Wzl1UiJrlOWjxW9QrWFlpJRMfHVKtqHOn4vCPQqye7Ft8S6+HPkjHz3wNduW7EbqV2XjzVlmylfP20Cu85AOdjVCwJoj1fneDu4b4gFCfX1drh7JQSKJS093PtAFUgtRcuxpJLLAToqjPki2EFhLvucePsSJa0qHL6el8eWm9Ty2cD6hPs63oi1SEuHnOSd3x8ULHMmu/LKFLiUzD+4npYT83ZSjcj1Z6ws5gbSKu2UsRASMtP7uTmsuiz0p+cIjE0eBeb+zUcjUKfmadtlFBOD8+UnIbtYoDKXBf7i9yaz/DXzBpX3xng92ttuIzxaaJqjXula+x2d9vgCQ+UTU7M5j0Pj7J8eCTxVrlad9v5bWLQI7DH93cO7zPHf0Aif2nHH9dXcToQkMRo1SFR13eP23UpCX1WyysHjiSg6sv6rUmvP3ObXvDM/fOpqk2Kt3ud2H30Z4uVCb713NoBEYFsgdj90Yxdm769R3e6tDYG365wmqFkJ75Xr8DIW7mSxMxk2t8AjqRES45fTlKOle/+pLYM2ZU+y6dIGGpcs4vBj7GAz0qJH/u6ug7Lp0welzyDCbOXZdhdKNQjkq1yPjnI9xihFpPo7wboII+RK3dti0UA+snx9pPguZy3Dpdl2/aHW2XEBogdZeRg7fShaEb++r5wS9Av4PZp8jyH19RAAi5AuX+x/1e7Y3oaWDXVMEFdaLxe2P5A9lrv9zi1O5+2vRLTqXTsXYP67rTPtgDjuW7c0XVRHZdjz2+TC63Ncx9/HEK55PJryW2s1r8MTYB/HyVru9nsBi1omPTmDh+OW5j22Yu5WUhFSbzmapiuF8vvodwsqGFnjNs0fOs+mv7exZcwBTlnvKx71r1aZ2eIRbEQGLlAys39BdM21SJTSUthUrFbqb8vZHnmDp/SMIKERSqUVKGpct53aECcDfy5uLySkuO33ORmkIpu7bw2sdbgNhPx73bOu2BPu4lztojzSTiaOxsS7dFN2oUvrrUd9a+fAHYgs5h7TqiADCrzf4tEGmzYCUr3GovmqoCsYiUoHN2oDrewrCreaMIvBpZJyjRDlf0K7eUQlhQASPQgY8AhlLrY0GDZXBtztCuCY1DRBWNpRx6z/g4we+5uCmo3bHGYwaUsJrU58jorzVjqM7TvD3hBWcOXSOLDfl7oUQhJUNsXt84qtTmfXFXzZOBIOXkU+Wv0XjjvXzHCpTqQgiHQLenvMSVetX4uj2E3z8wDcOIzwK95C6ZPnkNdz3en/Wz93CZw9+Z3uggA79WuVrXOkqZw6eZdzjE9h/TWQnpFQQ948eyF1P9XIp+uhjNDK1/yCeWWxVnM25SDu64D7YpBk1wj33vuxRoyabzhU8B7BsQCDh/v6EA8sfeJAR8+ZwNM797+onWrSiabnyjFw43+1zj8Vdwd/Li6Qsz+iy6EhOxMXRrlJlfrrzbl5fuZzo1KvK2/5eXjzXui2PNG1R6LWklEzYuY1vtm4mzeT8Oy/Ux5e6EaUKva4nUI7K9RjCPJBQa0H49sz9TWjhiMAnkWjWhFU7iKCXi7AHkAXXlMM08LkN4Y6j4t0U6dsfMmbbGWFCxj8JEXPzPD9hKA0B97u8ji3KVy/LVxvGcHLvGY5sO47Ry4jZZGbltHW5v7ft24L+z/WhZtNqSCn56ZUpzPriL4elpI6QSHqMsB31iT5zmdlfLrR3IrpFZ8H3S/M7KpVL07RLQ/b8c9BhjoyrCAG3DWpHh7tbEx+dwGcPfoeUEumC3ozCdZJiU5BS8ssb0xHCzhaThPnfLmHIa/0JK2PfwbXFuWMXea79m6SnZOR5PPFKMt89+wupCWkMfdM10chS/v5MHzCYg5dj2HD2DBZdUi00jHmHD7L81IlcpyXM15fHmrfi0WaFvzhey5+HDhZY00QTgvsbX01cLhcYxJL7R7Dr4gV+37+XC8lJHIuNJS49zWGq/pMtWvFi2w4IIXimVRu+2eo41+x6krOy6FmjFnMPH/SYgq5BWKMcnatWZ/2Dj7LxbFS2Mq0fnapWs6scbA8pJVvPn2N99t+4abnydK5WnR+2b2Hs5o0uzSGAB5s2KzElyiXDipKEsRpY9hZiAg282oIeh0ydCPiAT2eEsSIEPGb9oKZ8h7WEObu/jQhBBL+N8LXf6K7QeDXC1a8Ia26N60hphqx/HIywgPkgmHaAt2e//HKo3rgK1RtXyf399odtZ6svnrgyN9pRECfFYNSIrFHObgPDldPWWat97DgEukVn/ZzNpKek4xeYN4nu8S9H8Gy7N8hKzypUrorQBJE1yvHU1w8BsPjnVVg84Pwo8lO+ehmiDp1z2l9Jt0g2zN3qdo7Kb6NnkJGaYdd5nfLeTHo/2tWtLaX6pctQv3SZ3N971qxFdEoKx+Ji8TEauKVsebc6A7tCfHo6+2Ic9UKzjyYE3gYDE3ZsY9q+PfStXZdhtzQlMiiYpuUjaVo+EoCoxAT6zphKkh0VWk0I5hw6yDOt2uJjNPJ8m/Z0rFyV99eudsu2CD8/vA0GMi2WQpU455BiMtFswnfcXaceL7btQMcqVQs818XkZEYunMeByzEYhQbCmiMT6O3tUmJsjiPZpVp1nmxRclq8lIwNqJKEW9/nRq7mWGR/sI31wXISGf8wMvlzZPIHyCtd0RNeAjIQgY8jymxChHyKCHoFEfoNoswGhN8dnn4meRBejcHYAMdVSJo1R8Tbve6oWKKyu0Y7wgBZm9yb18NIKZnxybxCzXFLpwZ8seZd/AJsb1HFXYx3ur1iMeskxeZvrFi9cRXGrX+fmk2rFti+iMgwHhg9kG+3fERoaevd+4k9pws8n8IxfUZ2JyXBedmtZhCkJDirjstLalIa6+dsdqzNoktWTltn97irlA0MpEPlKrSMrOhxJwWs/YUKgsC6PZVhNpOclcWllBR+3rWDXtMmsTf6Up6xlUNCqR0eYTfPQ5eS6NQUFh+/uk3cIrIC8wYPZagbzQDH79yOLiU+2a+TJ/ofZVkszDy4nx5Tf+VsYiKZZjOxaWkuv25SSraeO0vv3ydx8LI1f84s9dxEXlerdyRWh27lqZO8sWp57vk3GhVRuR7hTr6CBQyVsnNLaoFXQ0gcRa6E/LVeT8ZCpEyB0B+sCah+dzuc2Vp779ltIBE6Fhl3H+hx5PPItNIQPh1hLMg+uitvZoGUeqGT6QpDTNQVLp4s2F3d7Q93pfvw22jUwbHgUnj5MKdlyQajRnCE7V4qNZtU4/vtn/JUq9c4vuuUW9tAz/0w0uYdu5eP+pgXBVUaVKTbA7eSFJuCEMJhFMxi1omsUdbucVskxCQ6jfoZDBpXzhU2p67oKeXvT7ifn1vlzqX8/bliQ3vFIiVpJhMjF85j3YhHcxvvmXWdHRcvOIwbG4Rg7ZnT3F336tarEIL3OnWla9XqjFw036WLc2a2A3FblapEJSZwKiHB5efliMTMTLpO/hkdsp0hI/3r1eeplq2JDLKtLZWYkcETixaw+XxhUxas5ESJZh3cj7+XF6Nv6+KReQuDiqhcj+5O1Y8EyznIWmtVXc1cA5iwfeHWIXMVmOxvK0nTIfSEl9Ev3YKMrod+pY+1AZ90rU25M4SxKiJiAQQ8BloZwBsMlRFBryJKLUMrkJMCUoTi/K1kdj9S42Es5oLd1QEs/nklL9w6mhduG82eNQfsjut2f0eHjorBqNHxnjb5tn2u5+3ZLxIRGeZW8qvRy/adcGT1skqK312cvOzBpYL4auOHeHl7EVE+jNZ9mtkvlRcQFB5I277ubXsGRwQ5vVnRdUnoNXkvmWYzC44c4q3VKxi9egV/HzuCqYDRDE9i0DQeaNzErUqbOAcCcbqUxKSmsuLUidzHjly57HRzW2KNNACkm0ycSUggNi0NIQSdqlXnoy7ubc39c+a0x5yUHMxS5joLmRYzf+zfS9/pUzmdkF/gUkrJI3/NZZsTZduCIIGp+/bYdBaLG3WrdT3m026ekF0jn/IZ1pfT0ZeCAZnxF8I7f5hRZqxGJjxFtuByti3HkUlvQ8YqCPvOrQRXewhDKUTQ8xD0fKHnyiX5E1xpMIh3u3wPS2mBzH+QmatAZiK86oJff8Q1VUJOl49P4cyBsxi9jdRoUhUvb9uvU5nKpQiOCMqjfeEuBzYc5uVu7zJ61ot06Jd/D7dM5dIMfKkvMz/LX1GgGTS8/bwZ9vYgp+uUqVyaH3d9xsIfl/P3xBVEn3aytZbd4RngyoU4Fo1fztrZm8lIzSjU8/3PIqFt3xbsXL6XzPT8YXNNE3ww6EtuG9iWctXLYDGbbUa/chzNFyc+Yfd9aY+gsEBa39GMrX/vshtZk7qky31WEbl9MdE8vOBPrqSl5W5HTN23h3KBgfzStz91S5V2a31P83jzVmw8G8X2C+dd1ut2hEEIdl68wO01a7Pw6GH+t/Rvp3NKKakZFs4bq5bz56GDZFqsN4GtIivyXOu2VAh2L9m5ONCBhIx03ly1nKn98353bD1/jh0Xi057y6zrrDp1gkE3uCGi6p58HfqlhlzdunGH7MRYZ2N870AL/TzPo1JPRsZ0ADKwfcEX1qhHwEMFsKtokXpctu1Ooj4h36D59czzkLRcQsY9BJbjWJ08ifU19EKEfILw6+NwypSEVCa8PJnlU9ZizrKuHxQeyMAX+zL41btsagBMfmcmUz+YXbgIQ3Yzuj8uTMDHL7+2gZSSGR/PY8Ync0lLuhrqrtOyJi9OfJxqjarkO8cZP70yhVlf/mXTbs2g0b5fK0bPfJHDW4/xao/3yUjN9Ej10H+Z8tXLct/r/fjikR+djtUMwmYH77qtavLgmPto1rVgX/Qn9pzm2bZvYM4yo9vYkhjw/B08/sVwYlJT6DHlN1JMWfkSPA1CEOLjy/IHHiTMz/Uu4EVBptnM1H17+HTDWkweyH/oU6sOz7ZuQ+9pk51W4QjA22Ak3M+PmNSUPONzIj3tK1Vh09mo3KhLSWP1sIepEhqa+/s7a1by+769RWavJgRvduzEiCbNimR+V6/fausnHwX9g+s4fzkFGGw02kufj30nBaxqsZOLTLW0UJgO4dRJAcR1QnpSmpFxD4LlVPYjZqyRJAmYkIkvIrN2WseaTyPTZiHTZudK8aenZvBS57dZ+tuaXCcFIDkuhV/e+J2xj423aceQUf1omh15uHZbRTNo+AX58tasF3j/r9cci8hJSE1MY/2fW20/VyG4d1Q/fjn0Fd0euJWQUkEYvY3ERyewYd42kuLyRzh0XWfXqn0s+WUVf3w6jy8e+YG3+33K109N5Mi244z4YAjt+rYEyLUtZ6uhbquavPjT42SmZ/JGn4/ISFFOiie4eDLaJScFsOmkANz7ev8COykANW6pymcrRxNZM29+i7evF0PfHMDIzx4AYNq+PTadFLDmdMRnZDDroDNV6qLHx2jk4abNaVexYNvM17Po2BHunD7VafVNjpR9y8gK+ZwUsG4lSSnZeDYKvQT3sDh+nW5MqslUpL3BdCmpER5eZPO7itr6yYcfUMBQuVYa9CvY3/7REX79c3+TUoJpOzJtivO59Qsgk0EUPmrkWVx9C12XP5G5GiwnbA+15p4jU75FokHW2rxHvW/jr5+7cnJflN3IyJKfV9H7kW75JPO9fbwYs+h1lv22hgU/LOX8sYv4BfrR5d723P1sb8pVLcPJvWecJzF6GTh7xH5JauzFeJ7v+BbRp2NyOzzHRF1hyrszWfLLKsZt+IBSkdYvgG1LdjHuiQnEnMkvV60ZNP76YSmV61WgQbs6dB92G8nxKSTEJBFeLpTuw26j7Z0tQMCMj+aqbZ4ShGbQmPv137kOpiN0XWfXyn1s/msHWRlZVL+lKt3u70hASAD129bhl0NfcWDDYc4euYB/kB8tejXJ0+Bw0dEjDi/WEsmiY0cY2dy5LUXNvMMHPZb4Ca5VFBmFxox7hnDvnD/sRl4kYLnBCf/O8L2uEWr1sLACuykaEOjtQ6opy+ZroglBucBA2ldyPwLsaZSjko8ACuaoCPAbBBlzwXIRm85KwBO5VTVST7PmpGRtwDUhNtxSiy02vBqB8AfpKOFK5MtPkZkrsTov9r5kLNl9l2wkiGatZ9GPcUjdftTDYNRY8vNKm719jF5Gej/ajd6P2tat8Qtyro4rdYl/kP0w+pcjfyQm6nKuk5KDrksun4/l84e+5+Mlb7Jr1T7evPNjuw5XTmQk6tB5og6dRzNo6LrOkFfu5qEP70O36Mz+ciGzvlhA4uUkp3Yrig/donNk63Gn4+IuxfNGn484vusUBqMh99yfXp3Ca1OepUO/1gghaNihHg3tVJ2lmZ1XK5aExoArT53ghWWLnY4zZFdReSouaJI65xITnDo1BiHc0kbxMxo9pqfijCBvb1qUr0BKVhbzDh9k6/lzZJjNTiPtBiGwSJmbnKBlP8eGZcoypkt3hs+fQ2JGRh5nxSAEBk3jyx69C9RqwNMoRyUfBWnCJEAEIwIeAP97kckfQcZicrdEtLKIwCfA797cM2TiqGt0RVx4kxvqAq7LyxcXQvNH+j8AqROw/Tw08OluFby7Fuloq+tabH2xWIhxkuRuMetEHT7Pb2/NYMmvq0m8kkRE+TB6P9qNu57qSUBIgN1zy1UtQ41bqjiM2Oi6Tof+tgWRLp2OYevfO+0+Pd2ss2PZHs4fv8j4l6xbeq5u6+U4LjM+mUdgeCBHth5j3ZwtLp2rKH4MdiqxcrBYLIzqNYYzB60Rhmsr0zLTsnh3wOcEhQdSuW4F+ozsTud722P0yv+1XTeiNJdTU+1GCwxCUO8akbcbgZSSzze61vTVIiUGIRDScxsbX2xy1Obj6rpVQ0M57UIljwC6VqvO8pMnMOu6x5Rq7fFEi9bsvxzNwwvmkpSZaXUgrnl9rr/dFVgjLjMHDOFkYjx/HNjHmYQEwv38ubtuPbpWq4FR05g/5H6+3rKReYcPYdKtEaXOVavzXOu2NCjjXkl9UaGSaa9Dv1Tb/ZNEMCJ8MsLram2+1OOsFUTCF4x1EOLqF5aetRfi7nF/HZ9uiNBxCOHt/rlFiJQmZMJLkLmYq1GS7P8bKls1ZqSO8G4EfgMRhrLIlB+QKV9R0JygwY3rk3DFfoRJM2gYvQyYTZY8+Ro5qq1j173vUM5844JtvH33pzaPCU3QdWhHXp30jM3ja2dv4v1B9lsl5DDys2FMeHmy03E3hIJqnStyMRg1Og1pz2uTn7U7ZvPCHbzV92Onc+XI89/SqQFjFo3Kl8S96tRJHvlrrsM5pvcfROuKlVwzvgg4nRBPl8m/uDw+wMsLibWMGDzzdgzz9SM+w3UtF2e0r1SZ1zvcxjdbN7Ps5HF0KfHSNI8kCl/LwPoNeb51O7pN/ZUMszlfBOf6j6tR0+hdszbvd+5GkIvNDNNNJuLS0wn28XH5nMKikmmLC60slF6bx0mB7P4+3s0QXvXzOCnScgniC1i9k7kSmTSmMNYWCUJ4WR2osCngewd4NQev1tZ8GkuUVT8ma7U15+RyZ2T6QvAbSGEarne7Jx7NYP+rS7foZGWZ8iWVSl1y8VQ0Xz/5k8P52/VtyYs/P4m3nzcIq0ZJTvJq6YoRbFm0k/4RI3in/2fs+SevrkpO+N4Z6Sme+8L0OP9hJyUwzH60zR10XdL/OceVaxvmbXWp+3fOdWnv2oP88vr03McTMtKZuHM7E3ZsI9zX/lZkrxq1aBlZwTXDi4jEjAzng64h1WTi+9vvZPRtneldq45Hckc86aQAbDgbxY6LF/i+T1/2Pv4Mmx9+jFsrV3X5/CohIbSrVJkKQcGU8vfPt80S4uPDS23ac3/jJkzfv9emkwL5P666rrPg6GEm793lsi1+Xl5UCA4uNifFHVRE5Tr0S62ABBdHGxHhvyG8W7k+f9xwyNpMwa8ERkSZ9VaBuRKK1NOQV7qBHo/trRsNwiZB/EjA0ReH/dv6Kxe9GdmlHqmJBbNRaILfo37MTWi1R2piKqumb+DC8UucO3qBzYt2YDBcbWaY09jw0U/uZ9DLdwGQFJfM4MiReaqRrsfoZWDsuvd5ps3rBXsCiiIlMCyAlHj3JO+vRTMIXp38LF3u7eBw3Jj7xrF25sZ8uUyO8PH3YdalnzielsQDc2eRnJmZ+ynRbORYCAQSa3O6CXfcTYS/f/5Ji5iT8XFsO3+eUauWuXXeXXXqMbZnb+LS0xg+bw4HsuXhSxJGIfjxjrtZe+YUl1JTWHbCeV5SDh907sZ918j3X0lLs86TksLaM6fY5qLmjCMm3TWgUP2DihJXr98qRyUfrqs4ivBJCG/Xs+il+bQH+t2YIXMjFHFvoEKRsSC7+skeIlskrmBOCkCp8lm07lWdVX+cLJCJUpcc33nKoaNyfPcpVk5dR+KVJLx9vNi8aIdVjPiaiqCcf//06lQadqhL/bZ1CA4PovcjXfnrx2U2c1yEJugxohOlKkYUyHZF0ZOaWHAnBaB2ixpOnRSAqvUrsdbpqLxkpmVyYNdJHju0hpSsrDyfEtt329bH9kZf4qEFfzJ38NBiS5DccPYMH63/h4OXnfUCs83Gs2fYduEcD83/k1STO+1Nig9ztjqsQWhYXNQzEUDN8Aj61c0biS/l70+HylW4a8ZUrqSlFdpJMQjBz7t2uOSoXE5N4dON6zl85TK+RiP96tRnQP0GJaKD8o23oMThanjSCF5N3Zva5CEdA2m7O2hJQWb+g2NHwwLmQzgWycu9R7QxRgOv5mxdVrC+PTnYS3Q0ZZn4dPi3rPljIwajAYm0biE5+NYwGDXmfbuY+m3rAPDY58O4dOYyWxfttFbqWPTc/zfv1pgnxz3I2tnutZhXFB+F1c86vOU4545dpGKt8g7H9XyoM5PfnYm7Eda1ceeJd3MrxSIl+2KiWR91hluL4Q571amTjFw4r1D6T7qEh+bPJc2Jk+KtaWTd4AZ6rjopAC3KR/J9n7vw88qfZ/ft1s1cSUvzSHKuRUqX5PXfX7uaX3fvzPPYjosXGLN+DTPvGXLDk2pVjko+XPXazcjLtyIzVro8s/SUX+jluDHeDUdm4fyLV3dhDOA7ALj2w+wNfoMR4RNJSyx4Dwoffx8atKtj89j3//uVf2ZZI18WswXd7NhJsY7T2bfu0FUrfb1558+XefST+6ndogZVGlSk44A2fLTkTcb8/To+fj5YTDe+B4ui6Dh3xLm0eanIcJ797hG35vUP9uOYllagnA0D8PexIwU40z0sus4bq5ZbK9oKOIdBCMoGBJBmMjmdo6R0+XUFTQh+vmuAzS24LIuF2YcOeLiCyPE75YftW/I5KTmkm83cM2s6cek3tt+PiqgUBj3WqoUS9jPCp73z8SZXy0jt6YsYwFg/X+JuicOrUbY+jL0vDw20cqBfdDCJBl6N0ELHIPWXwbQPEODVCKFZq3XKVCnNpVMF27Ou06K6TR2UE3vPsGjCigJJ7F+bRLtl0Q6+evInLp+9qiQZeyGeWzo1QNOse9J1WtYogOWKmwVX9HgA+ozsTpkqpfnswe+Iv5TgcKwQgr5P9mKbG80qr8UCTqMThcWi63y2cR3RqSmFmkfP7iDviqtz87gp4GMwEOhtrdzcE32JRUcPk5SZSbWwMG6rUo0Ms2ea0ILV2WvroNLLZLHw1RbH6QiZFguPLpjHi+060LZiJaeNMosCFVEpFBKQyOQvnI/M2gNp05xP6dUWRCD5/zQGaxn0dX2CSiLCfxCOvXgdAp8A4edgnI7wf9A6nxaK8OmI8OmQ66QA3Pl4D7e6C1/L/g1HiL2Ytxvp5oU7eKrFqwXuA+Qf5EfilSS2L9vDW3d9wpVzeeWuU+JT+frJn1jw/VIAqjWqQoN2ddBcqPpQ3FyElA62G7GzRcueTfhqwwcEhPg7/Oi0ubM5w94ZSLNykRS0aq56mOsNP93Fous8t2QRE3ZuL/AcBiEQwLuduuJnLIEil4Uk3WwmMSODB+fPod8f0/h19y7+PHyQzzau587pU9z+qzoab5GSh5va71q/9cI5l5R9d0Vf5P65s7hz+hSiUwrngBYE9Q1ZaCSY9+f2oLE7Ku0PbKqsXo9pE8hErPcI2W9BEQj+9yNKzUcYqxXW4CJHGCIRIWPI7rBxzZHst5tvf4TfIETod1i3da4dk/1v/+Hge7vDde58sifVG1fJLRt2CylZPvmf3F/PHbvIuwM+yyO45S6nD5zlmTaj+P5/v+YsYZOfX59GRpo1z+jVKc8QWjqkYM9BUWK5/617bAqzOaJ8tbKMW/8BtZpWz3tAQPnqZXh7zku88+fLeHl7cU/9BngbtAK5Kv3qNijAWa4xbd8eFh8/WuDzjZrGHbXr8Ne9D3B/4yY0i4ws1otUsLc3FYKKtk2JUQheXbGEdVHWa4ZF6ph1HV1KLNlbZa4+Z4MQ3FO/ocMxCQ5KsuPS3CvXPhJ7hQfmzS72rTb17eghpMVJYqflGO5UFGXPCoAI+QQt+A2EoVyBbLsRCL/+iPDfwacL4A1oYGyACPkMEfIRQgiET3tEqUXg/wBokaBFgHdHRNjPiKDXnYYY/QJ8+WLNu/R5tBvevu7deQmDlmfbaMF3S9wqEbWF1CWXTl/m7OHzDqMyaUnpbFlk3RMuX60sP+76jHtf60dE+TCM3kbKVilNh362VW8VNwe7V+8nPSWd1KQ0m12P7VG1QSW+3/4JP+z4lFd+e5o3/3iBP6/8yuTj39GhX+vcjuDhfv582/tODJqGwY1QfKivb57uu55ESmk318FVLLrOpZQUdCmZtm8Pcw8dLPJtHYMQ3Fm7LmO6dKd8UDDnk223oigbEECVkBCqhoQypEEjlg8dXqD1vI1Glp08YVd2P6cMwdlfVROCO2rXZf6RQw7HPbtkEWfsKO1GBgU5tfdaLFJyPC6Wlafs9WkrGpSOynXol+rhvkMBBI1GC7jf/rxxD0LWRtzXTxFgqIAotQIhbl6/UmbvNxcVR7Yd4+nWrmuSGIwag16+i4fG3AfAsFpPc/GEC1VEHlJsrVS3Ah8veYMylUvbHfPXj8v46dUppCe7V92hKB6EJhw6pCK7X01QWAAtb2+K0ctIeko6ZSqXptdDXajawDWV2AsnLrFowgrOHDyLX6AvHfq1pn2/Vhi9jByLjWXS3l0sO3GMTLOFlKxMu29PAYzqcBuPNGvh/pN1gZSsLBr/+E2RzF0UeBsMlA8MolfNWlQICubtNdbCiGtfP00IfAwGvu/dl9uqWqPZ+2Oi+evoYWLT0/jz0MECrW1L7+Z6ygQEEJOav0w+pw6yXcVKdK1Wg/fXrXG6XvuKlZnSf2C+x3Vdp85349xK3jVkO0hje/Z2+Rx7KB2VAlNA/920G7DvqAjfXsgs570m8iPBcg5Me8G7ScFsKwEUdQKWwc1af4tZp/M1OheuVuD4Bvhiyshy2l3ZGeeOXuCZtm/ww45PCC9nzRmQUrJtyW7mf7+EYztO4u3jRY9hndi2dDcXjl8q1HoKz+MslynnHjA5PpVVv1/tcWMwaswZu5D+z/Xh8S+HO/xszPp8ARNenYKmXS1xX/PHRirWieTT5aOpVTGCDzp344PO1gabf+zfy6hVy/NdCDUhaFWhIg80blKIZ2yfI7FXmFTIaEpxk2WxcCYxgZ92brfrNOhSkmWxMGXvbtpUrMTzS/9myYljGIRGQe9YBLhUsv3bXQOISU3lSOwVziUlci4pkfj0DMoFBjKgfgM6VanGF5s2uHTvtOFcFL/v25NHXA5A0zTub9yESXtcV7C1SEmaqXgbXN68t+glDenkD+d7p3V7w5U8FVs4FFBTRNYs5/L2j9AEnYe0p1rDyrmPNWhXx6mUeZUGFen7eA+7uSfuIHVJQkwiMz9bYP1dSr577hfe6PMh25fsJv5SAtFnLrPgh6XKSfmXkePk/vnVImZ/udDuuPVztzDhlSkgrzajzPn/xROXeKPPh7nbSvtiovl4/T/sjYlmSINGNCsfmTtP2YBAXmrbgV/79i8S8a6JO7dz+7RJzDroIZ2oYsZZZMMiJatOn+SeWdNZeuJY9mMFb0Ioce5Y+BgMVAoOoXJICJdTUzh4OYYMs5netWrzYdfudK1WA4OmEe7n57K79M4/q4hNy19mPKrDbZT2c12t2CAEtcJLuTzeE6itn+soUFNCNETg84jAxxyOkuZzyPhHwXKCq8Es10rRRMSfCC/HSVP/db56YgJ/T1yZr79PHgT0erALz3z3CN4+Vx2bAxuP8L8Obzqc/4edn2L0MvJooxc8ZTIBIf7MjfuN1dPX89H9X3tsXsXNQUipIGacn2Az8faplq9ybNcph5GbdxaP4tfMM6w6fRKD0BDCeuHVhODVdh0Z2KAhQd4+TiOaUkq2XzzPzAP7iUpMIMzXj7vq1qN79ZoYNfsO/D+nT/Hggj9df8IKAPyMRjLMZtv95oVgcINGNC5TljdWr0BArlMkgCAfHybdNYBbypXnYnIy7X+d4NKaAsFrHTryaLP8aupHY69w+7RJLjk9Algz/BEqhdhv6uoqauunWDGAn/NuyMJYEUotgqyNyKyNIM3g1RiSxoCMtXcWGKqDsegy9f8tPPzRUPZvOEzUwXN5EmM1g4amCfo924d+z/WmtA3p+gbt6vDwh/fx8+u/5/bvgau9fJ4YO4KaTax71O3vbsWmBdvdSpK0R2piGlkZWcz+cqHTnAeHqG7HNyWJV5I5uuMk9dvkvUFKirM+7giD0cB7O9ZzIsh6s2ORV4UJdSkZs/4fygcF07uW45uvxIwMhs+fw97oq5E7ASw7eZxGZcoy6e4BhNppeDhh5zYMQrgVXSjtH0BseprTSMa/mcENGvLbnt02j+lSEujlzeurluf7SEusuUD3z51F9+o1STOZqB4Wxsn4eFtT5cGgCbvjakeU4oset/PissUIbCdA5Gwnjupwm0ecFHdQWz+FwgBoiJBPEAbX+rYIoSF8OqAFvYIW/Dqa3x2IkLexfjVcf9djfUwEv3lDRHaKGqknIrP2IE1HkIXVLAcCQwP4asMYHnh7EBGR1rwPbz9vegzvxIS9XzDyswdsOik5DHmtH58sH02Lnk3wDfTFL9CX1n2a88Wad/N0wX11yjO07tMMwKXOt86Y981iju08WWAn5d5R/SjrICnXJf59b69C0+jWetRvm32Rv+71EZoguFRQgXV8rmXb4l0c33Uqz2OOGlrmkFnWl2OBJofVI19v3eQwH+JyaiqdJ/+cx0mBqz7vwcsxvLD0b5vn6lKy+dxZt7dA6pYqTdsKFd0659/G1L17HB6ftGen3X5MupSkmkzMP3KIZSeP263osUWO0Jwt7q5bn4X3DeOe+g0pFxBIgJc33trVVIWGZcryQ5++RZaM7Qi19XMdbm39+PRCBDyM8L7F+VgnyIxlyOSPrYmzORiqI4Lfck31NmeezI3ItKlWJVfhAz7dEP5DEUbXKgyKA6nHIZM+tTYvzNn60iIRgU+C30CPOWVmkxmD0VBkTt7+DYf44pEfXZJKLwqEJmhzR3N6DO+Erut89+yvxF10fmdlC82o4e3rRUZKye4jVZy8NuVZug7tyLo/t/DbW9OJOnQesEboajWvjsWic9xJ1MMdajSpyosTn6BWs+os/mUlXz7yo8Pxsb0qktDL+QX/n+GPEODtxaazZzHpFhqWKUvNcKvD/sDcWWw4G+V0juX3j6BGeF4n36Lr1Pp2rNNzr+f1DrdROSSExxctcPtcReGYM/Beml6Tv+QMi64Tm56Gt8FgN6pWGNTWT1GjtUIL81xOgfDtAT7dwLTHmjhrKAfGhi5fZKWUyJTPIHUieST40yYh06ZB2ASET1uP2VtQpJ6AjB0ClrPkKQPXLyCT3kTo0RD4jEfWcldwyx0sZgsTX5vGhWOO2gC4jsHL4HbvH6lLNi3YzqYFBVcBzUE368pJuQbNoHF0xwmklKQmpBJ1+DyaUUM36+gWnSNbj3t8zVP7onj+1tG8O+9lxj3mJO9AgKmWa+H3TzauZdmJ43lEulpGVuS51m1cclIEsC7qTD5HxaBpNCxdhoNXLru8jWMVKGvAO/+scnvLSFFwDELQumIlmpRz3CQz33maRpmAwCKyynWUo1JQfPInJBUWITTwdrMjcw6ZS7OdFMirA2MBdGTCE1B6LUIrWtVFZ8jUifmdlGuPp3wLvneXqAiQLTYu2M6BDZ5r7qYaFJYsdIvO/G8X5ylD1wtQku5O3pFu0TFlmvj26Z9dGu9XpzSpZucaO0uOH8vnSOy8eJ4nFv3l0jpgv+nfQ02b88KyxS7P06VaDUJ9/UjNylJOihMc9ZZ3hI/BQKbFgjE7p0QHOlSuwte97rhpUwiUo1JQ9II1wysqZOov2H9rS5BpyNh7kYay4NUQ4T8YYahQvDZKHdL+wLGgnoZMn4MI+p9H1tR1nZN7zpCWnE6FWuWJKO+ZPifLJ61BM2iOK4wUNzWF1coBqN7Y2s8pJSGVDfO2kZnmOGqlW3TOHXUepdM0DR8/L3BBDNBWtMMiJSlZrkXQJOTeiUclJjD/yCGupKVRLjCQu+rU475Gt/D7Psc5Fznk6LhUCw274RGVAC8vvAwGEjJKnqBisLc3SVkF0yrJzO7dY5aSUn7+vNy+IwOdyOyXdJSjUlBMu50OKWo11qvr6NYtI2dlH5Zj1p+sjcjUCRD8AcLfebWSx5Bp2X2MHA7KjrgUnmWT1jDpnZnEnLkMWEXn2tzZnCfHPUi5qmUKNXfsxXjlpCiccnLvGSIqhPPe3FfQDBrjX57M/G8WY3YWQXNSxeXlbaRWeCkuJicXWGLeVRehZlg4TcqW4+01K5m6dzeaEIjsu/UvNm3gyRatGN+nL99s3cz+y7Zv4AxCUK9UadpVsmoXDWnYmIm7dhTQcs/QuGw5Dtix90Zj1DQ6V6nG6jOnCuXQxaan8caq5VQJCaXVTZzArKp+Copuu5xYt1xCT/oMPaYdMroOenRL9KQPkZaSJNqlAzoy6Q1k1rbiW1b44tw31kArfOnbnLEL+ezB73KdFLA6jlsW7eTp1qOIibr6eGpiKhdPRZOW7HqDrjKVIlQjQYVTpC7ZumgnK6auRQhBqchwLM4cXCdOihACXdc59fFqj/TBcfQu9jEY+KFPX8Zt2cSUvbuRWKMxOU30dCn5dtsWnl68kHSzmXvqN8TbYLC2IxUCY3bbj/qly/DLXQNyK1mqh4XzXOsbmzO35fw5kjJLZl5WXEYGq8+c4uEmzWlbsRKB3t6E+foS6OXt1kVbYk2IfW/tqqIytVhQVT/X4XrVTxhauS0ASD3ZmluRvgSkrbCtAUQwImI6wljdxvHCo8feD6btuLeraQCfTmhhPxSJTbbQE16CjEU42v4R4TMQ3s0KvEbC5USGVHjMbidkzajR/f5bGfD8HUx6eyYbF2xD6hKDUePWe9oy/L3BVKjpOOlsy6IdvHnnxy7blJOroGkij8ZLobRTFDcFQhPUalad77Z+TOzFeO6r/LjdaJxm0GjZqwnHdp4iISbRYdROCogZVouUJuGAyFNCLYCKwSFcSE5yeDdeyt+fsgGBHLgck88/qhAUxLR+gwj186PVxB/IsriWR1U9NIwB9RpwOjEBX6ORHjVq0q5iZZvR5acWLWBxttqrIj/BPj5sefjxXEXhQ5djGDLnD9JMJrejLIuHDqdORPEqyjrD1eu3uiUsKJq1VEum/oaMaQ1pv9pxUgAsIJOQCS8WmTki4GHcT72yQOZal/pOeAoR+Djghe23ngbeHcGrgAnF2ayatt6hGJtu1lkxdR1Pt3mdTX9tz3UULGadf2Zv4qlWr3HmoOPtp5a3N6VFzyY2dTSEEPmiLQ071OX16c/RpMvVvWKhCcpXL9wWlLt4eavd3uJG6pKow9bS5ojyYdw7qp/NcZpBw8vbyMMf3senK0YTVtYaWdQ0YVPnRkgoM/kY4QvPYki+ms9Q2t+fl9t15KW27R1ezARwb8PGzB54L1/2uJ22FStRMzyc26pU5fvefVk9/BEqh4ay7sxpl50UgJMJ8ey7HM0n3XrybqeutK9UJZ+TIqVkXdRpolNTXJ73v0hSZiYrT10tga9XugwL7x3G4AaN8Pdyr2P8xeRkT5tXbKhvrYIiIpFpM5DJH7p4ggXMB5Cm/UUihS98O0Pg88iUseQpT3aKaxL+nkIYa0L4r8iE50G/hNVWCejg0wMR8nGh83ounY7BYNAw6/ZfA4vZgtT1PNENsDox6ckZjHt8AmPXvm+VFl+6m3nfLeHI1uN4+XjR/q6W3P3M7bw792UmvDyFvyeuwJRpfR2FJrh1QBue+vohzh+7SGqSNYm3Yi1rhKbz4A6c2HOKD4d+TdTBc1w47kLHZg9ickFITOF5fP19cv89/N3B+Af5MW3MHNKSrm43Vm1QiRcmPkG1RlUAmHTsG/6ZuYmti3dy5sA5Th/I7zwLCWErLxC65gIVb63N6NkvUjkklONxsdwza7pDmyTQsHRZfIxG7q5bn7vr1rc5LrUADeiWHj9GUmYGwT6++deVkvfWrmbSnl3qTtkJmhBcTLE6GBZdZ8aBffy2eycn4uMQQPnAQKJTU10qD4/wd72fT0lDOSoFRfggk90XO8K0H4qoZ48IfAJ8OiBTp1m7Lcsk0C9jf8NbA2O9Yi9ZE97NofRqyFwL5iPW3BWfLghjZecnu0BwRFA+B8QW9sboFp396w9z5tA5/v5pBX+OW5Snwuev8ctY9NMK3pv3Ck9/8zDD3xvMwU1HsZgt1G5Rg1KR4QCElQ3NN3dWpokPhozjwomSlLOkcBejtwFzlms3A8JgbYKZ+7sQDHr5Lu56uhe7V+0nNSmdirXLU6tZ9TyfRR8/H3oM70SP4Z34362O+1AJC5xffZQqwSFoQvDissWkm0wOz9GA2Yf2071GTYfjaoa7prp9LRLYGBVFr1q1ORp7hUXHjpCUmUmVkFC8DFput16Vju4YXUoWHz/C2cQEjsXGsvn8VWdVApdSUlxKijYKQaCbEZiShMpRuQ6Xc1S8+0HWXLfnF8EfI/z7u31eQZCWy8jLnQBHX1hG8G6FCBiB8OlULHYVJWePnGfKe7NZPX293TFCCJe2uwa+1JdZn9tWzxRC4O3nxe9nfiQ4IijPMSkl25ftYdH45Zw5eI7AsAA6D2lPZM1yzPhoLgc2ek5/RVH8GLwMzDj3I4t/Xs2sLxaQHOt4+0JogknHviE9OYPtS3djMevUaVmDJl0aol3X8E9KSdShc8RHJ1KqQjgVa0eSeCWJgeUeyZPLpHtrpDSLIK1eKLqXhmbSsQQYqd6mJqG+fmw851zIDSDU15edI59yOEZKSfcpv3IywT3V43dv68LWC+dYdOwohuxKIYuuI1GtqdxBQG6VVWHmKBMQwJKhIwjxzR/lulEoZdqipkBBCIH0alhsbVWEoTSEfIpMfBGrwbbuAM2QtQWZtREZ8DRa0LN5jkqZDpbzgC8YKpRowaAdy/fwVt+PHSYgiv+zd9ZxVlTvH3+fubXdRXd3CYKgCBKiggjYgflVbH92d/eXr62YgAqKASgiotLd3Q3bfWvO74+7u+yyN3fvJuf9eq14Z86cc2Z37swzz3mez6O5bpjS6ftLv2z26nLBr8VIKbEV2vltyl+Mv+/Cku26rvPa9f9j3hcLS5RMAbYuUwGD9QWn3cn1He7hmqcm8N+lL3Jd2zu9Gr5Sl7xwxdtsXbYDzeCqcOx06DRsncKT3/8fLbu6lnpW/7GeD/7vC3av31dybLs+rWnbu1UZI8WaEsqR2zrgjDRR8tQXAqRkc+qJgO4vBj++z0IIXhs2krHffhNAz7Bw317+2ueqYeSUEkr9jpSR4j8SKh1HKIFjeXl8tnY1d/frH5R5VSdVukT44osv0qdPHyIjI0lKSmLMmDFs21b2bbKwsJBJkyYRHx9PREQEl1xyCceOVe+6fYWwBu5NAQlpY5GFvwV9Op4QoaMQ8d9ByEjAkyVdZMDk/RdpWw64Mpn07OeQx/shU89Hpp6LTB2FLPjV77GldLrq+siqF1TKy87n6Utew2FzehXqikuJ4ckZ92MJ9VycCyAyLoL9Ww56X0KSks1Lyl7PM9/6lXlfLAQqpmSqqBvkpOcy+c5Pefu2j/x6iBRL7utOveT6PLrnOPed8yTHD6SybPZqHhrxHHs2lPWE7Fi1i5/fP3m/0M2ay0gJN7mME024/oWSf/19pGnAoGYt/GrbPaUB4zp08tsISggL48+9u0/rCsm1kXeWL+GnbVt8tjuRn8dP27YwY8smtqelVsPMvFOlhsrChQuZNGkSS5cuZd68edjtdoYNG0ZeXl5Jm3vuuYeff/6Z7777joULF3L48GHGjq2epZGawY7MvAtpX19tIwpTF7SYNyB0NK7gVU8YkHlfIPVcZPrlkP8VyFLaIs5dyKx7kHneJb6lnoWe8wry+BkuQ+dYd/SM25D2DUE5H3fM/+ofCvIKvT40EpvE8/W+9+h/UW/GlfKCuOPKxy4p55YvhxBlsn6cTiffv+G/LLmiejD7MEorw+p5/n2P3V2XulMnP6eAmW/+ytu3fugSkD6lna7LMpZHbs8ElyfFUHnPpg5M7O6/DMBDZw2iUWSUTy+MAM5r0dpj9d+6Rn05j2Lu/X0Oa464L6Ra6LDz0B+/0f+TD7j7t9ncP28uI77+nAnfTeNgti+xzqqjSg2VuXPnct1119GpUye6devGlClT2L9/P6tWuRQJs7Ky+OSTT3jjjTc499xz6dWrF5999hmLFy9m6dKlVTm1GsTlq5W5n1b/0PbVeM8GcoJ9rcsQceykfKib644pc15BOt2nYks9A5k2HvI+A1mcDqeDdQEy7VKk9Z9KnoR7ti7f4dOwOHEgDVuhK17nmqcmcPFd55ekEhtNBjTN9f9XPzGesXeNovvgTl5F3aQu6Xp2p5LPx/aeIO1wxaoXK6oO3eksSfWtbehOnblT/uTEgTS/PDN5HWOCsm4igNfOG0HnpGS/j4kLDWPGhCsY1qqNR89KtMXCZ6PHkhAeVm8e8PXNKySAj9ecLGTq0HXm7tzBI/N/59zPP+W7zRvLpbWvOXqYcd9NJTU/v5pn66JaY1SyslwWWVycKyti1apV2O12hg4dWtKmffv2NG3alCVLltCvX79yfVitVqyl1ASzs7OreNYVwYwrgNXTBe4E6x/VOJ9i/HmzNEH+N3iPxxdQ8L3bKscy500PRQedgHBpyST9ixAVe8uVUroymvQjoMWBqRdCGNA0DX/ui4Yiw0PTNG57cyKX3H0B87/+h4xjmSQ2jufcKweWZO2Mu+8iVv/h3Qu08d8tDLniLFbMXcvRPbVTjvt0x2FzknGs5t4GfRFI1WppLFruqQSdE5N4a8QoWsbGldl+Ij+PbzdtZMOxoxg1jUHNmnNh2/aEFmWLbD5xnI9Xr+T3XTvd3tk0XA/1lrFxZBYWeixkqKhZnFLyx26XNsvujHQmzprJgewsNC8Bu04pSc3P5/N1q7nvzLOqc7pANRoquq5z9913M2DAADp3dqXnHj16FLPZTExMTJm2ycnJHD3qPn3zxRdf5Omnn67q6VYcQ0cwNgDrfB8N7RWqBVT8oJYFM12FEbUEROgYMPX03ZdlMDi24NkIMYBlEBR4118AkI595d6qpJ4HBTPx7LWRIDOh8HcIvcDnGOWOti5CZj8Nzr2ltoYhzd3oOaglv03xfGPUDBod+rXBHFLWQEpulsgVj7hfauwzvDtte7Vk+6rdbvcDLJy+mEUzl/mu3eIDg1EjOiGKmORodq/b5/sARZ0gLiWGzBNZ6J6CtwXEJkeTeijdr/5CDuRR0D6mwsZKbEgIr543opyRMnvHNu75bTZOKUvuS7N3buf1JYv44uJx7M/M5LbZP7kUjzw8zHQgz2bjofm/M75DZyLNFnJtVhU4Wwtx6E7ybDaumvkdJ/JdoRi+PEe6lHy7aUONGCrVprczadIkNm7cyLRp0yrVz8MPP0xWVlbJz4EDwSlgFzSc+8DYFu+/WgGG1hUwUhzIrP9Dpo+Hgm9dxlDB98j0y5GZtyOld2EmEXYZCIuXuTmLahj5uiwEiAg3hx8CfIlDGZEOV2ChdKYh875Ez3kTmf81Uve8bCKtS5AZN7h+v2XIB9sSBpw7lYQGNjQPITi6U2fC/aN9zK0sDruD3Rt8p3lW1kgBePbnh5l++CNCI2pP6qCi8tz7ya2ejRRAILj4rvMJj/ZPjCtqyfHiNJAKzSejsJDR079mS6lifBuOH+POub+W1O8pbYykF+Rz5cxvuWPOzyW1fbyhA4sP7Oee32eTb7cpI6UWIoB2CQn8vH0rR/NyA5LiTy/wvx5aMKkWQ+X222/nl19+YcGCBTRufLKCY0pKCjabjczMzDLtjx07RkpKitu+LBYLUVFRZX5qF3lg8F4nBkCEXx1wzzL3TSj8peiTs+y/1vnI7Be9j2lIQsR+XFQc0IORZJ2P63bjzYhyIkJGuhnAn4esBCzI3HeRJ85C5jwHeR8hs59BHh+AzP2w3Fq9lBKZ83zRse6/VCazzovTdhMdb3fZUUXT14yuS/yGF6+k/0V9/JjfSQpyC3FUg5Kr0ATfPD8Dp9PJZqWxUi8QmqBDvzb0HdmTC28d5raNZtBo27sVoyeNYOJzl/vVrzHTRtK0XUXV5kp9FwJ42NicTh7+c17J50/WrPSoa+KUkvSCAmxF+ieBUNGKv4qqRQIOp2TK2tUBH5sYHh78CflBlRoqUkpuv/12fvjhB/78809atCibCterVy9MJhPz559cJtm2bRv79+/nzDOrv7KmlMFYUxVg/QsRVbw8ZSi7DwGWcyF0XGBz03Mh70s8x73oUDDdq1cCQJj7IBL/gtBrcW+MFBtAnsYxgKk3mM9wM0cb3rOKivqXmcjcd4vGkrhk/F3/ytzXIP/rsoc4toJju5c5uWjaxsqn/27l9hdz6DGkC536t+PCW4bx4frXuezBMT7mVZ6wyFAsYVWXMVKM1CUb/92qAnFrM6d8VUIjQ2jSvqHbWk/guvdd9fh4AG5/9wb+8/q1xKbElOy3hFm46LbhvDr/CSyhFkZPGsGtb15HSLjFbX+liVyRSqN3NhG+IR1h10GXGDJtGLJtfqcPrz92lK2prgri83fvUkZFLUQAJl+Zhx4oDmT2dD3szEhje3pawH1e3rlrheZTWapUmfa2227jm2++YdasWbRr165ke3R0NKGhrqJ+t956K7Nnz2bKlClERUVxxx2uAM3Fixf7NUYwlWmllMhj7Xw39IWhDVrir0jrYmTeR2BbDEgwNEWEXQthlyOEf+FBUs8F536kbS3kPOWzvYh+CxF6vvu+pAT7SmTOq2Bf66MnrejHgSuUSQJOMA9ExLyJ0E7+rqWej8x+tKgqsg9MZ4NjJcg8z21EDKJUwK20LkRm3OS779JdxP+IMLmvXQJQkFfIgm/+ZeW8dehOnQ592zJ84jnEJJbNDnnluv+W6KJUNZPeuZ75X//D9hU7/SoBoKheXvnjCVIPpRMWGUrjdg0pzC3gk0e+Yc38jWXaGYwG7ph8I6NuGlpmu9PhZN/mgzjsDpq0a0hoRGi5MQpyC7j9jIc5sO1wwCJfDVunkP98f1Z5SD09lfv6DeCabj044+P3sAZQdFBRPUzo2Jk8u41fd2yvVD/BUAE2CEGjyChmXXZVUJVta4Uy7XvvvQfAOeecU2b7Z599xnXXXQfAm2++iaZpXHLJJVitVoYPH87//ve/qpyWF4IVpe6K4heW/ghLf6S0A06EX0sjLqSehcx5oyg41f+sAE8xIlLPRmbcCvYVfvZT9LuIeh2c2xHCApYhCFOHsv1KicycBLZF/nVr6gx2Hw9+mQm2FWApqo+iJfo559J9eE6j27lmDw8Nf46s1GyE5pLTXzxrBV88NZ1Hp91TZono8ocvrjZDZfKdn9L1nI7KSKmlHNt7gvCYcD5/cvpJYbZTXlldqrNOvn7uexx2J+dePoDIWFc8l8FoKFGh9URoRChH9h6vkBLp2LtGkd0uxW9D5fWli/jviqVEmi3YCws8xp8oufvqpW+jxjx1zhDaxsXz4B+VEwc1CEGI0Uiej7pP3hDAuS1a8tzg82pMfl/V+ilF0DwqWiO0pAUVn4eei0yfAI49+F8F2YWI/xVhalNuu55+HdiWBdifQCRvQQgvWiLWZciMAOJtTL3BvtJnMxHzLiJkuGsMKZGpI8G5B/9umRoi8V+EIaHcntzMPK5pfTt5WfnlpfYFGAwG3lv9Ci06nyyQeP+Qp1i7YJMf4waHmKRoMo9nYTBqXlV2FdWHZtDoMrAD6/7a5HetKACTxcgVj1zClY9d4nfw/AURV2HN9//lRAhBk/YN+e/yl3CaNEZ8NYXDuTm+Dyw+Hu/fKk0IEsLCSMvPV0tE1cCIVq25q+8APlm7ku83V999p5ji66F3g0bc0LMXXZKSaRhZNbGg/j6/VZXtUgStjo0IdxUEzPsYPespV1aL3f9aLzLvU3DsJjCjwuDSFHFjpEj7xqLlp0D608DUw6uRAiALf8J3XEop/FzywnDSUBBCIKIe8XMAA1iGuTVSAH6f8he5GXnu6wFJ139+fGd2mc03vnw1RlMA51hJMo9nYbIY6TKoI8nNEl1FD+uHdladRQhY//dmILC6K3arg8+fnM43z8/0+5jew7phMPp3axZC0H9MH95Y+Ayh4SFEmM1MG3cpiWH+ZRFBWSOltEibQQgE8PzgoXwzdgKJYTUTSHm6MXfXTi6Y+kVQjBR/bhsGIUguFSTbJDqap84+l6mXTGB4qzY0iIjEWcOaOMqjcgp+V0/2iAFMPYtUYCUuW7AoviPkAkT0S17FzqSUyBP9i9KEAxhTi0XETUMYm5bbq+e8DXnvE7B3ppRXwxN6xqQi8To/L6OIx6Dg66I0Y3cXvwbGDmgJ5WspycIFyOynXGJvbjGAFo+I/x5hcJ81dv/Qp1n750a3+4qJToji++NlywSsnr+B5y57w2el3GChaYImHRrz0frXST2UzpXN/lPRjFRFsKjEGog5xMS3Rz4iPNr7w15KyeyP5vHWfz5yu1/TBCERIUx6eyKWUAsd+rUhqWn5pVFd17n39zn8tH2r33NMDAsjOTyCTSeOY9A0BjVtzs29+nBGI1emZqHDTtf33sWhLsQ6gwBCjEYKHN6zFz++8GL6NW6CQ9eJNJsRQrA9LZUPV63g1x3bsDqdNIqM4qqu3bima48SEcDKUitiVE5PnKfEgZR6GBfORopQRPTzXo63+WmkFN01RbQrgyhkBDi2I517wNQboZW6IcpCAn4lD78RLO7TKstgaITLGPPHCDIiwi8Dc2dk+jW4AnVLGysGwISIftbt0SJkMFjOBttypH0lWP8B+7qiPkIgbCwi/DaEIcnjDOyFvtdq7bbybXoO6cKHa1/j8ib/8Xm80ESZarcVQdcl+zYdYMvS7SyfvQahaUgvVaEV1UAl/qS2QjuLf1rJeVef7bFNdloOT419lQ3/bHF7DQlNEBoZygtzHqVjP+8vVJqm8daIUTx01iB+2raVD1etIL3QuwZGRmEhy268FV1KbA4Hx/PzyjyQQoymeicnX5/RhCDUaMJs0DwaKgYhSImIpElUFM//8xe/7thGgd1OckQER3Jcy4fFy32HcrJ5ZdG/zN25g6/HTiAsSMaKPyhDpRR6wO4tjcACcHUomIFuuQBBPmhRRcsrrj+D1HOR+TPw79VNQvgdiLDxyKzHIX0CsuSYEGT4NYiIuxHCiDC1ReKvHogJYv6HFuK6oUpZAIW/uZRotWgIGVHGWyFCxyHzp/jXdeRDLm+SuSfET3XJ7dsWUVKr3jwQEXkvwtTeYxdCaGDph7D0g4jbXWq4MtflUfJDlr9dn9ZsWb7DY2VjzaDRtlcrdF0vVzsooVE8Z17Um2W/rna/dCQgNCIES6iZzOPBKe3wwf1fKm2VeoDQhEdvnJSSHWt28+KV73B4p0uRu5yhK2DM7SO58rFLiE7w33OcEhHJzb368MW6NT7bSinJthby9rIlTN+0gfyiAMyuScnc0fdMhrRohclgxOqsem0hRcUpfnpYDAby7DbyPLybaUIQbjZz5xn9uGja1zh0Z4lRctBDaRqJZMPxY7yzfAkPDRhUNSfgbq7VNlJdQN8b4AEV+fXpkHktMvNWZPqVyBODkPnfI53HkWkXQ+4L+P3qlvclMvV8sP19yjGFkPehq3/HTggZCSIS714VAZgh+k2EsCBta9Hzf0Ae74/MegDyPkDmvIQ8cQ561lNI6bpZCVNbCLvG+zxFOES9iBZeqp2hBcLcD7QGgBFEApg6BpzhI7RwhCHZ79pBo245z72RUYTu1Nm0eBvDjZdyedP/8M0LMynIPfkm+p/XryU8OqxcsUKhCQSC//vkNr7e9z7XPDUhoPPwhDJS6gdSl6S0KO/pW/HbWm7sfA+Tej/EwW2HPV6bBoNG+rFMn0aKzelkyYH9zN+9iz2ZJ3V5/HHVSykZ/900vli3psRIAdh4/Bg3/fwj0zaux2KsvlgtReCEGI0lTwJfyz1nN2vOT5dexYuL/sZeykjxhS4l32xYh9VH/8FExaiUQrfvgTTvMRllCWLinqG5h2J+QcB0BoReDNmPUxIvUwYB5qFAYZGHw5eXSEDoFWjRTwJFcTV5n0Def8unBRvaQcw7aKaTYn9ST0emXVFUs6f0WJorxiRuGsLYpAIn6h8//ncOk+/8FM2glTwYhHCJe56a0SE0QYvOTXlj4dMl8QWHdx3lowe/YvGsFSXHt+vTmonPXUav87qVHPvAsGdY46OooeI0QEB0fCTTDn2I0XTSib3s11U8PvplVwksP27DBqPGrwXfYDCUNxaklHy2djX/XbGUzMLCku1nNGzMC0PO46V//+aPPbu89h9iNGJzOj0u75g0jYaRkezLqr0FHk93/H0iCQSdk5KY2L0X9/4+2/cBbvjzmutpHhNboWOLUTEqFUELtBR8EG28MoX2gox9lav/2A8gf9pJmXwRC2GXQ+glkHENOI/i31KWhIKpyIhbEIaUood7vnvtEudOSL8MmTATYWjkOjr7WQ/BtDro6cis+xDx37of2b4FrH8hpR1h6gSWs72K52WlZpOTnktsSgzhUa5MiDG3j6Rph8Z89/pPrPljPU6njsFkxOlwlnO5S12yd9MBPnlkKndOvhGAhq1SePL7/yMrNZsTB9KIjIsguVlZT9C+LQeVkVKP0QwamiZw2J1YwszEJsdwdO/xcrcEoQmQcNf7t5QxUnRd551JH4OUfgdJOx06DpsDQ2h5Q+WtZYt5d/nScttXHTnE6GlfERtSXlyuzDzBZy0fhy6xOpQwXG3G3yeSRLIzPY31x12VsitS6droIyM0mChDpTQ+ivrVXZygp4JtBVrsZFfxQlkIIgIhNPScV8F5hMDibaSrCnL4NUjnUcjzJNLnBJmNzJmMiHkB6TwBhXO8jOUE+1qkfUsZcTmpZyIz7yny+LhUcyUO0JIh5l2EuXuZXrYs28HnT0xj1bz1gEts6+wJZ3Lds5fRoEUyPYd0oeeQLkgpWfbrah6/6CWPZ6o7dX6fsoCbXr6yjJpodEKUR1f8B//3hcf+FHWbKx8fhyXETEFuAc07NeGssX0xh5jZtW4v79/7OWsXnMwqa96pCTe9fBV9RvQo08f6hZs5vj81oHFjU2LKVf8GOJqbw+QVy9we45SSPLvdq+CXBkRaLGRZvWu3GDRRKg6uajELDVtQSprUfRpGRpJjtRJhdpVXOJKbgyYEupQIKv43CTWZMFdQoh8g3KyCaesAFlxZK3XlDUOHgu8g8l5XPEexPL2UkP8tgavyGkAWiUoV/OijrRMKf0LKJ8Cxxb+x7BugyFCRUndJ6NuLHwD6yT70E8iMayH+R4TRtby0ev4GHj3/+TIKr06Hk4XfLmbF3LW8u/QFGrV2FY4UQrBzzR6f4mrWAhuHdhyldY8WHtsU47A7WP3HOt/nqKiTRCdEkn4kk4XfLqYwr5A5n/7JRbeNYMCYPrw6/0mO7TvB8f2pRCVE0rR9I7f6TCcOBFZnBSC+Qazbvn7cuqVC51FMs+gY3hxxPhdP/8bnI69BZBTH8/Kq3FxxKCOlhNfOG0G/xi7ZCbvTydxdO5i+aQOHs7NJCo9ACFhx6GDAd/DGkVEMataCD1f7FuA8FQGEmaq+DloxylApjQggUCzyach5qOrm4hYDlTKM3BYsLARZkTVnR4kom3QexXcGlA1p3wT2nX71LhGQPw2ZP7VIobfQbbusNMHcqVGsXfIUUmtFpwHt+PXDP3A69XLLOE6HTl5WPu/c9hE3vXI1oREhNGyVgtFs9Mv9brL493XJzczDaVc32vrKh/d/gdNx8vrKSs1h7Z8bGXz5WTz4xe0kN0sstxR4KtGJgcfT7Vyzh+MHUklqUlbM8GipN+yKcDAnm6kbN9AtOYX1x4957Meh69za6wwmzfm5QksFgaC+PSd5e9mSEkPFZDBwYdv2XNi2PfsyM3l72WJmbdtSIcNx/fFj/LF7J23j4tmVke53MK0AhrVqjcVYfeaDMlRKUxDAW3DIIHBeD/mfUvXVMAQYO4OlL8LYHpnzNugHAx9Ti3Oz0VL0E0g9IeHK5Ak5r6jfWP/mku5fKXvQIH8q0rERb7/btYvCefLaFlgLNVeaMhtYu2CjVw0T3amz+o8N3NrzAQCadWrCyBuHeM0EAjCYDLxy3X8ZeEk/xt17YZl4g1P56X+Vq8+hqN04bGVfFoqvnQXT/qVD3zZcfKf7oqCl6TGkM1HxkWSnBSB1LwRLflrJ6EkjANfbtS4l8WFhFaoNVIxd15m+yXs8lUEIzmjUmKEtW/HaeSO49/c5CFCS+tXAskMH2Z2RTsvYk/fvVUcOccWM77DrlfPoT1m3BovBQKTFQmZhoV8Gr0HTuK1Pv0qNGyjKUCmN87j/bW1bEJEPgqmzK+PF4UvuuNjjUAGjxnwmIvb9k0UN9UxkjjfROA8Yu5fbJISGDLkQCn/AP29NUfnwqOdK5iNCL0TmTQ58Pm7RXBlQjs1Fn93/rtKOGnnimhbYrBpSP+kOD1Robf/mg7x/zxSad2rC/q2HPBosTruT7St3s33lbr54+jue+/kheg5xlTxf8+cGZv13LpuXbsdoNJB+LDOgOSjqCRJmvPULY+4Y6bMch8ls4qaXr+L1G9/zu3uhCQrzrMzbtZMPV68oKT7YMjauygwGgxA4paR/k6a8O/JChBC0iYvn3GYt+Gv/Xny5IlvHxrEzI71K5nY6seXEiRJDxeZ0cv2smZU2UoqxOp1YnU6GtGiJUdPIs9loFhPL7ox0lhw84CqlIAQOXScmJIS3h4+iS1JyUMb2F2WolMbUDLyLN57EfgQRKiD0AkToBUhpRUoHwr4aWTgXrH+BfqKosQDLYLCMgLy3wXnQ/zkZ2yNiP0GUXpYKu8JVu8f6p//9AGgRbjeLiFuQ1jlFCrY+Ln5jJ0TkPQjLwJPHG1siQ8dDwfdU3LNUtKxl6gH2Tfhy/v76ZTz2U4yUilD8Jnpg+2Ha9GzBthW7fMar2AvtPDT8OT7a8AYLvvmXr5+foQoIKgBXheWMY5nEpfhO2xxx/bnoTp13bv8Yp933Q0d36qxt6GT6r7PK1OTZU4WGQJjJxDnNW9A4Kpqftm0BJE/+9adf3/KzmzWnZ4OGvLl0cZXN73Rh7bEjCCHo17gxi/bvJ8cW/MSPBXv3sPj6m0kKP/mc2J6Wyh+7d1HocNA2Pp7zWlbvkk8xSkelFLo9DdLO9LN1BCLhe4Sxpdu9UkpwbHepphqalMi6S6mDbQU49yOzn8O7ZaRByHBExD1g/RuwgbEjmPsBOjLzNpdB5C/GLmgJM9zM1YHM+xxy3wVKpxgLCBntCsDV00FEIYyNPZyvA5nzKuR/CX6r4BbPqz0YWiHCRiNFDKT7Fku7fUQbdqz3v/CaL4QQ3PrmdTRu15AFU//lj6/+9umdCYsOJT/LX8tWcbow7t4LuOW1a/1uP6nvQ2xf4V3jBCC0RwM2XtvMa5tTXfcpYeEczc/zey6eKDaL/NPogPGduvDSkGG8suhv3l+1wucxCv8wahqNIqPYl5UZ9L41IXj4rLO5oUevoPftCVU9uSKULDf4Qz4y43aPa8NCCISpHcLcq0ztGSE0hKUvImw8hI7Ge+VhHRyHkKnDkDnPI3NeQ2Zch0wdBo5tpbJg/ESWl0WWeiYybQLkvsxJo6notlRURFEzpCBMHT0aKa7zMqJFPYxIWoSIfhUR9TRE3OPXtETY1WixbyIs5/itMOtwBLecsMGocXTPcfoM7073wZ38WkJSRorCHd+/8QsLv1viV9tFPy7zy0jRDBoN7hmAwceS0qnxBbkOO/f1G0BcqHcdFV9IAtHogHm7XNXiC5XuSlBx6HqVGCkASElavhstrFqAMlRKk+d/KXbQXWJmtuVltko9H2lb5/qR3gNURfhEXKtv7m4+BiAEHMVBbpKS5RDnIWTalS5tlEDQyrujZeZ9RSnDxWOU+rfwZ8j7pNwx3hBaLCJ0NCLscoS5j5/zijn5/8Y2LiE6H3Tqk4fB4PnWWRwjoBk0DCbf2Vy6LomICSc3M4/vXv/ZZ3uFwhNCwLevzvLZTkrpt97OoPFncthgCzgWJddm461li5l+yQRu6tE7oGMrQ0ZhIXanU9UFqkPowOGc4NQoCzbKUClNwGm6BrCvdh0qC9GzX0SeOBOZPt71c/xM9Jw3kbK82JKUElnwI2DH/buKE1dKrrd9gdTdEIjQ0WXn4NgJtn/wFpci8z9xO3+/MPVwCbJ5nVYElI53ESZE+PU+u77w2jS8JepIKXlk6t1MfPYyxt55Po3bNHCphHpAd+oIg+DShjexd+MBn+Mr6gZTdrxT7WNKCdtX7qIw3/uLyvZVuzmy23cAv9AEzTs1IdRYMYEtp5TcP+83TgRhCchfwk1mDELw97491TamovLM37OrWmv4+IsyVEojyxcN83EAYEDXC5Fp4yD/M5CllgNkLuS9j8y8yxWbUpq891w/FVYM0PHfGWsAQ2MIGVN2s/UffF4CejrSvjXw6QFCGBCR/+e9TcRdJ7OZwFWc0XkQX0ZY8/aFTHruEEAZz0pxscBrnprA4EsHcNlDF3Pzq9dw3ye3upbjPNgqjdo04PMnpmMrrKBRpqiV3H/u0zU2tq+U9/Qj7nSNyiN1yZArBzKsVWuvZUW9sfbYUX7cVjlhuEAY17ETOzLSOZTjf/q1woWv5b2qJM9u56aff2Rvpn/XZnWhDJXSBFw9WUca20DqEFfgrFskWP9AZt6JnjYOPW0CevaryFz/0xK9je8Xpk6IuK8RWvgpO/xcP864DV2v2NqlCB2NiHrOpbsCnDRAQlzp3aUqL0vnUWTaWJeCrtu5lb1cL5qYxms/7KTveVmERjgJCXPS67z2vDDnUa5+YnyZtp3P6sBTM+8nIubU3wEg4NCOIxU6P0XtpiIKsMFi7qd/onsRRotLifGrn34X9CKleRLjO3YmJiSkTMZPbUQA29PSuGO2WkKtCBUV7vOEhisI118WHdjHqG++ZHVR+nttQGX9lEI/OhTY72drDQztgfyqLShYGSyjEBETEaaubndL6zJkxtX+9WXq4apqXMGbpJQFUDgf9GOgxYNlKOKUdGk97QqwBy7nXBqRtAzhJhanmO2rd3NH34d9vu0GC3OoGafdoVKXT1MGXzaAh766E83Ng0JKycT2d3F451GPQfmWUDMz0j7DUlTjZ8uJ41w7awap+fkYhHBFrgXpFh5ltpBtC0T40TNVLYGpCIzxHTvz/eaNAf1NBHBTz97c3a8/IRVcdvSFyvqpEIHULtDBubn2GikYQEiPRgoA5jPA4Lt2DQD2NWD3rdwr9Xxk/nT09GvRU8eiZ96PtK1GiFBE6AWI8BsQoWPKGyl531TSSNHA2NWrkQLw0+S5Hpd//CGhUZz72Gc3GIwa/S7o5Xd1XEXtxmQ20rJrM6+xTqeyYNoi/vzmX7f7ilPivb0r3vXezSVGCkCHxCT+vu5GXjtvBBe168AFbdsxqk1b/0/CC68PG0GXpOQKLy+VRl3yNU/xw/2Rs87m+XPPY2TrwK4TCXy0eiXX/jijxuNWlKFShuqrBln1OEH3vj4shEDE/NfvHmWh90wG6TyETBuFzH4cbEvBsREKf0GmX4ae9azHG7LUc6AiSrtl0BERt/hstejH5RX2bkx6eyJTtr9D57Pa+2wrhEBoGtc8NYEHP7/db+NGUXux2xxIKYlv4DsrrRhNE8z67xyP+3sM6UKbXu61mGJTYuh5XvkXjRCjibEdOvH6sJG8NXwU74y4gORwN0uaAfLeyuWMatOu0v0oagdnN2/B9HGXcmPP3hg1jXdHXsBVXboF1IcEVhw+xHebA5TCCDLKUClDABL6NU4o3p9+BvAgRlcaYWoDxPs3pNuihi6klMiMW8B5tHhL0b9FsSYFX0LBNPcHF/5EwCJx5TCAoYHPVg5b4OMIAZGx4bTu2ZL/3fUZUoeW3ZoRlRDppq1LbtocauKpmffTrENjzr1iIOPuvTDgcRW1jz0b95N6yH8lWF2X7NngeTn588ensXON+8yYrBPZvHD5Wz7HEEIw58rraB4d4/e83LH66BFeWvS38obUE149bwR9Gp7UvkrNz+fHbVsCfmcSwFcb1gZzagGjDJUy1BUBLw3CfKm3OhGhvhVegZPFBX2NaWjkebdtaVFAsacAXYHM+6h89hMgHTsILNXaHRKZ84bPVi27NkMLwHWvaa44gA7923HPwMf5bcoCNi3ayt4N+8lOzaFZpyZ8vvNdbnt7Iq26Nyc2JZom7Rsy4f7RtD+jdUk/E/7vogrH9yhqERV4ipss7j21BXmF/Pz+7x7FBXWnzvq/N7N7/T6fY8SEhDD/mut5fvDQwCeoqHeEGoxEmi1ltn29YR35dnvAl7AE9mcFKt0RXFStnzLUggeJSAR5gpLaNyd34LpkLIiYV8EyGGlfXxQ3opdvF/6fIm+JPxT60UZHhI5DShsU/oYsmOEq4mhIcW23b8J1OXnyWEhXjSPnYThV4VYEQwpfB9sipDMNYfDsIRpzx/m8sOQtv3vtdFZ7WnVvzo/vuNz3xctGetHD5cC2Qzwx+hWO7T2OtcCG1CXpRzL56tnv+fbVWTw18wGadWxMdloOl9x3Id+/9lPFT1FR5zAYNc4a29ftvt3r9lGQ6/27J4Rg7qd/knk8i+2rdmMJNXPWxX0ZdcvQcvWEhBA0jooO2twVtYehLVqx5OB+8uy+5RM0YELnLpgMZV/+ftu1o8KB1+GmQOI3g48yVMoQClSfKFJ5BCL8crCchyz8CZxplDz4hRlhbA+hYxBaUXR03BRk7n8hf6pLswXA0BQRfguEXuLXiFJKsP7uu6GxLWgJyPQri4yjomrQzt1I278govAv3bm8R0VYhiPzPvZrvt6RoKeDF0Pl7AlnsnzOav748m+/erz8oYt585YPPO7XHTr7NpUXiJO6xFZg55GRz5fE5ghN0LBVMod3HfNrbEXdpngZcOzdo9zut9t8P3SklPzwzuwy2/ZuOsD3b/7MS789Toe+ZV9GGkcrQ6U+cne//oSvNvHz9m1ejQ0NSIqI4LY+ZY1jm9NJTgUzugxCMKZ9hwodGyyUoVKGmhYncqnVahG3I0z3+2wtRCgi8n5kxF3gPACYXAUQA1pi0EH6oZGiNUFmPwH2Ykl/vey/buoIle8jHgwNy283dQVT36Ksn8rUBhFgSPA+BU3j/s8mERYVxk+T5/rscfuq3RXW4jg1eFjqkqN7T3horag3CBAILKFmHvv2Xlp0blquyT8zl/HWLe9XqHvdqVOYa+XRUS/w9b732F+Yyw9bNnEiP5+k8HA6JiSyNS016HocipqhS1IyDSMj+XXHdp9/054NGvLOyAtIDHMFV1sdDv67YilfrltDdgUqLmtCEGYycV23nhWae7BQhkoZgl86O2Ccx9DTbwX7KkADy0BE+LUIU2ePhwhhBmOrCg0nhAGpJfioG2QALQ4KZ1BxJV2BCLsaIcpfckIIiJ2MzJgE9mWu8UrXNvILA1gG+0xPBpexcu7lZ/llqKycuyaAOfhGd+oIgUpZrs9IV2XtVt2a88eXC3E6nPQd1RNDkSt+xdw1PDv+dWQlwlZ1XSc7M5cbp0xliTO9jJqpU0oMQhT7PEsIpAKyonZgEII3ho1kd0YGDi/igeAyKoa0bEVKhCvI3+pwcN2sGSw/dDCgv7mhyBPo0HVSIiJ4f9RoGlVSo6yyKEOlDLXhK2wF2/yTHwt/cS0DRb+ICB1bJSOKsMuRuZPxbBg4wdjcy35/BolAGlp5jAISWhTEfQH2dcjC38C5H6zz/OxcA2FBRN7r93Q69GtDUtMEju/3Xthx01JPisMVRxkp9Z+8rHzW/70ZzaDx1/TFtO/bmhfnPEZ4dBgfPvCly2qopAZgxgVN2e1IB0G5YoVOKWkSFcWB7JOezk6JSTzQfyAvLvqbLanKs1cX6NewCYdzc4gN8V39WkqJxXDykf7t5o0BGSk39ezN+a3bsnDfXpxSp2tyCuc0a4EhAFXbqkIZKrUe11KIzHoETL0QxmYle6Se5VJ7lZmuWj6Wc1zeFTdIPQv0LNDiy0vph10HBb+Ccx9ul17CrkMYUipnxsk8yLoDqT+KCL/WbRMhBJi7I8zdXenOaePAsdn9nEpj6oqIehphbO29XSk0TePmV6/huUu9ZwpJZ9VZFVc/OZ4vn/6uyvpX1DzFCsjbV+7mpavf4eZXrwlK0UvdJMgcmOI1/v9wTg6/Xn41+Q47caFhtIhxeRsfAq6dNaPSc1BUPYsP7WfRof20j08gMSzcZ2HJc1u4JCmyrVamrF3t9z37kbPO5oYevUriqn7ftZNFB/ZzIi+PC9q2J8KsgmnrPpEPgW0rWH+swkEEMn8qIuoh10M8913I+xDXclWRk1fEQPSziJDhJUdJ+yZkzttgW4jLY2REhoxCRNyJMDZx9axFQvxUZPbLZTVNtARE+E0uQ8Z5iMoJY7tu2DLnBQgZivCW6kyR0RLztit4Vz9aatyiczW0h4hbEaY2ARkopTl7/Jk4bHfy9m0fUZDjX2p6MJdt/K31oqj76E6dZb+uZvDlZwWlP1tyGNLk/U3XKSUvLfqbz8eMK7M9ymLBbDBgc1YmHkxRHRTfanakpxEX6tmrognBiNZt2Jmezr2/zWH10cDq9MSHhpFjs3H77J/598C+MuUZnvhrPtd378X/9T8roJpBwaTmfTq1igjfTdwgDI1Ar+py5k6wLQcoMlL+y8mYmuKA1ixk5p1I60LXR9sKZNqlYPuHk5e8w7WclHYJ0rH35DlosWgxLyGSFiPipiLiZyAS/0aET3RZ2cbGYBlM5fVOBDLfPy+CMDZGJPyEiPg/MLR2BeOauiKiXoL471zeJccepG0VUlbsppvQOA5rvv/R8E3aN8ISaq50JntyswS+evb7ynWiqFaKg9SLK3RXhP/e8UlQ5pJxnpugdDf8s38fB4o0MNLy87lsxnQu/vYbZaTUMZxSciI/H5MnQ0FKksLCufHnH1h7LPACqwZNcOuvs1h8YF/JeMWBuw5d58PVKxj42Ufsy8ys6ClUCmWolMH3OmB5QpDGM/2qg1NphBGpZ0Kep3RZCUhk9svouhOZ9QAu78ipNyUnyBxk9tPlh9BiEOZeCFOXcoGvIvoFMDTH9ZSu6JNagmOn6/+kRFoXoWfciZ46Gj19IjJ/JlKeNByEFo2IuAktcTZa0hK0+G/B2ATSL0GmjUFmTkKmX448cS6y4JeSflMPpXFkzzEcdu9KtFMenxaQi+S1P5/il7yvmXDfRV5rvpgs3p2V7fu2Jf1opt/jKmqW8Ogwzji/J72Hd+OyB8cw9q5RAQkHFpObUTn5AwkUNI8gv0uc38c8+MdvHMvN5dpZ37Pq8KFKja+oWeweAmp1YMo6V+B/oNleBiGIMJlZcvCA17CpY3m5XPnDtxQ6fKfVBxu19FOGCqjvhU8E587gT6UcGsIyEArn4VNu3rkT8j8vWq7x2Ahsi5HOQz6XYYoRWhwyfirkvA7Wv4tqCdkAO/4vCWkgwpDSgcy6Hwp/5aS4nYa0LYK8jyDuC4QhsdzR0rYKmX4t5SIR9SPIrHv545ttTHvjAPu3uM49Kj6SC28dxhWPjMUcUnadNfVwOhv/3ernvCGxSTxSSqa/Mouj+04QlxxD2pEMhCZc6qJFaanJzRN59c8n+em/c5nx1q9IKdEMGk6HE3OImf+8fi3fPD/DoyKpovaRl5WPruv0v6gP5145EN2ps/TXVRzdc7zaKnEDaOEmjt3QDgIwkpYdOsCIr6eQZQ1OZWRF/aJhZCTP/rPAr7aHc3L4Zfs2xnX0nIVaFQjprXRnHcDfMtH+oB8NsAqp1gSR+DsUfOfSGKkyBGBBJP4BBbOQuW/gM8BUa3BKbIeHnmM/Q1gGALhUZxEIYSpSoP0dWTgHZBYYWrpSlPO/dn0+2QGYOoFtFf6WIBAx/wPHNmTuOx7mp4GpJ1r8N+X26KmXgGMT7lImvnwtma/eSEEIUUbDRGiCroM68uLcRzGZT8qZ79m4n5u73ufXnAG6ndOJTYu34XQ4Xf4kTaA7dMyhZiJjw4lrEMt5V5/NsOvOITzKpbabejidv79bQnZqDknNEjl7wpnMeOMXvnxGBdHWVQxGjZZdm9OwdQpH9hxj+4pdVTZWSLiFsKhQ4lJiGT5xML8k5/LX0QNKI0VRYwxp0YqPLhwTlL78fX4rj0pl0A8g8z+naqX3NcCMiH0fYUhCGhrilyia7t86pSQU8qcj8z4v8QxJYw+XkaMfoSR4lZW4zaeUGWD7F6JfR5i6Ip0HIeOmojmeejM1gLEV0twfsh52s79k8mBfiZ73NVr4lSe32reBY4PbI/Ztt/DVGymuKbkRWlu/cBOzP5rP6EkjSrYnNIpDM2h+vxGv+2vTyT4BijwiDpsDW6Gd1t1bkHEsk+P7U0tEvhIaxjH2rpPKpH9O/VcZKXUcp0Nnx+rd7Fy7p9JeMW/B2ZpB45J7LuC6Zy4r2fbF9G+UkaKoUfLt1a83pmJUKkvOS5DzYtX1HzLS5UkxJCHzPkU69wL+por5+POKRCj4Gpn9ODhLvRU61pQydE5RoPVE7htgaIJmGYCIfa9U/R4jJQG4xnaI2E8Rzj1lvTKeyHkamf/1yc/Znn/Ps7+Kx2DwfAOXwE//KyvwVphnpXFb3xWXfaE7dXLSc5k75U++fXUWN3e9jxeufBubtexarpSS6S//6DW2RVF3CM7SnftrQQiB0WzkglvKFgxtEh1VRtxNoahODELQPqH8knxVowyVoFFFNw/zQGTWo8jU85E5r0Bu6WwfX8cO8D6vkHOg8OeiD5W86ToPgX0tAMJyNiJxESLqOVeV57CrEbFfIOJ/QBiSCEQmX2Y/g3QcRC/4GeyLPbY7sNOC0+nlXCUc2nm05OPaBRuZ2O5ODm4LLI3P61ydsqRo4V/TF5XL8MhJz2X3+n0qNkUBuDwmd/7vRgxGrUwmkaYJzCEmnp31IAmNytatGt+xSzlxN4WiunBKyRWdu1b7uGrpJ2hITuqMVEZvpDQC8r8Ax7aiz4EE7QmIegLyPoOCbyhrsGiIiHuQ+V8FYY6lKCXDL7QwCJvg3kwytKZ8dWhPaMi8T6FgmtdWYZE6mibRdc/GSkiYq+x5dloOj1/0EjarvcqMBqlL5nwyn2uemkBCwzgK8gr57fO/qmQsRe3l1HipYjSDxrlXnMUFtwyjz4ge/PLBPDYUKdn2HNqV828aUq46MsCAJk0Z3qo1v+/aGTQdbQEkhIWRWVjoMatEoQB4cMBAWsV5LvpaVShDJahI15KHeShYf6p8d8Yu4FhfgQMFWIYhDE2Qojh4VJ7chxNp31AUbBtEDA2QsgAKfkFaF4N+GPRMkFaXIm7oGAgdC7IA/40upysGxodRM3BUJv/8HON5akaNwZe5goZ/+2wB1gJb1Xs2JCyZtZIm7Rvy5MWvkJ/tX7Cxov7Qrk8rti7fiWbU0B16SUxU57Pac+fkGwFIbpbIDS9c4Vd/QgjeGXEBbyxdxJfr15Jvdy0vGjWNZtHR7MrICGh+Ari+Ry/u6TcAgxBsTj3OmiOH+WTNKo7k5gbUl6L+0ikxiTvO6MewVm18N64ClKESbGQ+mHoEwVAxgKFBUYZLoOJMFkT088jM+8H68yn7ih7O1t8qOb/SCNBaIPNnQcFXuDVC9MPInA2Q+65L6TaQdGY93Wf7XmdnExHtIDfL/SVtNBm55J4LAFj718aAjBTNoBERE052WuDVtRdM/5dNi7ehO9Sb6umGOcTES388wZbF2/ntsz85ti+V+EaxDL92MH1Gdi8pUhgoJoOBBwcM4o4zzmTd0SM4pE6nxCQizBbumvsLv+3aiUEIn0tEAvi//mdxa+++Jdt6pDQkxGDk+X8WVmhuivrHeS1a8UGQsnwqijJUqoLc8kJqgSHA1MdVmydgI8WFLJjlxkipKiTo+6Bgtx9NMyHv7QD61kFEgMx2u/fYARMfP9eAZfOjsOZ7vvHf9cHNNG7rUvMMZInfEmpm2LXncOXj47ix0z3kZgYm2LXh7y0BtVfUH2yFdj5/bBq3vTWR3sO6Bb3/MJOJM5s0LbPtf+dfxKojh5mxZROHc7JZfeQwBQ6H20yhcJOZEW7ekD9ftwbND0NHcXqwJa3mC1gqQ6VWIl1ZMY4KPuREKOQ8H9wplWDCJfBWTHGsSSAGlb83QAMYUsB8FhR8X24MKeHJ61qwb1uI19gUgF8+mMfudfto2r4RsUnRfo3etEMjJq94uSS2xRJmDthQUdQ9DEYD5980hNkfz8dpr5zU/I/vzuGSey4guZnvTAkpJUd2H8Nuc9CgRVI5gUJv5Fit/LB1MxuOH8MgBIOateC8lq04kZ/HLb/MYtOJ4+WOyXfYmfD9dKaPu5SWsSeVbv/ev1cZKfWMKLOFSWf04/XF/2ALMA6pNlwKylCpKbQGoB+j/DJJ0QPXsb3ifcs8N/0GA81V7yfsRletIdvfVNTj48JH0LGhMSL2E5AFyIJvy+3euSGUPVv8K3uwedE2Ni/adnJYP9i/5RD7Nh2gXZ/WFOQVkpeV79+BijqL0AQv/f4YLbs24+f3fq98fwL+/OZfLn/4Yo9tpJT89tkCpr44k8O7jgEQGhnCqJvO45qnJxAaHuJ1jIV79zBpzs8U2O1oRdVvv928kcaRUXx+8TjOaNSYzSeOl/um6VKSUVDAhVO/JD40jMTwcC7p0Amnykqrd2TbrLSKjeOabj34dM0qv58OGoJ+jRpX6dz8m4eimhEQfhPE/wIhYylrK5pcyxxFAa8Vp6oEeXSwr0KQW2SkVBZB+SKHAgiBqOcQCXMQxqYIUztE5GNF+0+2P7CzIrWZCCgha+caV7HJ6S//GFDxwoBR0hi1AqlL7IV2QsJDfNby8ac4oa5LMo55D3D9/InpvH7jeyVGCkBBTiEz3/6V+899GmuB5+tue1oqN//yIwV2OxJX+qij6I35SG4OV8z4lqkb1nuRVpQUOBwczMlm7dEjPLbgDwrsdqXVUs8wCMHP27dybfeehJnNft9udCR/7dvDFjceuepEGSrVioCwa9Ai70czRKLFvIBI+hcR+7HLcxAzGWQOVeMN8UYgQX0GZPZzwRlWS4HQcYBraQURAWHXIRL/RAubUKYoogi/GhH3tcujI8KAEEKiqj4C3Rxixulw8vN7v1epC9RkMSkhuFrC96//zMZ/tvhUgPVX0Tg/p7DcNqfTyfH9J1jz5wa+fn6Gx/63r9rFT//z7Nn5dM0qdCndGiJOKTmWl0uh00dtsCKK+8i329TSTz3DKSVZhYU0ioziq4vHkxQe4fexaQUFjJn+NQezKlALL0iopZ9qRbqK8EU9WrJFaHFgGeT6kP9d0LQR/CbyObD9BbY1QGHRspEnDGBsA7ZFQRjYAOY+aNHPIqOedqUsi1CE8Gw7C3MfhLlPyedeFxcSEn4jhXlV5+nITssm43hWhTJ+AsFkNhKTGMWJA2lVOo7CNxv+3cKRvcd9et76nN+dFbPX+uyvdIaZ0+lk5pu/MuOtX0g77DuVWOqSn9+by/j7LnS7f+6uHUE3KkqbX/5kDylqPwYhiLSYeWDeXObv2YVd12kfn0DTmBgSQsM4npfHH3s816yy6zqPLpjH52PGVeOsT6I8KtWNnoqe9wnStq68EJQWWb1zEbFg/Qesf4JM82GkgCu7J1jBpE4Iu8o1DaEhtHCvRoo7QsNDmHD/6CDNxz3v3/cFk+/8tErHAMjPKVBGSi3BbnVwpNQyjCeGXzfYZxuhCUxm1/ugruu8cPlbfPTgl34ZKcUc3XPcrWgcgNXhn7ekIvyn1xlc0LY9IUb1PlvXcUrJr9u38cPWzWQUFpJrs7EjPY3fd+3EZDCQmu/7vr7owP5qmKl7lKFSE+S8gkwfj0wbg3TsO7ndfBbgPXAuuAiw/YHvpSYDoEHUi+DYGMTRK5dRAdDvgl5BmIl3/p25zL+GlVm5US+tdQ5rvo3k5t6zeaQuad/XtUT578xl/P390oCXEC3hIQgPMSNt4xPQqiiepEl0NK8MHY7dWfnvqaJm0aAkhqmY4v//fN0a9mT6Npx1KavUMPaGMlRqhKKLxbEFmTocPed9pLQjtAhExM3VOI10fAftamBoBdGvQN4HQLAuVA1sKyrdy/yv/8FgrNhlHBoZQlhUBQNyTyEyLpywyOD0pagbxCZFM/auUR6NCKEJwmPCOKdIEfmn937zKwD3VMIiQjwG1F7brUeVVVM+o2Ej0gry1dJPPUDi+V1IE4JCPw2QqjKKfY5bI6PWS0KBcPyvbFyMDnlvINP/g27fiTQNgNCrcP1pNGo+jEh3VVbOuh+ce4Pcd+Uv+szjWRUOci3IKQyarH1uRp6SyD+NiE6IpMeQLoyeNIIBF58BuFKRi9EMAqPJwNMzHyjR4dm/5ZDfAbilyTiWyVfPfO923+h2HRjZug2CU6t5VRwNOKtJM1rFxZdI9CtqHw0jIrm4XQeMfhgP3m6RupTY/bguG0ZGYqqgmnJlUYZKUDCA5Uy0lDWIpKVg9r12XQ77P5B2PmRcCgVfg6knhF4N4RMh9MoAOwvUWPKFE9el7s9NNgQinsT3paUj86ei536I1CteUyS+YRy1IZNSvXSeXtz48tUYTUYMRgMDxvTBYDSUuQZ0p6Rph8Y079ykZFtFPW5Sws/v/46tsLzsgEHTeGfEBTx59rk0jY45eUyFRnLRKCqK14ePBCDCHOx7iSIYCOCjiy6ma0qKXx4vX7dIoyaw+DBCzmvZusaWAZWhEhScUBRrIrQIhKWPj/a+kGBfCQWfg3URImQwGFr6d2jIGEhcApZhlZxDRTCAZWCRdL8fRo1+CHJfQx7vi575IDLvS6Tuf5ChXvgnQy74EmctqaOj0otPD+754BZGTHS9jKz7axOvXDsZp6P8DXzPxv08ftHLJYGw51zav0JLPwB5Wfns2XTA7T6DpnFNtx78ec31bPjPHfRu0MjjcpQvNATfj7+CxLBwAOJDw5SmSi2kX+MmdEhI5KK2HTBqnq8pgxB0TUr2abgmR0RyfQ/P8X4CVyzLkC8+9SueJdgoQyUoCNBcJdmlnofMeTd4XTs2IzNuBKcfdXTCbkREv4RmiEREPUn1q4jpYJ0P9tUBHmeHwh+QOc8ij5+FzPvMa2spnegZd0Hmf2jeZg8XXJNKTUejCk2Q1CShRuegqFqEJhh9+wjOv2koGccy+fr5GTw++iWPGTm6Q2fL0u2s/3szABfeOpzwqNAKGyv3D36KtQs8B7MLIUgvKGDlkUMVilsRwEXt2pMYHl6ybcPxYypGpRayLzOTE3l5xIaGck3XHm7bGIQg2hLCy0OHezVmAA5kZ/HeyuUe9xdfAUdyc7hy5rcUVPOSYK0wVCZPnkzz5s0JCQmhb9++LF/u+RdWO5GI0KI0WesCoGZiFYSpfUmKrzAkugobViv+Lg95w47MeRGZ714EC4C898E6p+Tjbc8fYsTl6ZUct+IIIRCa4Ni+mi/epagaNINGVFwElz4whq3LdzCx/V1MeWIaBW7E3EpjMBpKssbiG8Ty6p9PEd/Q9VJjMBkwmPxf8y/IK+SRUS9wcPthj22O5FZc78egaVzUrkOZbbm2qlK5VlSGo7k5TJr9E28uXcQna1e5fSXt2aAhMy+9goaRUTj9qO8j/HixdUrJ0dxcftq+tQKzrjg1bqhMnz6de++9lyeffJLVq1fTrVs3hg8fzvHjNSvZ6z8GMDSHkCJBJj2TGtNDF6esJ0c+VDPzCAIy5yV0e/l6R1JakXmflNlmMMCtzx7GHBLc9VPNoNG2d0uff04pJXotWX5SVA1te7XkrX+fIyImjEfOf8FloPjpaLDmn3zYt+rWnC93Teapmfdz8R3nM/bO83n+14fpeGZb39lrEnSHkx/eme2xSXxoxTPPdF3n9jk/szX1pMHdIia2wv0pqg4dWHnkMO8uXwqUvxQ1YE9mBsnhEWRZC/26VN3rG5dHAPN27QxgtpWnxg2VN954g5tuuomJEyfSsWNH3n//fcLCwvj006oX2QoKpm6IuC8RWpjrs6ERNbMMYQJzvzJbNHNnMHatgbkEAZkFaRegp12FdB46ud2+AWTZ4FspYeZHCditxWoBwUF36mxfubumV5UUNURYVChXPzme91a/wrtLX6Rx24b8+c2/5KTnovtZgVbXdRq3acBvUxbwxJiXeeC8Z/jogS9p0r4Rt7x2DTe/eg1njOzJkzP+j8btGvnsz+nQ+fu7JR73t4yNo0OC70rNbueKS0DuhX/+KtnWKCqKgU2bqVJUdQwdSM3PZ/aO7cSGhAY1zkgCBY7TaOnHZrOxatUqhg4dWrJN0zSGDh3KkiXuv4xWq5Xs7OwyPzWCloiI/wEtfhrCkFyyWRrbUP0eFQGhlyK0mPJ74r8CQ+tqnk8Qsa9Cpl2KdBaptsryX5BZnyTw+csNkPLUJE2FouLkZxfw5dPf8eXT35GX5VLuXPvXJp/FCktjMGr8OHkOr13/P5b+soo18zfww7tzuKHj3Xz76qySdnEpsby36mWatGvos8+8vEJ+3b6NQ27ufUIIHjprUIW/BU4p+ffAfg7nnOz7qXOGYAhQNVpRO/h3/16cUhIT4tvT5u81YxCCDglJlZtYgNTo1ZeamorT6SQ5ObnM9uTkZI4ePer2mBdffJHo6OiSnyZNmrhtV+VEvQTG1kjrQmTBr0i7K2COgqlU3cOyqHhfuSKCEuwbkIXzyh0hRAjEvFNF86kOnKCnIvO/dH00taP0+dusgq/eSHZ/qEIRBBbPWsF9g5/i8O6j2K12vxxsxQGzETHhpB1xZUkU1/wp1lL56MGvWPTjyXg8k9lEjyFdvC4BSQE5SWbumPsLg6Z8xC2//Mjh7GzWHDnMysOHyLZaGdi0Oe+NughzJTQvSse6tIiJpVdD3waUovbxx55d3DX3FzIKvcdNntu8pd+OY11KruhSvZ76mlYTC5iHH36Ye++9t+RzdnZ2zRgrBd8jM2+idPCoNLYH51EqH1DqiWL1QDexGI4NyMxJEHEPIuLWk3OSTsh9q4rmU13oUPAdRN6N0OKQIee7ijuis2FpODmZde4yVtQxdq3dy7Wt7/C7fbFRknncs8dXaILpr/zIgDEuwbjczDw6DWjPT//7zfMxErIGprjGAP7YvYv5e3aXZPmYDQbGd+zMQwMGsfrmSTyx4A9+27WDvKIsjbjQUNILfAf7x57yBj6waXOWHzqoVkHrGDk2Gwv37fXaJi4klLiQEATCrziVh886m5axcUGaoX/U6B0+ISEBg8HAsWNlC4AdO3aMlJQUt8dYLBYsFovbfdVKqayTEhxVHQntLVjUZRzJ3DfBcjbC1NG1uWAmWD2Xia8z6CezekTUo0j7RnDuIT+nZpQSFQpveEpZLtNGl2xZuoNj+07w5TPfMf/rf3DYTkqZCyFK+inuLbd7HLk94k/2ccpYNqeTqRvXs+HYUaaNu5TXho3kJX04R3JyMGiCEIORMz/9ALuHGBsBdEhILPcgmtCpC+8uX4JV1f2pd6QXFrDs8CGfRopJM/C/URcypEWraprZSWp06cdsNtOrVy/mz59fsk3XdebPn8+ZZ55ZgzOryxiQ+VNLPrmWTPxZiqrla9DayQBBocVB3LcAdDkzl9dm7uS5r3ZxwTWphIarG6mi+qmM2N8D5z3DvC8WljFSoKwB4oi3kDq2OcevaQM+xtKlZMPxY3y3eRMARk2jSXQ0DSOjiA0NZVSbdu7PoXg+AwYBsDM9jbk7d/D3vr1EmE1MPv8iTJqmBODqIf5UT24QGVEjRgrUgqWfe++9l2uvvZbevXtzxhln8NZbb5GXl8fEiRNremp1FCfYN5386NiOz7QVY0cwtofCmVU6s4qjIcImlN2U9zESiI5zEtMvDymh9+Bcrvq/ozw4rjX7tldnFWrF6UpkfARmixkhIO1IRsmSj18ICI8K48juY16PE+8OZb8jh0BrRXyzYR1Xd+1e8llKydML/+THbVsQlL8rRJot3N9/ILN3bOU/v8yi0Okos+/W3mcw54pr+WrDWr7dtJH8as78UFQdBT6KEhqEYGiLmkvKqPHX6EsvvZTXXnuNJ554gu7du7N27Vrmzp1bLsBWEQhmV2xK0f97RwNDUzAPCOL4wbysDGBoCGFXAUWaJRl3QP4HrkJsRfduIVw/MfFOXpq+C5NF6ZooqhaD0cCA0Wcw7eAHIAjMSCnCYXd6PU4zaIg8OwYfyqKnIoGDp2QFzdy6mS/Wry3ZX5piw+XphfP5dvOmMkYKQI7NyiuL/+HbLRt54uxz/dbcUNQPDJrGVV271dj4NW6oANx+++3s27cPq9XKsmXL6Nu3b01PqW7jWI081gk94zYw96R8llBpdETIuSArWr+h+BIynhzH2J7gXVqaK9Uh/2t051Fkxu1g9RJsKCAu2cHAUVlBGl+h8ExohMtzVxFZ/JTmSVjzrd4bSUnTffYKydjHhJT1Kn60eqXHRWCJyxhx+Bjno1UrOJid5fMNXFF/EMD7o0bTvAbF/2qFoaKoCnSXnL9tKa7bkLtblAG0hhAyErQAPVgiAkKvgqQViJgPIPwmCL8VETcVEf8DhJyPdwPJX+ygH0DmvgMnzgZb+RTsU5ESzhyhDBVF1eJ0OOkxpDMAZ4zoEXCcytE9vtW3habRSYbTt1FjtACWfgRwSYdOJZ9zrFa2p6VW2g8ihODHrVt81o5R1B+SwyM4p3mLGp2DutrqBZ5uYE5cRooBl8dD4PqTFxkQhgaIuM8RwgKGAAV8ZC4UfIWw/oUIGYwWeQ9a5J0Icy9X7ZuIu13GjEdjJdDwKIm/ErFCQGS0CqpVVD1THp+G3WZn9O0jK1yx2BtOh5Mhlw/kk4vGckmHTn4bCBJYcfggHSa/TZt33+DyGdODMh9NCI7m5dK3UQ3pVymqnbhKlGUIFspQqcuISDANAExeGknAARF3ISIfcHk6Qi5CxLyNSPgNYWzmapb/XYWmILMeQcryugzC2BQR/205WX+XsSQ4qQlTNezerIJpFW4QkNwieKqau9fvZ9a7c1j262oGjg3ukrVm0Og5tAudz2pPmMnEy0OHs/j6W5h8/oXc1KO3z+OXHjyA1enAKSVb01KDMicpJYlhYTxzzrlKA/o0oX+TZjU9BWWo1FkiH4DEJWBqCfiqcKqBcz+EXYUw9wbHFmTWo8gTw9Bz3ka3roLC7ys4ESuywI2mDCCMLdDiPkMkLkDEfgaGlq65VGEgnpSun2nvVq/Es6KOIOHYnuPENYgJWpcf3P8lnz7yDf/+4FKZrUyqcmm6D+7EkzPuL+OpSQgLo1eDhnxZFBTrjdLfMt1H7Im/M3ZKyZh2HUmJiKRdfIKfRynqMmPbd6zpKShDpa4iTF0h7y0olpb3ihP0bGT61cjsp1zCdDIX9EOQ9z/IuJ5KxZPY/vE+V0Mj0GLAuRvvonWVRwiY/VUc2enevEyK0530I5lB7U/XdZwO17UdrCWg1X9s4InRL3No55Ey2x/847dyWTmBUloLRRPC7zlf3bU7zWJieOHfhWxPT6vUHBSeiQ0JrRUeqy5JybRPrFiRy2CiDJU6iYYU0ZD3mf+HWP8A+1o3OyRQQKUMCN27JLcsXIDM8F9+vCIUvzD+/XMU7zzYuGS7MAjCokJ9F5ITkNg43nubWoDBqJR4azu6Uw9aua8N/2zhrv6PcvxAKgV2Ox+vXulTEt0XAhjashVNo6NpF5/AsJatfXpcNCG4vU8/njz7XLIKC/lu80afxygqhkEI3hw+EoOmBRRAHWzMmoG7+vavFX/nGhd8UwSKASxDEPaVyIBqClVhTIi5p8ddes5bLq9NFSGly4uSmy14896mLJoTU3a/UyKACfePZubbv2IrLC9SpRk0kpslcGS37yyMmqb4rV1RywnSvV136uRk5vHU5G/5p5mTPLuvZV7fGDWN90aNLvl87Y/fo+G9QpkArujSFU0I1h07ik1J6VcdUrI19QQfjBrN43/9weGcHN/HFGEQokKp7O76selObvz5BxpGRHJ9j15c261HwHo+wUJ5VOoUBtASEVGPgZ5FcNJ/g0DBT+jpNyML5yLlSYNIt62pUiOlmI+ebcD4jl3KGSkl89AlN7x4JbOyv+S2tybSoOXJVOywqFDG3XMBIREq+FZRO8lpG8XcBvlBMVIMQjC4ecsy29IK8n2+8jil5IkFrlIn/tQxUlQcJ/DSon+48ecfAjJSAB4deA4hxsr7H0obO4dzc3j+n7+4b96cGvvbK49KrafoXUeEQeh4RPgtCEMC0tCYqs6c8RvndnDuQNr+AlMPiP0EhBGyHqryoe12mPlhIlK6d5FqBo3ExvHcM+hxsk5k07BNA/7zxrU07dAIp0OnQYskzCFmZrz9a5XPVaEIFAmkj2riWQopQHQpubFn2YyhplExbE1N9enin79nF0dycuianIJR03B4KGyoCA4VMQm+XL+WtnHxrD9+zHfjAOfy07atXNCmHUNbVr+UvjJUai0amPtAzAcIrCAiEcKIlE6X5yL/O3BbsaOmKJqHfR0y635w7ATnviof1WwGg1GiO93fxXWnzv6th0oq0R7aeZRlv6yi/5g+PD79Xowm11fAbDFRYFfubEVwEOJk3JQnQiNCKMgt9NrGkWDB1ig8oLE1IMoSQqa1sOQOoQmBAF4eOpzeDRuVtLU6HJzdrAVzd+3w2a8EtqelcnbzFlzcviMztmyqFfELipPszcyosieCBny1fp0yVBTFmCFsPCLyQYQIAcKQei56/kzI+xD041SNkRKMPnWwzifgZSkRATKvQuPf8/4EXr1hBpomcDpcb3maQUN36iUPjGKXpe507V8yayVfPfM91z17GQD9LuzFgqmLAh5boTgVoQmadWqMyWxi5+o9Zd3lRV+xcfdeyM2vXs2udXvZvnIXb978gdu+nKGB3aKbx8TwxZhxxIeG8fP2rSzYuweb00HnpGQu69SVBpGRAGQVFvL2ssVM37SRggCKC1qKlhUeHzSYHWmprD12FIFQtX9qCVX5V9CBLaknqnAEzyhDpbYR8ynC3BWhRZVsktZFyMxJIPNLNQz0kjTgO7MnmJe5n94JEYtIXICU+ZB6HsgCvIf1nULoOM679lKadurND2//yrLZq3HYHISEh5B5PMvjW62Ukh//O4fLH7mYnyb/xpKfVvo/pkLhhUZtGpCTnkvaofL1sxq2TObSB8Yw8sYhCCFo3b0Frbu3YPOS7fw+5a9yMQDGDCvoEnxkrfVIacBdfftzVtNmJZkiEzp1YUKnLuXaZlsLGf/dVPZkZgQUeGkxGOiR0gCHrrP4wD66JKcQbjZzOCeHPJuNxPBwDmRlkW3zUb9IUWex1lCNJ2Wo1DYKZrrk7IsMFenYg8y4BahkSXVDG3Duqnw/wcbUF6GFIQhDxn6MzLgpAM+K2SXVD7Tr3YqHvryTr579ns+fnE6hr2JvQF5WPs+Me53lc9ZU6hQUitIc3Ha43DZhEETFRfLaX0+T2Kh8Gvw9H9xCdEIU37/xc4nXD8CY6yBsYwb5nWLBUN5YEUCE2cw3YyeUeDt88b8Vy9idmRHwsk242cz+rCyu/2kmh3KyS+T8HbpOSngELw8dztcb1jF14/qA+lXUHQLxvgUTlfVT27D+iky7GGldBoDM/4KTNXsqgYCAPBXVhX0xUrqMCmHuhUhcAOG3+3esiEGmDkc/1gM94xbW/v4Jnz9ZVNPEz1+XMlIU1YF0SnIycvnmuRlu9xuMBs6+tD/uZDMSZu1DK3SAs+z3t7jpC+cO89tIceg6UzduqFBsSa7NxhUzv+Vobk5JX8UBtSfy87hy5nfszkgPuF9F3cGu6zUSl6QMlVqHBOzIjBvR876EgjlUXs01AhzbgtBPFSCzoXBuyUehRSMibgH8SBeWJ1zeF5kH1r/p2vVlxt9WM2uoCgXgNTNHd+j8/vlfFBaU9/Z9/fwMJvV+sCTGqjSmNCuN39hI+IYM1zJQEZ2Tkvn0orGMatvO7+llFBaQU8GlGaOmkV6Q73a5yCklOTYryw8drFDfirpBg4jIGhGhU4ZKrcUKOc+CDMIbSvj1BCX+xNCO4Gu3CGRB2dRgIcwQNtaPsUqfk8sIu/Gxw7Trnu++uUJRxWgG77dUW6Gdi2Ov5e1bP8RZJJr2wf1fMuXxaV6PM6VZSZmyg+aPr6Lxa+u58B8rsy67irObtwhofmFGU4WynA1CEGo0eb2L6FKF1NZnXKJ/3WpkbGWo1GsEWM4FU/cg9GUBzATfKyNdXpVTEOG3gRZPoIaRww4XTgxOpViFIhAsYWbfOcmAw+bklw/mcVf/x1g+ZzXfv/6T32MY8hxYDuYTZa3YrTvcbGZg0+Zlav34HFMIwkxmwkyqftbpTITZzHXdetTI2MpQqc9YhkH4bZD9TBA608G5MQj9nIoBjK3KbRWGJET8d2AZQiCXqdEEnc/IC+L8FAr/sIRZ0J3++xS2rdjJhw98FfA4Qgh6DCmfzeMvt5/Rz6d+nOBk4cKGkVFMvWQC7eLj1QPjNGZAk2aEm801MrbK+qmvaMkuIyX9MsC7qJR/VFW0t9OloVJESXqmfR3SuhCMzcHyLBiagPVvyP/YZ48OR83WHTWYDDiVeNxpR3ZqYHLnAPs2HwjsAA30rglk9Evkx62bOad5C2JCQgPqonfDRvzv/Au59/c55Nvdf6/Pad6CHikN6ZqcAsDTC/9kxeFDgc1VUa84u1nzGhtbGSpF1I36FRFArn9N9WOQPtp3u9pA/mfotvXg2IzLqDIDVlyeFA1wgJYAwrdCp5Sw9Pcon+2qEmWkKPwmgNtOYcsIjl/VBnucheeX/QOASdO4rntPHug/MKCCcUNatCIhLIwDWVlup7Bg7x42HT+OzeksUbj1RG3Sx1ZUHd9v2cSlnbvWyNjKk1eEqMFy2n4TeklNz6DqcKwCCnDd8oqzEnRK6hnp6X5K8gvmTk323UyhqEMknNmco3d0xhlnKbPdrut8vHolzyz80+OxTl3Hfkq14wV7d7Pfg5FSzPH8PDKtLm+st3aNIqO4pmt3H2egqOusOnKYZQcD9AAGCWWoFKHbg7E8UsXYd+BX2m69xD8NmF++as3BnbWkqrSiTiGEcCnG+lCBrW5ufeM6wh/sD5pw+y2QwFcb1nEgK6vM9r/27uGKGd/S9r9v0m7yW4z65gtmbNmElJKF+/aWCLZVlscHncPDZ51NTMjpem86fXhz6eIaGVcZKsVY68D6q2MxhJxf07OotRTmw0dP1+yyj6Lu0vHMtlz7zKUYjbXH0L3u2csY8p9zWbB3t1e5eyEEP23fUvL549Uruf6nmSw/fLDEG7ItNZX7583lkT/nYXc6/UlQ8os3li7GYjQyqU+/4HSoqLUUi/1VN8pQKcZYXta6VmL9F0iq6VnUSo4esGDNr5laFIq6z6bF27ix493YbbXnGpry+DQujZ5I4xfWErXoGMLm3rMogLSCAsBV4fiFfxcClFER1YtMlumbNmDUNJwyOErV29JS2Z+VyfXde3LHGcpYqc9EWiy+G1UBylApRtSBpR8AeRxQ6qvusCjPs6KS5GZWUiywaNXIl/BbIDjtTkzHC0n8bg9NXliDMbX8vcopJYv372Puzh18tX6tV50UgxDsSE8jPIi6KNlWK0II7uk3gE6J6kWqvjKxW88aGVcZKsXYjtT0DAJAxdi7I6WplUathHeBCIUiCGhuCgQCIOGqJ8Zz0a3DiYqPcN+mAhSPZsy00+CDrWWk9IvZnp7GbbN/YuaWzV6XiZxSsi01lfvOPCsoc9OEoGFkZMlni6H2LJ0pgku3lJQaGVcZKsXIDTU9g9MQUaShEpzLUAiNK+9P8mrHGc0GohIiaXdGa2598zoenX5PUMZWnF54FHYTMOu/c7jp1av59sjH9BrWLaiGswDMJwoJ25zp2uDGIMn3o8Kt2WhgT2ZGQAq17jAIwYhWbYgLDQPA6nCw9tjRSvWpqL3k2mw1Mq4yVIqxRfpuowgCBjCfg4j/GZG0FJEwGwzNg9S3zpAxm5j47EiEEGgGDe2UDA6HzUluZh7blu/EVmDjnPH9uenlq4I0vuK0R0JOei4/v/8bz1/+FmvmbyhnOJtDKrfkIgWEbc0EQBQErtljEILOicnM2bndq+fFn36iLSE8OGBQybY3li6qkeq6iqpHE4LGUdE1MraQdUPpzCPZ2dlER0eTlZVFVFTFMz70jI/B+koQZ1YX0fA3DbgyiLivEeY+SNsKZN5nRQHCDko0UyqFAbQ4juV+ztzPVvLju7MpyCnwmOFw78f/YcTEc1kw9V8+fvhrThxIC8IcFArv9BnenRW/ra3QsQVNw8k4vwkF7aJBCJdXxY1nxJMQWzAE2gQu9dqk8Aj+3b+PQoeDdvEJrDxyCJtTCR5WFxou8b55e3ZV6TgGIRjWqg2Tz78wqP36+/xWHpViDG1rcPBaElRhPhO0JBDRuDKLgjkv17q1iLjfZaTkf41MvxKsC3Cp0ToIzuXoBD2VlOS/6NS/HfnZno0UgDdufJ+bu93H7g37GXnDELqf2ykIc1AovLPqj/UVOi6vQwyH7+pEQZuok8aJh+WbUKNLeNwgRJlvcjDeTM9o2JglB/bz/eaNHMrJJq0gn6WHDigjpZrRgfYJiVX6BBFATEgIjww8uwpH8Y6S0C8mpA1UMuC/4hSXCKth55ZtEaCBeQg4trgN2Kswxo6IqIdcRopjJ7KkUGLpG1uwvDkSWTCLFXM1DEYDTof3m+fejQfYu/GA635fFxSKFXUe3Vmxa92QaydsUyb5XeN8tm0Tn8CVXbrx7/59LDt0kON5uUG7wyw7fLDcNrXkUzPsykynKp8fEoImDlhRlEelGPuaGhxcUHtsRh1s80EvfyOqFI4NSPtWZP50ZMYdwe3bDbb8bPZvOYiu+/9AkBJksXEmqDWOLoWiGMvBPBp8up3oPw/7bLvu2FEaREYyrmNnjgXRSFHULn7fuRNZxX/d1Px87pjzS5WO4Y3a8nSseQqX1eDgkqqrTlwRqihOJefZarlZzp8Rx+RHk8jLrkQmV9FEx/3fhXQZ2IEF3yzi7++XlHkTFprLpR4RF1GhyrkKhSdikqPIPJZdbrsoui7jf9pPfqdY7MmeKycbhOCHLZtx6DoGISoVOKuovTiCJNznDaeUrD16hA3Hj9ElqfprqSmPSjH2jJqegSIILJoTxSt3NCEvOzg35e9f+5knR7/CX9MXlRgpQhM0btuQyx++mC93T6bP8B5BGUuhAJccvjXP5r3mkAZRS4577ccpJRuPH2Phvr0BGSmlNVEUimI0IVh5uGZKzShDpYTa5NFQVAQp4eNnGxa9dlbduo3UJQe3HyY8Koykpokc3FYH6kQp6gxSSgpyC08uQ7pB6GA+nOezr+3paWRZA1Pd/viCi3lpyLCAjlHUf6SUNbYargwVRb1h18ZQDu+1uIQmqoEvn/mOgtwC7DZl5CoCwxJm9qxu6wdSgDRXjQJsRmEBezMzq6RvRd1FAv0aN6mRsZWhUsLqmp6AopLkZVfv5VyYZ2XpL6tpf0abah1XUfeJio8kKs61xOJ1iccDQkKeH5k/FeHVJf/y/qrlVdK3om5iEIJ+jZrQPiGxRsZXhkoJKkalrtO4dUG1jzlr8hz+nLao2sdV1G3SDmcQmxLDo1PvCbiAoWbQiGkci96nauqurD1al+qeKaqDJlHRvD1yVI2NrwwVRb0hPlnn+00beXfOdkZdnYrQqj7LYdOibRTm1pHK24pag+7U2bNhPw6HA6c9MJG0+Aax3DHjLvKEEldTVA97szK5e+6vLD8UZNkKP1GGiqJeERnrpHXnAu546RBtutaYgp9C4RPNoLF8duBLzo9Nv4fwxjGVGltJBCkCZdmhg1wx81t+27Wj2sdWOiqKekXqESOzv4pn/ZII0o6aXIv51RRcq1AEgu7UMVpMCCHwt+RaREw4rXu0IEd3VFiLVAB39u3PkZxsvtu8UQnBKfxCL8r6uX/eXM5u1pwQY+WKawaC8qgo6g1Lfovi2jM7MPXtZDYsjSDtqFkZKYpajUHT6DKog19thRCMvn0E5hAzBk0EbGAUfxMGNm3Orb3PoHFUNJpQjwCF/0gg12Zjzo7q9aqoq1RRLzh+0MhzNzfDYRfoeu01Tvx9KClqJ0KICmXpeMJoMvDEd/cSGhHis+2Ai8/gqsfHAXAsz7eGigA6JyYRExKCxWCkQ0IiL557Hh9dOAazwUCHhESc1aBqqqhfGDWNnRnVW2VeLf0o6gUzPkxyGSi13IOy4e8tNT0FRYCYQkyYTEbCokNp2KoBBTn57Fi9p9L9agYNS6iZ6IRovtozmRevfIdVf6wvEXozmo1ExUfQ/ow2nH/TUPqM6I5WVBwuNsS3YSOEYHT7jtzQo5fb/ec0b0FyeAQn8vNUQUGF30gpCTOZq3VMZago6gUDRmZx7sUZHNxtYfZX8WxcFo4KGVQEA3uhHafNQX5OAemHM9F1nabtG3LuVYPQnZKWXZvy1MWvBtyv7tTpNbw7AFHxUbw49zHsNjuZx7MJCbcQGRvh8dik8Aj6NWrC8sMHvRoZo9q09bjPoGm8O/ICrv7hexy6U9UCUviFU0pGtq5e7Sgh/Y3iqqVkZ2cTHR1NVlYWUVFRFe5HP+r5C62o/ehO0AzgcIDRCL9Ni+XN+5oga7mHRVH3CSQYtjQNWiUzZds7JV6SQFl15BCXz/gWpy7dVs+NDw3F6nQSZbEwpl1HrunWnaTw8sbPjrQ03l+1nF+2b8Wu62i4L0saZjRh0504AqhIrqhfCGBE6zZMPv+ioPTn7/Nbxago6gVakZq4schHOOzSDMbdeqLmJqQ4bajou97d799cYSMFoFeDRnxy0cUkhYcDJ/2Hxf+mFxSQa7NxOCeH91ctZ+TXn7MjrXxsQZv4eF4fNpJvxk7ApGkeg3RfGzaCBVdfj7kSc1bUbTokJPLaeSOrfVx1xSnqJULAJbecwGCs0w5DRT3FEmamU/92le5nYNPm/DvxJj67aCxPnD2Ys5s1RwiXqVL6ytelJNtq5T+/zvJoWD298E+c0p1vxsV9v88hNiyUBdfeUGM1XxQ1y9a0VA5kZ1X7uMpQUdRbYhMdNGmtVGMVtY/h1w3GEmoJSl8GTePs5i24tFMXVh4+5DFmxSklezIz+H3XznL7tqelsvHEca/xLgUOB9f+OIOUiEi+GTuBGRMuD8r8FXUHAXy5fm21j6sMFUW9JjTCScVksRSKquPsCf2D3ufujAzy7L4red8+52d+2b61zLaD2dl+jbHqyGHWHTsKQI+UhnRMTAp8ooo6i1NKFu3fV+3jKkNFUW8pzBfs2RKKyv5R1DYiYsKD3qcm/LvOnVJy92+zWX3kcMk2f9KdwfVNmrF5IwC/bN/K1hMqDkxR9aj0ZEW9REo4dtBMYZ6hpqeiUJQhJimaph0aldsupWTDP1v45YN57N9ykIiYcAZfNoBzrxxIaLhvQ6J1XDwJYWGk5vtR40pKPly1gvcvGA1At5QGNIiI4EhurvfDgB+3baFdQiLP/b3AbbaRon4zoGmzah9TGSqKeokQkNTQVtPTUCjKMe7eCzGayt567XY7b//nI377bAEGo4bToSOEYN3CTUx96Qde/fMpNunZLNi7B7vupHNiMmPadyTKcjLOxahp3NijNy8t+tvnHHRg3u6dHMnJoUFkJJoQPDRgEHf9NtvnsXl2O0/8NT/g81bUD67u2r3ax1Q6KkUoHZX6h90muKB515qehkJRwqDx/Xh06j0lacnbV+1i2ks/8u/MZR6zcTSDhrNhOLvv7YjRYEBKiS4lIUYj74y8gCEtWpW01aVk/HdTWXP0iF/ziQ8N44dLr6BxVDQAE2fNYOG+vZU7SUW9pUlUNAuvuzFo/SkdFcVpje6EvVs9u8tNFuVMVFQ/f3+/lMcufIlDO4+w7NdV3Hnmoyz60bORAi4FW3Egh5BdOTh0vSSFuNDh4NZff2LzieMlbTUhyLVZ/Z5PZmEBj/w5r+Tzq+eNJDk8wu94F8XpRZ69ZrzUVWKo7N27lxtuuIEWLVoQGhpKq1atePLJJ7HZyp7k+vXrGThwICEhITRp0oRXXnmlKqajOA0RGsz6NMHj/pDw4KSGKhTFxDeM9d1Iwqrf13FHv0d49rI30Z1OdKdvp7bUIHR7Wf0KiSuu5ePVK8tsP5ST4/ecnVLy7/59HMhy9Z0QFsbMCVcwqGlzv/tQnD5EmmvmvlklhsrWrVvRdZ0PPviATZs28eabb/L+++/zyCOPlLTJzs5m2LBhNGvWjFWrVvHqq6/y1FNP8eGHH1bFlGonlvMh6lWUYyt46DpIHf75JZo/viv/4BCaICTcQk667+qzCkUgZJ3wz0DQnTq5GblY86z4v/AuEG7aOqVk7q4dZbZFWwJ/mGxPSy35/waRkXw6emyF+qkJmkXH1PQUThtaxPphjFcBVeL/HjFiBCNGjCj53LJlS7Zt28Z7773Ha6+9BsDXX3+NzWbj008/xWw206lTJ9auXcsbb7zBzTffXBXTql2Y+iJi3nTVCRFGZNb/4XpHUnU0KsPBXWZmfZLI7K/i3db5kbqkMM9/17hbBEqaRVEWAQ67w+/mgUYGCl1S2MJ9kUKb04mUskSRdmyHTry3cnlAFZEtxvKPgtHtOvD1hnVeixU2iozkUE4OBiHQvajaViX7sjJrYNTTk1WHD2N1ONxeL1VJtb3KZ2VlERcXV/J5yZIlDBo0CLP5ZLno4cOHs23bNjIyMjz2Y7Vayc7OLvNTJ4l6qOTGIkJHIRJ+A1PvADsJAUNroHpLbtdmPnqmIb98kYCuV90a+/j7LkQzKC+Y4iRVGdMhNbDHWchvH1NunwBaxcaV3EsArunag5iQEAx+zinCbKZ3w4bltk/s3guzweD23AxC0Cw6ht+vmsiU0ZdwaeeutIyNU7Et9Zwcm5VFB/ZX+7jVcrfduXMn7777LrfcckvJtqNHj5KcnFymXfHno0ePeuzrxRdfJDo6uuSnSZPqrzkhol+DyMcg6gXQEivQQwjC0KJsn8amCMuAwLoxNkNLnA0hI3y3PU24dNJxho5PxxJadZ6psXeN4sN1r9F7RLcqG0NRt9B1SVJTzzFRFUUCusXA0RvbgebeCLi2W48ynxPDw/l23GW0iov3a4zruvUkxGgqt71ZTAyfjxlHTJEYnFHTMArXI6NVXDxfjR1PqMnEoGbNeW7wUK7q2q3CBRoVdYfMwoJqHzMgQ+Whh1xeAG8/W7eWlWY+dOgQI0aMYPz48dx0002VnvDDDz9MVlZWyc+BAwcq3WdgaIjQi9DCr0ELG4dI/AuMHfBf/dQAYWMRWpibrmMCmIdAhI5x/a+xfQDH1W/a987n/946wNS1m0hqXMklHg9IwBxqpnGbhkTGRWA0GWjYOtnncYr6S0RsOBfeOizo/Qogr2sstoZhcErQrQAGN2/JhE5dSrYVL/e0jI1jzhXXMH3cpXSI925Avb9yGV9vWOd2X++GjVg08WbeGn4+V3ftzsQePfny4nHMueIapJS8uXQR9/0+hzvm/MIX69aqFdHTgOJU9uokoIWm++67j+uuu85rm5YtW5b8/+HDhxk8eDD9+/cvFySbkpLCsWPHymwr/pySkuKxf4vFgqVKgryiAT+qQpquLfNRCBPEfopMvwqcu/AewGAAQ3NExD3ud1uGAc8ATh+TMICWDKHjXXMIGYLM9SdjKhSofmu4OileOg0N18nNrJp11M8e/YZ/f1iOtcCG7nB5bg7vOubjKEV9Ji8rj7mf/umKOQuyVyFqWSqGbAeZQxpS2NqlNZFoCuHmfv24pmt38u12Pl+3mq83rON4Xh5hJhMXt+/ITT170yAikq2lAmXd4ZCSxxf8gcVgYFzHzuX2W4xGLmrXgYvadQBcmUbvLF/CO8uWoAnh8vooT8ppQ++G5VWVq5qA7uSJiYkkJvq31HHo0CEGDx5Mr169+Oyzz0oEjoo588wzefTRR7Hb7ZhMLrfjvHnzaNeuHbE1EVkc+yFkXOqzmYi7t/w2QzzEz4DCWciCGeBMLfKOCHBsBiSIKAi7FBF+C0JzL2wjDPHI8Osh7yPvkzB2RMS+U9KPMLZAms8F2wI8G0kCEfMW0r4a8j7weZ51HU0Da0HVrGwumLYIp10v+0AK4D4tNIHU1Y29PiF1OLTjKG17t2Lnmj3ozuAuPYZvySR8Sya6SUM3CqLPbMYVN95Mnt3GhO+msTszo8RYyLfbmbZxPbO2bQlIRfTphX8ypn1HjJr37820TRt4e9kSAK+Btor6h6BmKqdVySvnoUOHOOecc2jWrBmvvfYaJ0oVrir2llxxxRU8/fTT3HDDDTz44INs3LiRt99+mzfffLMqpuQTzdIDnUjAS4qhYQBCuPfmCC0Mwi5HhJUtfS6lFWQBiEiE8F13RkTch0SDvE8AB2DA5WEJhZARiPCrEKYu5Y+LeQWZcSPY17rpNBli3kZYeoLlbKSeCQXTca386Sf/tQwBUy/IfaXUuGUGcS0z2ZfjOzup5lNjGra0cnCnxW32T2Vw2Hx5vEAzaiXeltKEx4TRoW8bGrVuwKzJc4M6L0XNommC0MjQKo3T0Ow6mh3Stx7l/nlzCTeb2FPKSCnGKSUFRQaLv16ePLud2Tu2c1E7z0vJTl3nraWLK30eirpJq7j4MoHb1UWVSOhPmTKFiRMnut1Xerj169czadIkVqxYQUJCAnfccQcPPvhgQGMFS0IfQDpTkSeG49ZYEe0RSTNcSz3VgNQzoPAPkNlgaAyWwQjhPbtHSgdYFyILfgI9DQxJEDoOYT6z3MUl7VuRBTPBeQS0eEToaDB1d93UrEuR+Z+BdQkgwdwLEX4dwnIO0nkcmToKZC5el6jM57i8SNafqCmj5ecp8Ux+tFHQDRV/iIyLICe9fIE3zagRkxjNy78/xk1d7qv2edU4NW+/VikxSVGcPaE/v374B06HEyFE0L0rEtBDDex9sQ9GTcOhB6//ka3bMPn8i9zuy7fbufXXWfyzf1/QxlPULZ4YdA7Xde8VtP78fX6rWj+nIKUVWfAL5H0OeioYWyAibgbzQIRQKalQZORk3Ar6IVxOOb3oxwLmMxDhV4N5kKtxwbfIvM/Aucf12dDB5bkpmA6yakvE222CRy5vwfolEdSMw9I9mkEjJMJCflb9jhcqjRCu/5wuS16N2qRwzmVncXT3MXau2cO+zQeDPsbBh7thTQ712kYA0SEhZBVa/ap0PKhZc6aMvqTcdikl182awb/799VnO1Phg08uHMPgUrWlKou/z29V8OQUhLAgwi6BsPJfVoULYWoPiX+A9W+kfRVgQJj7u4yUU92CYZdB6KUg8wCB0MIBkBHXQ8FMZN63oO8B7EGfp6ZJ+o/MYv2SyDLbW3RpymUPjeGzx6ZxdM9xD0dXHEuYBbvV7vFNWnfqp5WRAmA0m7Bbg/83rq0c3XOcVb+t5e3Fz3NL9//zfcApniaJb9PakOefwNy4Dh35fN1a7H4Yic08ZHSsPHJIeVIUpBbUzH1LGSqKCiGEAUIGI0IG+9FWgCirqim0CAi/BhF+DVIWIjMfAqvvEvP+4nTA8UMmpr3tiomKiA3njndvoMeQLsQkRRe55CUvX/Nu0MYsJrFxHAe3+1e99nThdDJSAJwOna3LdzL7oz/Yu9GHhIKA8MhQ8rILMBgNriUjP8awxZiJMJvJtXkuFCeBSEsodj+Xhy7wEJ/y07atGIRQwbOnOZ4M2apGrWUoahwhQtBi34L4ua76R3iueuwv+bkGlv6Rwqj/jOKx6ffy7ZGPOPeKgcQmx5R4fYZeNYhb37wOo8mA0ERQ1GabtGtIh35tMRjVV0sBb9/qI4MPQEJejutNNaV5Iv0u7I3R7PkdUgooaBNFSEokt/Xu67GdJgTntWzFV+vX+JyChqB/4yb0bnAy9TTHamVbWioHs7PILChQSz6nORaDgZ41kJoMyqOiqEVoppYQ+xYA0rYcmfcl2FeDnoErA+pUTEXby99CI5PPZuyDjyGMjb2OOfauUQy5ciDzv/6HfZsPMueT+ZWKo7j3o//gdOrM+2JhhftQnIYUXXKHdx1j4CX9GDSuH69c+99yS0BSgDRqpI1uxptDRzC8VWtS8/P5dO2qEo9H8b9nNGzM1V17MG/3Lp/Dt09I5L1RoxFCkJqfz2uL/+HHbVuwOV0B8/GhoYEXKFLUK6xOJ4sP7GdQs+bVPrYyVBS1EmE+A2E+AyhK8S74Hpk/DZwHXWnSoWMQYVcCEpx7kZgBiZBWMDZDGDyLBp5KdEIUY+8aBYBmEPz64R8ejZVu53Ri3V+b0AxaSQxK8f9f9fg4Op/VASklZ48/k7+/X1ouLVQzaFhCzRTkFdbr7BdFxZBS8uN/5/DtkY8ICbuPt+79lOwDJ2ufFTaPJPWS5kS0TqB1nKvGz2ODzmF8p858u2kDB7OziAkJ5aJ27enfuCn/+hlXcmnnLkRaLKTl53PxtK84kptTRoAgXXlUTns04MNVy5WholC4QwgLhF1ZZJi4wZAYtJyeW9+cSObxbP6duQyD0YCu62iahtPh5IJbzuOOyTey9JdVfP/Gz2z611UuolP/doy790L6j+5TNF/BQ1/dSUqLJGZNnltSrVkzaAwc25fzbx7KIyNfwOnwrceiOP0ozLOy4Z8txA5swbr72mE6kIeWb8cRZ8Ge6MryybIWctXM7/jz2hsIM5loGOFaBooOCaHAbifUZEIIwbG88iny7mgV6yoY+/iCPziUW16eQRkpCh1YfPAADl33KQoYbFR6skJxClJKtq3YyR9f/k3G8SwSG8czfOJgWnRuWq4d4FUAqSC3gC1Ld+CwO2nVvTnxDVyqy8tmr+b5y9+kIKfQv0m50R9p1rFxlaS9Kk5SUyrCCY3jiH1nBPMO7PEawNomLo4cm42juS6DpPgyMWkarWNn8QAAGelJREFULWPj2OZDPl8TgoaRkfx17Y1sOXGcC6d9FcSzUNRHttx2FxZjcHwcSkdFoajlFOZb+Wv6Ynat3UNedj4Oq4NtK3eReSyL2JQYRt4whAtuGcq2Fbv4/s1fWL9wE1JKugzsyIT/u4ju53bms8em8d1rs9CLHqani05JddHrvC6s+mNDjbgU9j/cDbsPnZTKoAmBUdP48uJx9GnYmBt/+oE/9+6usvEUdZ/GUdH8fd2NQetPGSoKxWlCxrFMFn67hGWzV7Py97XKTx9EJq96mXvOehxbgecU4KoifXgjMkY2qbL+G0dF8d75F9EpKZlCh53O/3vHZ2EMxelN1+QUfrzUwxJ8BfD3+a1yKBWKOk5scgxj7hjJA5/fjsHgu56UwjdCCFr3aMGhbUdqxEgBMB/Khyr0kMWEhNApKRmA5QcPKiNF4ZM9Gek1Mq4yVBSKekJsUjSXP3yx231CExiMGpfccwEGUyljpii8JiwqlIiY8GqYZe1HFJWIvfGlK1kxx7cGSVVhOlEIWtWVfjBprusgz2bj7t+CJ7YI0FR5t+sljhpaWlaGikJRj7jmqQnc8MIVhESUFc1LaZHEy/Oe4D+vX8sP6VO458P/cO4VZzH4sgHcOflGph74gKseH+e178i4CMbdeyH/Xf4il9xzAZbQoiKZtaeMkke0AAT4ImIjeGrG/fQ6rxtH9h6rwll5x3ysgKg1aUDwf8WaEJzboiUAP27bQqbVz6BuPzmQnR3U/hQ1jyYE3VP8l30IJio9WaGoRwghuOyhixl9x0hWzl1LXlY+DVol03VQx5LspNDwEM6/cQjn3zikzLFj7x7F8f2pzHz7VwxGlzaMZnBJuvcc2oWnZt5PaIQruLNd79Zc/8IVLPphOXs37sdgNPDPzKW+5eJ9ngAYDBpSSsKjw8nJyC2JuYlNjqZ556asmb8hoP66nNWBph0as3vdXrYs2+HzkDvevaEk1bw4tTzYJDVNIO1whtcUdaNR42pjY5oMGchna1f7zODxF00IQoxGJnTqAsC/+/chEH4VLfQXFSZV/9Cl5LpuPWtkbGWoKBT1kNDwEAZe0i+gY4QQ3PrmdYy8cQhzP5nP0X0niIqLZMiVA+l6dsdyadhmi4nBlw0ABgBw1RPjWPLTSn7631z2bDyA0Wgg9XC6K43bjydX+75teP6Xh4iKj0JKiRCCEwfTOLDtMCFhZtr1aY1m0Pjhndm8f+8Uv4RS4xvE8sT39xGTGM3in1bw5JhXfB4TFh1W8v+xScGpbZLYJJ6+5/ek04D2NO3QiDY9W7Jl6XYeOO9ZrPnljSGhCcyhZi578GIatW7AhE5dcOg6l34/jfXHjla45o4AQo1GPrloLIlhrqU+Xeoo00Lhi4ndezK0ZfAqJweCyvpRKBRVxtoFG3nxqndIP5KBZtBK0qeHXXcOw649h93r9mEwGeh1XlcatvLfrfzZ49P45vkZXtu06dWSx7+9lwYtXAGjBXmFTEi50auXJCwqlG+PfIQl1ALAJ498w/RXfvSa9m00GXDYPXtGNE3QY0gXXvrt8XL7CvMLeWrsa6yat66MrdC4XUMe/eZuWvdoUab9zvQ0xn03lTybLSBjpWVMLI2iojiraTPGdehMbOjJtOf3Vi7jtcWLgupRUdQ/PrnwYgYXLRcGC3+f38qjolAoqozugzvzzb73WDF3Lfs2HyQ0IoR+F/YiqUkCAF0HdaxQv9c8NZ60w+n89tmCkxWHi8TZGrdtwAOf306Hvm3LHBMaHsKlD4zh8yene+z38ocuLjFSAM6/aQjTX/nRY3shwGgyejVUdF2SecJ9zEZIWAgvzX2M1ENpLJ+zFluhjZZdm9FlYAe3QoKt4+L5+bKrmbxiaZlaPN4wahpnN2/B44PcVzp3OHVlpCh8MmXd6qAbKv6iPCoKhaLOsmP1bn77bAGph9KISYrhvGvOpuOZbT2qBeu6zscPfsX3b/ziqpitCXRdInXJhPsv4oYXryx37My3f+W9e6aUtC1GaIJe53UlKzWHnWv2ePS6GIwaZ43ty2PT7g3eiQNWh4N9WZmM+Ppzr+0MQnBbn77c029AuX2/bt/GHXN/8Xp8YlgYJ/LzKzVXRd3HqGlsv/2eoPapPCoKhaLe06ZnS9r09P8tT9M0bn71GkbfPpL5X/9D+pEM4hvGMeSqgSVenlMZe9coGrZKYdrLP7Bp0TYAEhrHM+b2kYy9+3zmffE3b978vscxnQ6dkTcM8bi/oliMRtrGJ9CrQUPWHD2C7uGd0yklI1q3LbddSsnby5e4q85Qhpt79uH5f1U18NMdh64ze8c2zm/TrtrHVh4VhUKh8JP8nAIcNgcRseFoRYXZbFY7D573DJuXbC+pqF2MEDBofH8enXq315pQleGf/Xu57scZbo0NTQgGN2/BRxeW19c5mJ3FoCkfe+3bIAR39j2TfLudD1atwCBESWyMVrQ/1Gwm12bzaCgp6g8xISEsu+E/mIIkLKmUaRUKhSLIhEWGEhUfWWKkgCv76cW5jzF60ggsYSfjWyJiwrn6iQk8/NWdVWakAAxs2pzXh51PiNGIwFWQ0FA03uDmLXhr+Ci3xxXYHT77FkJgdTh5cMAgvrp4PENatCI5PIImUdFM7NGLeddcz6cXjSXEYCwZU1F/ySws5O/9e6t9XOVRUSgUiiBRkFvAno0HMBg0WnRthtliqraxc6xWft6+lV0Z6USYzYxo3ZYOCYke2+fb7fT+6H8UOrwbLG8NP5+L2nXw2mZfZiafrV3FT9u2kmuzghA4dCXKXx95+pwhXN21e1D6UkUJFQqFQuGVJxb8wdSN692mOgsgOiSEJdffgsUYWDhjWn4+1/80kw3Hj2EQGhKJlCq3qD7wxrCRjGlfsWy9U1HBtAqFQqHwyn1nnsXSgwfYnZlRJsbEIARCCN4aPipgIwUgPiyMHy69kn/372POzu3k2W0cyclh1ZHDFZpnqNFIgQ/Pj6L+ogwVhUKhOE2JDgnh+wmX8/7KFUzduI4sqxVNCIa2bMVtffrRpai6ckXQhGBQs+YMatYcgPdXLvfLUHn+nKFk261sTU2lQUQkZzVtRsPISM794lOfx3ZISGRL6gmfmUyKipNtrZqyEt5QhopCoVCcxkRZQnhgwEDuO3MAuTYbIUZjhbwovkiJiPCr3ZlNm9I8JrbMNiklHRIS2Zqa6lGcThOCTy8aS3phAT9s2cT3WzaRWei+2KJJ07CrGJoK0SAistrHVFk/CoVCocCgaUSHhFSJkQJwXsvWhHrpWwA9UhqUM1LAlX1035ln4clPIoCrunQjOSKCDgmJPDLwHOZffT3nFHlzBCcrUHdLTmH+Ndez6457GVZDtWvqKrEhIZzdvIXvhkFGBdMqFAqFolr4Yt0anlr4Z7ntGi4xvqmXTKBXg0Yej/9p2xYe/fMP8uw2jJqGU5cI4TJSHhs0GKNW/t17d0Y6iw/sR5eSng0a0rnUcpaUki/Xr+HtZUvIOMX7EmowIoQg32Gv+AnXM/zJAAsElfWjUCgUilrH9E0beHXxP6QXFJRsaxUbx/PnnscZjRr7PL7Abue3XTvYn5VFlMXCiNZtSKnkcoSUkhybK/Yi0uzSwhFCkJafzxtLFvHt5o045cmlIrNmIMRkJMdqLfHxpIRHcEajxtidTubv2YWtBpaWqjI2x6RpbKshCX1lqCgUCoWiWrE7nSw7dJDMwgKaREXTNTmlSkXxKotT19mdmc7BrGzCTCa6pzTAYjQipSSzsBCDJoiyhJQ5ZtGBffx3+VJO5OURFxrKjvR0sqzuY2YqS6jRyDXdetAhIZG7f5tdJWOkhEew+IZbgtqnSk9WKBQKRa3EZDBwVtNmNT0NvzFoGm3iEmgTV7YelBCC2NBQt8cMaNKMAU1OnuMHq5bz8qJ/qmR+748azcBmzZFSMm/3Ln7dsS3oY1zVtVvQ+/QXFUyrUCgUCkUVc0OP3gxt4bmApiYEsSEhFXoo59hsgMtwenP4+dza+4wKztI9yeHh3NIruH0GgjJUFAqFQqGoYoyaxvsXjOGlIcOIDSm7TGQQgrHtO/LjpVfRLCaWQBfBWsSezJQyahr39x/IhW2DU+W4W3IK866aiMFNoHJ1oWJUFAqFQqGoZvZnZbL26BGMmkafRo1JDAsHXDWbpm/awLRNGziel4vV4cCh6x6rY3dKTGLWZVeV23c0J4f+n30Y0JyKg3EFMLJ1Wx4ZeDYNI6vuuaqCaRUKhUKhqOOsPXqEy2d8i0N3lqnJZBACi8HI9HGX0smDgvD1s2bw9769+Mo/ig8No1tyCglhYbSKi2Ns+07Eh4UF8Szco4JpFQqFQqGo43RPacDMCZfz+pJFLNi7G4nLkzKkRSvuPXMAbeMTPB77wIBBLDt0EKvTWaaWUzEXtG3HlZ270bthoxpd2vGF8qgoFAqFQlEHyCgoIL0gn/iwMGJC3GcbncrG48d49M95bDh+rGRbbEgId/Xtz9Vdu9doWrha+lEoFAqFQgHAltQT7MvMJNJipk/DxpgNhpqeklr6USgUCoVC4aJDQiIdEhJrehoVovYuSikUCoVCoTjtUYaKQqFQKBSKWosyVBQKhUKhUNRalKGiUCgUCoWi1qIMFYVCoVAoFLUWZagoFAqFQqGotShDRaFQKBQKRa1FGSoKhUKhUChqLcpQUSgUCoVCUWup88q0xRUAsrOza3gmCoVCoVAo/KX4ue2rkk+dN1RycnIAaNKkSQ3PRKFQKBQKRaDk5OQQHR3tcX+dL0qo6zqHDx8mMjIyKFUgs7OzadKkCQcOHDjtihyezucOp/f5q3NX5366nTuc3udfG85dSklOTg4NGzZE0zxHotR5j4qmaTRu3Djo/UZFRZ12F24xp/O5w+l9/urc1bmfjpzO51/T5+7Nk1KMCqZVKBQKhUJRa1GGikKhUCgUilqLMlROwWKx8OSTT2KxWGp6KtXO6XzucHqfvzp3de6nI6fz+delc6/zwbQKhUKhUCjqL8qjolAoFAqFotaiDBWFQqFQKBS1FmWoKBQKhUKhqLUoQ0WhUCgUCkWt5bQ2VJ5//nn69+9PWFgYMTExbtsIIcr9TJs2rUybv/76i549e2KxWGjdujVTpkyp+slXEn/Off/+/YwaNYqwsDCSkpK4//77cTgcZdrUxXN3R/Pmzcv9nV966aUybdavX8/AgQMJCQmhSZMmvPLKKzU02+AyefJkmjdvTkhICH379mX58uU1PaWg89RTT5X7+7Zv375kf2FhIZMmTSI+Pp6IiAguueQSjh07VoMzrhx///03F154IQ0bNkQIwY8//lhmv5SSJ554ggYNGhAaGsrQoUPZsWNHmTbp6elceeWVREVFERMTww033EBubm41nkXF8HXu1113XblrYcSIEWXa1NVzf/HFF+nTpw+RkZEkJSUxZswYtm3bVqaNP9e6P/f+6uS0NlRsNhvjx4/n1ltv9drus88+48iRIyU/Y8aMKdm3Z88eRo0axeDBg1m7di133303N954I7/99lsVz75y+Dp3p9PJqFGjsNlsLF68mM8//5wpU6bwxBNPlLSpq+fuiWeeeabM3/mOO+4o2Zednc2wYcNo1qwZq1at4tVXX+Wpp57iww8/rMEZV57p06dz77338uSTT7J69Wq6devG8OHDOX78eE1PLeh06tSpzN/333//Ldl3zz338PPPP/Pdd9+xcOFCDh8+zNixY2twtpUjLy+Pbt26MXnyZLf7X3nlFd555x3ef/99li1bRnh4OMOHD6ewsLCkzZVXXsmmTZuYN28ev/zyC3///Tc333xzdZ1ChfF17gAjRowocy1MnTq1zP66eu4LFy5k0qRJLF26lHnz5mG32xk2bBh5eXklbXxd6/7c+6sdqZCfffaZjI6OdrsPkD/88IPHYx944AHZqVOnMtsuvfRSOXz48CDOsOrwdO6zZ8+WmqbJo0ePlmx77733ZFRUlLRarVLKun/upWnWrJl88803Pe7/3//+J2NjY0vOXUopH3zwQdmuXbtqmF3VccYZZ8hJkyaVfHY6nbJhw4byxRdfrMFZBZ8nn3xSduvWze2+zMxMaTKZ5HfffVeybcuWLRKQS5YsqaYZVh2n3sN0XZcpKSny1VdfLdmWmZkpLRaLnDp1qpRSys2bN0tArlixoqTNnDlzpBBCHjp0qNrmXlnc3b+vvfZaOXr0aI/H1Jdzl1LK48ePS0AuXLhQSunfte7Pvb+6Oa09Kv4yadIkEhISOOOMM/j000/LlKResmQJQ4cOLdN++PDhLFmypLqnGVSWLFlCly5dSE5OLtk2fPhwsrOz2bRpU0mb+nTuL730EvHx8fTo0YNXX321jKtzyZIlDBo0CLPZXLJt+PDhbNu2jYyMjJqYbqWx2WysWrWqzN9Q0zSGDh1aZ/+G3tixYwcNGzakZcuWXHnllezfvx+AVatWYbfby/we2rdvT9OmTevl72HPnj0cPXq0zPlGR0fTt2/fkvNdsmQJMTEx9O7du6TN0KFD0TSNZcuWVfucg81ff/1FUlIS7dq149ZbbyUtLa1kX30696ysLADi4uIA/651f+791U2dL0pY1TzzzDOce+65hIWF8fvvv3PbbbeRm5vLnXfeCcDRo0fL/EEBkpOTyc7OpqCggNDQ0JqYdqXxdF7F+7y1qYvnfuedd9KzZ0/i4uJYvHgxDz/8MEeOHOGNN94AXOfaokWLMseU/n3ExsZW+5wrS2pqKk6n0+3fcOvWrTU0q6qhb9++TJkyhXbt2nHkyBGefvppBg4cyMaNGzl69Chms7lcrFZycnLJtV6fKD4nd3/30t/tpKSkMvuNRiNxcXF1/ncyYsQIxo4dS4sWLdi1axePPPIII0eOZMmS/2/n/kKaauM4gP/exs5qjTlhB48YiguTwtZs0OFQdyvJq4guzAuzLvpnBtEKijCIqIygLqIouqiLLqSbqIsQbG4XlQnJVokizdQQZIIxWmnl2reL6HnfpenKuZ3t/X1geDg+PDzfh7OH39mesy4yGAx5kz2RSNCRI0do48aNVFVVRUSU0rWeytqfaXlXqJw4cYIuXrw4Z5v+/v6kjXRzaWlpEcfV1dX06dMnunTpkihU9CTd2XPdn8zH0aNHxTmn00mSJNH+/fvpwoULOfET02xutbW14tjpdJKqqlRWVkb37t3LqYKaLdzOnTvF8dq1a8npdNLKlSspEAiQx+PJ4sjS69ChQ9Tb25u0FytX5V2h4vV6affu3XO2cTgcf92/qqp09uxZ+vLlC5lMJlIUZcaO6UgkQlarNeMLYDqzK4oy4+mPnzkVRRF/9ZJ9NguZD1VVKR6P0/DwMFVWVv42K9G/85Fr7HY7GQyGWXPlaqZU2Ww2WrVqFYXDYdqyZQt9/fqVotFo0p1mvs7Dz0yRSISKi4vF+UgkQi6XS7T5dUN1PB6n9+/f592cOBwOstvtFA6HyePx5EX25uZmsQl4xYoV4ryiKPNe66ms/ZmWd4WKLMsky/Ki9R8KhaiwsFDcZWuaRo8ePUpq09HRQZqmLdoYfied2TVNo3PnztH4+Lj4GLSjo4OsViutWbNGtNFL9tksZD5CoRAtWbJEZNc0jU6dOkXT09NkNBqJ6EfWysrKnPzah4hIkiRyu93k8/nEk2yJRIJ8Ph81Nzdnd3CL7OPHjzQ4OEgNDQ3kdrvJaDSSz+ejHTt2EBHRwMAAvXv3TjfXcjqVl5eToijk8/lEYfLhwwfq7u4WTwFqmkbRaJR6enrI7XYTEVFnZyclEglSVTVbQ18Uo6OjNDExIYq2XM4OgA4fPkz379+nQCAw4+vqVK71VNb+jMvKFl6dGBkZQTAYxJkzZ2CxWBAMBhEMBhGLxQAADx8+xK1bt/D69Wu8efMG169fh9lsxunTp0Ufb9++hdlsxvHjx9Hf349r167BYDCgvb09W7FSMl/2eDyOqqoq1NTUIBQKob29HbIs4+TJk6KPXM3+q2fPnuHKlSsIhUIYHBzE3bt3Icsydu3aJdpEo1EUFRWhoaEBvb29aGtrg9lsxs2bN7M48oVra2uDyWTCnTt30NfXh3379sFmsyXt+M8HXq8XgUAAQ0NDePr0KTZv3gy73Y7x8XEAwIEDB1BaWorOzk68ePECmqZB07Qsj/rvxWIx8Z4mIly+fBnBYBAjIyMAgNbWVthsNjx48ACvXr3Ctm3bUF5ejqmpKdHH1q1bUV1dje7ubjx58gQVFRWor6/PVqSUzZU9Fovh2LFj6OrqwtDQEB4/foz169ejoqICnz9/Fn3kavaDBw+ioKAAgUAAY2Nj4jU5OSnazHetp7L2Z9r/ulBpbGwEEc14+f1+AD8eSXO5XLBYLFi+fDnWrVuHGzdu4Nu3b0n9+P1+uFwuSJIEh8OB27dvZz7MH5ovOwAMDw+jtrYWy5Ytg91uh9frxfT0dFI/uZj9Vz09PVBVFQUFBVi6dClWr16N8+fPJy1cAPDy5Uts2rQJJpMJJSUlaG1tzdKI0+vq1asoLS2FJEnYsGEDnj9/nu0hpV1dXR2Ki4shSRJKSkpQV1eHcDgs/j81NYWmpiYUFhbCbDZj+/btGBsby+KIF8bv98/6/m5sbATw4xHllpYWFBUVwWQywePxYGBgIKmPiYkJ1NfXw2KxwGq1Ys+ePeJGRs/myj45OYmamhrIsgyj0YiysjLs3bt3RmGeq9lny01ESetyKtd6Kmt/Jv0D/OdZW8YYY4wxHeHfUWGMMcaYbnGhwhhjjDHd4kKFMcYYY7rFhQpjjDHGdIsLFcYYY4zpFhcqjDHGGNMtLlQYY4wxpltcqDDGGGNMt7hQYYwxxphucaHCGGOMMd3iQoUxxhhjusWFCmOMMcZ06zvF7aKjMV+L9wAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se distinguen fácilmente la diferencia entre el cluster morado y verde, siendo evidente la \"separación\" entre ellos. Para los cluster amarillo y morado, es menos evidente esta distinción, sin embargo también es posible identificarlos."
],
"metadata": {
"id": "Ljbr0zhY-nsk"
}
},
{
"cell_type": "markdown",
"source": [
"**DATOS ESCALADOS**\n",
"\n",
"Se comienzan escalando los datos con la función `MinMaxScaler` y se repite el proceso de encontrar el `k` óptimo.\n",
"Esta función, escala el conjunto de datos entre 0 y 1, donde los valores mínimo y máximo en el conjunto de datos escalados son 0 y 1 respectivamente.\n",
"\n"
],
"metadata": {
"id": "neW2mkrD2TMp"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import MinMaxScaler\n",
"scaler1 = MinMaxScaler()\n",
"\n",
"scaler1.fit(df_new)\n",
"scaled1 = scaler1.transform(df_new)\n",
"scaled1_df = pd.DataFrame(scaled1, columns=df_new.columns)"
],
"metadata": {
"id": "Y9kHzv1aHtlM"
},
"execution_count": 10,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sse_scaled = []\n",
"\n",
"clusters = list(range(1, 11)) #range(1,41)\n",
"for k in clusters:\n",
" kmeans_scaled1 = KMeans(n_clusters=k).fit(scaled1_df)\n",
" sse_scaled.append(kmeans_scaled1.inertia_)\n",
"\n",
"plt.plot(clusters, sse_scaled, marker=\"o\")\n",
"plt.title(\"Método del codo de 1 a 10 clusters\")\n",
"plt.grid(True)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 819
},
"id": "p8Wwon8_H5KV",
"outputId": "e07c2d54-fdf7-482b-d891-fecd65ae24bb"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpL0lEQVR4nO3deVxUVeMG8GdmYGbYBhy2AUXAXUTFXVwxFVSyNKufZeZWli9malnZa+7Fq2+aZaavLWoub2Wlb1op4waaCILiLm4obsMiwrAzwP39QTM6AgoKzAw838+HT829Z+49d86Ij/fcc45IEAQBRERERBZEbOoKEBEREVUXAwwRERFZHAYYIiIisjgMMERERGRxGGCIiIjI4jDAEBERkcVhgCEiIiKLwwBDREREFocBhixeVFQUFi5ciKysLFNXhYiI6ggDDFm0a9euYcSIEXBwcICjo2OdnPPAgQMQiUQ4cOBArZ5n/fr1EIlEuHr1arXfO3/+fIhEopqv1GOoq7qMHz8ePj4+tX6ehigoKAhBQUGmrgaREQYYMgn9X84ikQiHDh0qt18QBHh5eUEkEuHpp5+u8Bg6nQ7/93//h/Hjx2PGjBnl9n/11VdYv359TVedGojbt2/jgw8+wIABA+Dg4FAnofV+H3/8MZ555hm4u7tDJBJh/vz5lZa9efMmXnzxRTg5OUGhUODZZ5/FlStX6qyuT+qTTz7B9u3bTV0NsjAMMGRScrkcW7ZsKbc9MjISN27cgEwmq/S9Z86cwejRo7Fs2bIK9zPA0JNITEzEkiVLcPPmTbRv377Ozz9nzhwcPXoUnTp1emi5nJwcDBgwAJGRkfjwww+xYMECHD9+HP3798edO3fqqLZPhgGGHoeVqStADduwYcOwdetWfPHFF7Cyuvd13LJlC7p06YL09PRK3xsQEICAgIA6qCU1RF26dMGdO3egVCrx888/44UXXqjT8yclJcHHxwfp6elwdXWttNxXX32FixcvIjY2Ft26dQMADB06FP7+/li2bBk++eSTuqqyWSkoKIBUKoVYzH+n11dsWTKpl156CXfu3IFarTZsKyoqws8//4yXX365wveUlpZixYoVaNeuHeRyOdzd3fHGG2/g7t27hjI+Pj44c+YMIiMjDV1V9/fhX7lyBS+88AKUSiVsbW3Rs2dP/P777+XOdePGDYwYMQJ2dnZwc3PDjBkzUFhYWGG9tm7dii5dusDGxgYuLi545ZVXcPPmzSp9DmfOnMFTTz0FGxsbNGnSBIsXL0ZpaWmFZf/880/07dsXdnZ2cHBwQGhoKM6cOVOl81QkJiYGw4YNQ6NGjWBnZ4cOHTrg888/Nyqzb98+wzmdnJzw7LPP4ty5c+WOdejQIXTr1g1yuRzNmzfHf/7znwrPWVxcjEWLFqF58+aQyWTw8fHBhx9+WOln+6Dt27fD398fcrkc/v7+2LZtW4XlqvJdqYyDgwOUSmWV6lORgwcP4oUXXkDTpk0hk8ng5eWFGTNmID8/v0rvr+rzPD///DO6detmCC8A0KZNGwwcOBA//fRTlY6xadMmdO/eHba2tmjUqBH69euHiIiISstX9nxWRc+HXbx4EaNGjYJKpYJcLkeTJk0wevRow0P3IpEIubm52LBhg+HP6vjx4w3vv3nzJiZOnAh3d3fIZDK0a9cO3333XYXn/eGHHzBnzhw0btwYtra20Gq10Ol0WLBgAVq2bAm5XA5nZ2f06dPH6HcOWSbegSGT8vHxQWBgIP773/9i6NChAMr+gs7KysLo0aPxxRdflHvPG2+8gfXr12PChAmYNm0akpKS8OWXX+L48eP466+/YG1tjRUrVuCtt96Cvb09/vnPfwIA3N3dAQApKSno1asX8vLyMG3aNDg7O2PDhg145pln8PPPP2PkyJEAgPz8fAwcOBDJycmYNm0aPD09sXHjRuzbt69cnfT16datG8LDw5GSkoLPP/8cf/31F44fPw4nJ6dKPwONRoMBAwaguLgYH3zwAezs7LB27VrY2NiUK7tx40aMGzcOISEhWLJkCfLy8rB69Wr06dMHx48fr/ZDrGq1Gk8//TQ8PDzw9ttvQ6VS4dy5c9i5cyfefvttAMCePXswdOhQNGvWDPPnz0d+fj5WrlyJ3r1749ixY4Zznjp1CsHBwXB1dcX8+fNRXFyMefPmGT73+7322mvYsGEDnn/+ebzzzjuIiYlBeHg4zp07V2kY0YuIiMCoUaPg5+eH8PBw3LlzBxMmTECTJk3Kla3Kd6W2bN26FXl5eZgyZQqcnZ0RGxuLlStX4saNG9i6dWuNnKO0tBQnT57ExIkTy+3r3r07IiIikJ2dDQcHh0qPsWDBAsyfPx+9evXCwoULIZVKERMTg3379iE4OPiJ6ldUVISQkBAUFhbirbfegkqlws2bN7Fz505kZmbC0dERGzduxGuvvYbu3btj8uTJAIDmzZsDKPuz2rNnT4hEIkydOhWurq74888/MWnSJGi1WkyfPt3ofIsWLYJUKsW7776LwsJCSKVSzJ8/H+Hh4YZzaLVaxMXF4dixYxg8ePATXR+ZmEBkAuvWrRMACEePHhW+/PJLwcHBQcjLyxMEQRBeeOEFYcCAAYIgCIK3t7cQGhpqeN/BgwcFAMLmzZuNjrdr165y29u1ayf079+/3LmnT58uABAOHjxo2JadnS34+voKPj4+QklJiSAIgrBixQoBgPDTTz8ZyuXm5gotWrQQAAj79+8XBEEQioqKBDc3N8Hf31/Iz883lN25c6cAQJg7d+5DPwt9fWJiYgzbUlNTBUdHRwGAkJSUZKijk5OT8Prrrxu9X6PRCI6Ojkbb582bJzzqj3dxcbHg6+sreHt7C3fv3jXaV1paavj/gIAAwc3NTbhz545h24kTJwSxWCy8+uqrhm0jRowQ5HK5cO3aNcO2s2fPChKJxKguCQkJAgDhtddeMzrnu+++KwAQ9u3b99B6BwQECB4eHkJmZqZhW0REhABA8Pb2NmyrznflUbZu3WrU5lWh/z7fLzw8XBCJREaf0aOkpaUJAIR58+ZVum/hwoXl9q1atUoAIJw/f77SY1+8eFEQi8XCyJEjDd97vfu/A/379zf6s6T/86v/burt37/f6HM6fvy4AEDYunXrQ6/Rzs5OGDduXLntkyZNEjw8PIT09HSj7aNHjxYcHR0Nn7H+vM2aNSv3uXfs2NHodwjVH+xCIpN78cUXkZ+fj507dyI7Oxs7d+6stPto69atcHR0xODBg5Genm746dKlC+zt7bF///5Hnu+PP/5A9+7d0adPH8M2e3t7TJ48GVevXsXZs2cN5Tw8PPD8888bytna2hr+lagXFxeH1NRU/OMf/4BcLjdsDw0NRZs2bSrsmnqwPj179kT37t0N21xdXTFmzBijcmq1GpmZmXjppZeMrl0ikaBHjx5Vuvb7HT9+HElJSZg+fXq5O0T6Yc+3b99GQkICxo8fb9Sd0qFDBwwePBh//PEHAKCkpAS7d+/GiBEj0LRpU0O5tm3bIiQkpNz1AsDMmTONtr/zzjsA8NDPS1+fcePGGQ2bHzx4MPz8/IzK1sR35UncfwctNzcX6enp6NWrFwRBwPHjx2vkHPruqIoedtd/Fx/WZbV9+3aUlpZi7ty55Z4VqYmh7/o22r17N/Ly8qr1XkEQ8Msvv2D48OEQBMGoDUNCQpCVlYVjx44ZvWfcuHHl7lw6OTnhzJkzuHjx4pNdDJkdBhgyOVdXVwwaNAhbtmzBr7/+ipKSEqPQcL+LFy8iKysLbm5ucHV1NfrJyclBamrqI8937do1tG7dutz2tm3bGvbr/9uiRYtyv8gffK++fEXHbNOmjWH/w+rTsmXLctsfPJ7+F/BTTz1V7tojIiKqdO33u3z5MgDA39//oXWrqC5A2eeVnp6O3NxcpKWlIT8/v0rXce3aNYjFYrRo0cJou0qlgpOT00M/L/2+qn5eT/pdeRLJycmG4Gdvbw9XV1f0798fAGps0kX9X9YVPTtUUFBgVKYily9fhlgsLhf+aoqvry9mzpyJb775Bi4uLggJCcGqVauqdP1paWnIzMzE2rVry7XfhAkTAKBcG/r6+pY7zsKFC5GZmYlWrVqhffv2mDVrFk6ePFkzF0gmxWdgyCy8/PLLeP3116HRaDB06NBKnxkpLS2Fm5sbNm/eXOH+h43WsHT6h3o3btwIlUpVbv/9o7gsQW1PbmfK70pJSQkGDx6MjIwMvP/++2jTpg3s7Oxw8+ZNjB8/vtIHtKtLqVRCJpPh9u3b5fbpt3l6etbIue5XWduVlJSU27Zs2TKMHz8e//vf/xAREYFp06YhPDwcR44cqfC5JT39Z/TKK69g3LhxFZbp0KGD0euKwlq/fv1w+fJlw/m/+eYbfPbZZ1izZg1ee+21Ss9P5s+yfuNRvTVy5Ei88cYbOHLkCH788cdKyzVv3hx79uxB7969H/ovS6DyX7Le3t5ITEwst/38+fOG/fr/nj59GoIgGB3rwffqyycmJuKpp54y2peYmGjYXxlvb+8Kb28/eB79g41ubm4YNGjQQ49ZFfrjnT59utLj3X9tDzp//jxcXFxgZ2cHuVwOGxubKl2Ht7c3SktLcfHiRcNdL6Dsgc3MzMyHfl76fVX9vKr6Xalpp06dwoULF7Bhwwa8+uqrhu01PfJFLBajffv2iIuLK7cvJiYGzZo1e+gDvM2bN0dpaSnOnj1brSkJGjVqBADIzMw02l7Z3bP27dujffv2mDNnDg4fPozevXtjzZo1WLx4MYCK/6y6urrCwcEBJSUlT/x9VyqVmDBhAiZMmICcnBz069cP8+fPZ4CxcOxCIrNgb2+P1atXY/78+Rg+fHil5V588UWUlJRg0aJF5fYVFxcb/UK1s7Mr9wsWKJt7JjY2FtHR0YZtubm5WLt2LXx8fAy304cNG4Zbt27h559/NpTLy8vD2rVrjY7XtWtXuLm5Yc2aNUa38v/880+cO3cOoaGhD732YcOG4ciRI4iNjTVsS0tLK3fnICQkBAqFAp988gl0Ol2546SlpT30PA/q3LkzfH19sWLFinKfkyAIAAAPDw8EBARgw4YNRmVOnz6NiIgIDBs2DAAgkUgQEhKC7du3Izk52VDu3Llz2L17d7nrBYAVK1YYbV++fDkAPPTzur8+93dDqNVqw7NLetX5rtQ0iUQC4N7nqP//B4en14Tnn38eR48eNQoxiYmJ2Ldv3yPnrhkxYgTEYjEWLlxY7q7Q/XV/kD78RkVFGbaVlJSU+7Oh1WpRXFxstK19+/YQi8VGf1Yq+rMqkUgwatQo/PLLLzh9+nS5OlT1+/7gZH729vZo0aJFlYfsk/niHRgyG5XdJr5f//798cYbbyA8PBwJCQkIDg6GtbU1Ll68iK1bt+Lzzz83PD/TpUsXrF69GosXL0aLFi3g5uaGp556Ch988IFh2Pa0adOgVCqxYcMGJCUl4ZdffjE8zPj666/jyy+/xKuvvor4+Hh4eHhg48aNsLW1NaqTtbU1lixZggkTJqB///546aWXDMOofXx8Klzm4H7vvfceNm7ciCFDhuDtt982DKP29vY26qtXKBRYvXo1xo4di86dO2P06NFwdXVFcnIyfv/9d/Tu3RtffvlllT9vsViM1atXY/jw4QgICMCECRPg4eGB8+fP48yZM4bg8e9//xtDhw5FYGAgJk2aZBhG7ejoaDS9/YIFC7Br1y707dsX//jHP1BcXIyVK1eiXbt2RtfRsWNHjBs3DmvXrkVmZib69++P2NhYbNiwASNGjMCAAQMeWu/w8HCEhoaiT58+mDhxIjIyMgznycnJMZSrznelMvo7BPp5djZu3GhY+mLOnDmVvq9NmzZo3rw53n33Xdy8eRMKhQK//PJLleaf0du4cSOuXbtmePg1KirKUJ+xY8ca7kb94x//wNdff43Q0FC8++67sLa2xvLly+Hu7m54MLoyLVq0wD//+U8sWrQIffv2xXPPPQeZTIajR4/C09MT4eHhFb6vXbt26NmzJ2bPno2MjAwolUr88MMP5cLKvn37MHXqVLzwwgto1aoViouLsXHjRkM40evSpQv27NmD5cuXw9PTE76+vujRowf+9a9/Yf/+/ejRowdef/11+Pn5ISMjA8eOHcOePXuQkZHxyM/Rz88PQUFB6NKlC5RKJeLi4vDzzz9j6tSpj3wvmTnTDYCihuz+YdQP8+Awar21a9cKXbp0EWxsbAQHBwehffv2wnvvvSfcunXLUEaj0QihoaGCg4ODAMBoGOjly5eF559/XnBychLkcrnQvXt3YefOneXOc+3aNeGZZ54RbG1tBRcXF+Htt982DMN9cEjtjz/+KHTq1EmQyWSCUqkUxowZI9y4caNKn8fJkyeF/v37C3K5XGjcuLGwaNEi4dtvv610qGpISIjg6OgoyOVyoXnz5sL48eOFuLg4Q5mqDKPWO3TokDB48GDBwcFBsLOzEzp06CCsXLnSqMyePXuE3r17CzY2NoJCoRCGDx8unD17ttyxIiMjhS5dughSqVRo1qyZsGbNmgrrotPphAULFgi+vr6CtbW14OXlJcyePVsoKCioUp1/+eUXoW3btoJMJhP8/PyEX3/9VRg3bpzRMGq9qnxXKgOg0p9HOXv2rDBo0CDB3t5ecHFxEV5//XXhxIkTAgBh3bp1j3x///79Kz33g9+969evC88//7ygUCgEe3t74emnnxYuXrz4yHPofffdd4bvbqNGjYT+/fsLarXaqC4PTklw+fJlYdCgQYJMJhPc3d2FDz/8UFCr1Ub1u3LlijBx4kShefPmglwuF5RKpTBgwABhz549Rsc6f/680K9fP8HGxkYAYDSkOiUlRQgLCxO8vLwEa2trQaVSCQMHDhTWrl1rKKMfRl3RcO3FixcL3bt3F5ycnAQbGxuhTZs2wscffywUFRVV+fMh8yQShIfcJyQiIiIyQ3wGhoiIiCwOAwwRERFZHAYYIiIisjgMMERERGRxGGCIiIjI4jDAEBERkcWptxPZlZaW4tatW3BwcKj1NVeIiIioZgiCgOzsbHh6epZbJf1+9TbA3Lp1C15eXqauBhERET2G69evP3TBz3obYPQLmF2/fh0KhcLEtTFPOp0OERERhinWybTYHuaF7WFe2B7mpTbbQ6vVwsvL66ELkQL1OMDou40UCgUDTCV0Oh1sbW2hUCj4C8EMsD3MC9vDvLA9zEtdtMejHv/gQ7xERERkcRhgiIiIyOIwwBAREZHFYYAhIiIii8MAQ0RERBaHAYaIiIgsDgMMERERWRwGGCIiIrI49XYiu9pSUiogNikDqdkFcHOQo7uvEhIx11oiIiKqSwww1bDr9G0s2HEWt7MKDNs8HOWYN9wPQ/w9TFgzIiKihoVdSFW06/RtTNl0zCi8AIAmqwBTNh3DrtO3TVQzIiKihocBpgpKSgUs2HEWQgX79NsW7DiLktKKShAREVFNY4CpgtikjHJ3Xu4nALidVYDYpIy6qxQREVEDxgBTBanZlYeXxylHRERET6ZaASY8PBzdunWDg4MD3NzcMGLECCQmJlZYVhAEDB06FCKRCNu3bzfal5ycjNDQUNja2sLNzQ2zZs1CcXGxUZkDBw6gc+fOkMlkaNGiBdavX1+tC6tJbg7yGi1HRERET6ZaASYyMhJhYWE4cuQI1Go1dDodgoODkZubW67sihUrIBKVH15cUlKC0NBQFBUV4fDhw9iwYQPWr1+PuXPnGsokJSUhNDQUAwYMQEJCAqZPn47XXnsNu3fvfoxLfHLdfZXwcJSjssHSIpSNRuruq6zLahERETVY1RpGvWvXLqPX69evh5ubG+Lj49GvXz/D9oSEBCxbtgxxcXHw8DAeXhwREYGzZ89iz549cHd3R0BAABYtWoT3338f8+fPh1QqxZo1a+Dr64tly5YBANq2bYtDhw7hs88+Q0hIyONe62OTiEWYN9wPUzYdgwgwephXH2rmDffjfDBERER15InmgcnKygIAKJX37jzk5eXh5ZdfxqpVq6BSqcq9Jzo6Gu3bt4e7u7thW0hICKZMmYIzZ86gU6dOiI6OxqBBg4zeFxISgunTp1dal8LCQhQWFhpea7VaAIBOp4NOp3us67vfwNYuWDm6Ixb/cR4a7b3zqBxl+OfQNhjY2qVGzlOX9PW1tHrXV2wP88L2MC9sD/NSm+1R1WM+doApLS3F9OnT0bt3b/j7+xu2z5gxA7169cKzzz5b4fs0Go1ReAFgeK3RaB5aRqvVIj8/HzY2NuWOGx4ejgULFpTbHhERAVtb2+pd3EO87wccSxdh4yUJRBAwrWUuSq7F449rNXaKOqdWq01dBboP28O8sD3MC9vDvNRGe+Tl5VWp3GMHmLCwMJw+fRqHDh0ybPvtt9+wb98+HD9+/HEP+9hmz56NmTNnGl5rtVp4eXkhODgYCoWiRs/1NICDKw7h6p08OLTogpB27o98jznS6XRQq9UYPHgwrK2tTV2dBo/tYV7YHuaF7WFearM99D0oj/JYAWbq1KnYuXMnoqKi0KRJE8P2ffv24fLly3BycjIqP2rUKPTt2xcHDhyASqVCbGys0f6UlBQAMHQ5qVQqw7b7yygUigrvvgCATCaDTCYrt93a2rpWvuxBrd2w/vBVHLqcgacDmjz6DWastj4jejxsD/PC9jAvbA/zUhvtUdXjVWsUkiAImDp1KrZt24Z9+/bB19fXaP8HH3yAkydPIiEhwfADAJ999hnWrVsHAAgMDMSpU6eQmppqeJ9arYZCoYCfn5+hzN69e42OrVarERgYWJ3q1qqg1q4AgAOJaRAEzsBLRERUl6p1ByYsLAxbtmzB//73Pzg4OBieWXF0dISNjQ1UKlWFD+42bdrUEHaCg4Ph5+eHsWPHYunSpdBoNJgzZw7CwsIMd1DefPNNfPnll3jvvfcwceJE7Nu3Dz/99BN+//33J73eGtOzmTNkVmJotAVITMlGG1XNdlMRERFR5ap1B2b16tXIyspCUFAQPDw8DD8//vhjlY8hkUiwc+dOSCQSBAYG4pVXXsGrr76KhQsXGsr4+vri999/h1qtRseOHbFs2TJ88803JhlCXRm5tQSBzZ0BlN2FISIiorpTrTswj9NVUtF7vL298ccffzz0fUFBQSZ5GLg6glq54kBiGg4kpuLN/s1NXR0iIqIGg2shPYGg1m4AgLird5FdwLkJiIiI6goDzBPwcbGDj7MtiksF/HXpjqmrQ0RE1GAwwDwh/V2YyAupjyhJRERENYUB5gn153BqIiKiOscA84QC/x5OfTurABdSckxdHSIiogaBAeYJya0l6NlMP5ya3UhERER1gQGmBtw/Ky8RERHVPgaYGmAYTn0tAzmFxSauDRERUf3HAFMDfF3s4O1sC12JgL8upZu6OkRERPUeA0wNCWrFbiQiIqK6wgBTQwzzwSSmcjg1ERFRLWOAqSE9mzlDaiXGrawCXEzlcGoiIqLaxABTQ2ykHE5NRERUVxhgahCfgyEiIqobDDA1SD8fzNGrHE5NRERUmxhgapCvix2aKsuGUx/mcGoiIqJawwBTg0Qi0b1ZeS+wG4mIiKi2MMDUMH2AieTq1ERERLWGAaaGBTZzgdRKjJuZ+bjE4dRERES1ggGmhtlIJejhqwTA0UhERES1hQGmFuhn5T1wgfPBEBER1QYGmFpgGE6ddBe5HE5NRERU4xhgakEzFzt4KW1QVFKKw5fvmLo6RERE9Q4DTC0QiUQIavV3NxKXFSAiIqpxDDC1xDAfDIdTExER1TgGmFoS2NwZUknZcOrLaRxOTUREVJMYYGqJrdQKPZpxODUREVFtYICpRf25OjUREVGtYICpRfr5YGKTMjicmoiIqAYxwNSi5q52aNKobDh1NIdTExER1ZhqBZjw8HB069YNDg4OcHNzw4gRI5CYmGjYn5GRgbfeegutW7eGjY0NmjZtimnTpiErK8voOMnJyQgNDYWtrS3c3Nwwa9YsFBcb36E4cOAAOnfuDJlMhhYtWmD9+vWPf5UmYrw6NYdTExER1ZRqBZjIyEiEhYXhyJEjUKvV0Ol0CA4ORm5uLgDg1q1buHXrFj799FOcPn0a69evx65duzBp0iTDMUpKShAaGoqioiIcPnwYGzZswPr16zF37lxDmaSkJISGhmLAgAFISEjA9OnT8dprr2H37t01dNl15958MBxOTUREVFOsqlN4165dRq/Xr18PNzc3xMfHo1+/fvD398cvv/xi2N+8eXN8/PHHeOWVV1BcXAwrKytERETg7Nmz2LNnD9zd3REQEIBFixbh/fffx/z58yGVSrFmzRr4+vpi2bJlAIC2bdvi0KFD+OyzzxASElIDl113erUoG059424+LqflooWbvamrREREZPGqFWAepO8aUiqVDy2jUChgZVV2qujoaLRv3x7u7u6GMiEhIZgyZQrOnDmDTp06ITo6GoMGDTI6TkhICKZPn17peQoLC1FYWGh4rdVqAQA6nQ46na7a11ZTrEVAVx8nHL6cgX3nNPBu5G2yujxI/7mY8vOhe9ge5oXtYV7YHualNtujqsd87ABTWlqK6dOno3fv3vD396+wTHp6OhYtWoTJkycbtmk0GqPwAsDwWqPRPLSMVqtFfn4+bGxsyp0rPDwcCxYsKLc9IiICtra21bu4GuZWLAIgwS+Hz8E984xJ61IRtVpt6irQfdge5oXtYV7YHualNtojLy+vSuUeO8CEhYXh9OnTOHToUIX7tVotQkND4efnh/nz5z/uaaps9uzZmDlzptH5vby8EBwcDIVCUevnf5jWabnY/sVfuJIjQdCgQbCVPtGNrxqj0+mgVqsxePBgWFtbm7o6DR7bw7ywPcwL28O81GZ76HtQHuWx/iadOnUqdu7ciaioKDRp0qTc/uzsbAwZMgQODg7Ytm2b0cWpVCrExsYalU9JSTHs0/9Xv+3+MgqFosK7LwAgk8kgk8nKbbe2tjb5l721hyOaNLLBjbv5iEvWYmBb90e/qQ6Zw2dE97A9zAvbw7ywPcxLbbRHVY9XrVFIgiBg6tSp2LZtG/bt2wdfX99yZbRaLYKDgyGVSvHbb79BLpcb7Q8MDMSpU6eQmnpvWLFarYZCoYCfn5+hzN69e43ep1arERgYWJ3qmg2j4dSclZeIiOiJVSvAhIWFYdOmTdiyZQscHByg0Wig0WiQn58P4F54yc3NxbfffgutVmsoU1JSAgAIDg6Gn58fxo4dixMnTmD37t2YM2cOwsLCDHdQ3nzzTVy5cgXvvfcezp8/j6+++go//fQTZsyYUcOXX3cMw6kvpHI4NRER0ROqVhfS6tWrAQBBQUFG29etW4fx48fj2LFjiImJAQC0aNHCqExSUhJ8fHwgkUiwc+dOTJkyBYGBgbCzs8O4ceOwcOFCQ1lfX1/8/vvvmDFjBj7//HM0adIE33zzjcUNob6ffjj19Yx8XEnPRXNXDqcmIiJ6XNUKMI+6cxAUFFSluwve3t74448/Hnms48ePV6d6Zs1WaoXuvkocupSOA4lpDDBERERPgGsh1aF7z8FwWQEiIqInwQBTh/QBJiYpA/lFJSauDRERkeVigKlDzV3t0djJBkXFpYi+km7q6hAREVksBpg6xOHURERENYMBpo4Ftebq1ERERE+KAaaO9WpeNpw6OSMPSem5pq4OERGRRWKAqWN2Mit0820EgN1IREREj4sBxgTuzcrLAENERPQ4GGBMQP8g75ErdzicmoiI6DEwwJhAC7d7w6mPXLlj6uoQERFZHAYYExCJROjPWXmJiIgeGwOMiQS1Kgsw+zmcmoiIqNoYYEykVwsXWEtEHE5NRET0GBhgTMReZoVuPkoAHE5NRERUXQwwJmRYVoDDqYmIiKqFAcaE9MsKcDg1ERFR9TDAmFBLN3t4Oso5nJqIiKiaGGBMqGw4tX5xRw6nJiIiqioGGBPjczBERETVxwBjYr3/Hk597Q6HUxMREVUVA4yJ2cus0NVbP5ya3UhERERVwQBjBgzdSJwPhoiIqEoYYMzA/cOpC3QcTk1ERPQoDDBmoJW7PTwc5SgsLkU0h1MTERE9EgOMGRCJRIZupEh2IxERET0SA4yZ6N+K88EQERFVFQOMmejdwhlWYhGu3snDVQ6nJiIieigGGDPhILdGV59GAHgXhoiI6FEYYMyIfjQSZ+UlIiJ6OAYYM6J/kDf6ModTExERPUy1Akx4eDi6desGBwcHuLm5YcSIEUhMTDQqU1BQgLCwMDg7O8Pe3h6jRo1CSkqKUZnk5GSEhobC1tYWbm5umDVrFoqLi43KHDhwAJ07d4ZMJkOLFi2wfv36x7tCC9La3QEqRdlwaq5OTUREVLlqBZjIyEiEhYXhyJEjUKvV0Ol0CA4ORm7uvYdOZ8yYgR07dmDr1q2IjIzErVu38Nxzzxn2l5SUIDQ0FEVFRTh8+DA2bNiA9evXY+7cuYYySUlJCA0NxYABA5CQkIDp06fjtddew+7du2vgks3X/cOpOSsvERFR5ayqU3jXrl1Gr9evXw83NzfEx8ejX79+yMrKwrfffostW7bgqaeeAgCsW7cObdu2xZEjR9CzZ09ERETg7Nmz2LNnD9zd3REQEIBFixbh/fffx/z58yGVSrFmzRr4+vpi2bJlAIC2bdvi0KFD+OyzzxASElJDl26eglq74oej1xHJ52CIiIgqVa0A86CsrCwAgFJZthhhfHw8dDodBg0aZCjTpk0bNG3aFNHR0ejZsyeio6PRvn17uLu7G8qEhIRgypQpOHPmDDp16oTo6GijY+jLTJ8+vdK6FBYWorCw0PBaq9UCAHQ6HXQ63ZNcZp3q7u0EK7EISem5uJSSBW+lba2dS/+5WNLnU5+xPcwL28O8sD3MS222R1WP+dgBprS0FNOnT0fv3r3h7+8PANBoNJBKpXBycjIq6+7uDo1GYyhzf3jR79fve1gZrVaL/Px82NjYlKtPeHg4FixYUG57REQEbG1rLwTUBh97CS5pRVi9LRL9PIRaP59ara71c1DVsT3MC9vDvLA9zEtttEdeXl6Vyj12gAkLC8Pp06dx6NChxz1EjZo9ezZmzpxpeK3VauHl5YXg4GAoFAoT1qz6rtsn4VP1RaRL3TFsWOdaO49Op4NarcbgwYNhbW1da+ehqmF7mBe2h3lhe5iX2mwPfQ/KozxWgJk6dSp27tyJqKgoNGnSxLBdpVKhqKgImZmZRndhUlJSoFKpDGViY2ONjqcfpXR/mQdHLqWkpEChUFR49wUAZDIZZDJZue3W1tYW92Uf6KfCp+qLiEnKQAnEkFtLavV8lvgZ1WdsD/PC9jAvbA/zUhvtUdXjVWsUkiAImDp1KrZt24Z9+/bB19fXaH+XLl1gbW2NvXv3GrYlJiYiOTkZgYGBAIDAwECcOnUKqan3ZptVq9VQKBTw8/MzlLn/GPoy+mPUd21UZcOpC3SliEnKMHV1iIiIzE61AkxYWBg2bdqELVu2wMHBARqNBhqNBvn5+QAAR0dHTJo0CTNnzsT+/fsRHx+PCRMmIDAwED179gQABAcHw8/PD2PHjsWJEyewe/duzJkzB2FhYYY7KG+++SauXLmC9957D+fPn8dXX32Fn376CTNmzKjhyzdPIpEI/Vvph1NzWQEiIqIHVSvArF69GllZWQgKCoKHh4fh58cffzSU+eyzz/D0009j1KhR6NevH1QqFX799VfDfolEgp07d0IikSAwMBCvvPIKXn31VSxcuNBQxtfXF7///jvUajU6duyIZcuW4Ztvvqn3Q6jvp58PJpLzwRAREZVTrWdgBOHRI2LkcjlWrVqFVatWVVrG29sbf/zxx0OPExQUhOPHj1enevVK75YusBKLcCU9F8l38tDU2bJGUhEREdUmroVkphRya3T2/nt16gvsRiIiIrofA4wZ47ICREREFWOAMWNBrdwAAIcvp3N1aiIiovswwJixth4OcFfIUKArRSyHUxMRERkwwJgx4+HU7EYiIiLSY4Axc0Gty7qR+CAvERHRPQwwZq53CxdIxCJcScvF9YyqLXBFRERU3zHAmDlHG2t0afr3cGrOyktERASAAcYi9OdwaiIiIiMMMBZAPx/M4ct3OJyaiIgIDDAWwc9DATcHGfJ1JTh6lcOpiYiIGGAsAIdTExERGWOAsRCG4dR8kJeIiIgBxlL0aVk2nPoyh1MTERExwFgKRxtrdG7qBAA4cIHdSERE1LAxwFgQfTdSJLuRiIiogWOAsSD6B3kPX76DwmIOpyYiooaLAcaCtPNUwNVBhryiEhxNumvq6hAREZkMA4wFMR5OzW4kIiJquBhgLIx+Vl4+yEtERA0ZA4yF6dvCFWIRcCk1Bzfucjg1ERE1TAwwFsbR1hqdDatT8y4MERE1TAwwFiiIq1MTEVEDxwBjgfTzwRy+nM7h1ERE1CAxwFggPw8FXOzLhlPHXeVwaiIiangYYCyQWMzh1ERE1LAxwFgoPgdDREQNGQOMherb0gViEXAxNQc3M/NNXR0iIqI6xQBjoZxspehkGE7NbiQiImpYGGAsWFArdiMREVHDxABjwQzDqS+lo6i41MS1ISIiqjvVDjBRUVEYPnw4PD09IRKJsH37dqP9OTk5mDp1Kpo0aQIbGxv4+flhzZo1RmUKCgoQFhYGZ2dn2NvbY9SoUUhJSTEqk5ycjNDQUNja2sLNzQ2zZs1CcXFx9a+wHmvnqYCLvRS5RSWIu5ph6uoQERHVmWoHmNzcXHTs2BGrVq2qcP/MmTOxa9cubNq0CefOncP06dMxdepU/Pbbb4YyM2bMwI4dO7B161ZERkbi1q1beO655wz7S0pKEBoaiqKiIhw+fBgbNmzA+vXrMXfu3Me4xPqrbDh12V0YLu5IREQNSbUDzNChQ7F48WKMHDmywv2HDx/GuHHjEBQUBB8fH0yePBkdO3ZEbGwsACArKwvffvstli9fjqeeegpdunTBunXrcPjwYRw5cgQAEBERgbNnz2LTpk0ICAjA0KFDsWjRIqxatQpFRUVPcLn1z73h1HyQl4iIGg6rmj5gr1698Ntvv2HixInw9PTEgQMHcOHCBXz22WcAgPj4eOh0OgwaNMjwnjZt2qBp06aIjo5Gz549ER0djfbt28Pd3d1QJiQkBFOmTMGZM2fQqVOncuctLCxEYWGh4bVWqwUA6HQ66HS6mr5Ms9HTxwliEXAhJQfJ6dnwcJRX+b36z6U+fz6WhO1hXtge5oXtYV5qsz2qeswaDzArV67E5MmT0aRJE1hZWUEsFuPrr79Gv379AAAajQZSqRROTk5G73N3d4dGozGUuT+86Pfr91UkPDwcCxYsKLc9IiICtra2T3pZZs3bXoKkbBFW/bofvdyFar9frVbXQq3ocbE9zAvbw7ywPcxLbbRHXl5elcrVSoA5cuQIfvvtN3h7eyMqKgphYWHw9PQ0uutS02bPno2ZM2caXmu1Wnh5eSE4OBgKhaLWzmsOkmyvYMXeS8iQeWDYsIAqv0+n00GtVmPw4MGwtrauvQpSlbA9zAvbw7ywPcxLbbaHvgflUWo0wOTn5+PDDz/Etm3bEBoaCgDo0KEDEhIS8Omnn2LQoEFQqVQoKipCZmam0V2YlJQUqFQqAIBKpTI8M3P/fv2+ishkMshksnLbra2t6/2XfWBbFVbsvYTDl+9AEEkgtareo00N4TOyJGwP88L2MC9sD/NSG+1R1ePV6Dww+udNxGLjw0okEpSWls1T0qVLF1hbW2Pv3r2G/YmJiUhOTkZgYCAAIDAwEKdOnUJq6r0HU9VqNRQKBfz8/GqyyvUCh1MTEVFDU+07MDk5Obh06ZLhdVJSEhISEqBUKtG0aVP0798fs2bNgo2NDby9vREZGYnvv/8ey5cvBwA4Ojpi0qRJmDlzJpRKJRQKBd566y0EBgaiZ8+eAIDg4GD4+flh7NixWLp0KTQaDebMmYOwsLAK77I0dGKxCP1aueLXYzdx4EIaerVwMXWViIiIalW178DExcWhU6dOhpFAM2fORKdOnQxztPzwww/o1q0bxowZAz8/P/zrX//Cxx9/jDfffNNwjM8++wxPP/00Ro0ahX79+kGlUuHXX3817JdIJNi5cyckEgkCAwPxyiuv4NVXX8XChQuf9HrrLf2svBxOTUREDUG178AEBQVBECof6aJSqbBu3bqHHkMul2PVqlWVToYHAN7e3vjjjz+qW70Gq9/fq1NfSMnBrcx8eDrZmLpKREREtYZrIdUTTrZSBHg5AeDijkREVP8xwNQj7EYiIqKGggGmHtEvK/AXV6cmIqJ6jgGmHvH3dLw3nPoah1MTEVH9xQBTj4jFIvRrWXYXJpLPwRARUT3GAFPP9DesTs0AQ0RE9RcDTD3Tr6UrxCIgMSUbtzLzTV0dIiKiWsEAU880spOi49/DqSMv8C4MERHVTwww9VBQKw6nJiKi+o0Bph66N5z6DodTExFRvcQAUw+1b+wIZzspcgqLEX/trqmrQ0REVOMYYOoh/erUAHDgAruRiIio/mGAqaf03UicD4aIiOojBph6qm9LV4hEwHlNNm5ncTg1ERHVLwww9ZTSToqOTZwA8C4MERHVPwww9VgQZ+UlIqJ6igGmHgtqXTYfzF+X0qEr4XBqIiKqPxhg6rEOjR2htJMim8OpiYionmGAqcfKVqd2AcBuJCIiql8YYOo5fTcSlxUgIqL6hAGmnuvX6t5wak1WgamrQ0REVCMYYOo5pZ0UHfTDqTkrLxER1RMMMA1AUCsOpyYiovqFAaYB0M8Hc+gih1MTEVH9wADTAHRo4oRGttbILizGMQ6nJiKieoABpgGQGK1OzW4kIiKyfAwwDQSXFSAiovqEAaaB6Pf36tTnbmuRouVwaiIismwMMA2Es70MHRo7AuDq1EREZPkYYBqQ/vpZeTkfDBERWbhqB5ioqCgMHz4cnp6eEIlE2L59e7ky586dwzPPPANHR0fY2dmhW7duSE5ONuwvKChAWFgYnJ2dYW9vj1GjRiElJcXoGMnJyQgNDYWtrS3c3Nwwa9YsFBcXV/8KyUD/HMzBi+ko5nBqIiKyYNUOMLm5uejYsSNWrVpV4f7Lly+jT58+aNOmDQ4cOICTJ0/io48+glwuN5SZMWMGduzYga1btyIyMhK3bt3Cc889Z9hfUlKC0NBQFBUV4fDhw9iwYQPWr1+PuXPnPsYlkl5H/XDqgmIcS840dXWIiIgem1V13zB06FAMHTq00v3//Oc/MWzYMCxdutSwrXnz5ob/z8rKwrfffostW7bgqaeeAgCsW7cObdu2xZEjR9CzZ09ERETg7Nmz2LNnD9zd3REQEIBFixbh/fffx/z58yGVSqtbbULZcOq+LV3x24lbOJCYik5NHExdJSIiosdS7QDzMKWlpfj999/x3nvvISQkBMePH4evry9mz56NESNGAADi4+Oh0+kwaNAgw/vatGmDpk2bIjo6Gj179kR0dDTat28Pd3d3Q5mQkBBMmTIFZ86cQadOncqdu7CwEIWFhYbXWq0WAKDT6aDT6WryMi1a3xZK/HbiFvafT8XUfk0BgJ+PmdC3A9vDPLA9zAvbw7zUZntU9Zg1GmBSU1ORk5ODf/3rX1i8eDGWLFmCXbt24bnnnsP+/fvRv39/aDQaSKVSODk5Gb3X3d0dGo0GAKDRaIzCi36/fl9FwsPDsWDBgnLbIyIiYGtrWwNXVz8U6gDACuc02fj5dzUcpYBarTZ1teg+bA/zwvYwL2wP81Ib7ZGXl1elcjV+BwYAnn32WcyYMQMAEBAQgMOHD2PNmjXo379/TZ7OyOzZszFz5kzDa61WCy8vLwQHB0OhUNTaeS3Rj7eP4NRNLa7KfFGcdhVPBXZBz+aukIhFpq5ag6bT6aBWqzF48GBYW1ubujoNHtvDvLA9zEtttoe+B+VRajTAuLi4wMrKCn5+fkbb27Zti0OHDgEAVCoVioqKkJmZaXQXJiUlBSqVylAmNjbW6Bj6UUr6Mg+SyWSQyWTltltbW/PL/gCvRrY4dVOL7w5fByDB9xcT4OEox7zhfhji72Hq6jV4/M6aF7aHeWF7mJfaaI+qHq9G54GRSqXo1q0bEhMTjbZfuHAB3t7eAIAuXbrA2toae/fuNexPTExEcnIyAgMDAQCBgYE4deoUUlPvzVeiVquhUCjKhSOqnl2nb+OP0+W74TRZBZiy6Rh2nb5tgloRERFVT7XvwOTk5ODSpUuG10lJSUhISIBSqUTTpk0xa9Ys/N///R/69euHAQMGYNeuXdixYwcOHDgAAHB0dMSkSZMwc+ZMKJVKKBQKvPXWWwgMDETPnj0BAMHBwfDz88PYsWOxdOlSaDQazJkzB2FhYRXeZaGqKSkVsGDH2Qr3CQBEABbsOIvBfip2JxERkVmrdoCJi4vDgAEDDK/1z52MGzcO69evx8iRI7FmzRqEh4dj2rRpaN26NX755Rf06dPH8J7PPvsMYrEYo0aNQmFhIUJCQvDVV18Z9kskEuzcuRNTpkxBYGAg7OzsMG7cOCxcuPBJrrXBi03KwO2sytdBEgDczipAbFIGAps7113FiIiIqqnaASYoKAiCIDy0zMSJEzFx4sRK98vlcqxatarSyfAAwNvbG3/88Ud1q0cPkZpdtUUcq1qOiIjIVLgWUgPi5iB/dKFqlCMiIjIVBpgGpLuvEh6Ocjzs6RYPRzm6+yrrrE5ERESPgwGmAZGIRZg3vGwUV2UhZmJvXz7AS0REZo8BpoEZ4u+B1a90hsrRuJtIKikLLWsPXkHynarNgkhERGQqDDAN0BB/Dxx6/ylsmtgVr7YswaaJXXHkw0Foo3JAWnYhXvk2hg/yEhGRWWOAaaAkYhF6+CrRxUVAD18llHZSfD+xO5oqbZGckYdx3x1FVj4XTSMiIvPEAEMGbgo5Nk7qDhd7Gc7d1uL1DXEo0JWYulpERETlMMCQEW9nO2yY2A0OMivEXs3A1C3HUVxSaupqERERGWGAoXLaeTrim3FdIbMSY8+5FHzw66lHTl5IRERUlxhgqEI9mjnjy5c7QyIW4ef4Gwj/87ypq0RERGTAAEOVGuznjn891x4AsDbqCtZEXjZxjYiIiMowwNBDvdDVCx8OawMA+Nef5/HT0esmrhEREREDDFXB5H7N8Ub/ZgCAD349id1nNCauERERNXQMMFQlHwxpgxe7NkGpALz13+OIvnzH1FUiIqIGjAGGqkQkEuGTke0R7OeOouJSvP59HE7fzDJ1tYiIqIFigKEqs5KI8cVLndDDV4mcwmKMXxeLpPRcU1eLiIgaIAYYqha5tQRfj+sKPw8F0nOKMPbbGKRouW4SERHVLQYYqjaF3BobJnaHj7MtbtzNx6vfxiIrj+smERFR3WGAocfi6iDDxkk94OYgQ2JKNiZuOIr8Iq6bREREdYMBhh6bl9IWGyf1gEJuhfhrdzFlczx0XDeJiIjqAAMMPZHWKgesm9ANcmsxDiSmYdbWEygt5bpJRERUuxhg6Il18VZi9ZgusBKLsD3hFhb9fpaLPxIRUa1igKEaMaCNGz59oSMAYN1fV7Fq/yUT14iIiOozBhiqMSM6Ncbcp/0AAJ9GXMDmmGsmrhEREdVXDDBUoyb28cXUAS0AAHO2n8Yfp26buEZERFQfMcBQjXsnuBVe7tEUggBM/yEBf11KN3WViIionmGAoRonEomw6Fl/DGuvQlFJKSZ/H4eTNzJNXS0iIqpHGGCoVkjEInz2fwHo3cIZuUUlGL/uKC6l5pi6WkREVE8wwFCtkVlJ8J+xXdGhiSMycovw6rcxuJ2Vb+pqERFRPcAAQ7XKXmaFdeO7oZmrHW5lFWDst7G4m1tk6moREZGFq3aAiYqKwvDhw+Hp6QmRSITt27dXWvbNN9+ESCTCihUrjLZnZGRgzJgxUCgUcHJywqRJk5CTY9y9cPLkSfTt2xdyuRxeXl5YunRpdatKZsLZvmzdJJVCjkupOZiw/ihyC4tNXS0iIrJg1Q4wubm56NixI1atWvXQctu2bcORI0fg6elZbt+YMWNw5swZqNVq7Ny5E1FRUZg8ebJhv1arRXBwMLy9vREfH49///vfmD9/PtauXVvd6pKZaOxkg42TusPJ1hoJ1zPx5qZ4FBVz3SQiIno81Q4wQ4cOxeLFizFy5MhKy9y8eRNvvfUWNm/eDGtra6N9586dw65du/DNN9+gR48e6NOnD1auXIkffvgBt27dAgBs3rwZRUVF+O6779CuXTuMHj0a06ZNw/Lly6tbXTIjLd0dsG58N9hKJTh4MR0zf0pACddNIiKix2BV0wcsLS3F2LFjMWvWLLRr167c/ujoaDg5OaFr166GbYMGDYJYLEZMTAxGjhyJ6Oho9OvXD1Kp1FAmJCQES5Yswd27d9GoUaNyxy0sLERhYaHhtVarBQDodDrodLqavMR6Q/+51OXn4+9hjy9f6og3Nh3HzpO34Si3wryn20AkEtVZHcyVKdqDKsf2MC9sD/NSm+1R1WPWeIBZsmQJrKysMG3atAr3azQauLm5GVfCygpKpRIajcZQxtfX16iMu7u7YV9FASY8PBwLFiwotz0iIgK2traPdS0NhVqtrvNzvtxMhO8virE59jru3LqGoV7sTtIzRXtQ5dge5oXtYV5qoz3y8vKqVK5GA0x8fDw+//xzHDt2rM7/RT179mzMnDnT8Fqr1cLLywvBwcFQKBR1WhdLodPpoFarMXjw4HJdfbVtGADfmGTM33keu26I0b2jH8b2bFqndTA3pmwPKo/tYV7YHualNttD34PyKDUaYA4ePIjU1FQ0bXrvL6KSkhK88847WLFiBa5evQqVSoXU1FSj9xUXFyMjIwMqlQoAoFKpkJKSYlRG/1pf5kEymQwymazcdmtra37ZH8FUn9H4Ps2RWVCCFXsuYtEf5+HsIMezAY3rvB7mht9Z88L2MC9sD/NSG+1R1ePV6DwwY8eOxcmTJ5GQkGD48fT0xKxZs7B7924AQGBgIDIzMxEfH2943759+1BaWooePXoYykRFRRn1g6nVarRu3brC7iOyXG8PbIlxgd4QBOCdn04g8kKaqatEREQWoNoBJicnxxBOACApKQkJCQlITk6Gs7Mz/P39jX6sra2hUqnQunVrAEDbtm0xZMgQvP7664iNjcVff/2FqVOnYvTo0YYh1y+//DKkUikmTZqEM2fO4Mcff8Tnn39u1EVE9YNIJMK84e0wvKMniksFvLkxHseS75q6WkREZOaqHWDi4uLQqVMndOrUCQAwc+ZMdOrUCXPnzq3yMTZv3ow2bdpg4MCBGDZsGPr06WM0x4ujoyMiIiKQlJSELl264J133sHcuXON5oqh+kMsFmHZCx3Rr5Ur8nUlmLj+KC6mZJu6WkREZMaq/QxMUFAQBKHqc3dcvXq13DalUoktW7Y89H0dOnTAwYMHq1s9slBSKzHWvNIZL38dg4TrmRj7bSx+nhKIJo04goyIiMrjWkhkNmylZesmtXCzh0ZbgFe/jcWdnMJHv5GIiBocBhgyK43spNg4qTsaO9ngSnouJqw/ihyum0RERA9ggCGz4+Fog+8ndYfSToqTN7Iw+fs4FBaXmLpaRERkRhhgyCw1d7XH+gndYCeV4PDlO5j+A9dNIiKiexhgyGx1aOKEta92hVQixp+nNZiz/XS1HiAnIqL6iwGGzFrvFi74fHQAxCLgv7HJWBZxwdRVIiIiM8AAQ2ZvaHsPfDyyPQDgy/2X8N2hJBPXiIiITI0BhizCS92bYlZI2WzOC3eexbbjN0xcIyIiMqUaXcyRqDb9I6g57uQU4bu/kjBr60k42lijfys3xCZlIDW7AG4OcnT3VUIirtuV0ImIqO4xwJDFEIlEmBPaFnfzirDt+E28sTEeCrk17uQWGcp4OMoxb7gfhvh7mLCmRERU29iFRBZFLBZh6fMd4N9YAV2JYBReAECTVYApm45h1+nbJqohERHVBQYYsjhikQjp2RUvMaAfZL1gx1nOG0NEVI8xwJDFiU3KgEZb+RpJAoDbWQWITcqou0oREVGdYoAhi5OaXVCj5YiIyPIwwJDFcXOQ12g5IiKyPAwwZHG6+yrh4SjHowZL/xx/HdoCXZ3UiYiI6hYDDFkciViEecP9AKBciLn/9S/HbmLIZ1E4dDG9zupGRER1gwGGLNIQfw+sfqUzVI7G3UQqRznWvNIZP78ZCG9nW9zKKsAr38Zg7v9OI6+o2ES1JSKimsaJ7MhiDfH3wGA/VaUz8f75dl+E/3EeG49cw/fR1xB5IQ3LXuiIrj5KE9eciIieFO/AkEWTiEUIbO6MZwMaI7C5s9EyArZSKywa4Y+Nk7rDw1GOa3fy8MJ/ohH+5zkU6EpMWGsiInpSDDBU7/Vt6Ypd0/thVOcmEATgP5FX8MyXh3D6Zpapq0ZERI+JAYYaBEcbayx7sSPWju0CF3spLqTkYMSqv7BizwXoSkpNXT0iIqomBhhqUILbqRAxoz+GtVehuFTAij0XMfKrv3AhJdvUVSMiompggKEGR2knxaqXO+OLlzrB0cYap29q8fTKQ1gbdZnrJxERWQgGGGqQRCIRnunoiYgZ/TCgtSuKikvxyR/n8X//icbV9FxTV4+IiB6BAYYaNHeFHN+N74Ylo9rDTipB3LW7GPr5QWw8cg2CwLsxRETmigGGGjyRSIT/69YUu6b3Q89mSuTrSvDR9tN49btY3MrMN3X1iIioAgwwRH/zUtpiy2s9MW+4H2RWYhy8mI6Qz6Lwc/wN3o0hIjIzDDBE9xGLRZjQ2xd/vN0XAV5OyC4sxrtbT+D17+ORml1g6uoREdHfGGCIKtDc1R4/vxmIWSGtYS0RYc+5FIR8FoU/Tt02ddWIiAiPEWCioqIwfPhweHp6QiQSYfv27YZ9Op0O77//Ptq3bw87Ozt4enri1Vdfxa1bt4yOkZGRgTFjxkChUMDJyQmTJk1CTk6OUZmTJ0+ib9++kMvl8PLywtKlSx/vCokek5VEjLABLfDb1D5o66HA3Twd/rH5GKb99zgy84pMXT0iogat2gEmNzcXHTt2xKpVq8rty8vLw7Fjx/DRRx/h2LFj+PXXX5GYmIhnnnnGqNyYMWNw5swZqNVq7Ny5E1FRUZg8ebJhv1arRXBwMLy9vREfH49///vfmD9/PtauXfsYl0j0ZNp6KPC/sN5466kWkIhF+O3ELQR/FoX951NNXTUiogar2qtRDx06FEOHDq1wn6OjI9RqtdG2L7/8Et27d0dycjKaNm2Kc+fOYdeuXTh69Ci6du0KAFi5ciWGDRuGTz/9FJ6enti8eTOKiorw3XffQSqVol27dkhISMDy5cuNgg5RXZFaifFOcGsMbOuOd35KwOW0XExYfxSju3nhn6Ft4SC3NnUViYgalGoHmOrKysqCSCSCk5MTACA6OhpOTk6G8AIAgwYNglgsRkxMDEaOHIno6Gj069cPUqnUUCYkJARLlizB3bt30ahRo3LnKSwsRGFhoeG1VqsFUNatpdPpaunqLJv+c+HnU3XtVHbYPqUnlu+5hPXR1/DD0es4eDEN/xrpj57NlE90bLaHeWF7mBe2h3mpzfao6jFrNcAUFBTg/fffx0svvQSFQgEA0Gg0cHNzM66ElRWUSiU0Go2hjK+vr1EZd3d3w76KAkx4eDgWLFhQbntERARsbW1r5HrqqwfvmtGjBQCY2hbYfFmCm5kFGLsuDv1UpRjetBRSyZMdm+1hXtge5oXtYV5qoz3y8vKqVK7WAoxOp8OLL74IQRCwevXq2jqNwezZszFz5kzDa61WCy8vLwQHBxvCExnT6XRQq9UYPHgwrK3ZBfI4JhYW41+7LuDHuBuI0ohxXWePJaP80cnLqdrHYnuYF7aHeWF7mJfabA99D8qj1EqA0YeXa9euYd++fUYBQqVSITXV+OHH4uJiZGRkQKVSGcqkpKQYldG/1pd5kEwmg0wmK7fd2tqaX/ZH4Gf0+BpZW2PJ8x0xtL0H3v/lJJLu5GH017F4s39zvD2oJWRW1b8dw/YwL2wP88L2MC+10R5VPV6NzwOjDy8XL17Enj174OzsbLQ/MDAQmZmZiI+PN2zbt28fSktL0aNHD0OZqKgoo34wtVqN1q1bV9h9RGRqQa3dEDG9P0YEeKJUAL46cBnPfvkXzt6q2r8kiIioeqodYHJycpCQkICEhAQAQFJSEhISEpCcnAydTofnn38ecXFx2Lx5M0pKSqDRaKDRaFBUVDZvRtu2bTFkyBC8/vrriI2NxV9//YWpU6di9OjR8PT0BAC8/PLLkEqlmDRpEs6cOYMff/wRn3/+uVEXEZG5cbS1xorRnbB6TGco7aQ4r8nGs6sO4ct9F1FcUmrq6hER1SvVDjBxcXHo1KkTOnXqBACYOXMmOnXqhLlz5+LmzZv47bffcOPGDQQEBMDDw8Pwc/jwYcMxNm/ejDZt2mDgwIEYNmwY+vTpYzTHi6OjIyIiIpCUlIQuXbrgnXfewdy5czmEmizC0PYeiJjRD8F+7tCVCPg04gJGrT6MS6k5j34zERFVSbWfgQkKCnrownZVWfROqVRiy5YtDy3ToUMHHDx4sLrVIzILLvYy/GdsF2w7fhPzfjuDEzeyEPrFQcwKaY2JvX0hFotMXUUiIovGtZCIaolIJMJznZsgYkY/9G3pgsLiUiz+/RxGf30E1zOqNkyQiIgqxgBDVMs8HG3w/cTu+HikP2ylEsQmZSBkRRS2xCQb7liWlAqIScpAfLoIMUkZKCl99J1MIqKGrNZn4iWisrsxY3p4o28LV7y79QRir2bgw22nsPuMBkP8Vfhi70XczioAIMH3F+Pg4SjHvOF+GOLvYeqqExGZJd6BIapDTZ1t8d/JPTEntC2kVmJEXkjD7F9P/R1e7tFkFWDKpmPYdfq2iWpKRGTeGGCI6phELMJrfZthx9TesJZU/DCvvgNpwY6z7E4iIqoAAwyRiWTk6qAreciIPgC3swoQm5RRd5UiIrIQDDBEJpKaXfDoQgDO3eZsvkRED2KAITIRNwd5lcot3HkWL399BNuP30SBrqSWa0VEZBk4ConIRLr7KuHhKIcmqwCVdSTJrMQoLC7F4ct3cPjyHSj+Z4VnAxrjxa5e8G+sgEjECfGIqGHiHRgiE5GIRZg33A8A8GAMEf398/noABx6fwCmD2qJxk420BYUY+ORaxj+5SEM++IQ1v+VhMy8orquOhGRyTHAEJnQEH8PrH6lM1SOxt1JKkc5Vr/SGUP8PdCkkS2mD2qFg+8NwMZJ3fF0Bw9IJWKcu63F/B1n0f2TvXjrv8dx8GIaSjliiYgaCHYhEZnYEH8PDPZTIfpSKiIOxiC4bw8EtnCD5IH1ksRiEfq2dEXflq7IzCvC9uM38WPcDZy7rcWOE7ew48QtNHaywQtdm+D5Lk3QpJGtia6IiKj2McAQmQGJWIQevkrcOSegh6+yXHh5kJOtFON7+2JcLx+cuaXFj0evY3vCTdzMzMeKPRfx+d6L6NPCBS929cJgP3fIrSV1dCVERHWDAYbIgolEIvg3doR/Y0f8M7Qtdp/R4Mej13H48h0cvJiOgxfT4WRrjRF/P/jr56kwdZWJiGoEAwxRPSG3luDZgMZ4NqAxku/kYWv8dfwcfwO3swqw/vBVrD98Fe0bO+LFrk3wTEBjONpYm7rKRESPjQGGqB5q6myLd4Jblz38ezENP8Vdh/psCk7dzMKpm1lY/Ps5DPVX4cVuXujp6wzxI7qsiIjMDQMMUT0mEYsQ1NoNQa3dcCenENsTbuGno9eRmJKN7Qm3sD3hFpoqbfFClyZ4vmsTeDjamLrKRERVwgBD1EA428swqY8vJvb2wYkbWfjx6HXsOHELyRl5WKa+gM/2XEC/Vq54sasXBrV1h9SKsywQkfligCFqYEQiEQK8nBDg5YS5T/vhj1O38WPcdcQmZeBAYhoOJKZBaSfFyE5lD/62VjmYuspEROUwwBA1YDZSCUZ1aYJRXZogKT0XW+PKHvxNzS7Et4eS8O2hJHT0csL/dfXC8I4ecJDzwV8iMg8MMEQEAPB1scN7Q9pg5uBWiLqYhh+PXsfec6k4cT0TJ65nYuHOMxjW3gP/19UL3X2VFa7DVFIqIDYpA6nZBXBzkKN7Fea0ISJ6HAwwRGTESiLGU23c8VQbd6RlF2Lb8Rv48eh1XE7Lxa/HbuLXYzfh62KHF7o2wajOTeCuKFsGYdfp21iw4yxuZxUYjuXhKMe84X4Y4u9hqsshonqKAYaIKuXqIMPkfs3xet9mOJaciZ+OXsfOk7eQlJ6LpbsSsSziAoJauaKFuz3WRl4pt6q2JqsAUzYdM6zrRERUUxhgiOiRRCIRung3QhfvRpg73A+/n7qNn45eR9y1u9h7PhV7z6dW+D4BZatqL9hxFoP9VOxOIqIaw3GSRFQtdjIrvNjVCz9P6YU9M/tjeMeH31kRANzOKkBsUkbdVJCIGgQGGCJ6bC3c7DGorXuVyv55+jbu5hbVco2IqKFgFxIRPRE3B3mVyn0ffQ2bjlxDgJcTBrR2w4A2bvDzUHAZAyJ6LAwwRPREuvsq4eEohyaroNxDvHp2MgmaONkgMSUHx5IzcSw5E8vUF+DqIENQK1cMaOOGPi1doOA8M0RURQwwRPREJGIR5g33w5RNxyACjEKM/t7Kshc6Yoi/B25l5iPyQhr2n0/FoUvpSMsuxNb4G9gafwMSsQhdvRshqLUbBrRxRWt3hwrnmiEiAhhgiKgGDPH3wOpXOpebB0b1wDwwnk42eKl7U7zUvSkKi0sQd/Uu9p9Pxf7EVFxOy0VMUgZikjKwZNd5eDjKy8JMa1f0buECOxl/XRHRPfyNQEQ1Yoi/Bwb7qao8E6/MSoLeLVzQu4UL5jzth+Q7eThwIRX7z6fi8OU7uJ1VgP/GJuO/scmQSsTo7qtEUOuy7qZmLna8O0PUwFV7FFJUVBSGDx8OT09PiEQibN++3Wi/IAiYO3cuPDw8YGNjg0GDBuHixYtGZTIyMjBmzBgoFAo4OTlh0qRJyMnJMSpz8uRJ9O3bF3K5HF5eXli6dGn1r46I6pRELEJgc2c8G9AYgc2dqzXvS1NnW7wa6IN1E7rjxLxgrJvQDeN7+aCp0hZFJaU4dCkdi38/h4HLItH/3wcw73+nsf98KvKLSmrxiojIXFU7wOTm5qJjx45YtWpVhfuXLl2KL774AmvWrEFMTAzs7OwQEhKCgoJ7t5XHjBmDM2fOQK1WY+fOnYiKisLkyZMN+7VaLYKDg+Ht7Y34+Hj8+9//xvz587F27drHuEQisjRyawkGtHbD/GfaIXJWEPa90x8fPe2Hvi1dIJWIkZyRhw3R1zBh/VEELIzA+HWx2HD4KpLv5Jm66kRUR6rdhTR06FAMHTq0wn2CIGDFihWYM2cOnn32WQDA999/D3d3d2zfvh2jR4/GuXPnsGvXLhw9ehRdu3YFAKxcuRLDhg3Dp59+Ck9PT2zevBlFRUX47rvvIJVK0a5dOyQkJGD58uVGQYeI6j+RSIRmrvZo5mqPSX18kVtYjMOX72B/YioOnE/FrawCHEhMw4HENMzDGTRztSsbpt3aDd18G0FmJTH1JRBRLajRZ2CSkpKg0WgwaNAgwzZHR0f06NED0dHRGD16NKKjo+Hk5GQILwAwaNAgiMVixMTEYOTIkYiOjka/fv0glUoNZUJCQrBkyRLcvXsXjRo1KnfuwsJCFBYWGl5rtVoAgE6ng06nq8nLrDf0nws/H/PA9qgaqRgIaqlEUEslhNDWuJiagwMX0hF1MR3x1zJxJS0XV9KS8O2hJNhKJejVTIn+rVzRv5ULPByrNmcNwPYwN2wP81Kb7VHVY9ZogNFoNAAAd3fjmTnd3d0N+zQaDdzc3IwrYWUFpVJpVMbX17fcMfT7Kgow4eHhWLBgQbntERERsLW1fcwrahjUarWpq0D3YXtUXxMAL6uAkS5AYpYIZ++KcC5TBG1RCfacT8Oe82kAAA9bAX5OAvycSuHrAEgq6UQvFYDLWhG0OhEu/rwHzRUCON+eeeCfD/NSG+2Rl1e1ruB6Mwpp9uzZmDlzpuG1VquFl5cXgoODoVAoTFgz86XT6aBWqzF48GBYW3MCMVNje9Ss0lIB5zTZiLyQjsiL6Ui4nonbeSLczhNh7y0x7GVW6NPCGf1buaBfSxe4OcgAALvPpCD8j/PQaO/d0VUpZJgzrA1C2lVt2QSqefzzYV5qsz30PSiPUqMBRqVSAQBSUlLg4XFvgbeUlBQEBAQYyqSmGq9cW1xcjIyMDMP7VSoVUlJSjMroX+vLPEgmk0Emk5Xbbm1tzS/7I/AzMi9sj5oT4O2MAG9nvD24Ne7mFiHqYhoiE9Nw4EIaMnKLsOtMCnadKfvd4t9YAa9GtvjztKbccVK0hXjrhxNY/Upnw5w2ZBr882FeaqM9qnq8Gl3M0dfXFyqVCnv37jVs02q1iImJQWBgIAAgMDAQmZmZiI+PN5TZt28fSktL0aNHD0OZqKgoo34wtVqN1q1bV9h9RET0KI3spHg2oDGW/18Ajv5zELaH9cbbA1uiYxNHAMDpm9oKwwtwb3bhBTvOoqS0sgUTiKguVTvA5OTkICEhAQkJCQDKHtxNSEhAcnIyRCIRpk+fjsWLF+O3337DqVOn8Oqrr8LT0xMjRowAALRt2xZDhgzB66+/jtjYWPz111+YOnUqRo8eDU9PTwDAyy+/DKlUikmTJuHMmTP48ccf8fnnnxt1ERERPS6JWIQALyfMGNwK/5vaB0f/OQhT+jd/6HsEALezCvDj0WSGGCIzUO0upLi4OAwYMMDwWh8qxo0bh/Xr1+O9995Dbm4uJk+ejMzMTPTp0we7du2CXH7v6f/Nmzdj6tSpGDhwIMRiMUaNGoUvvvjCsN/R0REREREICwtDly5d4OLigrlz53IINRHVClcHGdp4OFSp7IfbTuOTP86js3cjdPNuhG6+SgR4OUFuzeHaRHWp2gEmKCgIglD5vz5EIhEWLlyIhQsXVlpGqVRiy5YtDz1Phw4dcPDgwepWj4josbg5VG2ItY21GDmFxYi6kIaoC2Wjm6wlIvg3dkR3HyW6+ijR1bsRGtlJH3EkInoS9WYUEhHRk+juq4SHoxyarAJU9E80EcoWp4ycNQAXU7MRd/Uujl7NwNGrGUjRFuJ4ciaOJ2fiP1FXAAAt3ezR1UeJbj6N0M1HiSaNbLh+E1ENYoAhIkLZczHzhvthyqZjEAFGIUYfO+YN94PUSox2no5o5+mIcb18IAgCbtzNN4SZo1fv4lJqDi7+/fPf2GQAgEohR1efRujuq0RXbyVaqxyqtVYUERljgCEi+tsQfw+sfqUzFuw4i9tZ99ZvUznKMW+4X4VDqEUiEbyUtvBS2uK5zk0AABm5RYi7moG4a3cRm5SB0zezoNEWYOfJ29h58jYAwEFuhS7eZXdnuvko0aGJI5+jIaoGBhgiovsM8ffAYD8Voi+lIuJgDIL79kBgC7dq3S1R2kkR3E6F4HZl81blF5Ug4Xqm4S7NsWt3kV1QbFjDCQCkEjHaN3H8O9A0QhfvRnCy5XM0RJVhgCEieoBELEIPXyXunBPQw1f5xF09NlIJAps7I7C5MwCguKQU5zXZRt1OadmFiL92F/HX7mJNZNn7Wrs73Ot28lGisZNNtc5bUiogNikDqdkFcHOQo3sNXAuRuWCAISKqY1YSMfwbO8K/sSMm9PaFIAhIzshDbFJG2cPB1zJwJS0XiSnZSEzJxuaYsudoPB3l6PZ3mOnm0wit3BwgriSQ7Dp9u1xXmMdDusKILA0DDBGRiYlEIng728Hb2Q4vdPUCAKTnFBpGOsVdzcDpW1rcyirA/xJu4X8JtwAACrlV2bBtn0bo7qNE+yaOkFlJsOv0bUzZdKzcaCpNVgGmbDrGJRGoXmCAISIyQy72MgzxV2GIf9lzNHlFxTienPl3oLmLY8l3oS0oxr7zqdh3vmx9OamVGB0aK3BOk13hUHABZSOqFuw4i8F+KnYnkUVjgCEisgC2Uiv0buGC3i1cAAC6klKcu63F0at3cTQpA3HXMpCeU4S4a5kPPY5+SYTYpAzDMzlElogBhojIAllLxOjQxAkdmjhhUp+y52iu3snD2qjL+G/s9Ue+/9+7z2Ownwp+ngr4eSjg6iCrg1oT1RwGGCKiekAkEsHXxQ7PdGxcpQBzLDkTx5IzDa9dHWTw81AYAo2fpwI+znbsZiKzxQBDRFSPPGpJBKBsnpqJfXxw/nY2zt7WIik9F2nZhYjMTkPk3+s7AYCNtQRtPByMgk0blQI2Uk64R6bHAENEVI9UZUmET0b6G41CyisqxnlNNs7e0uLsbS3O3tIiUZONfF2JYY0nPbEI8HWxg5+nI9reF26quhgmUU1hgCEiqmequySCrdQKnZs2QuemjQzbSkoFXL2TaxRqzt7WIi27EJfTcnE5LRc7Ttw7hou9zKj7yc9DAV8XdkFR7WGAISKqh/RLIjzuTLwSsQjNXe3R3NUewzt6GranZhfg3O3779Zk4Up6LtJzChF1IQ1R93VBya3FaKMyfq6mjcoBttLq/dVTUiogJikD8ekiOCdlVHtpB6qfGGCIiOopiVhU40Ol3RzkcHOQo38rV8O2vKJiJGqyje7UnL9d1gWVcD0TCdczDWVF+i6oBx4YrqwLynhGYQm+vxjHGYUJAAMMERE9IVupFTo1bYROVeyCupKWiytpuYaVuYGKu6AuaLIRtoUzClPFGGCIiKjGPaoL6tx9oeZKWk6FXVCV4YzCBDDAEBFRHaqoCyq/qASJKfrnarJw9pYWp29qUVRSWulx9DMKr428jOe6NIGbgwwiEYNMQ8IAQ0REJmUjlSDAywkBXk6GbduO38SMHxMe+d4luxOxZHcilHZSQ/dT2fBuRzRztYO1RFx7FSeTYoAhIiKzo1JUbV6ZJo3kuJ1ViIzcIhy6lI5Dl9IN+6RWYrR2d7hvvhpHtPFwgEJuXVvVpjrEAENERGbnUTMKi1A2r03krKegKynFhb+7oM7dLnuu5tztbOQUFuPUzSycupll9F4vpQ38PBRo63HvoeHGTjbsgrIwDDBERGR2qjKj8LzhfpCIRZCIJYaFLfVKSwXcuJtveKZGH2puZubjekbZz+4zKYbyCrlVWaD5ewRUWw8FWrrbQ2bFZRPMFQMMERGZperOKHw/sViEps62aOpsa1QuM6/IEGb0weZSaja0BcWIScpATFKGoayVWIQWbvb3hnf/HWwa2Ukf63pKSoXHnliQymOAISIis6WfUTj6UioiDsYguG+PJ5qJ18lWil7NXdCruYthW1FxKS6l5hjmq9F3Q2Xl63Bek43zmmz8ipuG8h6O8vseGC4LNk2VthA/pE7GE/LdOw4n5Ht8DDBERGTWJGIRevgqceecgB61cNdCaiUuu8viqQC6lG0TBAG3sgpw7r6J+M5ptLh2Jw+3swpwO6sAe8+nGo5hJ5Wgrf65mr/v2LRWOUBuLcGu07cxZRMn5KtpDDBEREQPEIlEaOxkg8ZONhjk527Ynl2gM6zcrb9Tc16TjdyiEsRdu4u4a3cNZfUrd9/MzK/wQWROyPdkGGCIiIiqyEFujW4+SnTzURq2FZeUIik912jJhLO3tLiTW4TLabkPPZ5+Qr5f4m/gmQBPyK350HBVMcAQERE9ASuJGC3dHdDS3QHPBjQGUNYFlZZdiG//SsJ/Iq888hjv/XIS7/96Ep6ONvB1sYOvix18XOzQ7O//Nmlkw0n5HsAAQ0REVMNEIhHcFHIEtXKrUoCxsRYjX1eKm5n5uJmZbzQhH1A2IspLaVthuPFQyB/6AHF9VeMBpqSkBPPnz8emTZug0Wjg6emJ8ePHY86cOYZJggRBwLx58/D1118jMzMTvXv3xurVq9GyZUvDcTIyMvDWW29hx44dEIvFGDVqFD7//HPY29vXdJWJiIhqRVUn5Dv43gBk5euQlJ5r+Ll6p2zV7qt3clGgKzVsf5DMSgwfZ+Ng4+tqBx9nO7jYS2t8gr6SUgExSRmITxfBOSnjiUaFPYkaDzBLlizB6tWrsWHDBrRr1w5xcXGYMGECHB0dMW3aNADA0qVL8cUXX2DDhg3w9fXFRx99hJCQEJw9exZyedn00WPGjMHt27ehVquh0+kwYcIETJ48GVu2bKnpKhMREdWKqk7IZyURw9leBmd7Gbre93wNUDYpX0p2AZLScpF0J7fsv+ll/598Jw+FxaVITMlGYkp2ufM7yKzg88BdG/3/O9pUf0kF4+HgEnx/Mc5kw8FrPMAcPnwYzz77LEJDQwEAPj4++O9//4vY2FgAZXdfVqxYgTlz5uDZZ58FAHz//fdwd3fH9u3bMXr0aJw7dw67du3C0aNH0bVrVwDAypUrMWzYMHz66afw9PSs+ORERERm5kkm5APKJuXzcLSBh6MNerVwMdpXXFLW7XQlPRdX77t7k5Sei5uZ+ciuZDkFAHC2kxrCzf0/Ps52sJGWf5jY3IaD13iA6dWrF9auXYsLFy6gVatWOHHiBA4dOoTly5cDAJKSkqDRaDBo0CDDexwdHdGjRw9ER0dj9OjRiI6OhpOTkyG8AMCgQYMgFosRExODkSNHljtvYWEhCgsLDa+1Wi0AQKfTQafT1fRl1gv6z4Wfj3lge5gXtod5sfT2GNjaBUEt+yLu2l2kZhfCzUGGrt6NIBGLnviaPBVSeCqk6NOskdH2Ql0Jku/m42p6Hq5m5OJqeh6S7uTh2p08pGYX4k5uEe7kFiH+vqHfeiqFDD7OtvBxsYOPsy2aNrLB3B3nHjEc/AyCWjo/cXdSVT+PGg8wH3zwAbRaLdq0aQOJRIKSkhJ8/PHHGDNmDABAo9EAANzd3Y3e5+7ubtin0Wjg5uZmXFErKyiVSkOZB4WHh2PBggXltkdERMDW1vaJr6s+U6vVpq4C3YftYV7YHualPrSHBMAdALvP1d05GwNoLAV6ewDwAApKgPQCIDVfhLQCIC1fhNQCEdLygbwSETTaQmi0hTiSVD7cVKRsOHghvvxxF1o6VhRzqi4vL69K5Wo8wPz000/YvHkztmzZgnbt2iEhIQHTp0+Hp6cnxo0bV9OnM5g9ezZmzpxpeK3VauHl5YXg4GAoFIpaO68l0+l0UKvVGDx4MKytuby8qbE9zAvbw7ywPerO3bwiXL2T9/cdm1xcu5OHhOtZuHVf91dlmrULwLAOT9aNpO9BeZQaDzCzZs3CBx98gNGjRwMA2rdvj2vXriE8PBzjxo2DSqUCAKSkpMDD495FpqSkICAgAACgUqmQmppqdNzi4mJkZGQY3v8gmUwGmUxWbru1tTW/7I/Az8i8sD3MC9vDvLA9ap+bozXcHO3Qvdm9bdGX7+Clr4888r0eTnZP3D5VfX+Nz4qTl5cHsdj4sBKJBKWlpQAAX19fqFQq7N2717Bfq9UiJiYGgYGBAIDAwEBkZmYiPj7eUGbfvn0oLS1Fjx49arrKRERE9BD64eCVPd0iQtnilN19lZWUqHk1HmCGDx+Ojz/+GL///juuXr2Kbdu2Yfny5YYHb0UiEaZPn47Fixfjt99+w6lTp/Dqq6/C09MTI0aMAAC0bdsWQ4YMweuvv47Y2Fj89ddfmDp1KkaPHs0RSERERHVMPxwcQLkQc/9w8LqcD6bGu5BWrlyJjz76CP/4xz+QmpoKT09PvPHGG5g7d66hzHvvvYfc3FxMnjwZmZmZ6NOnD3bt2mWYAwYANm/ejKlTp2LgwIGGiey++OKLmq4uERERVcGTDgevaTUeYBwcHLBixQqsWLGi0jIikQgLFy7EwoULKy2jVCo5aR0REZEZGeLvgcF+KkRfSkXEwRgE9+1Rf2biJSIiovpLIhahh68Sd84J6OGrNEl4AWrhGRgiIiKi2sYAQ0RERBaHAYaIiIgsDgMMERERWRwGGCIiIrI4DDBERERkcRhgiIiIyOIwwBAREZHFYYAhIiIii1NvZ+IVBAFA2UrXVDGdToe8vDxotVouT28G2B7mhe1hXtge5qU220P/97b+7/HK1NsAk52dDQDw8vIycU2IiIiourKzs+Ho6FjpfpHwqIhjoUpLS3Hr1i04ODhAJDLNOg3mTqvVwsvLC9evX4dCoTB1dRo8tod5YXuYF7aHeanN9hAEAdnZ2fD09IRYXPmTLvX2DoxYLEaTJk1MXQ2LoFAo+AvBjLA9zAvbw7ywPcxLbbXHw+686PEhXiIiIrI4DDBERERkcRhgGjCZTIZ58+ZBJpOZuioEtoe5YXuYF7aHeTGH9qi3D/ESERFR/cU7MERERGRxGGCIiIjI4jDAEBERkcVhgCEiIiKLwwBDREREFocBpoEJDw9Ht27d4ODgADc3N4wYMQKJiYmmrhb97V//+hdEIhGmT59u6qo0aDdv3sQrr7wCZ2dn2NjYoH379oiLizN1tRqkkpISfPTRR/D19YWNjQ2aN2+ORYsWPXKhP6oZUVFRGD58ODw9PSESibB9+3aj/YIgYO7cufDw8ICNjQ0GDRqEixcv1kndGGAamMjISISFheHIkSNQq9XQ6XQIDg5Gbm6uqavW4B09ehT/+c9/0KFDB1NXpUG7e/cuevfuDWtra/z55584e/Ysli1bhkaNGpm6ag3SkiVLsHr1anz55Zc4d+4clixZgqVLl2LlypWmrlqDkJubi44dO2LVqlUV7l+6dCm++OILrFmzBjExMbCzs0NISAgKCgpqvW6cB6aBS0tLg5ubGyIjI9GvXz9TV6fBysnJQefOnfHVV19h8eLFCAgIwIoVK0xdrQbpgw8+wF9//YWDBw+auioE4Omnn4a7uzu+/fZbw7ZRo0bBxsYGmzZtMmHNGh6RSIRt27ZhxIgRAMruvnh6euKdd97Bu+++CwDIysqCu7s71q9fj9GjR9dqfXgHpoHLysoCACiVShPXpGELCwtDaGgoBg0aZOqqNHi//fYbunbtihdeeAFubm7o1KkTvv76a1NXq8Hq1asX9u7diwsXLgAATpw4gUOHDmHo0KEmrhklJSVBo9EY/d5ydHREjx49EB0dXevnr7erUdOjlZaWYvr06ejduzf8/f1NXZ0G64cffsCxY8dw9OhRU1eFAFy5cgWrV6/GzJkz8eGHH+Lo0aOYNm0apFIpxo0bZ+rqNTgffPABtFot2rRpA4lEgpKSEnz88ccYM2aMqavW4Gk0GgCAu7u70XZ3d3fDvtrEANOAhYWF4fTp0zh06JCpq9JgXb9+HW+//TbUajXkcrmpq0MoC/Zdu3bFJ598AgDo1KkTTp8+jTVr1jDAmMBPP/2EzZs3Y8uWLWjXrh0SEhIwffp0eHp6sj0aOHYhNVBTp07Fzp07sX//fjRp0sTU1Wmw4uPjkZqais6dO8PKygpWVlaIjIzEF198ASsrK5SUlJi6ig2Oh4cH/Pz8jLa1bdsWycnJJqpRwzZr1ix88MEHGD16NNq3b4+xY8dixowZCA8PN3XVGjyVSgUASElJMdqekpJi2FebGGAaGEEQMHXqVGzbtg379u2Dr6+vqavUoA0cOBCnTp1CQkKC4adr164YM2YMEhISIJFITF3FBqd3797lpha4cOECvL29TVSjhi0vLw9isfFfVRKJBKWlpSaqEen5+vpCpVJh7969hm1arRYxMTEIDAys9fOzC6mBCQsLw5YtW/C///0PDg4Ohn5KR0dH2NjYmLh2DY+Dg0O554/s7Ozg7OzM55JMZMaMGejVqxc++eQTvPjii4iNjcXatWuxdu1aU1etQRo+fDg+/vhjNG3aFO3atcPx48exfPlyTJw40dRVaxBycnJw6dIlw+ukpCQkJCRAqVSiadOmmD59OhYvXoyWLVvC19cXH330ETw9PQ0jlWqVQA0KgAp/1q1bZ+qq0d/69+8vvP3226auRoO2Y8cOwd/fX5DJZEKbNm2EtWvXmrpKDZZWqxXefvttoWnTpoJcLheaNWsm/POf/xQKCwtNXbUGYf/+/RX+nTFu3DhBEAShtLRU+OijjwR3d3dBJpMJAwcOFBITE+ukbpwHhoiIiCwOn4EhIiIii8MAQ0RERBaHAYaIiIgsDgMMERERWRwGGCIiIrI4DDBERERkcRhgiIiIyOIwwBAREZHFYYAhIiIii8MAQ0RERBaHAYaIiIgszv8DDRpnPUe/B2MAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En este caso, no es tan directo identificar \"el codo\" de este gráfico.\n",
"Para seleccionar un valor para k, se escogerá el que tenga el mayor coeficiente de silhouette."
],
"metadata": {
"id": "7jBIpw720qCJ"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import silhouette_score\n",
"random_state = 20\n",
"k=2\n",
"while k < 10:\n",
" kmeans_scaled1 = KMeans(n_clusters=k, n_init=20, max_iter=300, random_state=random_state)\n",
" kmeans_scaled1.fit(scaled1_df)\n",
" y_pred = kmeans_scaled1.predict(scaled1_df)\n",
" print(\"Kmeans silhouette para k =\",str(k), silhouette_score(scaled1_df, kmeans_scaled1.labels_))\n",
" k=k+1"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CKPRRe5DbLa3",
"outputId": "3f0a98e2-74ee-40cc-b2eb-347082a3a189"
},
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Kmeans silhouette para k= 2 0.3056110474421643\n",
"Kmeans silhouette para k= 3 0.26975407208793994\n",
"Kmeans silhouette para k= 4 0.23001580783439204\n",
"Kmeans silhouette para k= 5 0.22936634491403338\n",
"Kmeans silhouette para k= 6 0.22222604418100075\n",
"Kmeans silhouette para k= 7 0.20824035011917372\n",
"Kmeans silhouette para k= 8 0.21450988853093278\n",
"Kmeans silhouette para k= 9 0.21177714879512222\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"En base al coeficiente de silhouette para k=2 igual a 0.305, que es el mayor, se selecciona k=2."
],
"metadata": {
"id": "7VkiZ6yC0uXn"
}
},
{
"cell_type": "code",
"source": [
"random_state = 20\n",
"kmeans_scaled1 = KMeans(n_clusters=2, n_init=20, max_iter=300, random_state=random_state)\n",
"kmeans_scaled1.fit(scaled1_df)\n",
"y_pred = kmeans_scaled1.predict(scaled1_df)\n",
"counts = np.bincount(y_pred)\n",
"print(counts)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6iHQrdcbIeWZ",
"outputId": "7b190ba1-2903-411e-f485-f6e8e4b57f2f"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[4349 3921]\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Los dos grupos tienen una cantidad de datos similares."
],
"metadata": {
"id": "rIYF2NKlAMcl"
}
},
{
"cell_type": "code",
"source": [
"reduX = PCA(n_components=2, random_state=0).fit_transform(scaled1_df)\n",
"plt.scatter(reduX[:, 0], reduX[:, 1], c=kmeans_scaled1.labels_)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 430
},
"id": "YhA2Q1UqIuOl",
"outputId": "b8d04829-b9dc-440e-ff70-0c2272096d17"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+JUlEQVR4nOydd3gUVReH3zuz6T30Jr0IKCBNQJp0FAQVsSGgoCL4ISgqKigWQFBEBEWQoqA0laIISEeaNOm99xLSk822ud8fmyyEbEsPMO/z8Ghm7tw5k+zOnLnnnN8RUkqJjo6Ojo6Ojs5tgpLfBujo6Ojo6OjoZAbdedHR0dHR0dG5rdCdFx0dHR0dHZ3bCt150dHR0dHR0bmt0J0XHR0dHR0dndsK3XnR0dHR0dHRua3QnRcdHR0dHR2d2wrdedHR0dHR0dG5rTDktwE5jaZpXLx4kZCQEIQQ+W2Ojo6Ojo6OjhdIKUlISKBkyZIoivu1lTvOebl48SJlypTJbzN0dHR0dHR0ssC5c+coXbq02zF3nPMSEhIC2C8+NDQ0n63R0dHR0dHR8Yb4+HjKlCnjeI67445zXtJCRaGhobrzoqOjo6Ojc5vhTcqHnrCro6Ojo6Ojc1uhOy86Ojo6Ojo6txW686Kjo6Ojo6NzW6E7Lzo6Ojo6Ojq3FbrzoqOjo6Ojo3NboTsvOjo6Ojo6OrcVuvOio6Ojo6Ojc1uhOy86Ojo6Ojo6txV3nEidjo6Ojo5OZjh7+AJHth/H4GOg9sM1iSgalt8m6XhAd150dHR0dO5Krp69xpjek9iz9oBjm2pQaNurJf2/7o1fgF8+WqfjDt150dHR0dG564iLimfgQ8OIvhSTbrvNqrF8+hqunbvOZ0uHeuxurJM/6M6Ljo6Ojs5txaVTV9iyZAemZDPlapahQYc6qAY1U3Ms+mYZ0Zdi0Gxahn1Sk+xYsZvda/bzQOv7c8psnRxEd150dHR0dG4LTEYTX738Pat/+QchBIoisFk1CpWMYOjsgdRqUcPruZZPX+PUcUlDNSj8/dM63XkpoOjrYTo6Ojo6twUjn/uaNXM2grSvjtisducj5nIsQzt8yvHdp7yeK/ZavNv9NqvG9Ysxbsfo5B+686Kjo6OjU+A5uvMEmxdtR2oywz4t1ZH55bPfvZ4voli42/2qQaFImUKZNVMnj9CdFx0dHR2dAs+6uZvc5rVoNo1Ni7ZhMpq8mq9jn1YIRbjcb7NqtOvVMtN26uQNuvOio3ObIS2H0GKHol1tgnblQbSYAUjz9vw2S+cORkqJMdGIOcWcbzYkRCd6HKPZNJITUrya77EB7SleriiqIeNjUCiCJl0acH+z6pm2Uydv0J0XHZ3bCGn8A3m9K6QsAu0ayGgwrUZGP4dMnJzf5uncYdisNhZ9s4yeVV6nc+gLPBL4HG+2/JBty/7Lc1tKVCyOlBlDRjcTEOJPSESQV/OFRAQzfuMn1O9QB25agPHx9+Hx/3Xk/blvIITrlRmd/EVIT5+G24z4+HjCwsKIi4sjNDQ0v83R0ckxpPUsMqot4LpCQkTORvg2yDujdO5YbDYbnzw1jk2Lttk3pD4pFFVBs2n0n/AiXQZ0yPZ5Tu07w6pZG4i5GkehkpG07dmcMlVLZRgXdeE6z5bt5zTnJc2uLgM60O+rXpm24erZaxzbdQqDj0rNh6oRFOadA6STs2Tm+a07Lzo6twlawhhImgHYXIxQwe9hlIhJeWmWzh3KsmmrGdfX9WqeUAQ/Hv2GEhWKZWl+m9XGuJcn8/fMdSiq4lhVkZrksf7tee3r3hkE4uaOXsi0937JMJdiUChSqhATt40ivIgu7X+7kpnnt67zoqNzu2DejmvHBfs+PfdFJ4dYNHEZQhEuVzqEECydspI+o5/P0vw/DP2ZlT+uA8igt7J40nJCIoPpOaJ7uu1Pv9uViOLhzPp4AVdOXwNANai06N6Yl8f2ILxIGBeOX2Ld3M0kRCdQvHwxHn7uIUIjQxxznDl0nkUT/mLDb/9iSkohong4jTrXp9cn3QkMDsjStejkPfrKi47ObYJ2vTtYPOQaiEiUYlvzxiCdO5r2vt0dOiquqN+hDiOXvkfUxWguHr9MQLA/FWuX8yipnxibRLfifbCarS7HqAaFRbE/4R+Ysb+QpmmcOXgeU7KJkhWLE1ooBKvFyvhXp7BixloUVXEI2Kk+Kq988QJdBnRg6587+ejxMU6vy+Cj8u6s/9H8qcZubdfJPTLz/M6ThN1JkyZRrlw5/P39adiwIdu2bXM7fvz48VStWpWAgADKlCnDoEGDSEnxLoNcR+dORfg1xf1XVgW/pnlljk4OcnDrUUb3mECPCv3pfe9Apr49i0unruSrTT5+Pm73C0WAlAx7bDTPlnmVN1t8yGv13qFHhf78nbqi4opdq/a6dVzAXqq8YsZap/sURaF8zXuo1qAyoYXsqyrfvjGDv2faz6vZNKwWG1JKrGYrk/43nT+//5tPnvrSpUNmtdj47Jnx7F67361dOgWDXHde5s2bx+DBg/nwww/ZtWsXtWrVol27dly9etXp+F9++YV3332XDz/8kEOHDjFt2jTmzZvHe++9l9um6ugUbAKeAnxIVxqRDhsgPFZk6BQsfhn5OwMbv8+6eZu5fPoq549c5Nev/uSlGoPY8feefLOrSdcGTsuI05CaZP+mw2xf9l+6z9zVs1GM7T2JBV/+4fLY5ASjVzbs+Hu3V+OiLkbz5/crXX/2Bcz4YA7mFIvbeaSUzPp4gVfn1Mlfct15GTduHH379qV3795Ur16dyZMnExgYyPTp052O37x5M02aNOHZZ5+lXLlytG3blmeeecbjao2Ozp2OUIsiIibj9mubsgiSZ+SVSTrZZPuK3cz4YA5gT2BNQ7NpWE1WPnp8DLHX4vLFtm5vdgYEzqqFFVXBP8iPlGSTy5WMaUN/dml7yYrFvbLhzIHzJMR41nfZsni7oxrKKRLir3ueB2Dv+oPEX0/waqxO/pGrzovZbGbnzp20bt36xgkVhdatW7NlyxanxzRu3JidO3c6nJWTJ0/y119/0bFjR6fjTSYT8fHx6f7p6NyxGKri/i4NMnEyUuafmJiO9/z+1Z8oqvPbsJQSc4qF5dOdh06ygjnFzLXz171a+ahYqxwf/T4E3wBfexNEVXEo3BYtUxiL2Yq0uf4saprG6tn/ON1Xo0lVt+q2aVw6dYX/NXrP4UzYrDY2L97OqOe/5oNHRzF58EzOHDpPckKKV/N5i7crQzr5R65WG0VFRWGz2ShWLH0pXbFixTh8+LDTY5599lmioqJ46KGH7PFKq5VXX33VZdho1KhRjBgxIsdt19EpkJg34E7nBQAZC5Y94Fs/LyzSyQZ7Nxx029lYapK9Gw7y9DtdsnWeqAvXmf3xr6yctR5zigVFETzYqR49hnejUp3yLo978NG6zLswhZU/beDIjuMYfAw06PgA5e8rQ++qA92eU1UVrpy55mKfysPPPMTqn507Nw4kXDx+mZnD5vLCiKd4t92nnNh92qE1s/1vhd/GL6V5t0Zuf49gr47yJqTqF+hHZPFwj+N08pcCVyq9bt06Ro4cybfffkvDhg05fvw4AwcO5JNPPmHYsGEZxg8dOpTBgwc7fo6Pj6dMmTJ5abKOTt4hvUxcl971d9HJX/JCwfXq2Wu8/uB7xEXFO0I8mibZ+udOti//j9ErhrmVwQ8KC6LL6+nF6BJjk+ypV258AU2TjmRaZ7w8tgc7V+4h9qr71XJNkyybvobje05zav9Z+7ZUR0VLvZ71C7YQEBJASmKKUwdFURUadHyAfRsOkhSX7PJciiJo37slvv6+bm3SyX9yNWxUuHBhVFXlypX0WfNXrlyheHHnMc9hw4bRo0cP+vTpw3333UfXrl0ZOXIko0aNQtMyetZ+fn6Ehoam+6ejc8diqOLFIAGGirluik72ub9FDZdhI7BX9NRqXiNb55g0cEY6xyWNtIqc0T0mYLO50w/KSHB4EPXb13Fru2bTaPF0E5f7I4tHMGn75xQpU9jj+axmK4e2HHU4KxkQEBjij1BEBptUg0JooRD6f92b0Ss+wDfQuWMiFEHx8kXp8WE3j/bo5D+56rz4+vpSt25dVq9e7dimaRqrV6+mUaNGTo9JTk7OoBGgqvY4q15FoXPX41MX1Aq4/uqq4NcCZBIyeQ4y+Rek5VgeGqjjiqM7T7Dyp/X889tWkuLtb/9PvPGI23CHwcdAu94tsnzO65di2PLHDpdJtVKTXDt3nV2r9mV67p4fPYWiCKe5JkII2r/0MKUrl3A7R9EyhSlRoahX53PnKCHh+sUYPpg3iNotbzh7Bl8DddvU4o3JfQkvGka1BpWZc2Yy7Xq1JCDY3zHOx8/AI31bM2HLSMIK6y/AtwO5HjYaPHgwPXv2pF69ejRo0IDx48eTlJRE7969AXjhhRcoVaoUo0aNAqBTp06MGzeOOnXqOMJGw4YNo1OnTg4nRkfnbkUIAeFfIqOfSw0N3fzGrIKIAC0OGZWW4G5f25c+DRHhXyJU7x4UOjnHyb1nGNNrIid2n3Zs8/X34YlBj9Lz4+68NOo5pg39GUUVaLckwFpMFt5u/TGfLHmXYmWLZPrc549edKmQm4aiKpw9eJ767Wpnau6q9Ssxctn7jOk5kagL0fY8FE1DURUefaUN/cb18mqeyGLhXo3zJsRWrkYZPv97OFEXrjNz+DzWzdvEtmX/sW3Zf/gH+9P51bb0/ORp3pr+Gm9Nf42oi9GkJKZQqFQkAUH+HufXKTjkuvPSvXt3rl27xvDhw7l8+TK1a9dm+fLljiTes2fPpltp+eCDDxBC8MEHH3DhwgWKFClCp06d+Oyzz3LbVB2d2wLhUwMKLUQmfg8pfwAWEAHg3wXMm+zJug5SH1yWHcjo56HQQoSiN53LDCajiW1//Uf05VgKlYygQccH8PUg4JbG+WOXeKPpB5iS01d/mVMszBm9kISYJAZ+25ey1Usz4skvwEn45uyh8wxpNYIpe790qjbrjptXF1yhaZpX45xR5+H7mH36W3as2MO5wxcICPanUed6RBaP8HqOynUrsG7+ZrdjFFVJV0rujKCwQIqVK4rNamNMr0nsXrs/neOWkpjCgnF/cHLfWT79811UVaVwyUiv7dQpWOjtAXR0bmOktIBMBhEMxgXI+OFuRgtEyDBEUNZ60dyN/Pn9Sn54dzZJccmOapWQiCD6fdWbNi8093j85z2/Ye2cjW5l9mccmcBfU1by2/ilbkNIb057jfa9W2bKfpvNxvPl+xN1/rrLMYqqMOfc5Ew5HJ64dPIKh/49hqoq3N+8OhFuVleiL8fwdOlXXPdQSk2i3frnTmKvxTsdp6gKTw56lL5jerB27iZGPjverX3DF7xJ0ycezMwl6eQBBa49gI6OTu4ghA9CCUMIFWn8Hdfqu3akcWHeGHYHsGzaar7uN8VRnZL2npcQk8SYXhNZ84v7Ml9zipl1cze5dVxUg8KqWetZM2ejW8dFKIL18zdl+hpUVaXHcNcJqEIRdOzbKsccl+jLMbz/yEheqDSAUc99zadPf8XTZV5hTK+JGJOcV8pFFo/gxc+edWlfRNEwnn3/CZo/1dhp3qNQBFXrV6THR08BsHTqSrf5MYqqsHTqqixcnU5BQndedHQKKFJKpHkbWtx7aDGvoMV9hLTsdX2Adh2PMqOa6zdwnRtYzBZ+ePdnt2OmvjPbbZVOYmwSVounKh5B9KVYjInuS+ClJkmKy5pwWsc+rXhp5LOOZoUGH9Uh+9/q2aa8Nr53lua9laS4JAY1G86OlelbGmhWjdU//8OwTqNd/r6efqcLb/7Qj6L33Kg8Eoqg8WP1Gb/xU74ZMI3FE5c5/Xg3e7IRY1d/6AipXTp+xa0jqNk0Lp3I375ROtmnwOm86OjogJQpyJjXwbweULEn5qpI4y9I/y6IsFEIcUsCu1oabBdwLWKn2MfoeOS/1fs9SsRHXYhm/8bDLkuZgyOC8fEzYDG5bkAopaRwqUjKVC3J0Z0nXYZOVINC2epZ/9s9/W5X2vRswapZG7hy5hqhhYJp+cxDlL03Zz4PUkr++O5vLp284vQaNJvGnnUH2LhwG2ajmS1/7MCUbKZirbJ07Nua4uWK0v7Fh2nbqwUn95zBmJhCqcrFiSweweJJy1P7Jzk/9z+/beXVL1/Ar5TdeQkrEsLV81Eu/XghIKyInlJwu6M7Lzo6BRAZNwLMaWEJW/r/pixGqqUQIekVTkVAd6TZedsNOxoisHtOm3pHEnfNuzYj7sb5+vnw8LNNWTVrvcvQkaZptHmhOcXLF2Vs70ku57JZNR55ubXL/d5QqEQE3d9+LFtz3MrZwxeYP2YRa+dtxmx035JCKIKxPSdiMpoRikBqkh0rdjPv80UM+OYlOvVrh6IoGRR/F01chvTQEmPZtDWO8FibF1pw/L/TLo+R4FW+kk7BRg8b6egUMKTtKqQsxPUKioSkSWiXa6JF90WaUis1/NuCb2Ocf60V8G0I/u1zx+g7jCJlCnk17uYwhzOe++AJAkMCXOZgPPHGo5SoUIxWzzWlfvvaGcqB035+4o1HqNagslc25RUHNh/htbpvs2r2Bo+OC9hDX6bUcWmrM5pNQ9MkE/r/wM5bwk1g72V0/shFt9FQqUlO7Tvj+LltrxYUK1fEaUds1aBQqlIJWj/f1KO9OgUb3XnR0clHpDQjjYvQonujRXVGi3kdmTQDj/2LADCDeSMyphcyaRpCGOxdpwN7ADeXvvpB4HOIiKkI4V2J793O/c2rU6RMIZfaIkIRlKlWiqr1K7mdp0T5Yny9+TNqNK6abntgaAC9P32GV754AQDVoDJi0dv0HNGd8KJhN46vUJQ3Jr/MK1/2zOYV5Sw2q41PnvoSi8niNiHZWxRVYd6YxRl3CDw2XBSKSCfnHxQayLj1Hzv+NuImIb17H6zCF2s/IiA4INs26+Qveqm0jk4+IbVoZPQLYD2K/T1C40Z+S+YRhRYhfKqnzp0IlgNI23mwnQOsCEMF8O+AEPqN2xv+/WsXwzqPBple3VsoAkURjFr+AXUevs/r+c4evsDZQ+fxC/Tj/mb34hfgXLPFZrVx9VwUqqpQpEzhTPc/Skk2seaXjWxetA1jUgoVa5XjkVfa5Fh+C8Dmxdv5sOuYHJsvjb9SfsHH1+5gSykZ1/c7r7pqfzBvMM27ZVRtP/7fKfauPwgCarWoQcVa5XLaZJ0cJDPPb9150dHJBNIWZc85sZ0HEY4IeARhcP/27QotuheY/yWrzkp6VPDvihI+0m6nNCJj3wbTCuyOkQJYQQQjwkYj/NvmwDnvfLav2M33b/7ImYPnHdsq1ipLv696U6tF9noO5Qbnj11iSKsRRJ2/7tClUQwKmlWj7+fP89QQ1zkvVosVm9WGr7+vR4dp1ogF/PzZbx6F4zLLH4mz8Q/04+q5KHau3MO4PpPdjheKoET5okw7OB6Dj57CebuTmee3/tfW0fESmTQdmTAWewBeASQyaRLSvzMibCRCeN+JVlqOgdm9qmjmsIHlvxvzx74JpjWpP2k4wlAyCRn7P4ichfCtn4Pnz1uSE4wc23USIQSV6pQnMCR3VpPqt6tNvba1OLn3DNGXYylcKpLyNe/JlXNlF6vFyrvtPiH6UgxwY7UorZnh1HdmU7pqSRp3Tv9337vhIPPGLGL78t1ITVKiQlG6DOhI5/7t0jkE1y/FEHUhmoiiofj4GbzuNWfwUalctwKH/z3u+hgBpSqVYNfKvfw0Yn66Vgru8PXz4fOVwwuk4xIfncDx/06jqgpV6lfU2w/kMAXvL66jUwCRxkXIhNE3bbkpzp/yB1L4I8I+9X5C8xbS+g7lGKnOk7QcApMrES4JCGTiRETkjzl37jzCZDTxw7s/s+yH1Y7kT78AXzr2bU2f0c+ly33IKYQQVKxVjoq1cnzqHGXz4u1cOX3N5X5FEcwfuzid87Jy1nrG9prkqP4BuHTqKpPf/JHtK3bzyZJ3OHf4AlPens2Ov3c7Pq4Va5dzq6UCEF40lIGTX+a+h+5FKIJnSr+C2WRx+ZGvUrcCH3Yd4zHH5WaCI4IoXq5g9etKik9m8uAfWTVrvUPnxz/Ij86vtafXJ90dYTGd7KEn7OroeEBKDZk4wd0IMP6KtF3OxKw2PKnhZg4F/B62W5OyHHvujCs0MG9BanE5eP7cx2a18cGjo1k8abnDcQEwGc0snriMDzqNzvEwxu3EjhV7UA2u/+6aJjmw6QgmowmAmCuxfNnnO6SU6R2R1ByfnX/vZvr7c3i90fvsWrU3ndNxau8Zj8m0PUd0Bwkrf1rP5sU7eOP7V1BVJX0VUOrhoYVDWL/AXubvqZHkzQSGBno9Ni8wGU283WoEf/+4Lp1AYUqSiQVfLOHT7l+hadlPcNbRV150dDxjPQq28x4GSTCthsDnPE4ntQSkWhHvKoq8QQB+NzRcZAJeOUYyCQjzOKygsH7BFnav3e90n6ZJ/lu9j42//0vzpxrnsWUFA7t6recHf1p10IoZa92unkhg0TfLsFltGcZpmkQIgWpQsZqtqAYFzaYhFPt/mz35IDOHzSUuKsHebdqmYfA10LZXS1KSUtj4+7928b5Uc+OvuRcEdIZQBK2ezZmS50P/HmPp939zct9ZAkMCaPZkI1r3aJbpcOSKGes4tuukU0E9KSWbF29n58q9me7grZMR3XnR0fGETPZikAKa+3HStA6ZOBksu1K3qNgdGGcPHAV87gfLbg/nFSACEOHfI9Ti9i1qOaTHJOAAULzTMiko/PXDKseD0BlpPWvuVuelWv1K/P3jOpf7hRCUqFjM0UH6xJ7T7gOXEiwmi8v5pJRYzVYada5HUFggpmQTJSoUp0y1kozrM9khEpf297KarSz7YTVd/tcBRVURii1Tqyy3EhweREc3wn1RF66TkmymSOlIl5VdUkp+eGc2879YgmpQsFk1hIA96w8wZ9TvjF3zEaUrl/DapqVTVrrdr6gKy35YrTsvOYAeNtLR8YRaFs9fFRsYKrrcK5N/Qca8fIsz4uxNOXXFxKcWRMyAoFe5US1kSN0vQCkDalXwfQiC3wCfajemCHgMcBdXVyHwCYRwfkMvqFw+edVzz5qTd2/PmlbPNyMgyN9lKEcieXzgI45KIt8AX8hEfokrtizZwZY/dvDk4E70/fx5Fk9c7jada8nE5ZhTzNlyXAA6v9aeiKIZVw43LvyXVx8YwjNlXqV31f/RrVgfvn1jBklxSRnG/v3jOuZ/sQS4sSIlpd326MuxvP/ISLf9q27l6rkol20MwP4ZvXzqqtfz6bhGd150dDwg1ELg1wbXeSQKKEXAr5nTvdJ2GRn/cepPLh6+IgS7w2EPASHCEZZ9KCGDEUXWI0KGQGBPRMi7EDwYtGtgO2JP/E0YhbzaBJk4GSmlvct06Ic3bEuHCmpJRPCAjHZKIzJlGTJpNjJlFVJ6Vk3NS8KLhuKuglcI0gm83W0EhgQw/Ne3UA1qurwSJdVBafZkIx59tY1je6NO9RyVSM5QVO8dG2O8kXfbf8rBLUc4/t8pt46JpslsOy6KquDrn9FBXzRxGSOe+IKTe28o7hoTU1g8aTkDHxqWzoGRUjJ/7GKXZeGaTePi8ctsX7bba7tCC4V4tDui+N37Gc1JdOdFR8cLROh7oESS0YFRAQURNhYhXERhjb95PoFM4EZJswnMG5AxLyATpyDUYoigl1BC37E7OYlfAmldiK3YX3HNyMRxkDzDbm9gN0T4ZDDce9NJfCHgSUShBQglMv3pk2YhrzZGxg5EJnyCjH0NefUhpPEPz7bnEW1eaOGpZzZte7bII2sKJvXa1mLyf2Np3/thQiKD8Qv0pUq9irz94wDen/MGqnrj89uoUz1KVynhVEYfQGreNzDUNElKkokVM9flxGV4Pp9No3i5Ium2RV+OYfLgmUDGpF/NpnHu8IV0Kr6x1+I5e+iC25Jv1Ue1Jyt7SbteLd0mMWs2jTY99L5KOYEuUqej4yXSdgWZ+A0YFwFmQIBfC0TwAISPa6VVLfYNSFlOVhN0ReQ8hG8dpLQirzUDLcrN4GBE0c0IcUNTQtou2ZNzlRIIJSjjdSXNRiZ8nGG7Y8rwCYgC0BPJmGikX913uHzqSgZJetWgUKJCMb7dOSZTehopySbWzdvM0e3HMfgaqN++NnXb1kJR7o73uqtnr/FOu085f+QiqkFBplYaqarCkBn9sVk1xvSa6PV85e+7h1P7z3rMG765NDsrBIYGMP/SVEcui81q47vBM1k8abnbc4dEBvPr1WkoisL1SzE8Xeplt+dRfVQefbkNA755ySu74qMTeLXOEKIvxWT4jCqqQqXa5fh682cFUpemIKCL1Ono5AJCLYYI+xQZ+gFo0SBCEIr7ZWJp2QvmPWS9skhFJs9C+NYB8073jguATATTRvC/kcgoVNcJh1Km2Fds3E2ZMAb82iJE/j7QA4ID+HLdCEY9N5496w46QkhSQs2HqjH05zcy5bj8t2YfI578gqTYZFQfFSQsnPAXZauXZuRf71H0niKeJyngWC1WkhOMBIUGZiijPr77FOcOX6Tv6Ocwm6zsXLEbs8lChfvL0a53C8KL2MMbxsQUpgz5KV15uitMRjPVG1Xh0NZjLp0TRRFoHhyXh7o2YOvSndgsWvrWDML+9x7wzUv4BfihaRq/j1/K/LGLibniufQ/ITqRpLhkQiKCiSgWRpEyhbh27rrL8TaLjeq39KVyR2hkCOP/+YTPnhnPwS1H0+X+NOz4AENm9tcdlxxCX3nR0cklZMoqZOzr2O9e2SiLVoqjFN2ATPkbGZsxV+VWROhoRODjXtq4Ehnb3/OckfMRvrW9mjMvOLX/LPs2HALgvmb3Zlr19syh8/Sr+zZWszXDQ1Y1KBQrW4Sp+7/C1+/2FBQ7f+wSc0f9zupfNmI1W/EN8KVmk6pEFA/HkmLhyI4T6QTtAkL8efqdrjwztKvTHJDkBCODmw/n5N4z2c5X8aTNWK9dLZLjjVw6eRWT0URyvNGxr3TVkrw08lke6toQgG8G/MCSb1d4f2oh+DP5Z8ff9bev/uT7t35yGjpSVIXQyGB+Pjs5S5+D47tPcWjLURRVofbDNSlVyfuqpbsVfeVFRyefkVoiMu5NXJdCZ4K0XBq1jHfjDV6OA/sKUk6OyyPK17wnWzL9v331J5rVeamuzapx8cQVNv62lYdzSEckLzmx5zSDmg3DbDQ7Qhdmo5ldq/a5PMaYkMKMD+aQHJ9Mn9HPO7ZLKUmKT8ZisvLSqOd4r8Nn2TfQw9dhx4o9jr5MaX5U0bKFeXtGf+5vXsPhXB3bdTJTjgtA8fJF0zkiXf7XgYNbjrDh163pyvAVVcEvwJePl7ybZQe2Uu3yVKpdPkvH6nhGd150dHKDlD9AppB9+X8V/FoCIHzuRRqqg/UwzldyFFBLgk/dTExf0stxd9Zb44YFWzLkJNyMUAT/5JPzYkw0svrnjezdcACA+5vVoNVzDxEQ7FkwTUrJ6B4TMCWbPcr3O2P+2CU8NqADBl8D096dzaqf/8GWqhSrGhSCwgNJivVG9yh7pK2EpC2IRF2IZv7YJdRqUdMxZtkPqx3aLN5iTDCyfv5mHnqiIaqqoqoq788dRNMFW1j87QrO7D+Hf7AfLbs34bEB7e+I0OGdiu686OjkAtJyGHslkjUbs9g1XcRNqr0idAQy+nnAQnoHxq4FI0I/y1xuim8jUAqDdh2XYnmGKmCo5mRf7rL1z5389tWf7N90GCGgTqv7eGJQJx5o5To52ls85W9ITZKckOJ2TG6wf9NhPug0iqS4ZEfS8Nq5m/hh6Gw++/M9anjIvzi87Tin95/L8vmFIlgyaTnLpq8h7lp8un02q5YnjoszNKvGtmX/cWT7carWt3dxv3D8cqYcF4C46wl8+vRXNOpcj+EL3sTgY0BRFFp0b0KL7k1yw3SdXOLuSKnX0clrsi0AJwADIvxrhKHCja2+tRCF5oBvg/TDfWojImch/Bpl7izCgAgdcdM5bybNIRrmUgsjt5g5bC7DOo9m74aDWM1WLCYrO1bs4Z02H/PruOyXb5epVtLtNSkGhfI1MxF+ywGiLlznvQ6f2XM8pL2sVrNpICE53sjQ9p8SddF9+O7UTfomWUFRBGvmbszguBQUBjQcyvAun3Pm4DlCC4egqJl7hKWFCbf+uZM5oxbmhok6eYTuvOjo5ALCryXZW3VRoPByhH+bDHuET02UyJ/s4nWRCxCF16AUmovwzUS46Ob5/NsgIr4H9Zb4vKE6IvInhG995wfmErvX7ufnz+zaODeHPtL+//u3fuL47lPZOsdjr7V3yNc7Q7NqdHw54+/eE1JK9v1ziM97fsPrjd7j/UdHsWr2Bns3ZQ/8OXklJqNz5VmpSUxGM0u/dy8/7xeYPadZs2lcPeOhoi2f+XfpLl5/8D3ufbBylkJjYP99zvt8Ed+/+SPLpq3GmGj0fJBOgUKvNtLRyQWklMhrLUC7lOU5RNGt6cTkpJYIln2ABJ+aCCVnP99SSrAesoeQ1BIIQ6Ucnd9bPnpiLFv/2OEyJKAaFNr1fphB37+S5XNYLVaGP/Y5O/7ek85ZSNMfefGzZ3lmaNdMzalpGl+98j3Lp6250Scndb6y1UszZtVwIotHuDy+T81BnDnovgFouZplmLrXdWl7/PUEnirRJ9PhlDTSEmULOoqqUK1hZWwWG8d2ncyyE6MaFGw2Df9APwZP7UfLp/XQUX6Smee3vvKio5MbyCTQYrIxgQ+IYPtUMgUt/lPk1UbImJ7ImF7Iq43R4oYjPTSDzAxCCIRPdYRf03xzXAAO/3vM7cPXZtU4uOVIts5h8DHw8eJ3ePGzZylU8oZDUal2eT6YNzjTjgvAr1/+wfJpaxw2wo0wxbmjF/m4m3s9HW90VMxG9ys4oYVCuL9FDW/MdYozyf2CiGbTOLj5CP0nvMgDbe4H7CGvtDBScESQVyElm9UelktJNjHqua9ZNWs9a+ZsZP38zcRcic3NS9DJJnrCro5ObpDyNzck/DOLCv6dEMLXrqob8yqYt5I+QdcMxvlI61GI/AkhfLNvM2BMSmHtnE3s3XAAIQT3Na1Oy2eaZEr8LbsYfD3flnxyQH/F4GPg6Xe68NSQzsRejcPgayA00r3ooCtsVpvbXBzNqnFg02GO7jxBlbrOG3hWrVeRa+ei3K44Valfwem+NKSURLkRXfOENw5UQSLuWjyj/nqfMwfPsX35bqxmK1XqV0JVFd56+CPvJ5L2xpWf97yhJqwYFFo/14wBE1/K08+/jnfozouOThaQ1rOQsgRpi0KoxSDgMcTNZcfaJexfr8zmvaggAhHB/ew/mlaBebOLsRpYdkHKUgjI/ErBrRzccoQPOo0mITrR8da6atYGfnh3Np/+OZTqD1bJ9jm8oVGneiz5boXLpoGKImjUqV6OnU9RFLfhHG84e+i8R4VXRVXYtXKvS+elc//2rF+wxeXxNqtG537u2zTEXovn3JGLng2+QwgKCwSgbPUylK1+I8FaSkmF+8ty+uA5t80n3aFZNVbN3sDl01cZs2p4ur5QOvmPHjbS0ckEUmpocZ8go9ogEyfZVz8Sv0Zea4mWMPZGvoASCdiycIZACP8eYShrP1/yfNx/TZXUMdkj6mI077b7lKRYe9ddR6ULkBSXzLvtPuH6peyEwbznsQEdUBTFaQdpRRH4BvjSsW/rjDvzEZsXORdC4DYcdn+z6nR/+zHgRifom///6Xe7cl/Te50em0ZWcz9uR/yD/Nm2bBdr5mzMkBAthGDEorcpXDIyTXEgS2g2jb3rD/Lvn7uyb7BOjqI7Lzo6mcDemHEWdk0UG/aVlVQV3aSpkPSDfaB/OzJ2oPaGJIh9Fe36s2gxr4P1CO5bC2hgc5/k6Q1/Tv4bk9HstOeMZtMwJXmudMkpSlcuwYiFb+Pj73ujQ6+wP5D8gvwZ+df7FCqRvZWSnKZ4+aL4BboP3dmsGvc2cr969dKo5xg2fzBVG9zIOarasDLD5g/mpZHPerQjrV/P3UBKUgoLvvyDUc99zdMlX2bbsv/S7S9erihT941jwISXqP5gFSKKh2fpPIqqsGLm2hywWCcn0auNdHS8RGqJyKuNcZvLIkJSuzr7oSVMgCTvO/JmRMFzTyQBhuoohbOnWZETlS45Tey1OJZPX8u+fw6hKII6D99Hm57NCYkIzjMbPKFpGvM+X8yCL5eQEJ3ocpyiKpSsWIzph772WjPHarGHHN018rt08gr/Lt2FyWimYu1yPND6Pn4fv5Tvh/yUfXHn2wgh7Mm64zd+QrUGlZ2OSYpPpnuJvlnK66lStwKTtn+eXTN1PKD3NtLRyQ3Mm/CYhCsTwLwd/B5CBL8OwgeZ+J3n45ziXQhA5EC+iyk5+5UuOU14kTCefqcLT7/TJU/P6y1SSsa/OoVlP6x2O05RFYLDg/jwtyGZEvtz57QYk1L48sVvWf/rFgQCoQg0m0ZkiXAq1SqPalAdsv53A1JKpJT8/OlvfLLkXadjgkIDGTTlVUa/MMFeEu5lg0lFVShSpnBOmquTA+jOi46OB6TlEDJpOqS4f0jdOMCeNyKEgOB+ENgDaVoH8SNB5qQAmApqaQjwroO0OyrXrcC18+4rXSo/oDeZu5nD2457dFyCwgJ5rH97Ovdv7zHUZUxK4d8/dxJ7LZ4ipQvRoGMdfHwzVlVJKfn4yS/ZtXKvo0pG2uwP4uhLsWy79F+GY+4GNJvGv3/twpiU4rI6qNVzTQktHMKsEfM5tPUYgMf+SJpNo13vlrlis07W0Z0XHR03aIk/QmImO+ka0leTCCUY/JoheT8HLQN86iHCv7TPn00e69+ef37b6nK/zarRub/7SpeCTHKCke3Ld5MUl0ypysW5v1n1bLc8WD7Nc2PA0EIh9P70GbfzSClZ9M0yZnwwB2NiikMoLiQymAHfvMTDzzyUbvyBzUfYsWJ3tmy/U5GaJCXRtfMCUL9dbeq3q831SzEYE4wEhAYw5OERXDh2KUPCs6IIarWoQYOOdXLbdJ1MojsvOncc0hYFxt+Q1uP2smP/tuDbONMPK2nenknHRQWfWs4F3owLU7tMZxUVAnvc6HPkWy9HheRqtahBtzc7seDLP1AU4UjcTfv/p4Y8xv3NqufY+fIKTdP45bPfmTt6YbpchxIVizFken+P1TvuuHTqqkcl22vnXK+0JcQksm7eZjb+vpVdq/Y5tqelISZEJzLqua/x8TXQ9IkHHfvX/LLRHhay3j1hIW/xDfAlKDzQq7GFSkRA6mrYuPUj+OqV79myeIfj92/wUWnbqwX9vuqtl0kXQPLEeZk0aRJjx47l8uXL1KpVi2+++YYGDRq4HB8bG8v777/P77//TnR0NGXLlmX8+PF07NgxL8zVuc2QWiKk/Gl3VqynUnNTIK1GUhrngOF+iJySTm7f47yJMzJhRao+S9inzucy78jEXM6wIfyaI/xyT76875geVK5bkV+/XMLRnScBqPRABbq92YnmTzXOtfPmJjPen8Pczxdl2H751FXebvMx4//5xNGlOLOEFQlFURW35cnBEUFOty/6ZhlT3v4Ji8mDDpCAqe/MpknXBo4u0wkxiUjt7imJzgxmo5kxPScy9OeBmXI4wouEMeL3t7l6Looj246jqAo1H6pGWGG96KOgkuvOy7x58xg8eDCTJ0+mYcOGjB8/nnbt2nHkyBGKFi2aYbzZbKZNmzYULVqUX3/9lVKlSnHmzBnCw8Nz21Sd2xCZsgwZ+y5gxF6a7OJt1HoAGdMPIud6vwLjcII8oYL/o4jgAQ59loxkJ0SRmtvim7mO0ZlFCEHLp5vQ8ukmDt0M3xxQss0vrl+KYf4XS5zuk5pEs2nM+GAOo1cMy9L8Dz/zEOvmuv6MKKpC2xdaZNi+8qf1TBo43buTSHtF0dEdJxxVNAFB/ndTIVGm2bBgC1XrVaLbW50zfWzRMoUpmgPJuTab/T6kr9jkHrnuvIwbN46+ffvSu3dvACZPnszSpUuZPn06776bMSt8+vTpREdHs3nzZnx87DfOcuXK5baZOrch0rwNGTuIGzWh7pbRbWD5Dyw7wddbdVYvHxEh76EE9XA7RPg2QJpWuBsB+HOjKint3CqIIET4NwiRd7JMt7PTksb6eZvdNhnUbBo7V+4l5kosEcXCMz1/g451qN6oCoe3Hc+YK5FaYdS5f3uklA6HWdM0Zgybk+lzxV2L58iOE0zoN8WxKpZpBCDtq0FJccleV9vcbkgJv3+9lMcHPZKnzoOUkg2/buW3cX9weJs9GbhGk2o8ObgTTbq4jjS4Ii4qnmXT1rB58XbMKWaq1q9Ep35tqVRbT5yHXBapM5vN7Ny5k9atb6hhKopC69at2bLFuQz2kiVLaNSoEf3796dYsWLUrFmTkSNHOjxZHZ00ZOK3OO7IXmFAelsxBOBTy6thwqea50EBXVIbLbr6ykkIH4MIeQ/U8oAviEIQ2BNR+A/vzqGTjpircaheNOeLvRafpflVVWXkX+/R8JEHgFStkVRRvfAiofgH+/F8+dfo4P8MI578gsPbjnFs50muZaH3UEqyicHNh3P8v1NZshWg6+sd+d+kPnTs0yrLc9wuRF2I5vqF6Dw95w/vzObT7uM4sv04UtqdqINbjvLR42P56aPMqWAf2XGCnlVeZ/r7v3Bo61FO7D7Nihlr6PfA28wbsziXruD2IldXXqKiorDZbBQrVizd9mLFinH48GGnx5w8eZI1a9bw3HPP8ddff3H8+HFee+01LBYLH374YYbxJpMJk8nk+Dk+Pms3Ip3bC6kluun54w7vk2ZF8GvImH/dD1JKgU/6lRxpPQ4py5FaPMJQzh5SUkIhYgoy5qXUxN20N3V7qEsED0T4t7OfN6in1zbquKZI6UIeE2qFIrKl1hsUFsTHi97h/LFL7FixG7PRzD+/b+Xwv8cdqy02i40tS7azefF2nn0vc2XtQhFUrFWOPyevxGKyuF0tUVQFRGqLAHnTNikZ/EM/hBB82ec7gDt21SUd2awmywy71+53hChvVqlOW5Gb9fEC6rWv7VV/MGOikaHtP8WYYEz3d0r7LP/w7mzK33cPDTrc3RVQBa49gKZpFC1alClTplC3bl26d+/O+++/z+TJk52OHzVqFGFhYY5/ZcqUcTpO5w5DJmfhICtYjiKNS5FWz5L6wq8RBPZ2M8JgL1VOvUlKaUKLHYSM6mjve5Q8Gxk/Anm1CTL5V4RvXUThFRD0Ghiq2VdY/B9FRC5ABPf3aI+UFrvK750lip1rtOjeGNXHddhAURUad65PaKGsdZK+mdKVS9BlQAdUg8qRbScA0v2dbFYtVY13kddzKopAVRUeaH0fu9fu9+hwvDquF7+cnUzHPq0pU60UZauX5vGBHZlxZAJlqpbkixe/Tdez6o5F2Ns1FC7lfXJ+dlk8aTmqwfXjVDUo/PGdu7DxDdb8spGE6EQ0m/O/t6IqLHCRy3U3kasrL4ULF0ZVVa5cuZJu+5UrVyhevLjTY0qUKIGPj0+6WOW9997L5cuXMZvN+Pqm7x8ydOhQBg8e7Pg5Pj5ed2DuBpQIECF2RdvMYNmOjNsOCKRfS0ToZwjV3gtGmrYik2eC+V9Agm9DRGAvpE9tSPgctJu69fo8iAh9F+Fzo3xYxr0PKctSf7o5zGlCxr+HFOEIxRcw2RV4feqBX3OEcB+Xl5aDdpVe0yr7vCICGfgsIuilHNF4uVMJLRTCi58+w5S3Z2XYp6gKfgG+9P706Rw7n5SShd/85dq5lGC12ChdpQQXT1zx6ERUeqACTZ94kGlDf/Z4btWgcnDzYRZ8sThdWMqYlMJ9zaqz8qf1KKrAZr0LHF8J3d7s7KjOyguObD/hdpXPZtU4su24V3PtXrsfobhWANZsGnvWH0DTtHTXGHM1jv3/HEKzaVRrWJliZYtk7iJuM3LVefH19aVu3bqsXr2aLl26APaVldWrVzNgwACnxzRp0oRffvkl3R/m6NGjlChRIoPjAuDn54efn1+uXYNOwUQIH2Rgd0iajrcy+umRYFqPjH4WCv0GxnnIhM9JV7Fk2oA0rUUED0EUXWcPVWnRoITbw0A3z2Y9Aynu3oYExA1EYiHtayf5AdRS9i7SPs6Xk6VpIzLmZW40ggRkDCR9hzSthMg5CCX7Kwd3Kt3e6kxASAA/fTSPmCtxju3VGlZm4Ld9KVs95150UpJSuHL6mtsxQhGUqVaKmKtxGBNS0jkwQhEIIej9ydM0eqw+91QrRa8qr3uV1mWz2lg3L2MY9erZKD7sOgZVdS+mdyfx6Ktt6dSvbZ6e09ffc4K7b4D7xp1pOGuOmoHUdghgd1Anvj6N1bM3OP7GQggada7HoCmvEF4kzKvz3m7kums6ePBgpk6dyo8//sihQ4fo168fSUlJjuqjF154gaFDhzrG9+vXj+joaAYOHMjRo0dZunQpI0eOpH9/z8vqOncXIqgfGCqQte7NADawnUYmfJ3quKRuu3k/IBPHIs17EEowwnBPBscFgJS/cf91kkBabyBr6j/AdhkZ/TzSljGJU0pTajWVjYyVVBpYjyMTv3Z/iXmAyWhizZyN/PzZbyz5dgUxV2Lz26R0PPpKG+ac+54v1n7Ex4vfYdrB8Xy98VMq3O+qrD1rqG56EaUhhCC8SBgT/x3NQ10b2HNSUqnVogbj1n/M0+92pey9pTm64wQXT1zJXoNFaf93tzgub07rx/8m9cm2enJmufVveSuKIryuOKrRqKrbv7miCKrUq4Sq2oUKP3h0FKtmbUj3N5ZSsvXPnQxu/iHGRKPX13E7keul0t27d+fatWsMHz6cy5cvU7t2bZYvX+5I4j179my6pa8yZcqwYsUKBg0axP3330+pUqUYOHAg77zzTm6bqnObIZQQiJxrzy8xznf0FMocEowZwwrpUZHJsxG+rquPpEzCuy7Qt2IDGQ/GeRD8WvpdKX+DjHN+GNjPZVyADHkLIVzLoecma+du4ut+U0iKS0Y1qGg2jW/fmE7XgY/QZ/RzTktVj+06yZHtJ1ANCg+0vt/j8raUkgObj3D20AUCgv2p165WpjtLqwaVWs1rZOoYgKgL17l2PpqwwiGUrOg81J2Gr58PdVrdx551B1yGhGxWGw92qgtSUrxcUeq3q4ViUGnerTEtn2mS7l4Ye9Xd3/7uIm1VSkrpNJyiqApVG1Sife+H88E66PxaOxZNXI45xZzBPkUR+AX58cjLrV0cnZ42PZsz44M5mJzMBfaVmScHPwrA5iU72Lv+oNN5NJvG+SMXWTZtDY8PfCSTV1TwEfIOy/7LTEttndsLKU1g2QfSAj5V06nlSmkG21VkyjJI/ILsva46QS2DUsR1mbU0LkbGDcnG/BVRiixLt0lLGAtJM3Cs0rhAFF5+o21AHvLv0p180Hm081+1sOcdvDzmhv7NxROXGfnseI5sP3FjmBA0e/JBBv/Qj8CQgAzTHNl+nM97fsO5wzfyjXz8DDw+8BF6f/ZMrul4nNp3hu/f+omdK/c6tlWpW4GXRj/PA63uc3ncrtX7eKftx05/J6pBoUTF4jTv1pifP/3Voc6b1h+pav1KjFz2HqGR9jDgyb1neKX2Wzl+bQUBH18DFrMHdeFU/AL96DG8G3Va1eSDR0cRF5WQzjlUDArBYUF8velTSlcpmVsme2TP+gMMf+xzkhOMCCEQgCYlweFBfPbnUKo3qur1XDtX7mFY59H2RO/Ua037vHT9X0f6fdULIQTDOo9m27L/XOdPCShXvQxT943LgSvMfTLz/NadF50Cj5Q2e45H0oybEnQN4P8IIvR9hBKOtBwB8yaklgxJk3AvWJcF1HIoRf52Y2MK8moTkIlkyXFSiqEU/Sf9nInfpGrZuL8WUWQdQs3bm7aUkldqv8Xp/edcJqiqBoU556cQUTSMmCuxvFJnCHHX4p0KulVvVIUv1n6Uzhk5feAcAxoOxWKyZLw5C+j0alv+N6lvjl/byb1nGNjkfcwplgw5KQAfL3qHBx+t6/L4v35Yzdf9ptg7PkuJUASaTaNU5RJ07NuaqU4SiMH+e6jVvDpjVtklIaSU9HtgCCf3nb3jSpt9/X147evejH9liuexAb4sjJ6Jr58PURej+fWLJSybvobkeCMBwf6069WSbkM654gybnZJik9m1awN7PvnIEIIarWoSavnHiIgOKNj7onzxy6xeOIyNi3ahsVkpUq9CjzWvwP129d2hMVefWAIJ3afdjtPSGQwv0dlptVJ/qE7L7rzckcgpQ1pPQUJX4LZ2aqHCkoZUIuCZRs3ck5yOr6vQmBP8G8HKX/YfZOAx1BuCSPJlL+Rsf9zYoOnjEsVfB9EiUx/g5GWg8jrXdwcJ8BQGVHojzyP8Z8/epHe1Qa6HSOE4PVJfej0altmDpvLnNEL3VbYfPrHuzR85IZT8HG3L9m8eJvrfA0BPx79xmM4J7MMbj6cA5uPOLVVCAgvFs6cs5NRDRlXfTRNY9eqfaybt4lTe8+gaZJSVUrQ7IkHadS5Hn1qDOLiSfd5LN/tHEOlOnYV1X3/HGJIqxFoNht31p3arvSbGONdqHfs6g+p3bKm42cpJSajGb8A3zz/7Bck7uaVlwKn86KjI6WGTJqBvNYcrnd04bgA2EA7DZbtqT9r5LzjAiDAuBiiu0PybDDOhuhuaFebot2kFyP82yIifwKf+jcd6wu+zTzMb0MEPpPxrD7VwbcJrhOSJSLotXy5ecdHJ3oco6gKCanjVsxc69ZxUVSFlbM2OH42JhrZtMiN44JdrXv17PSrVUd2nOCLl76lX923Gdx8OL9/vZSkOO9zoS4cv8S+1HJTZ0gJMZdj2bFid4Z9UReu82qdIQxt/ymrZm3gxJ4zHN99im1Ld2Eympny9iyPCbiKqrD1z503rmf7cbDrzN1xeOu4AJiMZixmC8ZEo6Pdgn+g313tuAC07dXS7fdKIOhwhyoq50lXaR0db5FSIuOHgXFBZo7KwpmEvdmh7SKeQ0xWkE4k3bUrENUKTSkFailE4JPg3wGl0CykFg1aIiiFQQQg4z9wcU0C/DqAn/NkPhH+tb2hpGU79q9ravkIIELeRgTkT6f1YmWLOBIoXWGz2ihRwZ6YH3/dvR6PZtOIuRzr+DkhJsmjDopQBDE3JbXOHDaXnz/7zZFDgoD9Gw8zZ9RCvljzoVdl0ZdPXfU4BuCXkb9T++Ga+AXYZRqsFitvt/mEi8cvAfZrT8OYmMKYnhMdYSdP12RJbYr5x3cr+P6tn7yy505n3phFDOs0CimhaNkidBnQgS6vt8fH9/bvwZUdGneux33N7uXApowrhYqqUKpyCdq/mD9JzLmNvvKiU7Cw7Myk45JFIuciwieT/dwYCdr5VPG7IfayZy0RoUSmllUH2pP3Qj9BhHwASokbhypFESFDUlV6nX8VhRKKiJyNiJwNgU/Z83yCX7fnuQS9mE3bs06hEhE0fOQB1+WhAoLCAmnSxb4KVbhUIbfzqQaFYuVvVB2FFgrB4EYdF+wS90VK2+ddN28TP3/2G3BTWXBqzkn89QSGdvgMq8Vzgmiwl1VMh7Ye46PHv0DT7OfavHg75w5fcLtS5E3eis1io9IDFbCYLcwcPs8rW+4G9m887Fh9unrmGlPfmcUHj47CYra4PzCTaJrGqtkbGNBwKB0DnqFzWA9G95iQrZ5SuYlqUPls6Xu07tEsncKvEIIHH63LuPUjnCbC3wnozotOgUImzyPrui3eoIJvIxTfOgifyhDwXA7Nm/rQsuxFxn+aYa8QCiLoBUSRtfZ/hdcgiqxHBPXxqLArhED4NkAJ/Qgl/AtEcH+EmrN5Hlnh5bE9CAjxz+DApC3lvzH5ZXz97cJcj7zc2u3Kg82q0eHFG8vb/oF+tHzmIbeS61JK2rxgD8nNG7PY5fyaTePauetsWrTd6f6bqfxAeYqXL+pxnJSSHSt289/qfQBsWrTNrc6HNwhFEFk8nMad67F3/UGPq1V3E7c6flKT/Ld6P0smeSe57w2apvH5C9/w+QvfcHTnCSwmK8aEFNbN20T/hu+ycaGHPmf5RECQP0Om92fO+SkMX/AmH8wdxKyTkxix8O07VqAOdOdFp6BhPUGOVwqlwwZKMaTtcmpzR88PtMyhQcoSp6JzkOrEqKUQhtIenZbMIC37kEk/IZNm25Oc84AyVUsxcesoGnSoky73oPx99/DpH0Np0b2JY9ujr7blnmqlnD7ghRC06N6Ymg+l75zd48NuBIYEunQKnn3vcQqXKkRygpHj/51yu7KhGlT+W7XX5f40FEWhzyjvHFrFoLBy1noAUpJM2e4ZZDCoDJs/GNWgZiof5G5FIlk0cZnngV6yYsZa1vyy0T73LQ0RpU0y8tmviYsquI1/I4qG0fSJB2n+VOM7vjUA6DkvOgUNJZysib1lgpQ/kKZ14NcUbMdy4QRWsOwGNfcT5aT1LDL2DbDux17VBCRIpG8zRPhYhJL1jsneULpKST5Z8i7Rl2O4ciaKkMhgSlUqniGRMjAkgHEbPmbS/6azfv5mR3glIMSfrq935IWPnspwTInyxZiw5TO+7jeV3Wv3O7aHFgrhuQ+eoOv/7Pk+3joNNi/HNX+qMcbEFEcHZldoVo2o89EAlK1emq1/7syWA2PTNMKL2t+US1QsluV57hqkPUfJnGJ2rPBlh4UT/nKZxyWlxGqxsmLGWp4a8li2z5VVzCYLUeev4+PnQ+FSkXd1wrLuvOgUKIT/o0jzxlw+i82uF5PyJzkuZucg98tDpBZt782kpa3y3HRO8yZkdC8otAAhsn9j90Rk8Qgii7t3lEIjQxg6eyCvjuvFyT2nMfgYqNqgEv6BrnuTla5SkrGrP+TC8UucO3yRgGB/qjeuki5RMygskFKVS3Dx+GWXCcQ2q40aTao53eeM9i8+zE8j5qdrcngrikGhSBl7zk2HPq2Ym4mO0c7QrBq/jPydt2cOoPIDFShXswxnD573rtfNXYoQItvhOrB/Pk7tO+tx3JEdJzyOyQ2MSSn8/Mmv/Pn9SpLikgEoW6MMz73/BC2fbuLh6DsTPWykU7AI6AhqOTKf95LZNxAbuedgqOBTO90WKW1I0yZk8s9I4x9ILQfyGZLngBaF8zCbDayHIGVl9s+Tw0QUDaNum1rUalHDreNyM6UqleDBR+tSq0WNDBUmQgieeOMRl46LogiCI4Jo0b1xpux8pG8bt3k6mlVDapKzhy8QWTycUpVLuBzrLatmb2Bc38ns+HsPA7/ri+qj3nVv12nOiMHX87u1lJL+9d/l3792ZeucQhEoHqrBhBD4eGFTTpOSbOLtViNY8MUSh+MCcPbgeUY+O565oxfmuU0FAd150SlQCOGPiJwFhuqZPFIFn4a5YlPmUMD/UYR6Q+1TmjYhrz2MjOmNjB+BjHsTebUxWsIEpMx6mEEaF+I+vKYgjYuyPP/txCOvtKH18/bk3ZvfxBVVwTfAl08Wv4PBR2XlrPW88dAHPFWyL31qDmLu6IXERzt3JDv3b0fxckXdVlStmbuRl6q/wasPvM2FY5eyfR1Sk/z94zre6/AZ370xk4+XvMt9ze7N9ry3E8XLF2Xw1FeZd3EKZaqVcpu0DXBq/1k+6DSKdfM2ZfmciqLwQJtabldxNJtG/fZ1snyOrLJ44nKO7DiRYQUuzVmf9v4vXDxxOc/tym9050WnwCHUYohCv0JgH+8PUoqAj/dhgUxMnLnhhhqI0A8dP0rzLmRMX9BuvbmYIGkiMjEbypdajKcBoEVnff7bCEVRePvHAQz/9S3ub16d0MIhFL2nMI8PfISp+8ZRpV5Fhnb4jDE9J3Jo61FiLsdy5uB5pn8wh1dqvcWlk1cyzBkSEcz4jZ9Qv0Md5wt7EqTN/gA5f+Rijkn4p2nEHN9zmlkfzeeLNR/x9NCuOTL37cDF45c5uvMkZw6c58VPnyEoPMjt+LTf+/h+UzCnmLN83qeGdHaZs6SoCoVLRdL0yQezPH9WWfLtcrefLUVRWDZtTR5aVDDQ2wPoFFhk4mRk4td4VX3k8yCEDIXonEymCwHf+vbkW+mFExD0BqglEaSAWhZ8GyKje9i1a1yukKiIIhsQauarA7SozmA9gnvJ1lKI8PGOjthSS4aUxcjkX0G7Zrc34CkIeDRPcmPyCpvN/plRVZXTB84xbejP/Lt0l9PQkmpQKFfzHr7bOcZliObiicu8Vv8dkmKTne7PTcatH8HI5yYQdd51/o2OnaE/D+ThZx7K8vF/fr+SCf2nIoS9H5VQBFKTRJaIYMyq4ZS9t3QOWusZm9VGe9+n3Y4RApp0bciHv97+TTwz8/zWE3Z1Ci6GsnhdNm3ZirDsROID5JRwVTKYN4F/m9TkXg8kTQIsN1wJpbiTFZdbkZCyDIJeyLR1IvBpZPwI94O0S8jobhAyDAIeQV5/DmwncPRb0q4gLbsg+ReInIlQvBNpK6hsXrydBV8u4cAmu6iZf7A/KYkpbo+xWTVO7D7Noa1HXXb+jb0aly+Oi2pQWTV7g+64eIFqUJ2uoHmLOcVM0ycaUvvhGqyYsY5jO0/gG+BLo071aPF0EwKC/HPQWu9QVAUfPx+H6rIzhKoQEJL3tuU3uvOiU3DxawUiDGQ83iTXysQvyDnHBRxJvSneLsnecm7NmxupgtSiM51uLKUVKQrZw2XaNVz/fuwrPjLhE0hZCrbTaTOk/691PzL+U0T46ExaUnCYNWIBP42Yj6IqDjVWT45LGoqqsH/jYZfOS0qSKafMzBRC2Pv65CWKqtiVg2+zNXnNphEamXnn+9iuk/zy2W9sXrwdTZMEhQXSsU8r3pvzBqGRIblgqfcIIWj+VCPWztnoUr1Zs2o0f7JRHluW/+g5LzoFFiF8EWFparVePN5lbrwZa0BW5/Xm7m9DqJmrUpHm3chrLSHu9dQyaW/Oo4BlF65XslLF9W7THJlD/x7jpxHzAe91X9KR2kpg1ewNDGzyPo8X7s3z5V9j2nu/cHTHCfasO5DDFnuH1WJzW66dG2i2289xAVBUwUOPZy5pf9eqvfyv0XtsXrLDkRCbFJfMb+OX8vqD7xUIUbqnhjyGoipOK98Ug0LlBypQr33tvDcsn9FzXnQKPNK0CRn3PmgX89uUXMAPUXQzQvHuDU9aTyGjugAmckPIT4R/j/BvmePz5jaf9/zG7dupN9Rsei/7/zmEogjHg0wIe0dnIQQS6fKhLgQoBtWebJtDd1Qh7FMpikCz3VG36Vyh25udeHms9+FXi9nCM2VeJf56gtOEWMWg0K5nCwZP7ZeTZmaJ3Wv383G3L0mITsTgoyKlxGbVqNGkGiMWDiGs8J3xrNNzXnTuKIRfEwgbhYzpmd+mZAPnqsEiZIjXjguATPoBMDudK0e4jTRFUpJN2CxWAkMDObr9RJYdF8WgULhEJAc2HQZIV5Ka9mrn7h1PURVUH5VeH3dn7uhFJEQnZsmOW5ESEGTZcYksEU5weBBnD13IEXsKOo+93sGrcRazhc2LtrNmzkbirrleWdGs9iaNr3zZk6DQwJwyM0vUblmTuRemsPG3rRz/7xQ+fj482Kke1RpUuut0gNLQnRedAom0XYaUZUgtDqGWQfq1vSm/I69JE8zLRs8ln/vtVUtpKMURIYMQAd6XwEopwfhHFu3wpuWCAXxqZWHuvOXfpTuZ+/ki9m+0OxslKhTFYvLcMdoVxcsVJSE6MUulzoqq0Pix+jR+rD7j+nzndQsCr8nGgkv0pViiL8XmmCnZJa1yJ7dIjvMc3t2/8RAjnviC2GvxbgUI07CYrFw+dZWKtcrlgIXZw9fPh4efbcrDzzbNb1MKBLrzopPnSOt5MG8DJPjWQRgq3Ngnrcj4kWD8JXWLgsQKvI/7h68hdX8urEgEPAcpC1NzajLrOKjg1wIl4juk9QzYzoIIAZ/7stCYUQO8S0B1ik+D1LJtZ9egQEBXRy8ks8nCP79uZeVP64i+HEvx8kXp8FIrGnSsg6rmZtdv58Rei2P59LWs/GkdZw9dSPe2eenU1Sw95CvUKkvlBypQ7J4ijnyZzNKgQx36fdWL0T0moNm0XH043+7k5u9GUQWFSkVyav9Zlkxazq7V+xACHmh1P537t6dcjTKcO3KBd9t9ijm1csdbe/y8VIHWyVv0nBedPENqcci498C0inRPG98miLAxCLUIWvynkDyLzD+NslgibagNtguAGWSc8/0RUxDaZWTsQLCdwvvGkQoIf0ShXxGGSpm3zQna1WZelF+nlkED9lUjiQgbBX4tkdEvgPXwTWNSr8WnLiJiGkIJJD46gbdbf8yJ3acd+R+KqtgVRjvU4aPfh+Dr5+Pi3DnP9uX/8dETX2AxWTw+cNJyVDwRXjSM2Gtx2c5PURRBUFggCXoX6HzF19+Hl0Y+x+S3fkRRhCOEqBoUNE3y9swB7F1/gL9/XOd1eFEIKFW5BNMPfX3Xhmbymsw8v3XnRSdPkNKMvP5UqqjarW/+KqilIXwqXG9PrnaUvvW8QS8hAp+zP9RtZ5yMEaDegyg0D0QEWLaDZT8yZRVYdrif3ucBROgIhI/z8tusIBO/SxXuc/M7CugGln32Mb4PIgKfQRgq2o+XJjAuRRpvFqnrBv7tEMLukAzrPJpty/5zWrUjFMHj/+vIq+N65dg1uePiicv0qTkIq9nmNu8kDU+hCTUtqTYHye1wyN1AWJFQSlcpwcHNR736O9/KzUnWrvb7+PtgSs5c2fnQ2f8rUGGamKtxnNh9GtWgUK1BJQKCA/LbpBxFd15056XAIY2LkXFD3A/yawemv8m7Ok0Bfm3Achg0Dx1l/dqhRHzj+NEe3hoFxp+x26sCVhCBEPg8IuAJhKF8jlsstSRk9NNgPY7T8E9QP5SQQVme/+KJy/Ss/LrbMX4Bvsy//AOBIe5vnNcvxXD9YjThRUIpek/mFYQBJg+eycJvlmWq/DnNmUhbhXn4uaY07PgAW/7Ywbq5We9/o5M7RBQP58djEzD4GJjw2g8sn57zUveKQUHzZsVF2OX2kZI+n/eg25udctyWrBAfncCk/01n/fzNjpUj/yA/ugzoQM+Pu2PwuTMyQPRqI50ChzT+jsdwi2lFXpmTigJanGfHBcC0wi4mp0QCIIQBETYMGdzX3rlZJoB6D/i3QYjci5ELJQgif7H3REr+DUcOjFoKEfQKBHTP1vy713rWMzEZzRzZfpw6D9/ndP/JvWeY+vYsdqzc4/BDaz5UjZdGPUfNJpnrP7Xlz52Z1m1JWwVJey1b8/M/HNx0mCtnozI1T2bRV2CyRszlWJ4r+xo9hndj8NRXqd64KuP6fJej59CsGqqPis3iZtVNQLnqZWj5zEO07dWCwiUjc9SGrGJMNPJmiw85e+hCuu9CSpKJeWMWc+H4JYbNf/OuC23pzotO3mC7Rt6Fg7zFBpr3y8gyZTUisFu6bUItDkE9ctowtwglBBH6ITL4LXuoS/iCWgEhsq85KTXv/kauHtLH/zvFG02H2eXMbxpycPMR3mr5ESP/eo8HWt/vtT3ZqSK6mcunc79KTTUoWM05G5K6W0iITuTbN2aQnGDk6Xe7sGjCX5w5eC5buj23EhIRRFyUc00XACQMW/Am91QrlWPnzAmWTlnFmQPnnYbTpJT889u/7Fl3gNota+aDdfmHrrCrkzfIbFTJ5Ca2Pd6PtR7KPTuygFCCED7VEYZKOeK4HN99irioBI/jDL4GKj3gPCT2db8pWEyWDKslmibRNI0v+062S897SfXGVVANt8dtqvvbXfHJw0Tm2wFFVRBCeFWWDPYWD/HXExm1/H3K31cWsOcpKWr2PwMNOtahWsPKGeZKW7B44cOnuKdaKXat3sd7j4ykY8AzdPB7msEthrNp0TaP80spObjlCN8NmskXL37L3NELib7sqfO7Z5ZOWeU2D0g1KCybtjrb57nd0FdedHIdaTkE2vn8NsMFmXmzC88tI/KVM4fOM6bnRI7uOOFxrFAEdVrdx6pZG/AP9KPBIw84ltfPHDrP4W3HXR4rNcnVM9fYs+6Ay5DTrXTp35718zZ7dyH5iP3hLGn9fFOWTcv5nI3blcDQAAZNfpkpb8/myhnPq1+aprF2zkYeH/gIk7aPZvea/WxevB1zioUTe05zbNfJLIfmHn62GTUaV2XWiAUsnbKSpFRdmFJVSvLs0Mdp80Jzfh+/lO8Gz3RU1wEc2HSEfRsO0f3tx+gz+nmncycnGBnxxFh2rdqHalAd1zJz+Fxe/bIXXbwU0HNG1AX37SFsVs2r3+2dhu686OQ60jgfe0Lrbb6knjwRzboXEfwKwrd+fluTI1w+fZVBD31AUrzR7TghBFJKDD4q25f9x44Vu+1JsYqgXa+WvD7xJS6d8K6j76UTV7x2Xmo+dC8vfPQUP300P90DJa3SOygsgDLVSnP432NezeeJoLBAx0MtM0hNsnz6Gq5fzP6b9p3E4wMfoVm3xjR5vCF/TV3NhNemuh2vqgrXL9j7aymKwgOt73eEGc0mCxNem8rfM9fZ96uK15Vjqo9KzSZV8Qvwo+/nz9Pz4+5cPXMNHz8fit5TGCEEp/ad4bvBM4H0/bHS/n/emMXUaXUfddtkFHIc+ex4R77YzTbZNMmkgdMpVDKCpk886JWttxJaKMRtY1BFVYgoFp6luW9nbo/1WJ3bFmk5nNqV+TZ3XNIwb0JGP480Ls5vSxxI61m0hK/QYt9AixuONG31qtxUasmsnjGZwiWiQbr++wSHB3FP9VIYfA2OHARHUqwmWTFzLYOaDXPc+D1x9nDm5Op7DO/GZ0vfo3bLGqg+qQJ5qdL5SXFGjmy3r/Z4G5pwx8tje3Bf03uzdGzMFSc6QXc5C75YgjEpBVVVafbkgx77q2o2jYji4U73+fr58Na015h9ahL9vurFCx89RYunm+BNxLRJlwb4BdxIpPf186F0lZIUK1vEkei65NsVbkOUqkFh0cRlGbaf2neGf5fucplYLoRg1scLslQCDtCuV0u3YTPNptGmR/MszX07ozsvOrmClBItYTzyemcvRNWyQn5l1tsAiYx7r0B0YJaJ3yKj2kDSFEhZDsYFyJgX7A6W5jx/RWqJaPGfoF19kGf6zWbyqsPM2n6Qzi9e49YyddWg0P7Fh6lUpzyapjm9QUtNcnTHSS4e9+7vvPPvPZm+kTfoUIf35w7CP8jPXsrKDVOlJkHY/6uoWf9cKIrgz8l/s++frOU2Zamb9R2OMTGF38cvZc/6AwhF0KBDHff5K0LQ4ukmbucsek8Ruv6vI8++9zhtX2iO9PRrF9D3c+fhnps59O8xtwnCNqvG4X8zhkU3Ldru9pqklJzad5Zr57JW7da5fzsii4ejOHGsFFWhRpOqNHz0gSzNfTujOy86uUPKYkj6NvWHHC4f9WsPPllbgs05rGD8PV8tkMm/IxPHY//92rDn76SuoFh2IWMHZzxGGu2CfMk/I25qNVCouJX+n17k1REXbxkP1y9Fs37eZu90Mrzg9IFzXL+YecdvxYx1JMcbnSf8SvvKS8mKxfEL8M2SXZomObbrVKaPy4kVn9uFGo2rZPqYmcPm8lbLj+heoq+9iaVBQXHxO2vXqwWFSkR4PXfdtrUoVq6IW+fhkT6tKV6uaIbtURejWTlrPcumrebk3jNeJVtbzVbMKekrFE3JJpfXczMpmRTISyO8SBhf/fMJVeulV+kWQvDQ4w34bOl7+dKyI7/Rc150chwpJTJxCull6nMQ01rAdQw4bxBIy+F06z9SmsGyx15ZZahsL6POJaSUSIdz6AwbmNcjLccQPpVvbE6eA9YD3Pp3Sau46No3ir/nR3LyQIBje1jhUKzu9DGygMmY+Rv51j93uE3WlJrkwvHLTNo+mvI172HhhGVMGfITqkHJ0ZJbZ+e9axAKFWuX48Tu05k+1GqxsfXPnQSHBRFYPICrZzKuRCybtoYj20/w2vje1GpRw+OciqLw0e9DeKvlRxgTUzKsft3bqAqvjEvfjT4l2cSE16ayavaGdH+7ImUKedTqSYxNYkirEYz+exgBQf4AlKt5j8fvh1+gH0XKFPJ4Pa4oXq4oEzZ/xok9pzn87zFUg0qdVvdRrGzWxB/vBPSVF52cR7sGtuPknlJufjsuAAKE/eYlpYZM/B55tQky+jlkzEvIa83RYvrZu2N7iUxZixb9AtrlGmiXa6JFv4g0bXQ+2Hba3uTRLSqY0pdQyuQ5bo+wWqDDczeqG2xWjY59WxMQ7O/FFXhHQIg/RUpn/kbujeaL1CRDHh5BXFQC3d7sxBdrP6LC/WW9ml8ogtDCIZm2627i3JELNMti4ikA0u4AXD0T5bLc/tT+s7zT9mP+W7PPqykr1S7PlD1f8PjARwgvGoavvw/33Fua/l+/yBerP3Q4GWCvAPqo6xhW//xPBifl+sVopJQeV9IObzvOzA/mOn5u+kRDgiOCXIrEKapCu14t0tmRVSrWKscjL7eh/YsP39WOC+jOi06ucIck57rNq7Eh/FoBIOM/QyZ+eUtjRwmmdcjr3ZE296WOAFrC18jYV8C8HXuDSTOYtyBjXkQmOqnQkN44cMLeyyid2edx51QafEBRbuwvXr4op/adpc0LzXNEa0NRFTr2aY2vv3ehHbPJwtq5m5g5bC6KKryyISkumY8eH8P1SzGcP3LR61CQ1CT12tX2auzdiinJRMeXW+dIytlxF38XqUk0TTLx9Wle50YVvacIr3zxAgsu/8DS5F+YduArurzeIcPn7L/V+9i5cq/T/CTNJhHC82dMs2n89cMqjEn2sKuvvy9DZw9EUZUMxyqqQqnKJej5cfaUr3Uyovc20slxpLQirzUFzfNDu+DirpWBCoYKiEJLwHYKGdXRzTwqBPVGCXnb5Qhp3o6Mfs6tNaLQ7wifGwqaUktCXm0EuBf/E+ETEf5tHT9rV+o7756NPb9l5ufFmTuh2I3jU5fRS1YsjjE5hbhr8VnOfVEUQfn7yzJu/cce+yIBbFv2H6N7TCAhOhHVR0WzaZkK0UQUCyMhOjHHQ153M0LAwO9fYeeK3fzz27+5fr6J20ZTtV7FHJvv857fsOaXjW6Tq/2C/DAnmz06TpO2j6ZK3Ru2Hd52jDmjFrLlD3t4Mzg8iEdebs3T73YlODwox67hTkbvbaSTv1hPgHSvG1LwUcD3ITBvAaz2nxH2/zdURET8gBAqWvJvuNewsUHyPGTwEJfLyjJptoc5VGTSz4jwUY4tQglCBj4OyfNcHKeAEgl+D6ffHPAYJP/s9JhVCyLSOS5wI5/jypmrlKlWiuoPVmHz4u2O7SGRwSTGJDm/0d+U8hReNIzO/drx5JuPetUJ99C/xxj+2OeOh4zbnjQuiL0Wf3flo+QBUsL4l78HwMfPkGPtG1xx9WxUppyX+OsJ7N1wEJtVo0q9CpQob/88G5NSWDtnE9uX7/ZYFWY2mu1Ou839ZydNjC6Nag0qM2Lh25iMJkzJZoLCA+/KRNq8Ik+cl0mTJjF27FguX75MrVq1+Oabb2jQoIHH4+bOncszzzzDY489xqJFi3LfUJ1sI7VEZEzPAuq8CMAf+2qFp4eaFRHQEcLHgHGhXa9G+CH8W4NvU4RIvSlplzzPJRNSz+nioW35D/ehNhtYdmfYKoIHI83b7c5iulUiFVAR4V8jRPqvuAjsZW+SKY3pziklzP2mGEJIpMzoZNmsGqf3n2PANy/xv0l9OHvoAn6BflSpW4GNC7cxuscEuziXlAihoGkahUpEMPKv9ylRoSj+Qf6Zahz386e/2pOSs7EwrDsuuUtuOy4A4UW8Wz03p5iZ/OaPLPth9Y2VNgH129Wm+ztdGPnMeKIvx3p9Tk+aPeFFwyhXo4zTfX4Bfuk0ZXRyh1x3XubNm8fgwYOZPHkyDRs2ZPz48bRr144jR45QtGjG8rU0Tp8+zVtvvUXTpk1z20SdnCRlCRQA/ROnKIXAUA2sJ0G76GagAPyQyX9A4g+gFkYEPA7+HRHillwNJRLPCQB+qf9cnc6L/A8nY4QSCpHzkEnTwTgnNUznY7cz6OX0VUZpxxhKQ+QsZOwAsF3A7uhIoi6pnD/h/oarGlR2LN9NreY1iCxuL2eNj07AlGziuQ+e4OLxyyTFJePr70P99nVo/Fg9EmOTMadYHKstxkQjq3/eyNalO7GkmKn8QAUeebkNJSrcWPExJhrZtuy/28L50DtJ5x5FyhSiaNnCrJ27CSklNRpXdZqkqmkaI578gu3Ld6f/W0jYsXIPO1fu9fqciiJ4rH8Hdq3ey/5Nh12GSLu92SnDykteYbPaq7a2/rEDs8lChfvL0bZXCyKKhuWLPflFrue8NGzYkPr16zNx4kTA/kErU6YMr7/+Ou+++67TY2w2G82aNePFF1/kn3/+ITY21uuVFz3nJX/RrrUDW+a1MnIdnwfBshXPbQpU7KsYkht5L6n/NVRHRP6IUG7cJKR5DzK6m9OZHPMFdEMJ+9jlCC1+FCT/5MYuBYL6oYQMdDmH/WtsAnxdNmmUUgPTSmTyL6mrNQYwlAWfOly53JAXqo5zcx12ifWur3fklS9esPdtGTaXBV/+gdVsdTzEI4qH89r43hzYeJjlM9Y4ZM1rPlSNxo/V56cRC0hJvJGno6gKSMn/vu3LIy+3ASD6cgzdS77s1pbcqsL3hsDQACwmC1JCqcrFuXLmGmZjxmaUOu5JaznhiuqNq3Jo69EbDomARp3q8+YPrxJW+Ma9fefKPbzb7tNs26OoCsXLF2XSttFYLVbeafMJJ/eeQVEEmiYdJfcd+rTijckv3xBL9ILD246x6Jtl7Fl/AEVRqNe2Fl1e7+BoPuktV89e4512n3L+yEVUg4LUJBJ7W4UhM/rz8LO398t+Zp7fueq8mM1mAgMD+fXXX+nSpYtje8+ePYmNjWXxYucS6x9++CF79+5l4cKF9OrVy63zYjKZMJluVFTEx8dTpkwZ3XnJBzQtFq56DgfmOUpJNystArtzYgNUUEqBdg7nT0YV/FqiRNzQV5FS2lcxTKucHKOCCEQUWogw3JNuj5QamDciU/4GLQpM63GZu4IfosiKbOnGSGlFxg4E00rSJyMroERgC/mRZ8qO9thVut9XvXh84CNMfXsW879Y4nJc2g3fgSdnQ8AXqz+iVosaWC1WHi/cG2OCm2RkAQ07PMC/f+1ya2+6fkg5RKU65bh+KZYYL8MQOhlRVAXVR6XLgA78NXUVSXHJCGEPXwZHBBESEcyVM9cy/O0UVaFM1ZJ88+8oR+nxqOe/Zt38bIooCntfK5vFRmBIAC2feYhO/dpybOdJ1vyykfjoREpXLk6HPq2p3qhKpkKgv3+9lO8GzUynN6QaFKSEd34c4LXDYbPa6FNzEJdOXnGqWySEYNz6EdR8KGvtLQoCmXFecrVUOioqCpvNRrFi6ZMAixUrxuXLzvUvNm7cyLRp05g61X0DrzRGjRpFWFiY41+ZMs7jkDp5QMJX+W2Bc1zI5NtJVacNeh1CPvOQw2ID02qk9ZxjixACET4OArqR4etkqIiI/Dmj42K7jrz+ODKmDxh/A9M6MlY2CdK0ZETk1OwL3iVNTXWwuOVcGmixqIkD6PRaO4835cWTlhN14Tq/fvWn23HaraEUD69IiqIw/wv7y4zBx0DHl1q5LVlVVYU3p/Xj8TcewaXJAsrWKE1IZLD7k2eS4/+d1h0XLxmzahizTk7ikZfbOMqWFUXQ+LH6fLNlJC+P6cG8i1MY/utbDPimDyMWvk2/r3px6eQVF+XMGmcOnWflj+sd26IuRGdf/VlCcryRlCQT0ZdjWTjhL16r9w4lKhbn48XvMP6fT3hren9qNK7q9Dty5tB5pr//C1/2+Y4fP5zHpZP2JqUHtxzhu0EzAdI5HDarvdXG5z0ncuH4Ja9M3PLHDs4fveRScFEognljCk7PtdymQFUbJSQk0KNHD6ZOnUrhwoW9Ombo0KEMHnxDBj1t5UUnb5GWQ2B0/Saev7hfTQAg6Rsv55Jg3gYG+2dMSgvYziGCeiGDXkOYtwIme26NT+0MNzopJTLmFbAeSd3iZLXFcB8ohRF+D0LA4+nCVFlBSgsy+UfcOmW203QfVJQFX/pictPB9uLxy8z6+NdsJdI6Q7Np7Fhh73kkhODZ959gyx87uHzmWroHU1qo4dUvexFRLJy+nz9PzJU41s7ZaH+ztWk3LlPCqX1n8y28dLcTWiiY6Etx/PzZ71w7e51KdcvTtOuDtO3ZjNBCN96q/QL8aPp4Q8fPQ1qNcBtSEsDyGWvo/Fo7AAqXikQxKFlzYG5aEbw5X0azaRgTjLzT9mPe++UN6jxcEx/fjO0DbFYbX782lWU/rEYxKAjsds/+9Fe6De7E1fNRHhWe//jub179sqfL/Wls+WOH27k0m8a2v3Zhs9nuiiqnXHVeChcujKqqXLlyJd32K1euULx4xjfJEydOcPr0aTp16uTYltbHxGAwcOTIESpWTF825+fnh5+fntmdX0gtGRk3GExr8tuUPEQipRWSpiKTZoKMsW9WIiGwJwT1zVDl48C8DazuEggVEL4okd/nnLm2c14kURuQKf+6dVzAnvdyZMcJ+8Mlh70CzabRrdhLNOnSgC7/68jXmz9j+vtzWDVrAxaTBYB77i1Fjw+fonm3RnarfQy8PvElbBYrG37dmnFS3XHJF4Qi8A/yZ3SPCY4Q4qVTVzi46QirZq1n7JoPCYnIuCKWFJ/MwS1H3DrHUpKuN1bbni1Y84sLJWpPuPl8SAlJscm833EkYYVD6PXJMzz6Spt0Y6a99wvLp9lVrG91nhZ8+QcBIf5uHRfNprFn3QGvTDUbzR6TwzVNYrNqd4XzkqthI19fX+rWrcvq1TckyjVNY/Xq1TRq1CjD+GrVqrFv3z52797t+Ne5c2datmzJ7t279RWVAoiMezM17HH3IH1qI2MH2ZsipjkuAFo0MnE8MnawPafF2bGm1bh/Z9DAstNlR+is4U183ruyZJvVxondp3ItOTUuKoEVM9fS74G3Obj5KIOnvMqvV6cxZc8X/HR8IlP3jXM4LmCvdvpf4/edOy46+YeUXD1r712UFkJMe/Ce2n+WL/t85/Swb9+YgTnF4nZqIQSFS91oL1Gn1X006FjHqay/alAIKxLiaAiZhjeNFG8mLiqBr/tN4fevlzq2JcQksuibv3D3tUlJ9KyE7W1jz4q1yrn3xQWUqFgMXy8aTN4J5Hp7gMGDBzN16lR+/PFHDh06RL9+/UhKSqJ3794AvPDCCwwdOhQAf39/atasme5feHg4ISEh1KxZE1/frHWL1ckdpOVwau+cu6XKQgXfJgjbKTCtwPlrmwTTctcOnXSviHtjXA72b1LvAcVTHxQb/uHNPTePk+T6aobNqmGz2fj06a+IuRpHYEgA5e8rS4kKxTKE4WZ+MJcLx7zLGdDJO9w90DWbxuZF27ly5lq67bHX4lg9+x8v5pY079aYdfM2sfrnf7hw7BIf/voWj7zcGoNP+hWHOq3uZ/J/XzBhy0iaPdkI/yA/DD4qletW5NVxvTJ9XdPf+4Wk+GQAdq3c61HrRkrp1lFSVIW6bWp5de52vVu6zQMTQJcBHbya604g13NeunfvzrVr1xg+fDiXL1+mdu3aLF++3JHEe/bs2UyVnOkUHGTKCjyXHt8JpN581DKIsDHIuHfxqIibPAfh/3CGPcKnGtLo4felRIISkR2D059TqBD0IjLhcxcjVFArIPwa0fV/15n69k9uHz55ggSrxcryaWt4ZmhXp0OMSSn8/eM6XWflNkRKyb5/DqXTbTmy/YRd6NADfkF+THvv53Srf7UfrsmQGf3p/ckz7Fl/EJvFSpV6FSlZ0Z6eULhkJO/98kYGGxZPXOZIrvUGU4qZf377l/a9W2L0EGJNI0Py+i00fKQOAElxSZiMZsKKhDoN+0QUC+fNH/oxttckhCJuXL8AgaBu21qOPKC7gTxJ2B0wYAADBgxwum/dunVuj505c2bOG6STM8jk/LYglxF2YTulMCLgydTk2WCk9SQeFXFdad34d4b4z3Gt8qtAwLM3FHxzisBeYDkMKYu54XilOmVKEUTEdwgheHxgRw5uOczG37dlLHfOY6QmObjliMv9V89GYTKa89AinZzk1jClt+XHzvoO7dtwkEFNh/HdzjHpkn/dIYSg+9uPMf7VKd4ZDKiq6si3KVejtFfH9Bn9HNPe+wUhRIZwq6ZpDGo6nNDCIcSnyhSEFQ6hU792dH+nC/6B6fM52/RoTrGyRZg3ZpFDlK94uaJ0fb0jnfu3w+BToGpwcpW750p1chQpZWpo405ddVEh4HGUsM8y7lJCQbvg/nDhXKNAKMEQPhYZ+z9u6Ms4JgafWhDUF2nehjT9A2gIn/vBr5XrJGAvEEKFsDEQ0AmZPNeuMqyEIPw7OZwysKvofjBvMOvnbWbJtys4feAc/kF+WMxWx8018+eGTq+1R1UVFk74KxPHCdTUMEDMlVj++e1fEqITKVauCA893jDDjV3nNkLYhQtvplrDShh8DVjNnkMxt2KzakSdv87iScvpMdydaKSdM4fOs/PvPVgtNqo2qMSRbce9Mttms1GohH1VtGr9SpSrWYYzB887Xf1TVIX7m1Wn+9tdqNqgMnNG/s6u1XvTv7Ok/v/N3624qAR+/uw3dq7ay9hVwzO0Gri/WXXub1Ydm9WG1WK9a1sR6M6LTqaQloNI40IwbSiYSro5Qqq4XNArTveKgM7IhMO4Tv4QiIBOGbbab7oW8GuDiJyHTPo+tUpLA6UYIvA5pH97iH4aaT1E2tdTYgWlKER8h/C5L8tXJYQAv2YIv2Zux6mqysPPNk0nnjW042fsWrk3S4m6UkLNJtU4uec0Bh/V6y7PEknNRlX5/IUJrJmzEc0mUQ0qNquNCf2nMuCblyh/3z2c3n8ux0u3dXIPRVVo2PEBR9PENEIjQ2jfuyV/TV2VpRU/TZMsm7bGrfMSH53A6OcnsH35boQiEAh7RauXis2+fj40fcK+sqPZNMKKhLoMW/oH+fHs+11575GRbF/+X6ZyxaQmOfzvMX77ainPvve40zGqQc23FgUFAT3ZRMcrpLSixb6LvN7FLmV/xzougFIC/NojjYuQFidlzQFPpibAOrtxqKAUs49JRdouo8V/hrxaF3mlJvJqPWTKMkTox4hi+xFFdyOKbICgXhDTF6xHU4+0pv4DtChkdE+kzV1Pptyjfa+WWa4wCgoPpEmX+oQWDvV6DqGAj6+BqUN/ZtXsf9BSO/ym5UQYE1IY22sS9drV1h2XHCBXZeVTo0FCCBD2cvc3p/VzOvSVL3tSs6ldITYtOdXbahywJ/0CnNhzmtmf/Mq0935h7dxNmE0WbFYbQ9t96uh1JDXpkOLwNmTV6+OnCQoLAmDa+7+wZ63rMmerycqn3cez8+89WUpyl5pkybfL9c+3C3K9t1Feo/c2yh20hC8haQp3rHBG4IsgfCB5Dsh47Kseqeq7PvUQERMRSqRjuLSeQcb0A9txbjgxNjBURoR/51DVldYzyOjuoMWRPkSkglIIUWgeQi1lH2v8PTUZ2BUqBPZCCX0nxy7bFVEXrvPbV0v5+6d1JMYkUahkBEIIu5ppJp2YQiUjeGbo49RvV4te1QZ6TrAVdsVdKaXbsUJA6aql6PxaO759Y4aeuJsNug7syOKJy3O0BF4xKIQXCaVY2aJEXYimUIlw2r/4MK2eb+Y25Gez2ti4cBvLfljFlTNRRJYI5+rZKC6fuurxnEXvKcw91UuzY/luFFVBKAKbxUZIZDCP9W/P7E9+zfL1BEcE8evVacRcjuWT7l9xcLPrfKw0cqJxp1+ALwZfAw0feYDH33iUqvUqej7oNqXA9DbKD3TnJeeRWiLyamPsSaZ3IIEvIwK7IKO6AhYyln6rYLgXUWhBukRaKSWY/wXLdvsGnwbg2yDdW5x2vTtY9uI8N0gF34YokTPtY6P7gvkfJ+e/CaUoStEsCnJ5yfH/TvJmy49ISTKlf5gJCAwJyLjdC4Sw5whUrleBP77727kPLOxaFkXvKczWP3Z6/cY5/Nc32bx4O6tmb7hjfevcxlOTxEzNlfrA9vEzUKVeJTq/1o5mTz6Y5WTSq+eieK6s85WadOcVUKxsEa6eu57h8ykU4VBvzo4z8ckf7/LdGzO4fPqqYzUwr1ANKpqm8e5Pr9/2DRhdUWB6G+ncIZi3c8c6LqigXUQm/oA9ROPsoWwD6357ns9NCCEQfg8igl+3//NrmM5xkZajYPkP10nNNjBvRlrPph4Q7+L8NyGTvLusLGAxW/hh6M+8Vv9dkuONGR0UCSlJJpp0bcD7c95g6M8DKV2lpFdzSwlHd54EDboPeQyDr/1BlhYSKFwqktHLP2DyrrGcPXwhU+q9Hz/5Jatm6Y5LdsgJx6V4+aKEFgpGanYnwWKycmjLEUY99zVvt/4YY1LW7iFJcd5VNfoF+nH5dMZmjpAqkCfJ9irI2jmbuHjySp47LmBfkZKaZEyviVw7fz3Pz1/Q0J0XHY9I68H8NiEXsUHKX/Z/biunVGTKssxNbT2UuXGGSjjPo0lDAbV85mzwEpvNxognv2TemEVub/BpAmP3N6/OpRNXvG4ql3bs3z+u49n3n2DexSkMmdGffuN6MfKv95h9+luHWNeV01d1R+Q2JOZyLImxdkcjzRlKS7w9sOkwkwf/mKV5i5Yp5JVIdEhEcK4nsB7edixX5/cGKWHplJX5bUa+o1cb6bhFSgnGP/LbjFxGw/PKkgYyMXPTCi8VoYU9/i8CuyONC9zaIAKfzZwNXrJlyQ7+/XOnV2NtVhufPTuefesPZlrMzmQ0c+bgee5tWJm2PVtk2G9NfbvUuf1wp7mjaZK/f1zHSyOfJbRQSKbmDQoL8qoYyGax5Wpyq8HXQNSF61451oqq4ONnwGKyeh1ivTlHxx2aTePwv/nvROU3+sqLjkuk7Roy/kOwncxvU3IXEQaKp/CHAoZMrnr4NgI89RnxB5/6djN87reLydl/utVI8H0IAh7LnA1esnTKKrfS47eyd13mHZc0bu4xcysfP/GF20Z2OjmHUDPX3ye7WM1WDt3y0JVSsmf9AaYM+YlJA6ez8qf1mIwZlWt9/Dy/CASGB+aYrc6wWWyYje77LqVRuFQkQ2cP9Po75eNroOvrHejw4sP4+HleU4iPzuSL1B2IvvKi4xRp2Y+M7pn51YbbDgUCuyNEGDLxS1znnNgQAZ7Fr25GKOHIwGcgeRYuM1SDeiKUoBtbQoaCoQIyaaq9GzSAiEAEPQ9BryBE7jRdu3j8stdviKpBRUqZpcqUsMIhlL/vngzbr56LYsm3K9jyx45Mz6mTNWQ+5G3c7PFevxTDsM6jObbzJKpBRQiwWmx8O2gGw+a/yQOt7JpGZw6dp2jZwpw/4kYmQEC7ni2Y/sEczzZ4qemS0XTvDur0WjteGdsDvwA/PlnyDkPbOxG6vAWL2Urvz57BL8CPmKuxbFq43e34q2ejHAnIdyu686KTASnNyJi+qcmhd/ISvgJKYbsmi1oMUlbYE3PTOTD2O50IHogwlMv0GUTI20hbFJj+wp7PouFQ1vXvgggemH68EBD4NAR0B+0iSBuoJbxyWqTlMJg32Y/xqZWh8skdYYVDuHTysterKVkqqRXwxKBO+PjeuJbkBCNfvTyZ9fO36HoWdwGRJSM4uPUoy6evYe3cTZhSk3hv7mmUFJfMex0+pXiFolw4etm+0c3HWFEVeyn0gPaoPgamDPnJvRG5+DG7v9m99P+6t6M3Ua0WNbw+tnvJlxkyoz9V6lby6LzEXYvn6M6Td3TZtCd050UnIynLQbvDstlFEVD8b6xmAKCBdhWiOiIDukL4ZEieBsa5N6p61HKI4H6IgC5ZO63wRUSMR1petCsT26JALYYI6IrwcX1jE0JAqv6LM6Q0gnEZ0nrA7qyY/wPbIW5EgjVQK0LENwhDJY92tu7RnENeJiN60zzPGW17tqBz/7b89tWfLJ26imvnouwS5+bczVXQKTiM6zOZ4/+dcts3S2oSmyZvOC7gTsyakMhg3p87iEXfLGfv+gN21eUD5/I8d0oIQUJsUrpGwz6+PpS/7x5O7Tvr8fjk+GQ+7vYlXf/nXWfoeaMX4hfkR6ESEbTp2YKy93rXa+lOQdd50cmAFvcBGH/Hoe56J+DTECImw/XHwXaGjOEhBXzqIiJ/xN5Y8QLgC2qpArc0K02b7L2RZAL29w9XfycVRCii8J8ItYiLMXaMiUZerTOEK2euecw5ybQmiIA2zzfjlXE9ebP5h5w5eN77Y3XuGIQgy3lSzlBUhVe/7EmxsoUZ+ezXmE2WApHsPXb1h9RuWdPx8z+/beXjbl96dayiCMrWvIdTe894HqsKQCCEvbdTp35tGfDNS+mcp9sNXedFJ5sUrId1TiACuiJSFqe2NXD2cNbsYnOmVQjhhzBUQBhKFzzHxXIUGfPyTblI7hxMG8g4ZPJsj/MGBAfw5boRVGtQ2bMN0i5AprhJvE1/AGxfsYevX52a545LZpKQdZyQgx//nH5N1mwagaEBfPrMeMwpBcNxUVSFrUvTV+01feJBnh/2pIsj0qNpklN7z3hVkaXZ7HlnaS8bf3z3Nz9/8lvmjb5N0b/ZOhkQvg24c1ZdVDBUhoBHkMnz8XQ3lglfF+gQhkz6Abvz5a2NGiTPQib/itTcd4UuXKoQ4zd+SpHShdyOUw0K9dvXoXyNMvYNXjzgYq/G8c9vW720OefISbn7Ak8O+9kii4mtecnmxdtzvUQ6M2g2jcUTl7Nwwl/pbOo5ojtfb/6MMtW8E3WsUKssiNS/QSZY8OWSLIsB3m7ozotOBqRaBvBSo6Sg4/sgInIWQviBdgWPd2PbCWT8RwXmZpiBlOW4F9NzgkxExr+HvNoYmTTd4/DO/du7bYZns2o8NqAD3+0ay1cbPqZirXKZs0cnd8jhj6zB1wcfX0OmGiPmNaf2nS1wDqrVbOXbN2bw21d/ptte/cEqPPhoPa/m2L/xEENnD6SUlwrWaRgTU9i3wUtxzNscPWFXJx0yZQ3EvoZHmfqCjnoPBPZABD6HEKkfcxEMeJGIbJwDAZ2RPg8AZsAHIW74+VJawfQP2E6DCAH/Vgglwr7PdhG0eHuFkBKWabPtc69BGhfZk4mVkojAJ8C3KfZX64waGN5jQiaMtoviBTxrb02QvABsZ0GJQAQ8Bv7t6dSvLStmrLHLoN+S/yIUQd0293P8v1P88+sWgsODuK/ZvZzYfTobdukURCwmi6OsONsNBnN4FUdRFWo0rsr1SzE5N2kOM3PYXDr2bU1gSIBjm7etDqxmG4oimH5wPCd2n+b6xWi+G/wjF455VrR2JxZ4J6E7LzoONFsMxP6P295xAXtVUcJnyKTpyPBvUHzvt0vr2zwnwoGCjP8YtCjQrgE+SP8OiKCXQbuEjBtq34cCaBBvQPq1Aes5sO1PncNgPybkLYRawiuTpZZoL1G37LwxNweQpuXg2xwRMcnulNnOkp0ngYwfA6atYFpx03lAmv+BhC8IKDSfr/75hK/7TWXTom2Oh5avvw/3NqzCrlX72Llyrz2fREpdVO5OJvVjJjWJf7A/lhRL1qrNvPy4BoYGkhzv+QEfEOzP4Kmv8svI37ly+qrLz6BqUFB9VK/F5XISk9HMpkXbaNOjuWNb/HX3odubmfi/6QSFB1G/XW22L9/tdSuO7cv+Y/8/h6hSryJNn2iIr/8dsop+C3q1kQ5SpiATv4ek6YAxv83JHfxag1oGkmdkcQIV++tjWr6JN18bARjA5wGEX0MI6IZQi7kcrcUOTu2x5OxGLECJBC2R7K2+eIEIQRT5B6EEcu38dY7tsouIxVyJ5cuXvsvdc+sUWAqXjqRq/UrsWXuAxNicaxCqqArB4UEMXzCYmg/dy18/rGbCa1NdjhcCytW8hyl7vuTI9uMMaDjU7fw1H6rG/o2Hc8xeb1FUhZdGPstTQ26oYk94bSpLp67yOtQlFMEnS95hXN/JRF+K9e4YIRCKQLNphEQG8+Gvb2VKbyY/0auNdLxGShMyujckfccd67gAmNaAaXU2JrBxo+u0t/6+BCxg+ReZOBF5raXL5o7SdtmN45I6l3Yd145LTpaFJBB7cgATX5/G1HdmcWjrMUpVKs78sYsznUAIoBgUQiKDPA/UKdBEnY9m08JtJMblbGfzWi1q8P2eL6jVoiaqQfX4oJXSnuty/L9TVK1fib6fPw+kryxLa0HRZ/Tz1ElV6s1rNJtG4VKR6ba1fqF55nJ0JEx47QevHRcgnfp1Qkwi73X8jLOHL3h/ztsE3Xm520meDZZd3BGhIrdo9nCLKEL+lIJrgA0ZOwhpcdKl2/wv2fobeOzNlDmC/Deyds4y1s/fwrwxi+hdbSDnDl/0WO56a2m5oiqEFwmjTqv7s+T46BRAbvoMCEVkK6FXNSjUefg+Cpe88ZA/c+CcmyNucDp13FNDHmP0ig+4r9m9+Ab44uvvQ7FyRShVpSQLJyxlzqjfs2xfdjn236l0YbZ7G1amSZf6Xh8vpeTq2aisGyDBarHy67g7r7munvNyF6OlrIOEsRT4esicRAggHGR+JPpJQEEm/YgI//yWfVlTrQUgdBwkjcuOYRkwGKBMpSQObAv2+hjFoFCzcTUuHLtEzJVYwoqE0q73wzw+sCNnDp5nw4ItOWqjTv6iqAqVapfjnuql2ffPIa6djXKpmusKm1WjdNWSmIwmrp6NwtffF98A73I0Tu07w6rZ6zmx+zRr527i+sUb3+mLx69kyo7c4rdxfxB3LZ63Zw4A4MDmI+zLQghLUZUsV1VpNsn6eZsZPOVVl2NO7TvD3z+uJ/pyDJHFI2jzQnMq3F82S+fLK3Tn5S5FM/4BcW/mtxl5j3YVwr4C8057GwCHns2NxNXcxWYPYd2KT60szmcA81aw5az4W3Ki4NjezHXp1awanfu3p3m3Rhn2hRcNo3rjqhzcfCSnTNTJZzSbxpWzUUza/jnHdp1kYJP3kRab11VJQhGERASzd/0BxvaaiDHRrk9SplpJfPx9sKS4T7KdP3ZJtq8ht5ESVv60nsf6tyckMph3232KOSXz1UDZLQdPSXYebrZZbYzvN4Xl09agGhSkJhGK4Ndxf9Cud0sGff8KqkHN1rlzCz1sdBcipQ3i3slvM/IP40KUsOGIYvsQ4d9D0KsQ1A8iZoNSltwPKzm5KasV7GXXmUY6ny+b/PZ9Ycwp3v8ehCIILRRC48ec61gIIRi9/H1CC2flGnUKKgkxidhsNio/UIF+43rh4+dd13Mh7LL2gWEBLPl2hcNxATh3+KJHx+V2Y1Cz4Xw3aCZWcw4qAWfiNlWqUnGn22cOn8eK6faXKZtVQ9NuVA/+PXMtM4fNzbaZuYXuvNyFSONi7hwF3Sxg2Y20XUYmjkcmfAbGX8HyH0LGQnB/cjeMpoDP/QBILR6ZNAPtejfktVapvYoyiw38WuaohZoNFk0rSmbujoqi8O6s19N1jL6VgOAAPl70DqpB0fNf7hA0q8a/S3cx8fVpTOj/AxaTd6sKpSoXp13vh7l6+lqBE5nLDSwmC1v/3JljsgL+wX40fOQBAkMDPA/GLjx5K0nxySz8eqnLPDYpYeGEv0jyonQ9P9Cdl7sR8478tiB/kRIZ1RGSptqTeLUoMP+LjB0A5k0QNAj7gzutPDon0RCBLyCtx5FR7e2icZY9oGUl7KOC4T6EfzvwfTDV3uxz4ZQvibHezyUEfLH2I+q3r+NxbI3GVRm1/AOKlnXfKFLnNkHAtKE/s3jScgCkl8/m/33bl61/7sx0joyOnZREEwMmvMSTgzt5TJiu+VA1OvZtnWH7nnUHPAramYxmdq/Z73ZMfqE7L3cjMj6/Lcgl0hwOTySDTCZ9jktqwmzKYoQSgii8CoJeBoOX+gjKPd6NC+iB9G1uF6PTYsjaKk/qzUotjYiYZF+CDxlGTrR00DRYPqcQmXHapITQQiGYTd4t9dd5+D5+Oj6RL9Z8xKApr/LKly9g8NXT73KbgGD/nJ9UwtlD3pfhKoqgZMXiVGtYmZjLsTlvTw4hFIFfoF9+m+GW4Y99zhODHqHmQ9VcOjAtujfm87+H4esknGf2UonXXEBDeLrzcjeiXctvC3IRb179bG7GCWTyDFBLo4QMQgQP8PK8XgjHiQhE6AcI83qwXSDzFUYGuzPl2xgROgpR+A+EmhrLVkLICedFUeDwzswl6gK8VP0NukT0ZPwr33PtvOcWDIqiUKtFDTr2aUWl2uWxmu/iMGYeEBQWSHjRzLeryGk0TRJ9OYafPprvfVfyfEAIgdWc9w/tQiUjvB57at9Zdv69l9HLP6Dv5z0oVs6+mqmoCg0feYBvto7k/TmDXCrslveymqjC/V6+mOUx+uvO3YjldH5bkEvkxBK0tLcWkDEgIsHvIRDhIGPdH6Z5UZopYwAL0rwV+1cvMw9sBYJeRAl5y/nUiZMAb3NmXDWaUUlKKsb+bVkTlLOkWFg2Yw2bFm/nm60jKV6uqFfHbV68HdWgZk12XscrBk99lWO7TjF/7OJ8zzFJSTLx+1d/EhwRREJsEtJW8EJH+fE7qt2yBrvXHvB6vKIqrJmzkaZPPEi3NzvR7c1OWMwWVIOKonh2DMveW5qaD1Xj4JajTq9XURWqN6pC2eplMnUdeYXuvNxlSC0OiMtvM3KI3Cxvti/DCuGLDBkM8cNzYE4FmTgFzLvJtN1qJURQP6e7pDSBcaGXcyqgFL5p9S3twaGCCMHi/wVwqwaN92hWjdircfSo0B8EhEQEU7JiMaQmKVQyktY9mlG9URX++e1fYq7EUrhUIRJjk/L9gXpHIFLd0lt8gd6fPkOzJxtx74NVWDJpOcaklJyreMkimiZJiE5EKArybtKZckNmHBewO1hpvZKS4pPZsXw3SXHJlKpSgvubVc8gGOmMt6a/xsDGH5AQm5iuCatqUAgKC+LNaa9l7iLyEN15ucuQsW9wR6jpqhVACU9VB85JBKgV7astaVuEbw7dXjVImkjmf/8CfOsiFBcrIloM9u7XXtoQMhShXUEmzwXbRVBCIaArIrAH4aIoBl9DzoRxJCREJ3IkOtF+FbtOsuWP1GRxAQaDis2qcYe1V8s3Bnz9Iif2nGb7it1oNo37m1eny4CO1GhcFcDekVjg0nERikBVFawWGwHB/jz4aF3Wzt2Ua/ZKoFDxcBLjkkm5qVRaxztUg0LJisWZNWIB88YsypB8GxwRRMeXWtF1YEcKlyrkdI5SlUrw7c7PmT9mMctnrMWUbMIv0I92vVrQ/Z0uFC1TOC8uJUvojRnvIqTlIPJ6l/w2I2cQhUAEgHaRnHbGROhoRODjjp+1mFfBtC7Hz5MpRDBKMeeOmtSSkFfr4pV9SqS96aJIn8AnpQlMGzAlXeSz535mx9oQrJaCm5Ogk5GJ/46iav1KTvedOXiOfvXewWq2ZnBeFEVQrHxR2r7QgpSkFMpUK0Wzbo1Iikvm2zdmsOn3f5HY80ByeoVMNSgsjP2JvjUHceX0nZyLlzu0er4Zq2dvcLlfURWCwgL5asPHHsM/mqaRkmTCP8jPq7BTbpCZ57e+8nIXIVNW5bcJOYe8nsNyLCpgg8BeENA1/S4tkXxfrZKJSGlDiIzVVEIJQvq1Tm086S5vRCBCP8nouCTPRyaMARmPDzBiJsRFq0weXoo1v3ufQKiTPwgBJSoWp0q9ii7HLPhiCZrVufqtpkkunbhC2RplaPp4Q5Likvjq5e9ZP3+zw1kRQlC6WkmS45K5finGbdjJN8AXVVVQDSpJccluV9b8g/wJCPRj0rbRvFL7rXQS/56vW9zVq3atn2/Kmjkb3Y7RbBpJccmMePILph0Y7zaUpCgKgSHe6cYUBPRXq7sJ67H8tqCAIUApAobK4N8RETkHJfS9jF9wn8rklIZKllEKOXVc0rBXRRlw+ZUWYRA+GXyqI7UbDwiZ/Bsy/gNH+XzalYeE23hn4lmad86PHlA6N+MX4EtJFwqpYM9xeWxAe7ey8+sXbHErkKaoCht+3YLZZOGdtp+kc1zs55CcP3IR3wBft2GnsCKhmI1mzCkWkhOMbp0LxaDw8LNNAQgrHJqhA7NbBDTvnrENxd1ARLEwXh77AhVqlcuY4OQEzaZx7vBF9m5w0hD2NkZ3Xu4SpJRgOZXfZhQsDFUQhVegFF6KEv4lwreu02EioDvZapyYbRQIeNrtCOFTDRE5E9S07tJpbogCvu3AvxPEvYG81hJ5tSFa1JNoxpXIhDFOF7AUxX5f7Dv8EkLcvW+3+U23tzrxZ9LP/Hj0G9r3bulSz+O7N2bSrXgfJr/5I8ak9PkjUkqPYmSaTcOYYGTd3E0c2X7CaXhIs2lcPH6ZDn1a2ZsnCjD4qCiq/TESEhHsSCC1WW1uQ0xCEfj5+/LEoEcc23z8vWstYL8oOLDxSP40iM9jhBCEFg7h/Tlv8P3uL5hz7nu6vdmJuGvxjt+9JxRV4ej2E7lsad6ih43uAqTUkHFvg3Y0v00pWAQ8iVAydk2WWjIYf0Ua54Ptir06x7cxmDfng5EAGpg2IX3uR/i7bgUgfOtC4VX2Ro3W4yACkb4PQMyrYF5FOgfMuhfi+tuPczWfgCIlLfgFaqQkFczmbHc6C774g9P7z1GvbW2Wz1jrdqwxIYWFE/7i4NajfLH6Q4e+hxCCkpWK2xN2XfihiqpwT7VSLJu+xnUlPYCAc4cv8Pnfw1g8aTnXL0RTqnJx7mtWnbG9Jnl9XVKT9B3Tg1KVSji2PdDqfvb/433H5bio+Nzt5OEB1aAgZe6WVZe/vywd+7SiTY9mBIWlT9gvUqYwNi/PLTWJMdGYGybmG3my8jJp0iTKlSuHv78/DRs2ZNu2bS7HTp06laZNmxIREUFERAStW7d2O17HMzJpOqQU/A6sOYMPiGJejFOdarNILRYZ/ZS955H1GMg4sJ0A8xZQCoFSLsctTo+L9wnrXmTsK8ikaRl2SWlDpqxFi30HGfs/pHkz+LVABD4Jyb/YdWuysXKUT7l7OqlsX76b796c6dVYzaZxeOsxlk5Jn9/WuV87hJtlCs2mUbluRS6duOzeIZBweNtxBjUdxrq5m9j3zyGWT1/Lly9955V9aQhFMP39X9J1O3YmYe+O/FR+7fdVL1o934xWzzWlQ59WuXMSAbVb1KDLgA4EhQWRFJfEoon/b+++45uq2gCO/85N0nQvSlvAsrcsZYMM2UMURUVBUERBBRy4QFHABSgKTtwDBFF8RVEURIbKkI0CArJ3Wd07yT3vHymF0jZN2qTpON/Pp+9rb+54bkiTJ2c85xdeuG0mU2+dSWpCqtMtL1JK5r3wLU92n8qBHeWjBd7jb0tff/0148ePZ/LkyWzbto3mzZvTu3dvzp49m+/+a9as4c4772T16tVs2LCBmJgYevXqxcmTzpegVi6R0gKp73s7jBJkAelEwTgkkHdwmkycDNaD2Y/L3PvrCWCMgYDH3RJp/gqqgmr/hiWTZyCtl5p/pR6HvHAbMmG0PUHNXAGpnyDP90RPeRfSF1FQ4nLqiONm+qxMwR8/hmBTxW+9z8UWhh/nLM/1+w0P9KJp50ZoBXQ7CU3wypDZJGdPa3ckv2n0rrY+SF2SEp/KmsumYleqEuaZJQzcrHJMJZp2bkTPYV2IjKnEqYOxnrmQJGecyq61exha8yHefeRT1n63iXWLN/H58187Vcvlcv/88S+PdpzE/m2HPBFxifL4VOm2bdvSunVr3nnnHcA+HSsmJoZx48YxYcKEQo+32WyEhYXxzjvvMHz48EL3V1Olc5OWvcgLN3o7jFLKD/yHIIIeQQhfpO0M8lwXCp9Z5MnieIUxgP8wtOBnkFIi44aCZTtFaVn5cW44bbsnE1HFkqd1ZfXiUN55phopiUbsn5wVYHBBOWIyG/k5/atc27Iyspj3wrcsnLHYq90tFxmMBnoO78Ko14bx6+dr+PN/f/HvX/95vYBeaRLToCpTv3+Kh1o9TVZ6Vp6FLC/W5vEP8SfpvHMVtjWDRsO29Xhz7UueCLlYSs1U6aysLLZu3crEiRNztmmaRo8ePdiwYYNT50hLS8NisRAenv9I9MzMTDIzLzU9JiWV10UHi0qVXC9YOqR9hsz4BWlsmD3jxpmkxJvTpm1gyZ41YPkHLI5WCHc0eAEMGrwzsRpTPj+Crl/qHtqwPJjpY6tfdqhKXMoa/+BL61NZsiysW7yJf/7Yw7E9J0pF4nJRclwKw+uOJTXB8ZTqiur4vlPc12Q8uq7n++8mdYkuJL3u7kqHG1uzd9MB1n2/id3rCh47pNt0/l2/jxP/neKq+lUL3K+082i30fnz57HZbERF5R6DEBUVRWysc01tTz/9NFWrVqVHj/z7Q6dNm0ZISEjOT0xM6VyHwVuknurtEEo53V7oLmsVWLZ6OxgnCBD2pnWZMruQfR1/GDTvmMLG30J4blgtTh6yr6ArJXzy8sVBlCppKYs0g0b37CnIB3Yc5q5aY3j5ztn8/PFv/PN76Zkua7Pa2Lrib9KSVOLiiG7LP3G5/PG/ftxC006NuO3xAXQd3MGp7qTTh/MfulFWlOrZRtOnT2fhwoWsWbMGX9/8+0InTpzI+PHjc35PSkpSCQzZU6NT50DKm94OxcuM9honMo7Cv3KWhTdQCeZu6OnLIKt4pdur1cqibc9ENq8K5r7ODajbNB2zn87xA6V/3IGSP82g4Rfoyy2P9if+bCJPdp9KamIaADZL6WuFzUh1YjV2pVCXD14OrhTkVDIYXCnIkyF5nEdbXiIiIjAYDJw5k3sA5ZkzZ4iOLrjoEsDMmTOZPn06v/76K82aNStwP7PZTHBwcK4fBWTiU9nfzMvCB7InWe3VeMvT85DyASROcm5fEQjB0ymoyN4Ts49Tu3E6IDiw05/dm/JOHVfKjspXVeK1lZOJqlGZH979hZT4VJfGkAhN4ONKvRXF6wxGjYZtLi0L0e6Glpj9fBweU6VOFPVb1vZ0aB7l0eTFx8eHli1bsnLlypxtuq6zcuVK2rcvuDriq6++yosvvsiyZcto1aqVJ0Msl/SUeZDxg7fD8JCS7MrwRreJAYz1QfgXvIs8DTg5tsv/TjT/W6DyX2Bql71R2K+DgeAwndkr2zPhy3GuFQlTSh1NE9zyaH/qtKgJwJJ3lzs+IB9Sl5gDzG6OTPEkm1XnprF9c373D/JjyLODHB4z8uUhLs9UKm083m00fvx47r77blq1akWbNm2YPXs2qampjBgxAoDhw4dTrVo1pk2bBsCMGTN4/vnnWbBgATVr1swZGxMYGEhgoPpWWBipJ0BK6RtF7j4l1YKSvXSAFmEfY+L21asLuKahGoR+DGnzIO2jYp7PjAiwF6LTDCFQaS7SehwyfkDaziEMlcH3JszGGK7tnoD0YLEtxfN0XTLnsc9Z/dVaWvZq7tS05/wkX3B8nMlsxJKp5s97m2bQ0G06Q565hWadG+d67M6JNyN1yfyXv8WSZcVg0LBZdfyD/Xho9gi63N7BS1G7j8eTl8GDB3Pu3Dmef/55YmNjadGiBcuWLcsZxHvs2LFcK1jOmTOHrKwsbr311lznmTx5MlOmTPF0uGVf+g+Uqy4SrxEI/7sQgQ8Ue0qy00ytEGEfQMZyZLETF4BM5IVB4H8n+N+OEL4IYwwEjrXPQ9KTwHYEaUnnl0+2O12tUynd9m46wN7NBzx2fkumlXota5OSkIqvv5lqdaNYu3izx66nXHJV/SqcOngGpOTqDg0Y9NgNdBzYJs9+QgiGThrEjWN6s27xJhLOJRFZPYKOA1tj9isfLWser/NS0ipynRcpJTJhDGSWo9WjvcaEqPw7whABgNTjkecHgX7Cs5cN/w4SHwXbMTedMLtp2NgUEf6FfQVqPQ6Z9Fp21WX7QL/4c0Y+mx7N8q/CUbOMFKcJMPmolpiSEBwRxJeH38PX35585Nfts33VTn54Zxl7Nx3AZDbScWAbbhrThyq1nak67n2ufH6rwt/lhJSZyIQHVeLiLqZrgctmQlj+dUPiElrI4wZI+8yNiQvkVAq27kKmvIHUE5EX7oCM77mYuACEVLIy/vUTDHm0bE+fVEqYRCUuJeSlHyfgF+CLECJP4iKl5KOnv+SpHi/w109buHAqjtjDZ1n81s+MbPIY2377x0tRe45KXsoJmfQCZDpeuE1xgWUL8vzNSKu9jLZMmUPxWiQ0IKGQfWxg81TLjg5pi5Ap72UnR7m7vy723A5/MpbwKO+tGaMoSl5tb7iWRm3rF/j42sWb+OY1+yQNm/VS969u07FmWpl886skxxdtDFRppZKXckC3HMhew6Zc9QB6mQ1kAvL8QPS4B8CyieI9vzqFJz8GMEQDDmYaFUsGpH1DYRWCg8PUN2lFKS2EEOzfephPn11A/JmEfPf536wfC1ykUUpJZloWv36+xnNBeoFKXso4KTMgfqS3wyjHMuzVd4tN2GcuFVBvxc4GloOAJ5eud1xxWQjoPCABTVOJcHni4+dDWFQItZpV5/Yn1VpnZYmUkrjT8Xz96g+MbvEEJ/afzvP4ng3/Fbo45i4HSwaURSp5KeNk6pegny58R8XLJPjfnV2/Jb8EJrtVxnYAj7WgaZUKuHZu/e6Kwz/YhmZQCUy5IOCBmcP55vTHfLjjdYIrBTvVA9rl9g40bl+fBq3rEBDiqdbAiqWg1hFn6DadxAvJvHLnrLwPOlGzpYyXdclDJS9lmEz9ElJe9XYYSqHshedEwHBE+Jf2Wi4Xt+f8CV5MFDw3XVkE3Ae+/SgsgQmrbGXG14cIqWTvPjIYdYRQiUxZJDRB43b16T3i+pxt6SnpGJz4EL1jwkDeXPcy72ycTtfBZb8uiLcZTAZ63d2Vvvd1L/I5dKvO/m2H2XfZVHghBM06N3aYGEkkzbs2KfJ1S6NSvbaRUjCZsQyZ/IK3w1CcYWqNCHsTIXzB1AgifoWsDWDZCcKEzNoMmb/jWg0ZDZcSHb87wH8EwnoAmfFLobvXbZrOvE17WLs0hJ0bA9ixNpCTh9SaR96mGTSkLp1eyLDbndfxyPuj8PG9VC6+RuOYXIM682MwGfh6xvds+HErlowswquGFytuBeo0r0nCuST++jH3SvBCE4RVCSX+dIJTSzkIAfs2H6RB60tLAtz6+AB2rN6V7/6aJvAL9qPHsM7Fu4FSRrW8lEFSSmTKO6h6HE4ytsCZ7hKPsWyBrB05vwqhIcwdEYEPIAJGgvUwLhe/05yt22CEsC/RQl6wX9dU39595QSTj+T6mxN4ePpJjOprTqkQGhnC5O+eJCwqpNB9DSYD4969D7+A3Elnx5vb4BdYcCIqhEC32vjzf3+RmZaJrkvOn7hQ7Ngruv3bDrHxp7wr10tdEncy3unzSAlGU+73s7b9rmXkK0MA+1pHFwlNYA4w88rSZwgILl9df+otqSyynQTrf96OomwQYSDMeLQybqGsyISxUHklwpDPgqTC8SJq+Qr7Ai705/JaLfkLhNR56KnvgBZp/7GdybOXzQaGfPI7qxX2bAng6H+q1cWbIqtHMPKVIVw3qB0+ZhPXdG/C7dH3kZmWle/+mlGjx9BO+X5gxZ2OJzMj/+OAnFadwlpnFNcU1qri9AKaAhp3bJBn8x0TbuaaHs34cc5y9m46gI+viY43taHvfd0Ijw4rSsilmkpeyiLpydko5YlABIxAWv7F5W4Wt7MgU+cigp9CWg8gU+dC5gqQWSCCsbeiOfnmZWyIsO1HFpq4ACRA1q8Oz332hAmrVRAVk5UrgbFZIfG8kdceru5cXIrHWLKs2Gw6Pmb74pn+gX48/cU4Xhz8BgL7ukYXaQaNSlXCGPGy/Zu4ruv8sWgDP7y3nCO7jmG1WNU6VqWVM28DEu5vMp46zWtw6+M30n1op5yidQ1a1aHBJw95PMzSQHUblUWGqni1G6TUy35Z+3SBgJHZg1RLwZt1xi/IzDXI8zfa6/LoF0Amg34Sl2YYBT4OMrPw/XI4PveZkz6M61uPL1+P5twpE1YrxJ018vU7kTzYsz5nThShZUhxq/jYBF69+x2+m700Z1unQe14dcXzXH1dw5xtJl8Tfe/txjsbp1GpShg2m41pd73Fy3fOZtefe0iJTyUjJZPytShM+SEQCM254QCHdh5jxvC3mTP+c6fHQJUnam2jMko/1xtsh70dRingA+augAksG0GmgaE2+N0OvrcgMhcjUz8B2xEvxwlwseslkyJPh/a/Fy14gr315nw/t0R1bL8P93dp5JZzKZ5lNBn4+tRHBFcKyrU9/mwiaUlphFcJyzXGZfHbP/PeI5+VdJhKETXr0piwyBD+/O4vdJvEx9dEQIg/8WcSHR736m/Pc023piUUpee48vmtuo3KKnMXSFPJCz7t0cLeAUBmrkOmfmifyZO8C1JeRcrSVBJbxz5GpSiJiz+ETEfz62P/VYSCVsUtNX6q18uibpNUDuzyRw0CL91sNp1VC9YycFzfXNvDIkMIi8w9iFdKyYKX/1eS4SnF1HVwRwY80Aub1UZWRha+Ab68NPgN1n6/Cb2AMUgGo8aS95aXi+TFFarbqKzyvcXbEZQCGhhjAJBpC5HxIyBr06WHS1XiAkVPXABDdYRPSwCk9RDywg2gx7otslFTTqMSl7Lhv22HiD+TwG9f/sEvn6xk/7ZD+e6XHJdCwtmkIl3D2a4LxXkms+O2gqDwQLoP7QSAwWjAL9DPvjTAtsMFJi5gH1h9YHvF+yKrWl7KIJm5ERLHezuMUkBH+N2CtJ1CJk3J3ubNWUWFKUYPrW0f8sKtyEpLIH4c6InFO98VqtfLyD6f+tAqzaQuWfHFGn6b93uu2Sn1WtZm4pcPE9OgWs62olZzHTbldn56fznxsY67KhTXOFp9OzAsgBm/Pod/kF+ex8z+hY858/U3Fyu2ski1vJQx0rIHGT/SPtizovMdgDA1QaZ944GTG4G8byTeI+1dROd7g20/7k7SgsNt5a58eHl25bTaA9sP81Crp/nlk1VYsuyz0AJDA3JmoTjL7OdD0+saEhga6LZYlYKFRgbz4Kx7mHfwXepdWzvffToPao/moCVM0zQ6DWrnqRBLLZW8lDEyZQ72D65SMHvGqwIBP6RlN1j34v7nQyAiNyDC5iHCPgOtNqWiVULGeeS0QkBASGlutVIckbokIzWTN+6fw+Cqo1gx93fA3iLjiqxMC0/1eIHje096IkzlCglnk9jz134+eGIuHz01L98uwP6je+AX5IdmyPv+oxk0/IJ86T+6Z0mEW6qo2UZliJRZyDPNKd1dIyXJANjAUCt7NpG7X8ohoAWAX3/AF1Lf8cA1So8v34hk3swq3g5DcZMJ8x4mqkYEj3V+3tuhKIXQNA2hCWxWGx0GtuaZ+Y9g9rvUFbRvy0Ge7fcKieeTciro2qw6wZWCeOXnZ3ItFVCWufL5rZKXMkTq8cizbb0dRgUlABPFGnSbwwDGRqAFgswAY33QkyFzmRvOXTSZ6YI7WlxNWrKqH1RehFcJY8HROfz6xRpmjXpf1XYpIzRN0PWOjkz88pFc2zPTM/n9mw388/u/ADTt3IiugzvkSnLKOpW8lNPkRc/cBPF3eTsMxS0CwNQY4T8UfPsghIaesRISHvRKNJtXBTHpLte6GJTS72L9j9OHzrD0wxX8/ftu9m48UPiBincJmHvgHarUcnYNs/LBlc9vNealDJBSoie9ohKXciUVLFuRiY8iz7ZHjx8PohL4XIc3xtakpai3gvJo49Jt2Gw2qtSO4r7pdzH27ZHeDklxghCCDT9sKXzHCky9Y5UFaZ9A2ufejsJDLs7Wv/ylmP3hbe4FWo2SDqgEZQ8ylvGQ+RPE3w4yFcw3lXgkMXVdWW5A8aTgiCAqVQ2jeqNqIMh3oKaz/jfrJ567cQZZmfYZSL/N+8NdYSoeJIQgI039TTqi6ryUclJmIVM+8HYYHmS1L0xorA2WHfZNhhrgfzdkrAD9qFejK3GW7eATAIETIGV6iV22duMM6jdP48AuP3RbKZhVVVEJ+GT3LEIr26vlHtl9nO9m/8RvX/7hsE6II1uW7+CzZxdQuXoE37/9izujVTxEt+nUaHyVt8Mo1VTyUtpZ/gZZzotFySSE/1Ck6VXQU8FYG2HZgbSs93ZkTnBhNWhnZa1FBE9CZiwF6073ntuBlxcc4o8fQ1i7NJTtfwZSKqaGl0XCPntE6tL1BfMknD8Rl5O81Lw6hqDwIGwOKqwWekpd8v3bv2C1qFmKJalS1XAy0zOpHFOJa7o35btZSws/6DLOFKeryFTyUtq5tHpw2SUTJwIXv1n6Ig3V8Ehi4HaeiU+m/wxBz0L8HR45f57rSQgOs9F/WBw3DI9j33Y/nhtWm+QEA5pBYrWoHmZnmX198PH3IflC0ZanCAq/VCAuK9PC0g9XoNuKV8dIJS4lSzNotLj+aibMezhnW0z9arz50IdOvWVoBo2lH/5Gq14tPBdkGafekUoxaT2CTJji7TBKyOVN4hlgO0jpT1w8KPUtSBiNvRifZ0lJTnXdi/9fr3k6MxcfoGqtDHz9K3pBRNdkpmcVOXFp1K4eUTUq5/x+/sQFUhPTHB5T1GUAFM/RbXqef7cbRvfknqnOfRnRbTqHdx3zRGjlhnrVl1LSdgYZdwdI9QKusGQi4PnFJfOrIK9pUL1eJpWiraQkqtovJULAiJfuzLXJZDYVelhxW2UU99OMGlfVr5pnuyXTgsHk3N9TfuscKZeo5KWUkqmfge6ZUvCKO5T/Px2rBTr2TUSNfXGPwlZq7j6kE9d0a5rz+9nj5zn09xGialZW/wRljG7V6Xtf9zzbA0L8kU4km0IIrh/c0ROhlRvl/x24rEr/n7cjUPJlBBEA+Hs7kBJh9qvAXXdu5lNIK8rK+X+ya91ezh4/z7MDpjG05oNMGjCdM0fOFbsHtbDESXG/L1/8lsz03GMWO93aDt2JQdwhlYPpfe/1ngqtXFDJSykkpSz/M4xKjYtv6s78KQj7fjIVSPVcSKWEZoCj+3y9HUa5IaXMWZcmPwajxqLXf+CRDs+ydfkOtw35EpqgWr1o95xMySUoPKDAx1Z/tZZJN0zPNeMsumYkfUZ0c5hMhkaGMHPVZILDg9waa3mjkpfSSMZ7O4IKRAIB4NMVAp92Yt+sy/67/NJ1sFkEKxaFeTuUckNK6XDKs82qs33lLuJiE4o1NTrPdXXJ2aMX3HY+JZuA5DjHX2J2rN7FjtW7cm17+L376HV3VxD2xPLigGuD0cCgx25g4ckPqNE4xlNRlxtqbaNSRtrOIs/fBFK92ZQcDRE4Foz1kQljvR2M19msIDSY+UgMK/8X7u1wKhShCaTuvrdkg1GjWr0qHNtz0m3nVFwTGhnCrD9eyDOA9/ThM/yx6C9SE1OpWrcKXW5vj19AxW7pVAszluHkRY+7D7JUCe8SJ8LA7zZI+9DbkXjd9j8D+eqtSP5ep5qtS5JmEOg2974dh1QOxi/Ql9jDZ916XsV1D793PwMe6OXtMEo1tTBjGaWnfq0SF2+R8SpxATLSBHNnRvH3ukCEdvGDVFLeu8lKBSHw8S18arSzqtSOIvFckkpcSom3HvqIv3/f7e0wyg2VvJQS0nYKkp/zdhhKBefrL3l10SEen3WchtekEVbZQljloq2po7imboua1L22drEWYrwoMCyAM0fPuSEqxV2EJvj2jR+9HUa5obqNSgk98WlIX+ztMBQlj6n31mD9shBUsRHPE0K4vh6SUmYYTQZ+zvgKkV9lSKX0dRu9++671KxZE19fX9q2bcumTZsc7r9o0SIaNmyIr68vTZs25eeffy6JML0r41dvR1COmAFVndJdkhKMqMSlZKjEpWwRAiKucn5Qu6qG7D4eT16+/vprxo8fz+TJk9m2bRvNmzend+/enD2bfz/s+vXrufPOOxk5ciTbt29n4MCBDBw4kF27duW7f3lgr+tS/uuGlBQR/Bz4D0b1irqJzPkfRVEuI7NXAXeG0AT1W9dl3febeLr3i9wZM5qRVz/Gly9+S/xZVdfLVR7vNmrbti2tW7fmnXfeAUDXdWJiYhg3bhwTJkzIs//gwYNJTU3lp59+ytnWrl07WrRowfvvv1/o9cpit5Ge8CxkLPJ2GKWIhv2bfhFWwg1+CeF3KzLzN0h8HqRaYqG4ptxbgw2q20hRiq1h23rs3bgfzaDltMJomiAoPJDXVk2hVpPqXo7Qu0pNt1FWVhZbt26lR48ely6oafTo0YMNGzbke8yGDRty7Q/Qu3fvAvfPzMwkKSkp109ZIvVUlbjkoVOkxAUfyFiJPNseEsZ6oEqx0c3nK/1sVoiOySp8R8UlaiXoCiQ752+UnbhA7u4jXZckx6fy3I3TsdmK8r5XMXn0L+j8+fPYbDaioqJybY+KiiI2NjbfY2JjY13af9q0aYSEhOT8xMSUrcqEMnm2t0MopYry0syCrNWXVSh20xuBsSUi4mcw9yxiXGVDcqJGSmLu+9uxLpC1S1WriztoBo0nPnuIUa8N5/o7OxISEZzvit7uYvbz8dzJyyGjj9HpFZ8LE1k9At8AM74BZpp3uZpJ34wn1sHsL92mc+bIOTb/ssMt168IyvxXyYkTJzJ+/Pic35OSkspMAiNlJqTP93YYpVTpGdgmgh4BLQoyf6U0xeVu/oE6iec1XhhfA0uWxrH9ZmKPmb0dlsdd3oTvKeYAMxPmjuO6m9vmbPvlk5W8cX/hXeFFvqa/mcx01WrmjAZt6nJ870nSktKLfS6jyUCHm1oz5s17c7adPnyG+NgEh8cZTAZ2/rmHdje0LHYMFYFHv0ZGRERgMBg4c+ZMru1nzpwhOjr/hcKio6Nd2t9sNhMcHJzrp6yQKV8AqoZGvkQgpaKVQwQjTW1AP4/bWnJKKYMBwiJ1+gy9wKaVwRUicYGSmQGSlZ7F7NEf5BqY2f2uzjS5rqFHupDM/j4kXUh2+3nLI/9gP/ZtOuCWxAXs3UBXLqro1NRoiUdb4sobj346+Pj40LJlS1auXJmzTdd1Vq5cSfv27fM9pn379rn2B1ixYkWB+5dVUmZB6ixvh1F6yRRyt3J46a9aJiGyfgOtYnSdCAEtO6fQtF0yaoaR+0hdkng+OVeRMh+ziWcWPEJk9Qi3Xy8zTbW4FCakcjDNr2/itqTlIt2m0/WODrm2RVaPKPTf2Wa10fz6Jm6NpTzz+Ffb8ePH89FHH/HFF1+wZ88eHnzwQVJTUxkxYgQAw4cPZ+LEiTn7P/LIIyxbtozXX3+dvXv3MmXKFLZs2cLYseVrwTyZvpTy/k3erQx1wfc2L1xYINO+BGkDrWrhu5cD634JZudfgVSEZK2kffPqD2xath2ArIwsnhswnbPHzns5qopHaIK3NrzCf5sPuPnE0OOuzsQ0qJZrs6Zp3Dp+QIGHaUaNqxpUpWXPZu6Npxzz+JiXwYMHc+7cOZ5//nliY2Np0aIFy5YtyxmUe+zYMTTtUg7VoUMHFixYwKRJk3jmmWeoV68e33//PU2alLOMNHO5tyMoW2wHwLYf8AFK8lulhKydyAsDQa8YK313HpDE2p8T+P2HMG+HUi492/8Vbh7XD98AMwf/PurtcCqkDje2RgDpKRlO7V+1bjSnDuQ/aeRyPYZ2YvzHD+T72E1j+3DonyMs+3Q1mlFDt9pbloUQhEWG8OKSCbk+CxXH1PIAXqKf65/9YayUfhdnIFSMljIpIT1VY2jLxqQlu2f2haKUJs06N+LWJ27k+RtnOLW/M4O6h0+5nWHPO24dllKyfeVOfvrgV47sPk5gSABd7+hI73u6EhAS4HT85ZUrn98qefESPbYDoJqLldJJSli9OJQZY2t4OxRFcTuhCTRNEFI5hLjT8YUf4EDlmErc88Id9Lq7q3uCq8Bc+fwu81OlyxppPYpMmoFKXLxAhHigcF35JAR0uTGBD6dWJf6cydvhKIpbSV1ik5KsTEuxznNNj6Y0alOPOi1qOrW/zWpj49JtHPrnKGY/H9oNaJlnfIziHNXyUoKkZT/ywu2AWseo5PliHytTfuu0eMILI2uw7pdQb4ehKB7TdXAH1ny9vkjHappAaAKbVaf9gFZMXPAIfgG++e678889vHTHLOJOx2MwakhdouuSjgPb8PTcsfgFqsVkS83yAEpuMmECKnHxlgxU4uI6KdWMI6X8Epogolo4xiJW1tV1iS174O1fS7cybeib+e53eNcxnu79IvFnEgCwWXV03d5usOHHLUwdNFOtKO4ilbyUED1rL9h2ejsMRXGazQr/bvH3dhhlglNFyJRSR+qSzct25CQSxT3XhiVb+Gr64jyJyMLpi9GtNmQ+19FtOltX/MPu9fuKHUNFopKXEiClhKTp3g5DUZxms9kH7CacV+NdnNH8+quLXBZHCEHrvteoxRq9wGAycPTfE26tsvzpMwv49JkFOb/brDZ+X7Qhp4Um3ziMBlZ/tdZtMVQE6q+lBMj0xWAtWp+qonhDUpyBD6ZW8XYYpZ7QBJWvqsSMX5+j6+COCM21DEZoArO/D5t/2V4iyxQouQWFBXrkvAtnfM++7AJ4melZ2CyOyyxIKUlNTPNILMVltVixWUtfmQg126gkpLzj7QgUxSVGkyQpTq1KXBipS86duMDGpVsZOmkQ67/fTFZG3iKKvoFmKlUN48LJeDJSMwEw+ZoIDg/kwqniTdVVii7hrGdmHxqMGj++/ysIwa+fr8ZoMmAtJIGJrhXpkViKQkrJr1+s4bs3l3Lo76MIAc27NuG2J26kTd9rvB0eoGYbeZxuPQrne3o7DEVxSVKcxm1NmqCWCHCOj5+JiKrhxB49l1M59UodB7ahx7DOhEeHIiUc23PCo6tKK94VFB5IclwKBqOh8JYLAfMOvkt0Te8nMFJKZo58j18/X4PQRM44nYuF+kbPHO5wqYPiULONSgndckAlLkqZI6V9lpFmKFffazwqK93CqYNnCkxcANZ9v4mpg2Yy5ZbXSIlP4csXvy3BCJWSlhyXAuBUl8s9U+8oFYkLwNrvNvLr52sAcg0wvtit+cETczn673FvhJaLSl48REoJF270dhiK4jIhIKSSjZZdUrwdSrmUcDaJ526aoRZkVIiuFcnjnzzE0EmDvB1Kju/f+cXh4HGDUeOnD1aUYET5U2NePEQmvw9YvR2GohSJlBBZrSQXwCydhBAIgVum0l4kpQTVqFXhjXptGIMeu6HULcZ4YPthh4PHbVadVQvWkpqURvsBrelwYysMxpJfA610PWvlhK5nQtosb4ehKEUmBCTFq+829VrWZuDD/WjYtp63Q1HKmdDKIaUucQHwMRdeHiHpQjIrv/yTF26dyX1NHuPssXMlEFlupe+ZKw/O3+DtCBSlWNJSNDat9P6Ad2979P1R9Lq7K/9tOeDtUJRypu61tRw+LqVk22//MHfKN8ybuoh//vi3RKrwdry5LQZj4anBxdaZ04fO8HTvl0p8OrX6auVmumU36Ee9HYaiFMvc16LJTK/Y323qtqjJy3fO4uT+WG+HopQizbtezd9rdhf5eM2g0bBNXWo1qV7gPsf3neS5m2Zw8r/TCCGQSJgK1RtX4+WfnvHo4N6bH+nH8s9XI4R0KlmyWXVO7DvFxqXb6HBTa4/FdaWK/e7kCclveTsCRSkyKeHCGSOLP6rk7VC8KuKqcA7+fZRTB854OxTFS/yDcy+UGBwRRM/hXZxKXDSDhshetPHK7cGVgnjqi7EFHpt4PolHOz3Hyf9OA7nHSB379yRjWk8gLTndxbtxXo1GVzF18VP4+Jnsy144US3BYNTY8OMWj8WUH5W8uJv1oLcjUJQiEwIqRVlp3qF0Vvv0JN9AX24c04f7ZtzF+ZNxSOncN0+lfHr4vfuZuvgpxr0zku5DO4GUrJj7e+EHCgiJCGLmqinc/sSNBFcKAiAwNICbH+7HnG2vUq1uwdWrf5zzK0nnkwt8POlCMlNvfT3fYoju0qbvNXx1/AMeeONuOg1qV+j+UoIl0+KxePKjuo3cTS/4RacoZYHVAi2uS+bv9Z4pnV5ajXt7JL3u7sr9zcYjyG6qV0o/gUdmb6XEp9J1cAem3jKTv5ZuzXdRxfxiefD1u+l7X3f8Av1o1rkx902/C5vNhsHg3IycpR/+Vug+21b8zR1Xjeb5RY/T4vomTp3XVUFhgdzySH9ufrgfw+qM4czRcwU+z1JK6jSv6ZE4CqJaXtwuydsBVDAq//aEUjgJwqOad2tCtyHXIaXk6O7jqsWlrBBQ8+oYj5zaarHyx6K/2PDjFucSFwAJ13Rvil9g7i4nZxMXgOQ4574AJ8en8FSPqdxe9T5GX/MEb4/9mL2b3T+wXAjBzeP6IRz0HxmMBnrd09Xt13akgr1FeZaePAcofQtYlW+qlo67GU2we3OAt8MoUbv+2MNbYz4m/kwCRh+VEJcZEs6fjKPv/d3dfuqzR8/x4/vLXV7t2y/Ir/CdHB0f7OTx0t5dEx+byKG/j7LkveWMazuRB1s+yYn9p4sVw5VuGtuHlr2aIwS5xsBoRvvYnqc+H0tIRMnOTlTJi5vo6b9AqqrtopRtNivEHjOxZXWQt0MpUTarjeWfrWZEw0dcKrjlH+yH2V8tYOlNKfGp1G3heNpxUWz4cQvH9550erVvoQnqtKhZ7JlALXs0K9bxB/8+ymOdniMu1n0LfhpNRl5c8jQPzhpB1TrRAGiaoG2/a5n1x4tcf0dHt13LWSp5cQNdT4fER70dhqIUi65DapKByffUQtcr3oKMuk0nLSk9Z9VnZ6QlpXP/jLs8GJXijNDKIW4/5+lDZ9FtzncfSl0yfMrtxb7uqJnD7LN8ikjqksTzSSx+65dix3I5o8nIzQ/344v/3mZp+gJ+yVrIC98/zdUdGrj1Os5SyYs7xN2PqvetlGVS2se5bPk9kCN7fb0dTpmy/PM1mP3NxTpHMT6rKrx6LWvT4aZWBIT6u/3cGWmZTiUSPr4mHv/4QTrcWPw6J+FRYTw9b1yxFnSXuuTXz1cXO5aC+JhNXq8OrJKXYpIyE6ybvB2GohTLxffnbjcncv3NCV6Npaw5sus4ASHF++D08VVdT0VVq0l1Es4mFuezvkBZ6VkOB2+bzCZGzxzO16c+os+93Yp0DavFitWSe+xe9yGdeHPtS7ToVvSZRElx5XthVTUyrbgy13s7AkVxG5sNBt53jtWLw7wdSpkhNEGtJjHEnS76GAOJ9NiU3/Lu1y/WcGTXcdJTMkr82pZMCy17NiMw1LUB7lJKVi9cx7dv/Mj+rYcAqN2sBoFhARzdfRzdpnN1x4bcOeFmrunWhM8mLURowvlZT0BEtXCXYiprVPJSTDJ9r7dDUBS3MRigXtP8qndKitWOXY5VqxPNjQ/1YeuKf4p8jqz0ki3wVd78t9U7xUE1g+DH91fw8Lv3OX2MlJI54z9n8Zs/56rAe+if3MvKbFq2nb9+2srwybfzzIJH+WradxzeecypawhNcMPoXjm/Z2VksXbxJk7sO4VfkB9NOzfk1P5YsjKtNGhVm1pNazgdf2mhkpfiypzr7QgUxa2sVpWkuKL9ja1oe8O11GlRk4M7jng7HKUE6Tbp9KKdWRlZnDl6jr2bDrD4zZ8BHLak6Fb7LKe5U79hxq/P8cGOmcSfSeDQzmO8cudskgvoFhKaoHrDagx40J68rF+ymddGvEtKfCqaUcs57+Uat6/P03PH5cwkKgvUmJdisPeFXvB2GIriNlYLbPotv3oNKqHJj8Fk4NbHB2AwGJi5ego+fmrsSkVT2Hil9JR0PnhiLrdF3ce9jR7l1bvfcen8mlFj8Vs/I4QgPDqMVj2b89neNxnx0p2ERYXkGlCsGQTd7ryON35/Af8gP3b+uYepg2aSmpAKkG/iArBv8wEedfP0ak9TLS/Focd5OwJFcRspQTPA/z6onN+jlNYExmgyYLXYcoqJOVuXo1iyx6eMefNegsLsyyjs23SArHTPrTejlE7hVcKQUuY7KykjLZMnuk3lwPbDRX5d6ladXetyD08IiQhmyDO3MOSZW8hMz2Tf5oNYLTZqN6uea9r43CnfAPa/bUdsVp3Ec0ksfvNnRk4bWqQ4S5pqeSkiaT2CTHnD22Fcxpk81PniW0rF9PU7kezZmt/gw9KZuADYbDpCE+g2nehakYWGWqQaGoJc4xOqN6zGc9+MZ8AD9qb5rIwsPnhSdSFXRL9/s54vX/w238e+f+tn9m87VOyE2uCgyq/Zz0yzzo25tnvTXIlL4vkkdqze5fS1dZvOss9WFSvOkqRaXopAZixHJjwGlMA3PKdoYGwE1p2F7OcLpJZEQEoZJAQ0aZNK6+uT2Lvdn+SEi8lu6U1cIPe4gVMHYtEMmsM3bCkl9VrWYv/Wwy5d572tM9CtOv5BflSrVyVXEjRr1AdOD6ZUyp+5U7+hx7DOVKkVlWv7kjnLXZohlB+D0UCrPi1cPi410fWV4R2tZl3aqJYXF0nrCWTCo9jX1CkNyYsBRAjozlQFVYmLkj8p4YOpVXjilrps/SOI5ISL32tKd+KSH0eJi2bQaNSuHm9teIWQSCersgoYOLYvdZvXon7LOlxVv2quxOX0oTP89uUfappzGRdeNW95ACHA6GPEYHLcaq1pGss/zV0Uzma1ce548cdE6rrOoEdvcPm48CphmHxNLh0TFl12SiSo5MVFMm0BpWrxRRGKqDQfKN8FiRTPWvm/ML77wL4mi267+MFc9hKXwjTt3IiXfpqI0WjkmS8fxmDU0LSC79NkNnLHUwN54I27c7bFxcbz74Z9HN1zwj7t9bHPSyByxZM0g0ZaYlqursGLDCYDNkvh7/mnDsXm3iDs47GKE5Nm0HjyszHUu7a2y8f7+pvpeVdnDEbnPuY1g0b/+3u4fB1vUd1Grsr81dsR5CYvgO0UaGGgn/J2NEoZ9e2cyghNIsvxmka3Pj6A0a8Nz/n92h7NeG3lFD6eOJ9/1+/L2V7v2lq06tOCmo1jaNPv2pwCZCcPnOb9x79g40/bcqquRteKJPbw2ZK9EcXtdJtORlpmntYzKSHTibWuhBAEhlwaK3b03+M8P/BVrE4kPfmp3qga7fq35IYHelGldlThBxRg+NTBbFq2g/jYeGwFzDQCMBg1KsdEcNO4PkW+VklTyYur9JLoEwwFEpzcV0Mmvwk21d+uFE1aisbhPX7eDsOjDEYD6Ul5i+817dSIN9e+ROyRsyScTSSiWjgR1Srl2e/kgdOMazuR1KT0XOXiVeJSjhSj289mtXH9ndcBEH82kce7TiY5vmjd9JpBI7xKGPe/OqzoAWWrVCWMt/96hY8nfMmaheuxWe3JlBAi53UshKBNv2t5ZM4ogsPLzmryKnlxlRYONg/OhffpAVoIZHyHc39NevZA3fL7jVnxrMKmUZYXjhZPjK4ZSXTNyAIf/3jCfFKT0ktmGrZSYoLCAwFJclzxxgM26dSIJtc1BOCn938lOT616FOjbTo7Vu0iKyPLLWteRVQNZ8Lchxnz5r2cOXoO/yA/QiND2L1+H5ZMC3WvqUVkTESxr1PSPDrmJS4ujqFDhxIcHExoaCgjR44kJaXgsRlxcXGMGzeOBg0a4OfnR/Xq1Xn44YdJTEz0ZJiu8enooRML8B8OIS9Bxg+4/jWggnwCKW7nH6hTvX4GQpTf15DNaqPjzW2KdGzi+STWfb9JJS7lgMFkwC/Il2t7NGXy/57g+UXji524ADz2weicQdwr5//plteKJcta6D66rpOSkIolq/DlJYLCAqnbohZV60TjH+RH694t6HBj6zKZuICHk5ehQ4eye/duVqxYwU8//cQff/zBqFGjCtz/1KlTnDp1ipkzZ7Jr1y4+//xzli1bxsiRIz0ZpmtEwd/einfeAETQEwjrLuwzmRSlZAgBt44+h5Tlu/VuzmOf888f/zq9f1amhZ8+WMGj100q9nRXpXSwWWykJ2ewY/Vupt/1Fiu//BPNULzXvX+wH1VqX2q1K8oU5StF1qiMf1DBXbnJ8Sl8POFLBkXcy83h9zAg8C5euuMNDv59pNjXLiuEdLTedzHs2bOHxo0bs3nzZlq1agXAsmXL6NevHydOnKBq1apOnWfRokXcddddpKamYjQW3suVlJRESEgIiYmJBAfnV+a8ePSz14HuoX5un26gnwbrHhcO0rAXn1MLuylFJyW880w1fvoiotwO3BWaQNME05ZN4ppuTR3um56awYTeL/Hvhn2qUbOcEprAYDSg63qBZfOdUadFTZ76fAy71//H6q/W8t/Wg2SmFb3SshCCUa8N49bxA/J9PPF8Eo9eN4lTB8/kauExGO2zk175+VlaXN+kyNf3Jlc+vz3W8rJhwwZCQ0NzEheAHj16oGkaGzdudPo8F2+ioMQlMzOTpKSkXD+eomeu91ziApC1xvXExVgb/G6lQlfPFdUgYByIUG9HUmYJAWNfOcnLCw7RskvZKVTlCqlLdF3y1kMfUdh3tg+fmMueDf+pxKUck7rEmmUtVuICcHjnMUZf8yRvPfQRu9bucSlx0S6vnCvsf4ctezVn4Li+BR7zycT5eRIXsJf4t1psvHznbKyW8t9677HkJTY2lsjI3APgjEYj4eHhxMbGFnBUbufPn+fFF1902NU0bdo0QkJCcn5iYmKKFXd+pExHT5gA8SPcfu7cXPgjEkEQMBIRvhAR+KD994qawMiToMchItciwj6BwImoEkauEwJadU3mxbmuVZ4tS6QuOfHfafZs3F/gPueOn2fph78VmuDkENBzeBc3RaiUNbpNz0lynXnJ+JhNDJt8GzN+fY7rbm6TUwDvqvpVeejNe3lxydMYTfl/WU9NSuO3L/8ocEyN1CUJZxP566etRbqXssTld/gJEyYghHD4s3fv3sJPVIikpCT69+9P48aNmTJlSoH7TZw4kcTExJyf48ePF/val5NSR8Y/CBnf492vYdnN+Ia6UGkpInIjWtCTCC0YYYhGVPoKjA28GJ+XpS8A21mEuVN2vZvy1+1RUjQD+PqXokKMHnD26LkCH5v1wAfOJy5AeHQof3y7wR1hKeWc0AQWi5UajWO4tkcznvvmcX7J+IplloV8tudNBo7ti9FkJDM9k9OHzhB/NvdkldMHz2DJdNyqYjAaKsRSFS5PlX788ce55557HO5Tu3ZtoqOjOXs2dxeL1WolLi6O6Ohoh8cnJyfTp08fgoKCWLx4MSZTwSWOzWYzZrOHBtECZK2DrPWeO78zRBgY6yL8BoFff0Q+g4aFsQ4i4nukZScycwOkzKJUVQL2OAEZSyFwNGT+TsW6d/dKvGAgI618t+IFV8q/nkXCuUS2/vqPS+eKO53ghogUTxGaKDUDrqUuQcCM4W9zTbcmBFcKQgiBwWD/e0u6kMzcKd+w7LPVZKbZi+M1al+fYc/fRuveLTD7Fz51WkqJ2a/4U6xLO5eTl8qVK1O5cuVC92vfvj0JCQls3bqVli1bArBq1Sp0Xadt27YFHpeUlETv3r0xm80sWbIEX19fV0N0K5n+A/buGE98GAZSeFl/AyJgGCJwrFNnFKamCFNTpLEWMmFMsSMsOwxIPT67vUUlLsXx07xwb4fgUX5BfjTvenW+jx3ccURNiS5nSkvikkOC1WJl+edruO3xS4Nyk+KSebjDs5w+lHs8y76N+3mm38s89dlYegzrTNU6UZw6dKbAjgDdptP+xlb5P1iOeGxgQKNGjejTpw/3338/mzZtYt26dYwdO5Y77rgjZ6bRyZMnadiwIZs2bQLsiUuvXr1ITU3lk08+ISkpidjYWGJjY7HZvPSBpJ/FIx+GWiRU/h1EYZVNbWByPDNCWvYj039CZqxE6vZkSPj2BFxblKtssyIM2TPYTNeiuo2KRkpIOF++a1dKXUfX809QnKmtoZRN+a1b5C1CCA7uyD22bN7URXkSFwBdlyBh9gMfkJaUxl3P3VZg4qIZNDre3IaYBtU8FXqp4dFRjfPnz6dhw4Z0796dfv36cd111/Hhhx/mPG6xWNi3bx9pafZ58du2bWPjxo3s3LmTunXrUqVKlZwfd49lcZpWBU8MhBUBD6AZgsBvMAX/MxjAUA18OuX7qLQeQr8wGHmhPzJxPDLhQeTZDujJs5HSBsK7rVYlywB+A5AyC6z/oaaJFI0QMOzxs0RWc2aV8rIpIzWTbSvydg0lnk/i/ce/8EJESkkoTS0wQoDJ59KXhKxMC8s+XeWw1c+SaWXl/LX0HN6FkdOG2qf+GzQMBg2D0f4ZdU33pjz9hXOt9GWdR79ihYeHs2DBggIfr1mzZq6BcV27dnVpoFxJEP6DkBmL3XvSgIfAf6j9/IGPIC3bwXLxzfTi/RtA+CFC30WIvMmNtJ1EXrgD5JXTWjMg9T2kfgHMvbIHGpf/bhQR9CRCC0OmzgVr8QeMV1RxZwy8PfEqzp0u333mCefyllR488EPOX3wjBeiUSoam1Wn7Q0tc35POJNARiELQBqMGsf3ngTgjqcH0m3IdSz/bDWnD50hIMSf6+/oSKN29XMq/ZZ35bt92B1MrcHcO3s1aTckVv6j0YIezflVaAEQPg/SvkamLQDbCRCB4HcTIuBuhCH/5j+Z8n524lJAYpL+NYTOgYwl2Kdgl66k0Dk+2O/PUfJlRgRPQfgPAkCmzS+JwMolKSEoTGfP1oByWaTucpHVc5dEP3/yAmsXbypV386V8kkzalSpFUX7AZfGpfgGFt5KLqXEL+jSfpExEQx7/jaPxFgWqGIYhRBCIELfAP97geJ0w2igRSAC78vnGr6IgLvRKi9Hi96NFrURLfiZghMXaYX073H8oW4AyzZE2HvZ42qEfdvFLjBRygdlinBE1N9gbFHIjplgqnfpV9sxymai5n1CgMEg6Xm7Bxce9TYBlWMq5Rmw+9+WQypxUdxG0zSadmqEZtDQNA0hRE5BuugalZm+fFJOVw9AcHgQzbo0zl207go2q07n29p7PPayQrW8OEEIEyL4aXRzD4i/i6J1wxggbB5CCyl+QDIVcGJMgu0cwtwFKv8J6T8gLTtBGBHmzmDuBunfIJOmO3eukiQCwdQEef4GsB0sZGcNmfoFhLxm714TvtnPj1IUEqjXtPhrs5Rmj7x3P5qW+0PC0YeGorhK13UCQgOYf+Q9fvlkFYf+OYrZz4f2N7am48DW+RahG/b8bTzV4wX798wr8mjNoNG6TwvqtqhVMjdQBqjkxRWpH1P08SMWhFbYzCIniQDATKFJh8E+pV1oQRBwV975N/5DwfdGZOo8SJ3tntjcQaZB1h9O7qxDxo/2cUOB48H3Bkj/loowzscjJFgs5bfLaNAj/Wnbv2We7Y3a1ytV9UCUsu/43hNEVKvkdNdOi+ub8MyCR5g5cg6Z6ZkYjQaklNisOm36XsMzCx7xcMRli0penCAz/0SmfACWTcU8kXu+0QphRPoNLORD2obwu7nwc2lBiKCH0DNXgdW14lyeU4Q6G7YTyMTxEPgo9inismjnqeAMRti00v0LmpYWliwrUso8gxpXL1hXaOJSp3lNDv59BM2gqVowSqFO7o8l9shZomtGFr5ztq6DO9K2/7Ws/modx/acwDfQl863tqd2sxoejLRsUslLIWTqJ8jkGRS/bog5e9q1e4jAB5AZywsetOs3GGGs6/wJwz6D891AJha+b2mW+gGEvQeJT4Aeh/0lLrE/R060VlVgNiucP21i7VI3dG2WUkveW07DNvVyrUUkpeTbWT8WemyPYZ2ZOP9hfvpgBRt+3MKZIwUvMaAoAAlnE11KXgD8Av3od38PD0VUfqiOXgekZV924gLFGwRqAL+b7TOL3EQYqiEqLQRTsyse8YWABxHBU3JtlTILmf4zetIr6EnT7a1JUkfaLthnLiU8AFoNynxhO5kO1kOIyn8gQmaB/90QcD8ifCFohVeGrsgsFsGEO+pgtZTftwUhBN/M/CFXSYb4MwlOJSKfP7eQgBB/xrx5Lx0HFlwlXFEuiqhWyidGlGGq5cUBmfYVblkawFANcdn0aHcRxtqISl8jLfvthdmEL/i0RWiBufaTWX8jEx4C/RwX/8ll2qf2liA9HsjiUheLuOz/HSRsIiy71acUViRNfh18+yH8+iP8+udslrr6ppwfKe0/x/aZOXuyjCevhZBScmTXcZLjUwgOt69v5GxdjMyMLOZNXcRjHz6ANcviyTCVciAw1N8+hU/xiPL7FcsdLP9Q7MTFdC2i0iKE5rkMXJjq2T+ofbvnTVxsp5Dx94B+IXuLlZyEQz8NZJB7bIi89P/CP5+r+UHgk2hRGxGRGxGVfihgP29KRyY+Bdg/rGTWZvTESdiTNCU/S+eF88SgelizKsZbwsXxLekp6az7fhP+wU4Mppew7LPVbF3xN4071PdwhEpZl5acwRPXTyE9NcPboZRLquXFkXxWb3aNEULfQ2hhbgmnKGTqPJBXJijOMIC5NyLkJWTGavvq2ggwd0SYuwLZs5i0RkhjM7D85ebIiylrLbr1DCRPhsxV2FvQ1EyS/Og6dBmQyAeTy/96KACaJvAP9mPbb/8wZdBM0lPSnW590W06E3q/RO1mNTD6GLGqtZCUAug2nZMHTvPbvD8Y8EAvb4dT7lSMr1lFZe5S+D4OWRG2I+6IpOgyfqJorUc2yPwd0v8HSc9A+leQvgASxiDPdbIvBGk9ip78GqW2RSNhHGSuyf5FTZ0uiMEAweE2rutfxgdrO0nXJX/9tJVJA6aRkZoB0vV1bw79cxRZwOKOinKRAFbM/d3bYZRLquXFoeKu72KArM3gc61boimS4kzPlunIpOfzbtfj7NOSAbeMCcrFH8iOWYTZa9roJ4p2KuvfqNYW51iyoF7TdFYv9l4rYUl6Z+wnWC22YtV1sVlV8qI4JiUk5rOOllJ8quXFkWIvyCgp/hTrYjLWoWj/zBrgzKBEN7domBpD5b/si1fKlKInLoBKXJwnRPkoTic05+4hLjZBFaRTPE4zaFSpE+XtMMollbw4Yj1SzBPo4OPdKZXCfyhFK9amU6yZRMEzoPJ6CHwcNGfrHGgIcwdE+gJIfQ/nkifFHYwm2LQyyNthFFvjdvWJuEpNT1VKB92m039UT2+HUS6p5MURUZy6LAYwNs2nDksJ873Bvo5Rnhagy3835P1vn27FuKgBbMfQDBFogaPRItciIreAf95FKXPHY0KaeyFT3i3GtRVXWa2wd7sfuze5rw6RNwgNpi17lmu7e/lvTqlQLl/p+XJCE7Tpdw0dbmqV7+NK8ajkxRG/G8j9wZ6fi+NiLu4n7D+GaETYO07PYvAUIQyI0HcQgY/nLtJmqIkIfgXCvwXf/iBCQQSBTydE2GeIgLuKc1WuHMQrtGC04KcuK553+UtPA3zsK2BnrqDoXVFlv9vDG47v92XKPbUo68+f1OHUwTNs+HGLt0NRKgCD0cBjH45mUezH3Dp+AL4Bl2an+gX6ctvjNzLluycxGAr7DFGKQsjLS02WA0lJSYSEhJCYmEhwcPHWaJHWY8gLNxYw1ViAFg2VliEs65BpX4PtCGghCN+bsivqBuZzVu+R0gb6WcAAWmWHiZWUNuS5zqCfpyhjR0TIrFwF4nKd27IPmbbAPphZGMHcBeF/J6T/iEx53eVr5TB1BMu6oh9fAaUmaQxudjWWclLfpf2NrdiwRCUviueZfE38nLYg5/f01AwO/X0UIaB285r4+udfaiP+bCLrFm8iJT6FKrWjaH9jK3x8izs5pHxw5fNbJS+FyFudNnudHGMTRNgchKH8DsaSGcuRCQ9f/M3JozQQIYjIPxHC+T9Imf4dMnGCyzFeumw0+N0GqXMolVV/S7Gv36nMp69UpVQMMC8Gk9mENctC+XpHU0qr8OhQvj71kdP722w2Pn3mK/4360d0m0QzCGxWncDQAB79YDRdbmvvwWjLBlc+v9VU6UIIn+ZQeQ1krkJa/gFMCPN1YGrp9S4hTxO+vSF0DjJ5GtiOXnrAUBfQwXaY3EmNATAgwt52LXGREpnyXnEiRQQMBy0aqRIXl90+5hyBITbmzYwm/lzZXR7AkqkGeCslREC7G1q6dMinExfwzetLct4ybVb7f6QkpvLSHW/gF/gMbfpe4+5Iyy3V8qLkIqUVMlcjszYDEuHTGulzPcK2F2znwRANxoZAJqR9iUydD/pJwAy+/RGB97m2mjUgrQeR5/sWIdrs9Zd8uiLC3gV05NkO9inWapq0y2xW+HdrAE/dVhvd6sFuJAECQTl761HKGSGy30UcvExvfKg3Y966F01z/PcSfyaBO2NGF1gbSGiC2s1q8P6214oecDmgWl6UIpGW/5Dxo0A/xaUFHL+wL+AY9iHC9/rL9vaFgPsQAffZx9KgFb0lSmY6v68WCXoKYAFjHYT/XeB3C0Jkv5RDXkYmPIJ9ELAqIuYKTYPIqpkeTVyEQTDsuVvZ+edetq/c6bHrOEMzaBhMBnuLjcqjKry2N7QkMNSfqrWjiKxemebXX81r97zLzj/3FHjMkveWExIRzPAptzs899rvNqLbCn6RSV1ycMcRTuw/zVX1qhT5HioSlbwoAEg9Dhk3DOTFapCXdb/oZ5Bxw6HyL/kuMClEMUfTG6pjn7VVyDIDIW+i+RXSQmPuDYFPQOpHIBOKF1cFIzSYPyvao9eIrhmJzaoz/qMHePz6KZw9ds5riYNu09FtKsFV7Fr2bMbN4/rl/H7uxAUO/n2k0OMWvb6E2568Eb+A/KdMAyTFpaAZNGxWxzMpk+NSnI63oisfUwyU4ktbBDKR/Kcp6/bH0r7xyKWFFgh+N1PwtHQNtAiEr+NiT1Ja7csWpLwGMtntcZZ3VitUreW5daqEgNhDZ/lq2mKG1x3LNd2aeOxaSsVVrV4VjD6ufy/fu/FArt+XvLuM9JTCV4TOSM3knzW7He5TpVZkoYmLEILI6hGFB6oAKnlRssmMn3HczaIjM5bmPsZ2GpnyNnrCo+iJzyAzf0fKon2TFUHjs1tgrkxgDIDRPvVaOH5DkinvQcbP2b+phRhdJYCIKp4b9CqlfXC2btORumT5Z6vpPrQzoVEhHrumUvGcOhBbpNW+A0P9c/2+euE6p5eQyEhznPR3vLkN/sF+BT6uGTTa9r+WSlUqxtpi7qCSlwpMynSk9QDSdhJ0J1oqZOpl/zkXee56ezXcjGWQvhgZfz/ywiCkHudyLEILQ1RaBAH32QvmAWAA3z6ISt8izI6XWZAyE9K+QA1eKDopIeF8yfYkr/zyD/qM6EZQWNmu7quUHkUdCB5dK5Lpw9/iodZP81SPqSSed35BxZpXX+XwcbOfmUfeu98+WP2KsYGaQcMv0JdRrw0rUtwVlZptVAFJPRGZMhvS/gdkN4uKAJDpFNz6YgBzF7Sw95EZv9lr3xS0n6kJIvybIg/glVK3r4YtzAjh3NRdmbUDGed40JxSuAd71OfQvwV/Q/SUmk2qc2TXsRK/rqKAvcR/enIGBqOGzaojhPOz4a7u2IDZf77k1L4bftzCp88u4Miu44A9kWnT7xpGzxxOTINqRY6/vFCzjZQCST0ZeeEOezXgy7tWZBqOWy1s9iq4gEyZQ8GzeWxg+RssW8GnaGt6CKGBcLU6seomKq5dG/05srfgQYeedPTf4165rqIApCfbv8RdnMrsbOLiH+TH4x8/6PR12g9oRbsbWnJ83ymS41KIqlmZiKpqIdGiUMlLBSNTP8wuLndl4lHQH2t2LRXfQeDT2d4lZC1siqsRmbkKUcTkpUiMDXBqxpKSDw0pITDUislHkpUFUi/ZAozOji0oKs2gYTQZEJogK8Pi8espZYfJbMSS6foYmZpXx/DijxOIrhnp0nFCCKo3VK0sxaWSlwpEShukLcTxwFxhX6Dx4pRpQzWE/73gP8TelKo7mRy4UrvFDYQWiPS/1Yn7U3L43oIwd+LPnwy8ds/HRFW34B9sJfNs2a2ym5/oWpF0uqUtAx7qzZkj53i2/ytkZahqvIq9OFxhiYvQBL4B5pzWmSq1I7n9yZvoP6pnua+yXpqp5KUikcnZ06Ed0cDcwz77B/Iu4KhVAhFSyHmsCGPD4kbrMhH4JNKy295tpThBJyWjCzPuHkVWhuDoPu8tDufja8JqsTos5OUqzaDR+56ujP/oUrN+lVpRfPD3TEY0eMRt11HKFiEEEomPrw/3vjKE9x/73OH+mkFjwIO9uemh3mgGjUpVw1XSUgqo2UYVifDDqX9yLRBhiLT/XPFHKoQJ/Ic4OI+wD/71zX9FaU8SWgAi/Evwv7vEr10mZXzPxiXzi9Rk7m5ZmRYQAqG59qEQXbMy/sF+aIbcr0ehCWpeHcOo14bnOeaqelUxmctX65LiPCklgSH+jHhhMDc+2IuQiCCH+9ssNpp0bEhk9cpEVKukEpdSQiUvFYgQZjB3o+BicAA2hG8/B4+DCHwATM3IuwJx9sKMobMQmn8+R3qeEOZCi9mVCYbaJXKZVm0+xC+wFIz/kKBbdcKiQp3aXTMIIqqFM2fba3zy72xuHT+AsKgQjD5GqtaN5v4Zw5i97iUCQ/NOwT6+7yRWi/cTNsV7UhLS+ODJeXzx/NcMHNfPYUIiNMGudfvISCvZrnDFMTVVuoKRlp3IC4Oxz8658p/eAKbWiPAvCv12IWUGpH6BTJsPeqz9WHMvROD9CJN3K6dKmZ69QGNq4Tvn8MU+2NfZ8TJGcPsK1hoYGoG5JViPQdYaN58/Lylh1XfhvDouxuljzH4+ZKYXcWB09vjvfB8SgppNYji5/3ShY1J8A8y8v/01qtV1fR2Y2aM/4JdPV7q1i0opuwZPGMiBrYfYuuIf+2KM+bwsNINGg9Z1eG3lZMx+5pIPsoJw5fNbtbxUMMLUFBH2AYiLLwwjOS0xPtchwt5zqllUCF9E4Gi0yD8QUTsRUbvRwt70euJij80P/O8ib8uQIxnO7e/TGUQU7hsUbAARDhFrwG8o2PZA2jzI+sNN53dMCLh+YBwRVRwkI9lPS1ClILrc3t5hpVCH19KEw9n4UkqO7D6O1VL4tPeM1Ewy07PY8OMWfvvyD/Zs3O/09NY136xXiYuS4+vp37N7/T76j+6Zb+IC9nWw9m46wA/vLCvZ4JQCqZaXCkrKLMj4FWndhxC+YO6JMNX3dlhuI6UFmTAeMpfj/ArTDpoFcrh5tWpDDCLsQ2TqXEhf6MT1PWPWE9VZtiD/0uQ9h3chvGo4/3t9Cboui7yYYZXakcQeOee2aco+fj5kXdYCVKPxVYz/+EEat3P8Ou7jc0eh68woFYvIHm8lpXT4+oysEcH8w3NKMLKKpdS0vMTFxTF06FCCg4MJDQ1l5MiRpKQ4t2qmlJK+ffsihOD777/3ZJgVkhA+CL8b0IIeRwSOKVeJC9gHFovQtxBhX4DJ2Xozzky+c1PiIgIQYR8iIn4FzF5NXCRw/c1W7n7qNLeMukBEVR2hCYw+Rp76Yiz3vDCY/73xI1arzeXERdPsHwqDn7qJOybc7Nb6KllXdF0d33uSJ7pN4cD2w7m2p6dmsGvtHnb+uYf0lHSq1Yt2rVFOKfeklOi6Xujr8+zR8yrxLSU8OlV66NChnD59mhUrVmCxWBgxYgSjRo1iwYIFhR47e/ZsNapbKRYhBJjbg08b5LmuoJ8l/wRBA1MzhN9AZNIUnGuBKQ4NETASYe4KgMxcVsRraqDFgH409zYXEywBtOh4iuYdBFLC/c+f5OC+LlRp+hrBESF8+uwCe9LiYni+AWaGPX8b3YZcR0S1SmSkZfLBE3NJS0p37URO0nUJFhsfT5zP8Cm3s2X532xb8Tf7tx3KGUNj9vehSq0otQSWkpcTrwmjjzHPzDbFOzyWvOzZs4dly5axefNmWrWyf/N9++236devHzNnzqRq1aoFHrtjxw5ef/11tmzZQpUqrg/IU5TLCWGAkBeR8Q9g/6i+/MNdA3wQwZMRpqtBhNrXfbIduexxSdE+7fJLSAygRYL/0JwtUk/A9aTDBGGfo5lbI61HwXoQhC/S1AySpkDGEtejFZKL3xfqNVoD5k+Bx9i64h+XW1wMRo2OA9tw+5M35Wzz9TfTrn9LVn211uXYnKXbdLb++jdbf82/1k9mWhZHdqulCCocN3wfMRg1utzeXn2pLiU8lkJu2LCB0NDQnMQFoEePHmiaxsaNGws8Li0tjSFDhvDuu+8SHR3tqfCUCkaYuyLCPgfjFQOKfdohKi20Jy6A8OuHiFiOiPgZEb4IEbmeov2ZCNCqkWdauqmV/XrapfElwnAVrq3NpIHfHWjm1vbjjTUQvt0Q5g5oWiBa6EwIKGjhTOekpWgsePl77qh2P/9tOejy8TabzsBxffNsb9W7RbHiAlCfHYqrnKnrc3F1Z82Y9+9daAKhadz+xE35HKl4g8eSl9jYWCIjc6/5YDQaCQ8PJzY2tsDjHnvsMTp06MBNNzn3IsnMzCQpKSnXj6LkR5jboUV8i4hYgQj/GlH5d7TwzxGmxrn3EwJhrIvwaY7QwsHUAtf/VCQY6yEq/4kIeQMR8ioi4he0SvMQhitaE337Y1+XyYV7MdpbLqWU9lW4r3w8YDhFbVhNSdQYf1Nd5s2szIXTCUU6x9i3RtKwTb0827vc3p6QiGCXm94NRo2rOzZk8FMDVfaiuERogvYDWjLmrXsd7qfbdMa+PZKGresCYDAaMJrsXz4CQvx5+aeJ1G5Ww+PxKs5x+d1twoQJzJgxw+E+e/bsKVIwS5YsYdWqVWzfvt3pY6ZNm8bUqVOLdD2lYhLGGoDzb0Ii4B5kwlYXr6KBqT7CEAF+Nzg+vxYEwc8hkybhbPu2FOHIC3eBZQsgkaZrEAEjEL69s88ZjvQfBmmfO3W+y302vQpH//NFL+LijE99Ppaew7vk+5iPrw8v/jiBp3u9QGZaVqHdUUIIGrevz7Tlk/AL8CXhXCLfvvEjNl0NmlScI3VJx4Ft6XbndaQnZ/DpswvQDFrOa09oAqlL+ozsRs/hXeg5vAt7/vqPv37aSlaGhbrX1KLzre3w8fXe8hlKXi5PlT537hwXLlxwuE/t2rX58ssvefzxx4mPj8/ZbrVa8fX1ZdGiRdx88815jnv00Ud566230LRL38psNhuaptGpUyfWrFmT55jMzEwyMy9VPkxKSiImJkZNlVbcRkqJTJ4BaZ9i7wZy5oNTICJ+QxidL/4mM5Yhk2dlr/rtgKk1WDaTe5xM9n8HjEYLejw7bhsy6RVI/xJ7UiQKjT0tRWNw06vJyixao6wQgnHv3seAB3o53O/ciQsseW8ZSz/6jeQLjmcgagaNhSc+yKm+u+CV7/hs0ldFik+pWISA6FpRfLx7Fj7ZXUfrl2xm0cwl7Fq7F4BaTatzy6M30Puermo8i5e5MlXaY3Ve9uzZQ+PGjdmyZQstW7YE4Ndff6VPnz6cOHEi3wG7sbGxnD9/Pte2pk2b8uabbzJgwABq1apV6HVVnRfFEWnZiUz9DDJ/B2z2WUb+d4O5m8M3LiklZP2JTJ2XvfCjCYQJ9NPkbtmwJxEiaFJ2142L8UkJ1gNIyy57smTdd+lBEQi+N0P6PIfnEOFfInzaXDqn7TRk/Iy0JUDG9w5mXcGBnX6M6V38afOPf/IQfUZcX+DjKQmpPNv/Ff7d8J9T55u5agrNu9rHJUkp+f7tX5g39RuS4y9VUQ4I9Sc9OaPIdWiU8icwNIA5214lumZknscsWRakLlWLSilSKpIXgL59+3LmzBnef//9nKnSrVq1ypkqffLkSbp3787cuXNp06ZNvucQQrB48WIGDhzo1DVV8qIURKb/gEx8CnuCcbEFIrslxX8EImiCS9+8pLRA2jx7gTn9lH2jqRUicFTONOhix2zZA9bDoAWATztk4iTI+ImCW1AMYO6JFvZWAefbjbwwBPtSCHnPcfQ/M6O6Ol4R/GKlXEdvHWFRIXx1/AMMxvzX0Zo0YBqbl+1wOtF4c/3LeYrPZWVa+HvNbtKS7LVbEs8lMaH3S06dT6kY3vj9BZp2apTz+4n/TvHd7KX8/u0GstKzqHl1DDeN7cv1d3bEYHC05ptSElz5/PZonZf58+czduxYunfvjqZpDBo0iLfeuvSmarFY2LdvH2lpaZ4MQ1GQtpPIxAnYWxwu/9DO/u+0z8CnDfh2d/qcQpgg4F7wHwEyGYTJvjSBGwlTIzBdevOVln9w3PVjA8s/Ds53NVT6xj4dPHMVV7bAxNTNJPIqOHui4Cs4U2gu/kwi//zxL9d0a5rnsWN7T7Jx6bZCz3FRSOVg6rfMu1Clj9lE68tmL0kp6T60Eyvn/+n0uZXySTNoXNujKU2uu5SI71i9i2f6v4JutWGz2pPm/7YcZMbwt1n/wyaeXfiYSmDKEI8mL+Hh4Q4L0tWsWbPQ9UjK2eoFipfItK9xPHDVgEz7AuFC8nKREOKytaI8TDixKJxw3AwuTA0QYXPs9WX0C6BVAnSwncWghTFk0j/MfuDDfI/VDBo1m8Rw6O+j+T5+udUL1+ebvGz+ZXvOIEln3PH0QIymwt+qhBA8+fkY4s8ksO23nU6dWylnsse7dxjYmqc+G5PTkpqemsGUW17DmmXN9brTs/977XebWPLucm5+uJ83olaKQJUKVCoGyw4cF4GzZY9lKeXMPXD8Z2sA356FnkbqqfbnxHoQ9CSEFo4wNUQYouh3fw+GPHOL/WxGDUT2/wON2tXjvmlDHZz5kpXz/yA9NSPPdkuW1enuuUGP3cCgxxzP1rqcwWBgwvxHCI0MyXcJAKEJGrapi6apgZllQYM2dQvdR9MEXQZ3YPDTAxn92nA+2/cWkxc9gV/gpVbQNQvXkZqYVmDCLJF89+ZS9WW5DPFoy4uilB7OvNRLf5Ox8B+MTPsUZAZ5kzEBmBD+Qwo8XkobMuUt+xRqealMv/TpiAh5CWGohhCCES/dSY9hnVn2ySpOHTpDYIg/Xe/oyDXdmyKEoHJMBOeOny/wOmBfe2j995vpPrRTru31W9UpdKyLZtB4c/3LOTU3nLV28Ubee/QzEs4m5nnMYDTQe0RXHpo9ghsC73LpvIp3dB/SifCoUDb+vC3f14wQcNdztzFs8m0Oz7N3434MRkPB6xJJiD18luT4FILDg9wRuuJhKnlRKgRh7ozMWkfBXUcGcNMgW08ShigI+wQZPwrkFVOMhR8i9H2EoVqBx9sH/H5Hnuch6y/khduh0vcIQ2UAYhpU4/5Xh+V7nlvH38Ccxz53GKtm0Dh3Im9ZhfAqoRhNBqyW/D9ININGn3u7uZy4/PndRl64bWaBj4//6AF63d0VALOfD5lpWQXu6zaeXiarHBOaYPuqnTz1xVgm9n2JvRsP5NRnMRg1bFadbkM6MWTSLYWey2A0OLUYZ0EDzJXSR3UbKRWD3832qcYFvuR1RMA9JRhQ0QmflojKvyOCnwdzbzD3QgQ9a6/ma25X4HHS8i9k/I/8P01toMchUz9xKoa2/a8tdB9d1wmLCsm1Lf5MAk90nYzNQctLjcZXcf8M11pGbDYb7z36mf2X/G5PwBeTv0bX7dftdEvBz5NbqcSlyKQuOXP0HIGhAcz+8yWmfPckHQe2pmmnRnQf2pk3fn+Bp+eOc2qQbctezbEVkCyDveupQeu6BAT7u/MWFA9SLS9KhSC0EAj7FBl/b3aLxcVPFXsyI0KmI0zNvBafq4QWCP5DEf7OjT8BkOmLcVxkzwbpi5BBTxc6JqVa3SrUb1WH/dsOFTiOwMds4rpb2ubatuS95STHpzocrHvjQ70JDA1weP2LsjItnD9xgf3bDnE+n1aeHBLOHjvPrrV7ada5MaNfH87axRvJSM0s8JDLq7AWVbV6VYg9fLbg7gqlQJpBI7yKfQ0wg9FAx4Ft6Dgw/5IahWl3Q0uq1I7izLFz6Na8/6a6Lhn8lFq3qCxRLS9KhSF8miMqr0IETQSfjuDTFgLut1fC9Rvo7fA8z3aGQleulsmAxanTjXptGJomCkx07p46OM832d++/MNhQiA0wdrFmwq9dnpKOh89NY9bI0dyd71xvDR4llMxXzhlr/gdWjmED/9+nSq18xYvq1onila9myP1Yha7ExdnS6rml6LQbTq9s7v5istgNDBt2bNUyk6GLr5mLy7CeM+Ld9BpUAm1xilu4dEidd6gitQpSv70pKmQthCHdWJEACJym9Ozgbau+JtZoz/gzJFzOdv8g/25e+rt3PxwvzznubnSPaRcVhU3PyaziaHPDqL/6B6EVg7J83h6agZPdJ3M/u2HnZ5ufdHM1VNo3uXqnN+llOzddIB/1+9DM2hc070ppw7GMnngqy6dVymAsA81qVI7mtgjZ51uydIMGvVa1mb2ny86NU3eWempGaxZuI61320kPTWD2k1r0H90T2o1qe62ayhFV2oq7HqDSl4UJX/S8g/ywq0O9jCA/1C04EkunVfXdXb+sYfTh88SXCmQlj2bYfbLvx7NmDYTHHY1XSQ0QUhEMG/8PpWYBrkHIL815iN+nPOrSzECVI6pxLxD7xY6RuKZfi+zdcU/apkBN2jd9xrGvnUvYVEhzBw5hz8WbSj0GCEEHW9pwxMfP0hAiHPdh0r5UGoq7CqKUnoIUzOkuR9k/kLergwDiGBEwH0un1fTNJp3vTpn7SFHBjzQi9fvm1PoflKXJF1IZvLNr/LJ7tkIIbBarLx69zusXrjO5RgR8OCsEU4N7jy+95RKXNxAM2hMmDuO4Er2qcdBYYEOxxEZTAbGvDmCNn2vJapG5ZIMVSmD1JgXRalAROir4D8MMOV+wNQUUelrhCHao9fvflcnmne92qkicbpN5/jeU+xYvQuAD5+ax5qv17t8zYirKvH8N4/T6YrBwwUJDFPf9t2hVtMYgsIDAchIy2TF3DUOk0L7oGahEhfFKSp5UZQKRAgftOBJiMh1iNA3ESGvIir9iFbpG4Sxpsevb/Ix8fLSidz6+I34BhS+1IHBqLFr7V6S41P4cc6vLldAfXDWPXx5+F2XBmN2G9Kp8J2UQh3ccZQZd79DVqaFC6fiyMpwPBDcaDRwcv/pEopOKetU8qIoFZDQQhG+fRF+AxGmBiV6bbOfmftn3MXra6YWuq/EPgZi+8qdWLOsLl3HZDbS6+6uLi+21+fe6/EL9HXpGCV/K7/8gwm9XsRoKvzfQNelqrOiOE0lL4qieEWd5jXtaxA5oFt1WnRrUui39itpBo0ed3V2ul7M5YLCAnnmq0ddPk7J3661e/jpg99o2rkRmqHg7kLdptP59vYlGJlSlqnkRVEUrzAYDfZFFwv4PNOMGvWurcXVHRpQp3kNp88rhKBW0+qMnjmc9JR0fv54Je+P/5zPn1vIgR2HnTpHu/4t6XJ7B6enjCsFkxJ+nLOcO5+5BalT4IKZnW9rR41GV5V4fErZpGYbKYriNbc9MYAju46xcv6fOevVCCGQSCJjIpiy+KnsZKQGjdrWY9+WgwUO+hSaoFrdKtwwuif9RvVg8y/beW3Eu2SkZWI0GpBSMv/l/9G67zVMWvgY/kF++Z7noqe+GIvRx8DKL//0xK1XKKmJaUTXqMykrx9j5r3vkZ6SgdFkQNelvcXl1nY8+dkYb4eplCGqzouiKF4lpWTrin/4+aPfOL7vJEFhgXQb0onuQ6/DL/BSgnHiv1M80nESKYmpuUq8awaN0MrBvLn+ZaJr2ivm/v37bp7sPtU+wPeKdzjNoHFtj6ZM+6XwejZvPvghSz/8zeWBwhWCi4tOzj3wDlVqR5GemsEfizZwYt8p/IL86DSobZ5aPkrFpIrUqeRFUcqls8fPs2jmEpZ/tpr0lAwCQvzpc283bnvixpzS7wBP9pjKP7//63Bq7jubptOgVZ0CH09NTOW2KvdjcXG8TXmnGTSialbm/IkLWDKdGEQtoEqtKD7/7y00TY1UUAqmitQpilIuRcZEMObNe3lo9giyMrLw8fXJMy4lJSGVHat2OTyPwajx57cbHCYvh3cddy5xcbEFoqwz+/sw9bsniT1yjhdunYmu6+g2B0+AhDueHqgSF8Wt1KtJUZQyRwiB2c+c74DajNQMZ05AWrLj/TSDc2+PJrPJvobPZYX3xBVF+IQQebaVVffPuItaTWvQfkArPvzndQY80JuIq8IxZC9yePGf5OLvtz9xI33v6+6tcJVySrW8KIpSroRUDsY/2I+0pPQC99GtOjENqjo8T91rahEYGkBKguOFJC0Zlpyy96GVgwmNCqF5l6u54cFeWDIspCWnU61eFZ6/aQb7tx4q0j2VJpePT4lpUI2xb49k7NsjsVqsrPt+M2u+XkdqYhpX1a9Kv/u7U7dFLS9Gq5RXKnlRFKVcMfmY6DuyO4vf+rnAMS9GHwM9hnV2eB4fs4lbHu3PvKnfUNjIwIvXSTiXxPiPH6RyTCVWfPE7545fILJGBFnpWRz6+2iR7qc0CYsOpWmnRvk+ZjQZ6XJbe7rcpmq1KJ6nBuwqilLuJMen8EiHZzl5IDZXAiM0gdQlT3z6EL3vub7Q89hsNl69+x1WLVibM5XbIQEGgyF7nR730gyCdje0IuFsInv++q/QhMoTnH3eFKUoXPn8VmNeFEUpd4LCAnlz/cvc+FDvXGsoNWxTl5eXPuP0B7DBYGDCvIeZuXoKXQd3JCCkkPL1Eo8kLkITIAQZaZnUalrdK4lLjcZXkXQ+mR/nLOf8yQslH4CiXEa1vCiKUq5lZWRx4VQ8vgFmwqJCi3WuSQOmsXHpNvcEVgjNoCEEOa09QhNIKdE0zeEUcE/HJHUJAvrc241x74zE5GMq/EBFcYJqeVEURcnm4+tDldpRxU5cAK7t3qzElgy4dfwN+Af758xSkrq94J63EhewX1tKidQlyz5dxesj53gtFqViU8mLoiiKk3re3QW/IN8SmfZctU40yXEp9qTFVSWQX0ldsnL+nxz997jnL6YoV1DJi6IoipOCwgJ5eekz+AaYPZrABIUFsGfj/pxaKS6TlMjAWoNRY/VX6zx+HUW5kkpeFEVRXNCkY0O+2P8OI168k8bt6+caEOwOQghueKAXNqutSANzNYNGneY1eHjO/Qx4sJfTxw199hYMRs3p4nzZwZJ0Idn1IBWlmFTyoiiK4qKwyBDunHgzb657mcc+GO3ec0eFMOTZQdRtUatIXUZt+13Lqysn42M2Meq14QSGBhR6zE1j+3LPi3fy8a5Z3DSmDzWujqF6w2qFJjK6TSe6VqTLMSpKcankRVEUpRi6DO5A2xtaOhzIGxgWQGhk4bMfhSboObwrvv5met7dBZPZ6NL4lebXX80LPzxNcHgQAL7+Zl7++ZkCx+n4Bvry2IejGfPmCACuql+Vh2aP4OOdb/DJv7PpO7K7w64rIUShxf4UxRNU8qIoilv9t/UgM0e+x31NHuPBlk8xb+oi4mLjvR2WxxgMBqb87wmGT7mdkIignO2BoQF0GtSOj/+dxXfnP+Ob0x8T07CawyRH6pIut9sr1AaHBzFh3sNomub02JdqdaLzbGvcrj6f/jubOyfcTEyDqkRcVYlrezRl4vyH+SHhC/rd16PAmO56/lZCKoegFXD9ka8MITw6LN/HFMWTVJ0XRVHcZuH0xXzyzIJc1Wg1g4bZz4dXfnmWJh0bejlCz7JarMQeOYemCaJrReZZSXnDj1t4/qYZ+R6rGTRadGvCjOXP5dr+19KtzH/pf+zbdIDC3q6v7tiA2X++VLybuMLZ4+d5f/wXrF28MacbK7JGZYZPvk1V21XcypXPb5W8KIriFpt+2c6z/V/J9zGhCfyD/Jh/dA4BwYVUqS3nln64grfHfYJu03OSG5vVRvPrr2bqd08SEGIfo5KamMqs0R/wx7d/uTT2Zf7ROUTGRLg97vgzCZzcfxrfQF9qN6uRJzFTlOJy5fNbLcyoKIpbfPvGjzmrK19J6pLUpDRWzP2dgWP7eiG60qP/qJ50GNiGFV+s4fi+U/gH+dH5tvY0bl8/p/vGkmXh6V4vsn/bYZcH7Z4/GeeR5CUsKtQthf4UxR1U8qIoSrFJKfnn990Oq78KBDtW76rwyQvYZyvd/uRNBT7+57d/sW/zwSKfW1HKO9XupyiKWxTeAS2d2UkBln22Gq0IRfDCokOpUjvKAxEpSuniseQlLi6OoUOHEhwcTGhoKCNHjiQlJaXQ4zZs2EC3bt0ICAggODiYzp07k56e7qkwFUVxAyEEV3doUEhdEEHTTo1LLKay7MLJOPQi1Hhp1rmRB6JRlNLHY8nL0KFD2b17NytWrOCnn37ijz/+YNSoUQ6P2bBhA3369KFXr15s2rSJzZs3M3bsWDUwTFHKgFse7V9gt5HQBGY/H3re3aWEoyqbIqtHuFbpNlu/+3t6IBpFKX08Mttoz549NG7cmM2bN9OqVSsAli1bRr9+/Thx4gRVq1bN97h27drRs2dPXnzxxSJfW802UhTv+eSZBSycvjjPVGmDycCLPzxNy57NvRxh2fD7N+t56Y5ZTu9vMGrUaBzD+9tfK7FVrxXF3Vz5/PZIk8aGDRsIDQ3NSVwAevTogaZpbNy4Md9jzp49y8aNG4mMjKRDhw5ERUXRpUsX1q5d6/BamZmZJCUl5fpRFMU7Rr4yhNdWTqb9ja2JqBZOlTpR3PJIfz7ZNUslLi647pa2NO3UqNDWl4vjYqrUjuKlnyaqxEWpMDwy2yg2NpbIyNzrXRiNRsLDw4mNjc33mEOHDgEwZcoUZs6cSYsWLZg7dy7du3dn165d1KtXL9/jpk2bxtSpU917A4qiFFmL65vQ4vom3g6jTDMYDbz88zO89+hnrPjid2xWG2BvxWrVpwVR1Stz+lAsfkF+dLqlHdfd0gaTj8nLUStKyXEpeZkwYQIzZuRfHfKiPXv2FCkQXbc3MY8ePZoRI+zrbFxzzTWsXLmSTz/9lGnTpuV73MSJExk/fnzO70lJScTExBQpBkVRlNLCL8CXxz96kPumDWX3+n0goWHbuqocv6LgYvLy+OOPc8899zjcp3bt2kRHR3P27Nlc261WK3FxcURH5117A6BKlSoANG6cezZCo0aNOHbsWIHXM5vNmM3uXZJeURSltAiJCKbDja29HYailCouJS+VK1emcuXKhe7Xvn17EhIS2Lp1Ky1btgRg1apV6LpO27Zt8z2mZs2aVK1alX379uXa/t9//9G3rypqpSiKoiiKnUcG7DZq1Ig+ffpw//33s2nTJtatW8fYsWO54447cmYanTx5koYNG7Jp0ybAXifiySef5K233uLbb7/lwIEDPPfcc+zdu5eRI0d6IkxFURRFUcogjy0PMH/+fMaOHUv37t3RNI1Bgwbx1ltv5TxusVjYt28faWlpOdseffRRMjIyeOyxx4iLi6N58+asWLGCOnXqeCpMRVEURVHKGLWqtKIoiqIoXuf1Oi+KoiiKoiieopIXRVEURVHKFJW8KIqiKIpSpqjkRVEURVGUMkUlL4qiKIqilCkemyrtLRcnT6kFGhVFURSl7Lj4ue3MJOhyl7wkJycDqPWNFEVRFKUMSk5OJiQkxOE+5a7Oi67rnDp1iqCgILctD39xscfjx49XyNox6v7V/Vfk+wf1HKj7V/dfEvcvpSQ5OZmqVauiaY5HtZS7lhdN07jqqqs8cu7g4OAK+cK9SN2/uv+KfP+gngN1/+r+PX3/hbW4XKQG7CqKoiiKUqao5EVRFEVRlDJFJS9OMJvNTJ48GbPZ7O1QvELdv7r/inz/oJ4Ddf/q/kvb/Ze7AbuKoiiKopRvquVFURRFUZQyRSUviqIoiqKUKSp5URRFURSlTFHJi6IoiqIoZYpKXgoQFxfH0KFDCQ4OJjQ0lJEjR5KSklLocRs2bKBbt24EBAQQHBxM586dSU9PL4GI3auo9w/2Kol9+/ZFCMH333/v2UA9xNX7j4uLY9y4cTRo0AA/Pz+qV6/Oww8/TGJiYglGXXTvvvsuNWvWxNfXl7Zt27Jp0yaH+y9atIiGDRvi6+tL06ZN+fnnn0soUs9w5f4/+ugjOnXqRFhYGGFhYfTo0aPQ56sscPU1cNHChQsRQjBw4EDPBuhBrt57QkICY8aMoUqVKpjNZurXr1+h/gYAZs+enfN+FxMTw2OPPUZGRkYJRQtIJV99+vSRzZs3l3/99Zf8888/Zd26deWdd97p8Jj169fL4OBgOW3aNLlr1y65d+9e+fXXX8uMjIwSitp9inL/F73xxhuyb9++EpCLFy/2bKAe4ur979y5U95yyy1yyZIl8sCBA3LlypWyXr16ctCgQSUYddEsXLhQ+vj4yE8//VTu3r1b3n///TI0NFSeOXMm3/3XrVsnDQaDfPXVV+W///4rJ02aJE0mk9y5c2cJR+4ert7/kCFD5Lvvviu3b98u9+zZI++55x4ZEhIiT5w4UcKRu4+rz8FFhw8fltWqVZOdOnWSN910U8kE62au3ntmZqZs1aqV7Nevn1y7dq08fPiwXLNmjdyxY0cJR+4+rj4H8+fPl2azWc6fP18ePnxYLl++XFapUkU+9thjJRazSl7y8e+//0pAbt68OWfbL7/8IoUQ8uTJkwUe17ZtWzlp0qSSCNGjinr/Ukq5fft2Wa1aNXn69Okym7wU5/4v980330gfHx9psVg8EabbtGnTRo4ZMybnd5vNJqtWrSqnTZuW7/6333677N+/f65tbdu2laNHj/ZonJ7i6v1fyWq1yqCgIPnFF194KkSPK8pzYLVaZYcOHeTHH38s77777jKbvLh673PmzJG1a9eWWVlZJRWix7n6HIwZM0Z269Yt17bx48fLjh07ejTOy6luo3xs2LCB0NBQWrVqlbOtR48eaJrGxo0b8z3m7NmzbNy4kcjISDp06EBUVBRdunRh7dq1JRW22xTl/gHS0tIYMmQI7777LtHR0SURqkcU9f6vlJiYSHBwMEZj6V1CLCsri61bt9KjR4+cbZqm0aNHDzZs2JDvMRs2bMi1P0Dv3r0L3L80K8r9XyktLQ2LxUJ4eLinwvSooj4HL7zwApGRkYwcObIkwvSIotz7kiVLaN++PWPGjCEqKoomTZrwyiuvYLPZSipstyrKc9ChQwe2bt2a07V06NAhfv75Z/r161ciMUM5XJjRHWJjY4mMjMy1zWg0Eh4eTmxsbL7HHDp0CIApU6Ywc+ZMWrRowdy5c+nevTu7du2iXr16Ho/bXYpy/wCPPfYYHTp04KabbvJ0iB5V1Pu/3Pnz53nxxRcZNWqUJ0J0m/Pnz2Oz2YiKisq1PSoqir179+Z7TGxsbL77O/vclCZFuf8rPf3001StWjVPQldWFOU5WLt2LZ988gk7duwogQg9pyj3fujQIVatWsXQoUP5+eefOXDgAA899BAWi4XJkyeXRNhuVZTnYMiQIZw/f57rrrsOKSVWq5UHHniAZ555piRCBirYgN0JEyYghHD44+wb1pV0XQdg9OjRjBgxgmuuuYZZs2bRoEEDPv30U3feRpF58v6XLFnCqlWrmD17tnuDdiNP3v/lkpKS6N+/P40bN2bKlCnFD1wptaZPn87ChQtZvHgxvr6+3g6nRCQnJzNs2DA++ugjIiIivB1OidN1ncjISD788ENatmzJ4MGDefbZZ3n//fe9HVqJWbNmDa+88grvvfce27Zt47vvvmPp0qW8+OKLJRZDhWp5efzxx7nnnnsc7lO7dm2io6M5e/Zsru1Wq5W4uLgCu0OqVKkCQOPGjXNtb9SoEceOHSt60G7kyftftWoVBw8eJDQ0NNf2QYMG0alTJ9asWVOMyN3Dk/d/UXJyMn369CEoKIjFixdjMpmKG7ZHRUREYDAYOHPmTK7tZ86cKfBeo6OjXdq/NCvK/V80c+ZMpk+fzm+//UazZs08GaZHufocHDx4kCNHjjBgwICcbRe/vBmNRvbt20edOnU8G7SbFOXfv0qVKphMJgwGQ862Ro0aERsbS1ZWFj4+Ph6N2d2K8hw899xzDBs2jPvuuw+Apk2bkpqayqhRo3j22WfRtBJoFymx0TVlyMUBm1u2bMnZtnz5cocDNnVdl1WrVs0zYLdFixZy4sSJHo3X3Ypy/6dPn5Y7d+7M9QPIN998Ux46dKikQneLoty/lFImJibKdu3ayS5dusjU1NSSCNUt2rRpI8eOHZvzu81mk9WqVXM4YPeGG27Ita19+/ZlesCuK/cvpZQzZsyQwcHBcsOGDSURose58hykp6fn+Vu/6aabZLdu3eTOnTtlZmZmSYZebK7++0+cOFHWqFFD2my2nG2zZ8+WVapU8XisnuLqc3DttdfKp556Kte2BQsWSD8/P2m1Wj0a60UqeSlAnz595DXXXCM3btwo165dK+vVq5drquyJEydkgwYN5MaNG3O2zZo1SwYHB8tFixbJ/fv3y0mTJklfX1954MABb9xCsRTl/q9EGZ1tJKXr95+YmCjbtm0rmzZtKg8cOCBPnz6d81NSf8xFtXDhQmk2m+Xnn38u//33Xzlq1CgZGhoqY2NjpZRSDhs2TE6YMCFn/3Xr1kmj0Shnzpwp9+zZIydPnlzmp0q7cv/Tp0+XPj4+8ttvv83175ycnOytWyg2V5+DK5Xl2Uau3vuxY8dkUFCQHDt2rNy3b5/86aefZGRkpHzppZe8dQvF5upzMHnyZBkUFCS/+uoreejQIfnrr7/KOnXqyNtvv73EYlbJSwEuXLgg77zzThkYGCiDg4PliBEjcr05HT58WAJy9erVuY6bNm2avOqqq6S/v79s3769/PPPP0s4cvco6v1friwnL67e/+rVqyWQ78/hw4e9cxMuePvtt2X16tWlj4+PbNOmjfzrr79yHuvSpYu8++67c+3/zTffyPr160sfHx959dVXy6VLl5ZwxO7lyv3XqFEj33/nyZMnl3zgbuTqa+ByZTl5kdL1e1+/fr1s27atNJvNsnbt2vLll18u9V9SCuPKc2CxWOSUKVNknTp1pK+vr4yJiZEPPfSQjI+PL7F4hZRSer5zSlEURVEUxT0q1GwjRVEURVHKPpW8KIqiKIpSpqjkRVEURVGUMkUlL4qiKIqilCkqeVEURVEUpUxRyYuiKIqiKGWKSl4URVEURSlTVPKiKIqiKEqZopIXRVEURVHKFJW8KIqiKIpSpqjkRVEURVGUMkUlL4qiKIqilCn/B2UFuMGpQpVeAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Adicionalmente a los dos grupos graficados, visualmente es posible identificar una \"línea\" en diagonal que podría separar al cluster morado en dos."
],
"metadata": {
"id": "VbH4q1pb0-lk"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación, se escalan los datos con la función \"Standad Scaler\". La estandarización escala cada variable, restando la media y dividiendo por la desviación estándar, para cambiar la distribución para tener una media de cero y una desviación estándar de uno."
],
"metadata": {
"id": "z-kkrIJYAymL"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scaler2 = StandardScaler()\n",
"\n",
"scaler2.fit(df_new)\n",
"scaled2 = scaler2.transform(df_new)\n",
"scaled2_df = pd.DataFrame(scaled2, columns=df_new.columns)"
],
"metadata": {
"id": "q3R5nzqeRKj4"
},
"execution_count": 14,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sse_scaled = []\n",
"\n",
"clusters = list(range(1, 11)) #range(1,41)\n",
"for k in clusters:\n",
" kmeans_scaled2 = KMeans(n_clusters=k).fit(scaled2_df)\n",
" sse_scaled.append(kmeans_scaled2.inertia_)\n",
"\n",
"plt.plot(clusters, sse_scaled, marker=\"o\")\n",
"plt.title(\"Método del codo de 1 a 10 clusters\")\n",
"plt.grid(True)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 819
},
"id": "OuXUIQl1RTuC",
"outputId": "30bf566b-31f0-4b48-ca3c-8e6db3f34a67"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n",
"/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n",
" warnings.warn(\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGzCAYAAADNKAZOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABie0lEQVR4nO3deXhMZ/8G8HtmMpnJNpN9I5JIVERCCCKW2kIQWi1aLa0q2iot8nbTt6+1pcuvSmurLnipVmmrRS2xKyERYk9sIUT2bbLIOuf3R2ReI4uEJDOZuT/X5Wqd88yZ75wny+2c8zyPSBAEAUREREQGRqzrAoiIiIgaA0MOERERGSSGHCIiIjJIDDlERERkkBhyiIiIyCAx5BAREZFBYsghIiIig8SQQ0RERAaJIYeMwuHDhzF//nzk5ubquhQiImoiDDlk8G7evIkRI0bAysoKSqWySd7z4MGDEIlEOHjwYKO+z9q1ayESiXDjxo16v3bu3LkQiUQNX9QjaKpaXnnlFXh4eDT6+xijvn37om/fvroug0gLQw7prcpf4CKRCP/880+V/YIgwM3NDSKRCMOGDav2GKWlpXj++efxyiuvYObMmVX2r1ixAmvXrm3o0slIJCcn44MPPkC/fv1gZWXVJMH2fp988gmeeuopODk5QSQSYe7cuTW2TUpKwnPPPQdra2soFAo8/fTTuH79epPV+rgWLlyIrVu36roMamYYckjvyeVybNy4scr2Q4cO4fbt25DJZDW+9sKFCxgzZgy+/PLLavcz5NDjiI+Px2effYakpCT4+/s3+ft/9NFHiI6ORqdOnWptl5+fj379+uHQoUP48MMPMW/ePJw+fRp9+vRBZmZmE1X7eBhy6FGY6LoAoocZOnQoNm/ejK+//homJv/7kt24cSMCAwORkZFR42sDAgIQEBDQBFWSMQoMDERmZiZsbW2xZcsWjB49uknfPyEhAR4eHsjIyICDg0ON7VasWIErV64gKioKXbt2BQAMGTIEfn5++PLLL7Fw4cKmKlmvFBUVwdTUFGIx/71vqNizpPdeeOEFZGZmIiIiQrOtpKQEW7ZswYsvvljta9RqNZYsWYL27dtDLpfDyckJr7/+OrKzszVtPDw8cOHCBRw6dEhzW+z+ZwquX7+O0aNHw9bWFubm5ujevTt27NhR5b1u376NESNGwMLCAo6Ojpg5cyaKi4urrWvz5s0IDAyEmZkZ7O3tMW7cOCQlJdXpPFy4cAH9+/eHmZkZWrZsiY8//hhqtbratjt37kTv3r1hYWEBKysrhIWF4cKFC3V6n+qcOHECQ4cOhY2NDSwsLNChQwcsXbpUq83+/fs172ltbY2nn34aly5dqnKsf/75B127doVcLoeXlxe+/fbbat+zrKwMCxYsgJeXF2QyGTw8PPDhhx/WeG4ftHXrVvj5+UEul8PPzw9//PFHte3q8rVSEysrK9ja2tapnuocOXIEo0ePRqtWrSCTyeDm5oaZM2fi7t27dXp9XZ8v2rJlC7p27aoJOADg4+ODAQMG4Ndff63TMTZs2IBu3brB3NwcNjY2ePLJJ7Fnz54a29f0vFh1z6tduXIFI0eOhLOzM+RyOVq2bIkxY8ZoBgqIRCIUFBRg3bp1mu/VV155RfP6pKQkvPrqq3BycoJMJkP79u3x448/Vvu+v/zyCz766CO0aNEC5ubmUKlUKC0txbx589CmTRvI5XLY2dmhV69eWj9zqHnilRzSex4eHggODsbPP/+MIUOGAKj4JZ6bm4sxY8bg66+/rvKa119/HWvXrsWECRPw9ttvIyEhAcuWLcPp06dx9OhRSKVSLFmyBG+99RYsLS3x73//GwDg5OQEAEhNTUWPHj1QWFiIt99+G3Z2dli3bh2eeuopbNmyBc888wwA4O7duxgwYAASExPx9ttvw9XVFevXr8f+/fur1FRZT9euXbFo0SKkpqZi6dKlOHr0KE6fPg1ra+saz0FKSgr69euHsrIyfPDBB7CwsMDq1athZmZWpe369esxfvx4hIaG4rPPPkNhYSFWrlyJXr164fTp0/V+8DYiIgLDhg2Di4sLpk+fDmdnZ1y6dAnbt2/H9OnTAQB79+7FkCFD0Lp1a8ydOxd3797FN998g549e+LUqVOa9zx37hwGDRoEBwcHzJ07F2VlZZgzZ47mvN9v0qRJWLduHUaNGoV//etfOHHiBBYtWoRLly7VGFgq7dmzByNHjoSvry8WLVqEzMxMTJgwAS1btqzSti5fK41l8+bNKCwsxJQpU2BnZ4eoqCh88803uH37NjZv3twg76FWq3H27Fm8+uqrVfZ169YNe/bsQV5eHqysrGo8xrx58zB37lz06NED8+fPh6mpKU6cOIH9+/dj0KBBj1VfSUkJQkNDUVxcjLfeegvOzs5ISkrC9u3bkZOTA6VSifXr12PSpEno1q0bXnvtNQCAl5cXgIrv1e7du0MkEmHatGlwcHDAzp07MXHiRKhUKsyYMUPr/RYsWABTU1O88847KC4uhqmpKebOnYtFixZp3kOlUuHkyZM4deoUBg4c+Fifj3RMINJTa9asEQAI0dHRwrJlywQrKyuhsLBQEARBGD16tNCvXz9BEATB3d1dCAsL07zuyJEjAgDhp59+0jrerl27qmxv37690KdPnyrvPWPGDAGAcOTIEc22vLw8wdPTU/Dw8BDKy8sFQRCEJUuWCACEX3/9VdOuoKBA8Pb2FgAIBw4cEARBEEpKSgRHR0fBz89PuHv3rqbt9u3bBQDC7Nmzaz0XlfWcOHFCsy0tLU1QKpUCACEhIUFTo7W1tTB58mSt16ekpAhKpVJr+5w5c4SH/QgoKysTPD09BXd3dyE7O1trn1qt1vx/QECA4OjoKGRmZmq2nTlzRhCLxcLLL7+s2TZixAhBLpcLN2/e1Gy7ePGiIJFItGqJjY0VAAiTJk3Ses933nlHACDs37+/1roDAgIEFxcXIScnR7Ntz549AgDB3d1ds60+XysPs3nzZq0+r4vKr+f7LVq0SBCJRFrn6GHS09MFAMKcOXNq3Dd//vwq+5YvXy4AEOLi4mo89pUrVwSxWCw888wzmq/7Svd/DfTp00fre6ny+7fya7PSgQMHtM7T6dOnBQDC5s2ba/2MFhYWwvjx46tsnzhxouDi4iJkZGRobR8zZoygVCo157jyfVu3bl3lvHfs2FHrZwgZDt6uombhueeew927d7F9+3bk5eVh+/btNd6q2rx5M5RKJQYOHIiMjAzNn8DAQFhaWuLAgQMPfb+///4b3bp1Q69evTTbLC0t8dprr+HGjRu4ePGipp2LiwtGjRqlaWdubq7512alkydPIi0tDW+++Sbkcrlme1hYGHx8fKq9DfZgPd27d0e3bt002xwcHDB27FitdhEREcjJycELL7yg9dklEgmCgoLq9Nnvd/r0aSQkJGDGjBlVrjRVDvlOTk5GbGwsXnnlFa1bNx06dMDAgQPx999/AwDKy8uxe/dujBgxAq1atdK0a9euHUJDQ6t8XgAIDw/X2v6vf/0LAGo9X5X1jB8/XmvKgIEDB8LX11erbUN8rTyO+6/EFRQUICMjAz169IAgCDh9+nSDvEflra/qHtCv/Fqs7fbY1q1boVarMXv27CrPrjTEsP/KPtq9ezcKCwvr9VpBEPDbb79h+PDhEARBqw9DQ0ORm5uLU6dOab1m/PjxVa6AWltb48KFC7hy5crjfRjSOww51Cw4ODggJCQEGzduxO+//47y8nKtYHG/K1euIDc3F46OjnBwcND6k5+fj7S0tIe+382bN9G2bdsq29u1a6fZX/lfb2/vKj/sH3xtZfvqjunj46PZX1s9bdq0qbL9weNV/pDu379/lc++Z8+eOn32+127dg0A4OfnV2tt1dUCVJyvjIwMFBQUID09HXfv3q3T57h58ybEYjG8vb21tjs7O8Pa2rrW81W5r67n63G/Vh5HYmKiJhxaWlrCwcEBffr0AYAGm7iy8hd6dc8yFRUVabWpzrVr1yAWi6sExIbi6emJ8PBwfP/997C3t0doaCiWL19ep8+fnp6OnJwcrF69ukr/TZgwAQCq9KGnp2eV48yfPx85OTl44okn4O/vj3fffRdnz55tmA9IOsVncqjZePHFFzF58mSkpKRgyJAhNT7Dolar4ejoiJ9++qna/bWNQmnuKh9EXr9+PZydnavsv390WnPQ2BME6vJrpby8HAMHDkRWVhbef/99+Pj4wMLCAklJSXjllVdqfKi8vmxtbSGTyZCcnFxlX+U2V1fXBnmv+9XUd+Xl5VW2ffnll3jllVfw559/Ys+ePXj77bexaNEiHD9+vNrnqCpVnqNx48Zh/Pjx1bbp0KGD1t+rC3RPPvkkrl27pnn/77//Hl999RVWrVqFSZMm1fj+pP+a1088MmrPPPMMXn/9dRw/fhybNm2qsZ2Xlxf27t2Lnj171vovVKDmH8Tu7u6Ij4+vsj0uLk6zv/K/58+fhyAIWsd68LWV7ePj49G/f3+tffHx8Zr9NXF3d6/2UvqD71P5MKajoyNCQkJqPWZdVB7v/PnzNR7v/s/2oLi4ONjb28PCwgJyuRxmZmZ1+hzu7u5Qq9W4cuWK5uoZUPGQaU5OTq3nq3JfXc9XXb9WGtq5c+dw+fJlrFu3Di+//LJme0OP6BGLxfD398fJkyer7Dtx4gRat25d60PHXl5eUKvVuHjxYr2mY7CxsQEA5OTkaG2v6Sqcv78//P398dFHH+HYsWPo2bMnVq1ahY8//hhA9d+rDg4OsLKyQnl5+WN/vdva2mLChAmYMGEC8vPz8eSTT2Lu3LkMOc0cb1dRs2FpaYmVK1di7ty5GD58eI3tnnvuOZSXl2PBggVV9pWVlWn90LWwsKjyQxiomJsnKioKkZGRmm0FBQVYvXo1PDw8NJfuhw4dijt37mDLli2adoWFhVi9erXW8bp06QJHR0esWrVK67bBzp07cenSJYSFhdX62YcOHYrjx48jKipKsy09Pb3KFYjQ0FAoFAosXLgQpaWlVY6Tnp5e6/s8qHPnzvD09MSSJUuqnCdBEAAALi4uCAgIwLp167TanD9/Hnv27MHQoUMBABKJBKGhodi6dSsSExM17S5duoTdu3dX+bwAsGTJEq3tixcvBoBaz9f99dx/yyMiIkLzLFWl+nytNDSJRALgf+ex8v8fHJrfEEaNGoXo6GitoBMfH4/9+/c/dG6fESNGQCwWY/78+VWuLt1f+4MqA/Lhw4c128rLy6t8b6hUKpSVlWlt8/f3h1gs1vpeqe57VSKRYOTIkfjtt99w/vz5KjXU9ev9wQkRLS0t4e3tXefpCkh/8UoONSs1XZK+X58+ffD6669j0aJFiI2NxaBBgyCVSnHlyhVs3rwZS5cu1TzPExgYiJUrV+Ljjz+Gt7c3HB0d0b9/f3zwwQeaIetvv/02bG1tsW7dOiQkJOC3337TPIA5efJkLFu2DC+//DJiYmLg4uKC9evXw9zcXKsmqVSKzz77DBMmTECfPn3wwgsvaIaQe3h4VLvkxP3ee+89rF+/HoMHD8b06dM1Q8jd3d21nh1QKBRYuXIlXnrpJXTu3BljxoyBg4MDEhMTsWPHDvTs2RPLli2r8/kWi8VYuXIlhg8fjoCAAEyYMAEuLi6Ii4vDhQsXNOHkiy++wJAhQxAcHIyJEydqhpArlUqtpQbmzZuHXbt2oXfv3njzzTdRVlaGb775Bu3bt9f6HB07dsT48eOxevVq5OTkoE+fPoiKisK6deswYsQI9OvXr9a6Fy1ahLCwMPTq1QuvvvoqsrKyNO+Tn5+vaVefr5WaVF5pqJyHaP369ZplSD766KMaX+fj4wMvLy+88847SEpKgkKhwG+//Van+XkqrV+/Hjdv3tQ8sHv48GFNPS+99JLmqtabb76J7777DmFhYXjnnXcglUqxePFiODk5aR7mrom3tzf+/e9/Y8GCBejduzeeffZZyGQyREdHw9XVFYsWLar2de3bt0f37t0xa9YsZGVlwdbWFr/88kuVQLN//35MmzYNo0ePxhNPPIGysjKsX79eE2AqBQYGYu/evVi8eDFcXV3h6emJoKAgfPrppzhw4ACCgoIwefJk+Pr6IisrC6dOncLevXuRlZX10PPo6+uLvn37IjAwELa2tjh58iS2bNmCadOmPfS1pOd0N7CLqHb3DyGvzYNDyCutXr1aCAwMFMzMzAQrKyvB399feO+994Q7d+5o2qSkpAhhYWGClZWVAEBrCOy1a9eEUaNGCdbW1oJcLhe6desmbN++vcr73Lx5U3jqqacEc3Nzwd7eXpg+fbpmCPKDw4k3bdokdOrUSZDJZIKtra0wduxY4fbt23U6H2fPnhX69OkjyOVyoUWLFsKCBQuEH374ocZhuqGhoYJSqRTkcrng5eUlvPLKK8LJkyc1beoyhLzSP//8IwwcOFCwsrISLCwshA4dOgjffPONVpu9e/cKPXv2FMzMzASFQiEMHz5cuHjxYpVjHTp0SAgMDBRMTU2F1q1bC6tWraq2ltLSUmHevHmCp6enIJVKBTc3N2HWrFlCUVFRnWr+7bffhHbt2gkymUzw9fUVfv/9d2H8+PFaQ8gr1eVrpSYAavzzMBcvXhRCQkIES0tLwd7eXpg8ebJw5swZAYCwZs2ah76+T58+Nb73g197t27dEkaNGiUoFArB0tJSGDZsmHDlypWHvkelH3/8UfO1a2NjI/Tp00eIiIjQquXB6RiuXbsmhISECDKZTHBychI+/PBDISIiQqu+69evC6+++qrg5eUlyOVywdbWVujXr5+wd+9erWPFxcUJTz75pGBmZiYA0BpOnpqaKkydOlVwc3MTpFKp4OzsLAwYMEBYvXq1pk3lEPLqhqp//PHHQrdu3QRra2vBzMxM8PHxET755BOhpKSkzueH9JNIEGq53khERETUTPGZHCIiIjJIDDlERERkkBhyiIiIyCAx5BAREZFBYsghIiIig8SQQ0RERAbJqCcDVKvVuHPnDqysrBp9jRwiIiJqGIIgIC8vD66urprJWatj1CHnzp07cHNz03UZRERE9Ahu3bpV6yKuRh1yKhelu3XrFhQKhY6r0T+lpaXYs2ePZqp70i32h/5hn+gX9od+acz+UKlUcHNzq3VxWcDIQ07lLSqFQsGQU43S0lKYm5tDoVDwB4YeYH/oH/aJfmF/6Jem6I+HPWrCB4+JiIjIIDHkEBERkUFiyCEiIiKDxJBDREREBokhh4iIiAwSQw4REREZJIYcIiIiMkgMOURERGSQjHoywMZQrhYQlZCFtLwiOFrJ0c3TFhIx18UiIiJqagw5DWjX+WTM23YRyblFmm0uSjnmDPfFYD8XHVZGRERkfHi7qoHsOp+MKRtOaQUcAEjJLcKUDaew63yyjiojIiIyTgw5DaBcLWDetosQqtlXuW3etosoV1fXgoiIiBoDQ04DiErIqnIF534CgOTcIkQlZDVdUUREREaOIacBpOXVHHAepR0RERE9PoacBuBoJW/QdkRERPT4GHIaQDdPW7go5ahpoLgIFaOsunnaNmVZRERERo0hpwFIxCLMGe4LADUGnTnDfTlfDhERURNiyGkgg/1csHJcZzgrtW9JyU3EWDmuM+fJISIiamKcDLABDfZzwUBfZ0QlZCH2VjY+2xWPcrWA4Nb2ui6NiIjI6PBKTgOTiEUI9rLDlL7eaOtkhVK1gJ2cCJCIiKjJMeQ0ohGdWgAAtsYm6bgSIiIi48OQ04ieCnAFAJxIyEJy7l0dV0NERGRcGHIaUQtrM3TztIUgAH/F3tF1OUREREaFIaeRjQiouGX1x2nesiIiImpKDDmNbKi/M6QSEeJS8hCfkqfrcoiIiIwGQ04jszY3Rd+2jgD4ADIREVFTYshpApW3rP6KvQO1WtBxNURERMaBIacJDGjnCCuZCZJy7uLkzWxdl0NERGQUGHKagFwqwWA/ZwC8ZUVERNRUGHKaSOXEgDvOJqOkTK3jaoiIiAwfQ04T6d7aDo5WMuTeLcXB+DRdl0NERGTwGHKaiEQswlMdK2ZA/pMTAxIRETU6hpwmVHnLau+lVOQVleq4GiIiIsPGkNOE2rsq4OVggeIyNXadT9F1OURERAaNIacJiUQizZw5vGVFRETUuBhymtjT90LOsWsZSFUV6bgaIiIiw8WQ08Ra2Zkj0N0GagHYdoZXc4iIiBoLQ44OjAioGGXFiQGJiIgaD0OODoR1cIWJWITzSSpcTcvXdTlEREQGiSFHB2wtTPHkEw4AgD95NYeIiKhRMOToyNMB/5sYUBC4MjkREVFDY8jRkYG+TjA3lSAxqxCnEnN0XQ4REZHBYcjREXNTEwxuX7EyOW9ZERERNbx6hRwPDw+IRKIqf6ZOnQoAKCoqwtSpU2FnZwdLS0uMHDkSqampWsdITExEWFgYzM3N4ejoiHfffRdlZWVabQ4ePIjOnTtDJpPB29sba9eurVLL8uXL4eHhAblcjqCgIERFRdXzo+ve0/eWedh+Nhml5VyZnIiIqCHVK+RER0cjOTlZ8yciIgIAMHr0aADAzJkzsW3bNmzevBmHDh3CnTt38Oyzz2peX15ejrCwMJSUlODYsWNYt24d1q5di9mzZ2vaJCQkICwsDP369UNsbCxmzJiBSZMmYffu3Zo2mzZtQnh4OObMmYNTp06hY8eOCA0NRVpa81rdu6eXHewtTZFVUIIjV9J1XQ4REZFBqVfIcXBwgLOzs+bP9u3b4eXlhT59+iA3Nxc//PADFi9ejP79+yMwMBBr1qzBsWPHcPz4cQDAnj17cPHiRWzYsAEBAQEYMmQIFixYgOXLl6OkpAQAsGrVKnh6euLLL79Eu3btMG3aNIwaNQpfffWVpo7Fixdj8uTJmDBhAnx9fbFq1SqYm5vjxx9/bMBT0/hMJGIM63BvzpzTnBiQiIioIZk86gtLSkqwYcMGhIeHQyQSISYmBqWlpQgJCdG08fHxQatWrRAZGYnu3bsjMjIS/v7+cHJy0rQJDQ3FlClTcOHCBXTq1AmRkZFax6hsM2PGDM37xsTEYNasWZr9YrEYISEhiIyMrLXm4uJiFBcXa/6uUqkAAKWlpSgt1c2q4MP8nbD22A1EXExBTv5dWMgeuUsaXOU50dW5IW3sD/3DPtEv7A/90pj9UddjPvJv1K1btyInJwevvPIKACAlJQWmpqawtrbWaufk5ISUlBRNm/sDTuX+yn21tVGpVLh79y6ys7NRXl5ebZu4uLhaa160aBHmzZtXZfuePXtgbm5e+wduJIIA2MslyChS4/9+iUBXB/0bTl55W5L0A/tD/7BP9Av7Q780Rn8UFhbWqd0jh5wffvgBQ4YMgaur66MeosnNmjUL4eHhmr+rVCq4ublh0KBBUCgUOqvrmtlVfHPgOhJFjpgzNFBndTyotLQUERERGDhwIKRSqa7LMXrsD/3DPtEv7A/90pj9UXkn5mEeKeTcvHkTe/fuxe+//67Z5uzsjJKSEuTk5GhdzUlNTYWzs7OmzYOjoCpHX93f5sERWampqVAoFDAzM4NEIoFEIqm2TeUxaiKTySCTyapsl0qlOv2GeDawFb45cB1Hr2Uhp0gNB6uqNeqSrs8PaWN/6B/2iX5hf+iXxuiPuh7vkebJWbNmDRwdHREWFqbZFhgYCKlUin379mm2xcfHIzExEcHBwQCA4OBgnDt3TmsUVEREBBQKBXx9fTVt7j9GZZvKY5iamiIwMFCrjVqtxr59+zRtmhtPewt0dLNGuVrA9rN8AJmIiKgh1DvkqNVqrFmzBuPHj4eJyf8uBCmVSkycOBHh4eE4cOAAYmJiMGHCBAQHB6N79+4AgEGDBsHX1xcvvfQSzpw5g927d+Ojjz7C1KlTNVdY3njjDVy/fh3vvfce4uLisGLFCvz666+YOXOm5r3Cw8Px3XffYd26dbh06RKmTJmCgoICTJgw4XHPh878b2VyhhwiIqKGUO/bVXv37kViYiJeffXVKvu++uoriMVijBw5EsXFxQgNDcWKFSs0+yUSCbZv344pU6YgODgYFhYWGD9+PObPn69p4+npiR07dmDmzJlYunQpWrZsie+//x6hoaGaNs8//zzS09Mxe/ZspKSkICAgALt27aryMHJzMqyDKz7ecQlnbuUgIaMAnvYWui6JiIioWat3yBk0aFCNC0rK5XIsX74cy5cvr/H17u7u+Pvvv2t9j759++L06dO1tpk2bRqmTZv28IKbCQcrGXp62+Pw5XT8GZuEGSFP6LokIiKiZo1rV+mREVyZnIiIqMEw5OiRQe2dIZeKkZBRgLO3c3VdDhERUbPGkKNHLGUmGORbMQx+K1cmJyIieiwMOXpmRKeKW1bbztxBGVcmJyIiemQMOXqmdxsH2FqYIiO/BEevZeq6HCIiomaLIUfPSCVihPm7AAD+PM1bVkRERI+KIUcPVd6y2n0hBXdLynVcDRERUfPEkKOHOreygZutGQpKyhFxKfXhLyAiIqIqGHL0kEgkwtMdWwDgLSsiIqJHxZCjpypvWR26nI6sghIdV0NERNT8MOToKW9HK/i1UKBMLWAHVyYnIiKqN4YcPTYioOKWFVcmJyIiqj+GHD02vKMrRCIg5mY2bmUV6rocIiKiZoUhR485KeTo4WUHAPiTyzwQERHVC0OOnnv6vltWXJmciIio7hhy9NxgP2eYmohxNS0fF+6odF0OERFRs8GQo+cUcikGtnMCAGzlnDlERER1xpDTDDwdUDFnzl9n7qBczVtWREREdcGQ0wz0besIpZkUaXnFOH6dK5MTERHVBUNOM2BqIsbQeyuT85YVERFR3TDkNBMj7t2y2nU+BUWlXJmciIjoYRhymomuHrZwVcqRV1yG/XFpui6HiIhI7zHkNBNisQhPVc6Zw1tWRERED8WQ04w806ki5ByIT0NOIVcmJyIiqg1DTjPS1tkKPs5WKC0X8Pe5FF2XQ0REpNcYcpqZEZ0ql3ngLSsiIqLaMOQ0M0/dW5k8KiELSTl3dV0OERGR3mLIaWZcrc3QzcMWAPBX7B0dV0NERKS/GHKaocpbVn/ylhUREVGNGHKaoaF+LjCViBGXkodLyVyZnIiIqDoMOc2Q0lyKfj4OAPgAMhERUU0YcpqpEfcmBtwWewdqrkxORERUBUNOM9XPxxFWchPcyS1C1I0sXZdDRESkdxhymim5VIIhfs4A+AAyERFRdRhymrHKW1Y7ziajuIwrkxMREd2PIacZC2ptByeFDKqiMhyMT9d1OURERHqFIacZk4hFeKqjKwDesiIiInoQQ04zVzkx4N5LaVAVleq4GiIiIv3BkNPM+boo0MbREiVlauziyuREREQaDDnNnEgk4srkRERE1WDIMQCVz+VEXs9ESm6RjqshIiLSDww5BsDN1hxd3G0gCMC2M1yZnIiICGDIMRhP85YVERGRFoYcAxHm7wITsQgX7qhwJTVP1+UQERHpHEOOgbC1MEXftlyZnIiIqBJDjgF5+t4yD3/G3oEgcGVyIiIybgw5BiSknRMsTCW4nX0XMTezdV0OERGRTjHkGBAzUwlC761MzltWRERk7BhyDMz9K5OXlqt1XA0REZHuMOQYmB5edrC3lCG7sBSHL3NlciIiMl4MOQbGRCLG8I4uAIA/TvOWFRERGS+GHAP0jGZl8lTkF5fpuBoiIiLdYMgxQP4tlGhtb4GiUjV2n+fK5EREZJwYcgyQSCTSzJnDUVZERGSsGHIM1NMBFSuTH72agbQ8rkxORETGhyHHQHnYWyDAzRpqAdh+JlnX5RARETU5hhwDNuLe1Zw/ecuKiIiMEEOOARvW0RUSsQhnbufienq+rsshIiJqUgw5BszeUobebewBAFtj7+i4GiIioqbFkGPgRmhWJk/iyuRERGRUGHIM3EBfJ5hJJbiZWYjYWzm6LoeIiKjJMOQYOAuZCQa1dwIA/MlbVkREZEQYcoxA5S2r7WfvoIwrkxMRkZGod8hJSkrCuHHjYGdnBzMzM/j7++PkyZOa/YIgYPbs2XBxcYGZmRlCQkJw5coVrWNkZWVh7NixUCgUsLa2xsSJE5Gfrz365+zZs+jduzfkcjnc3Nzw+eefV6ll8+bN8PHxgVwuh7+/P/7+++/6fhyj0KuNPWwtTJGRX4J/rmbouhwiIqImUa+Qk52djZ49e0IqlWLnzp24ePEivvzyS9jY2GjafP755/j666+xatUqnDhxAhYWFggNDUVR0f9m3R07diwuXLiAiIgIbN++HYcPH8Zrr72m2a9SqTBo0CC4u7sjJiYGX3zxBebOnYvVq1dr2hw7dgwvvPACJk6ciNOnT2PEiBEYMWIEzp8//zjnwyBJJWIM61CxMvlWrkxORETGQqiH999/X+jVq1eN+9VqteDs7Cx88cUXmm05OTmCTCYTfv75Z0EQBOHixYsCACE6OlrTZufOnYJIJBKSkpIEQRCEFStWCDY2NkJxcbHWe7dt21bz9+eee04ICwvTev+goCDh9ddfr/Pnyc3NFQAIubm5dX5Nc3XyRpbg/v52od1/dgoFxaV1ek1JSYmwdetWoaSkpJGro7pgf+gf9ol+YX/ol8bsj7r+/japTyD666+/EBoaitGjR+PQoUNo0aIF3nzzTUyePBkAkJCQgJSUFISEhGheo1QqERQUhMjISIwZMwaRkZGwtrZGly5dNG1CQkIgFotx4sQJPPPMM4iMjMSTTz4JU1NTTZvQ0FB89tlnyM7Oho2NDSIjIxEeHq5VX2hoKLZu3Vpj/cXFxSguLtb8XaVSAQBKS0tRWlpan1PR7Pi7WMDNxgy3su9i59k7eKqjy0NfU3lODP3cNBfsD/3DPtEv7A/90pj9Uddj1ivkXL9+HStXrkR4eDg+/PBDREdH4+2334apqSnGjx+PlJQUAICTk5PW65ycnDT7UlJS4OjoqF2EiQlsbW212nh6elY5RuU+GxsbpKSk1Po+1Vm0aBHmzZtXZfuePXtgbm5el1PQrPmai3ErW4wf9p6BSdLpOr8uIiKiEaui+mJ/6B/2iX5hf+iXxuiPwsLCOrWrV8hRq9Xo0qULFi5cCADo1KkTzp8/j1WrVmH8+PH1r7KJzZo1S+vqj0qlgpubGwYNGgSFQqHDypqGT3oBdn99FPEqCYL69IedhWmt7UtLSxEREYGBAwdCKpU2UZVUE/aH/mGf6Bf2h35pzP6ovBPzMPUKOS4uLvD19dXa1q5dO/z2228AAGdnZwBAamoqXFz+dzskNTUVAQEBmjZpaWlaxygrK0NWVpbm9c7OzkhNTdVqU/n3h7Wp3F8dmUwGmUxWZbtUKjWKb4i2rtbwb6HEuaRc7LmUjpeDPer0OmM5P80F+0P/sE/0C/tDvzRGf9T1ePUaXdWzZ0/Ex8drbbt8+TLc3d0BAJ6ennB2dsa+ffs0+1UqFU6cOIHg4GAAQHBwMHJychATE6Nps3//fqjVagQFBWnaHD58WOueW0REBNq2basZyRUcHKz1PpVtKt+Hqvf0vZXJOcqKiIgMXb1CzsyZM3H8+HEsXLgQV69excaNG7F69WpMnToVACASiTBjxgx8/PHH+Ouvv3Du3Dm8/PLLcHV1xYgRIwBUXPkZPHgwJk+ejKioKBw9ehTTpk3DmDFj4Opa8Qv4xRdfhKmpKSZOnIgLFy5g06ZNWLp0qdatpunTp2PXrl348ssvERcXh7lz5+LkyZOYNm1aA50aw/RUR1eIRcCpxBzczCzQdTlERESNpl4hp2vXrvjjjz/w888/w8/PDwsWLMCSJUswduxYTZv33nsPb731Fl577TV07doV+fn52LVrF+RyuabNTz/9BB8fHwwYMABDhw5Fr169tObAUSqV2LNnDxISEhAYGIh//etfmD17ttZcOj169NCErI4dO2LLli3YunUr/Pz8Hud8GDxHhRw9vCpWJucyD0REZMjq9UwOAAwbNgzDhg2rcb9IJML8+fMxf/78GtvY2tpi48aNtb5Phw4dcOTIkVrbjB49GqNHj669YKpiRKcW+OdqBrbGJuGt/t4QiUS6LomIiKjBce0qIxTa3gkyEzGupxfgfFLdnlAnIiJqbhhyjJCVXIoQ34o5hrbG8gFkIiIyTAw5RqpyZfJtZ+6gXC3ouBoiIqKGx5BjpPo84QBrcynS8ooReS1T1+UQERE1OIYcI2VqIsZQ/4oJG//gnDlERGSAGHKMWOUtq90XUlBUWq7jaoiIiBoWQ44R6+JugxbWZsgvLsPeS6kPfwEREVEzwpBjxMRi0X3LPHBiQCIiMiwMOUZuRKeKW1aHLqchp7BEx9UQERE1HIYcI/eEkxXauShQWi5gx7lkXZdDRETUYBhyCCO4MjkRERkghhzCUwGuEImA6BvZuJ1dqOtyiIiIGgRDDsFFaYYgT1sAXJmciIgMB0MOAQCeufcA8p+xSRAELvNARETNH0MOAQAG+7nAVCLG5dR8XErO03U5REREj40hhwAASjMp+vs4Aqi4mkNERNTcMeSQxohOFaOs/oy9AzVXJiciomaOIYc0+rZ1hJXcBCmqIhxP4MrkRETUvDHkkIZcKsFQv4qVyf/kMg9ERNTMMeSQlqfv3bL6+3wyirkyORERNWMMOaSlu6cdXJRy5BWV4eDlDF2XQ0RE9MgYckiLWCzCUx0rruasjbyJmAwRTiRkoZwPIhMRUTNjousCSP/YW8oAACdv5uAkJPjvlZNwUcoxZ7gvBt97ZoeIiEjf8UoOadl1PhkL/75UZXtKbhGmbDiFXee5UjkRETUPDDmkUa4WMG/bRVR3Y6py27xtF3nrioiImgWGHNKISshCcm5RjfsFAMm5RYhKyGq6ooiIiB4RQw5ppOXVHHAepR0REZEuMeSQhqOVvEHbERER6RJDDml087SFi1IOUS1tLGUSdHG3abKaiIiIHhVDDmlIxCLMGe4LADUGnfzicsz4NRZFnA2ZiIj0HEMOaRns54KV4zrDWal9S8pFKcf4YHdIJSLsOJuMF787jsz8Yh1VSURE9HCcDJCqGOzngoG+zoi8moY9R05gUO8gBHs7QiIWIdTPGW+sj8GpxBw8s+IYfnylK7wdLXVdMhERURW8kkPVkohFCPK0RaC9gCBPW0jEFTewenjZ4/c3e8LN1gyJWYV4dsVRRF7L1HG1REREVTHkUL15O1pi65s90bmVNVRFZXj5xxPYEnNb12URERFpYcihR2JnKcPGyd0xrIMLSssFvLP5DL7cEw9B4GzIRESkHxhy6JHJpRJ8PaYTpvbzAgB8s/8qpv/CkVdERKQfGHLosYjFIrwb6oPPR3aAiViEv87cwbjvTyCroETXpRERkZFjyKEG8VxXN6x7tRus5CY4eTMbz6w4imvp+boui4iIjBhDDjWYnt72+H1KD7S0McPNzEI8u+IYjl/nyCsiItINhhxqUG2crLB1ak90amWN3LuleOmHE/j9FEdeERFR02PIoQZnbynDz5O7I8y/YuRV+K9nsDjiMkdeERFRk2LIoUYhl0rwzQudMKVvxcirr/ddwcxNsSgu48grIiJqGgw51GjEYhHeH+yDT5/1h4lYhK2xHHlFRERNhyGHGt2Ybq2wdkI3WMlMEH0jG8+uOIqEjAJdl0VERAaOIYeaRK829vjtzR5oYW2GG5mFeGbFUUQlZOm6LCIiMmAMOdRknrg38qqjmzVyCksx7vsT2Ho6SddlERGRgWLIoSblYCXDL5O7Y4ifM0rK1ZixKRZL9nLkFRERNTyGHGpyZqYSLH+xM17v0xoAsGTvFYT/eoYjr4iIqEEx5JBOiMUizBrSDguf8YdELMIfp5Pw0g9RyCnkyCsiImoYDDmkUy8GtcKaV7rCUmaCqIQsPLviGG5w5BURETUAhhzSuSefcMBvUypGXl3PKMAzK44i+gZHXhER0eNhyCG90NbZCn9M7YEOLZXILizF2O9O4M9YjrwiIqJHx5BDesPRSo5NrwUjtL0TSsrVmP5LLL7Zd4Ujr4iI6JEw5JBeMTOVYMXYQEzu7QkA+DLiMt7ZfBYlZWodV0ZERM0NQw7pHYlYhH+H+eLjEX6QiEX47dRtvPzjCY68IiKiemHIIb01rrs7frw38ur49Sw8u/IYbmZy5BUREdUNQw7ptT5POGDLlGC4KuW4nl6AZ1YcQ8xNjrwiIqKHY8ghvefjrMDWqT3h30KJrIISvPDdCWw7c0fXZRERkZ5jyKFmwVEhx6bXu2OgrxNKytR46+fTWH7gKkdeERFRjRhyqNkwNzXBqnGBmNSrYuTVF7vj8d4WjrwiIqLqMeRQsyIRi/DRMF8seLo9xCJgc8xtjP8xCrmFpboujYiI9AxDDjVLLwV74IfxXWFhKkHk9Uw8u/IoEjMLdV0WERHpEYYcarb6+Thi8xs94KyQ41p6xZpXpxKzdV0WERHpCYYcatZ8XStGXrV3VSCzoAQvrD6OHWeTdV0WERHpgXqFnLlz50IkEmn98fHx0ewvKirC1KlTYWdnB0tLS4wcORKpqalax0hMTERYWBjMzc3h6OiId999F2VlZVptDh48iM6dO0Mmk8Hb2xtr166tUsvy5cvh4eEBuVyOoKAgREVF1eejkAFxVsrx6+vBCGnniOIyNaZuPIUVBytGXpWrBURey8SfsUmIvJaJcjVHYxERGQuT+r6gffv22Lt37/8OYPK/Q8ycORM7duzA5s2boVQqMW3aNDz77LM4evQoAKC8vBxhYWFwdnbGsWPHkJycjJdffhlSqRQLFy4EACQkJCAsLAxvvPEGfvrpJ+zbtw+TJk2Ci4sLQkNDAQCbNm1CeHg4Vq1ahaCgICxZsgShoaGIj4+Ho6PjY50Qap4sZCb49qUu+HjHRaw5egOf74rH0SsZuJZegBRVkaadi1KOOcN9MdjPRYfVEhFRU6j37SoTExM4Oztr/tjb2wMAcnNz8cMPP2Dx4sXo378/AgMDsWbNGhw7dgzHjx8HAOzZswcXL17Ehg0bEBAQgCFDhmDBggVYvnw5Skoq1iVatWoVPD098eWXX6Jdu3aYNm0aRo0aha+++kpTw+LFizF58mRMmDABvr6+WLVqFczNzfHjjz82xDmhZkoiFmHO8PaYO9wXIgBHr2VqBRwASMktwpQNp7DrPG9pEREZunpfybly5QpcXV0hl8sRHByMRYsWoVWrVoiJiUFpaSlCQkI0bX18fNCqVStERkaie/fuiIyMhL+/P5ycnDRtQkNDMWXKFFy4cAGdOnVCZGSk1jEq28yYMQMAUFJSgpiYGMyaNUuzXywWIyQkBJGRkbXWXlxcjOLiYs3fVSoVAKC0tBSlpRyC/KDKc9Lczs2YLi2wdN8VZFczrFwAIAIwb9sF9G1jB4lY1OT1Parm2h+GjH2iX9gf+qUx+6Oux6xXyAkKCsLatWvRtm1bJCcnY968eejduzfOnz+PlJQUmJqawtraWus1Tk5OSElJAQCkpKRoBZzK/ZX7amujUqlw9+5dZGdno7y8vNo2cXFxtda/aNEizJs3r8r2PXv2wNzc/OEnwEhFRETouoR6uZIrQnahpMb9AoDk3GIs27QLbZTN7xmd5tYfxoB9ol/YH/qlMfqjsLBuU4bUK+QMGTJE8/8dOnRAUFAQ3N3d8euvv8LMzKx+FerArFmzEB4ervm7SqWCm5sbBg0aBIVCocPK9FNpaSkiIiIwcOBASKVSXZdTZ9vOJgMXzz20Xev2ARjaofk8m9Nc+8OQsU/0C/tDvzRmf1TeiXmYet+uup+1tTWeeOIJXL16FQMHDkRJSQlycnK0ruakpqbC2dkZAODs7FxlFFTl6Kv72zw4Iis1NRUKhQJmZmaQSCSQSCTVtqk8Rk1kMhlkMlmV7VKplN8QtWhu58fF2qLO7ZrT56rU3PrDGLBP9Av7Q780Rn/U9XiPNU9Ofn4+rl27BhcXFwQGBkIqlWLfvn2a/fHx8UhMTERwcDAAIDg4GOfOnUNaWpqmTUREBBQKBXx9fTVt7j9GZZvKY5iamiIwMFCrjVqtxr59+zRtyLh187SFi1KO2p62UZpJ0c3TtslqIiKiplevkPPOO+/g0KFDuHHjBo4dO4ZnnnkGEokEL7zwApRKJSZOnIjw8HAcOHAAMTExmDBhAoKDg9G9e3cAwKBBg+Dr64uXXnoJZ86cwe7du/HRRx9h6tSpmissb7zxBq5fv4733nsPcXFxWLFiBX799VfMnDlTU0d4eDi+++47rFu3DpcuXcKUKVNQUFCACRMmNOCpoeaqYpRVRWiuKejk3i3FqkPXuIo5EZEBq9ftqtu3b+OFF15AZmYmHBwc0KtXLxw/fhwODg4AgK+++gpisRgjR45EcXExQkNDsWLFCs3rJRIJtm/fjilTpiA4OBgWFhYYP3485s+fr2nj6emJHTt2YObMmVi6dClatmyJ77//XjNHDgA8//zzSE9Px+zZs5GSkoKAgADs2rWrysPIZLwG+7lg5bjOmLftIpJztefJ6dBSid0XUvHF7nhkFZTg30PbQdyMRlkREVHd1Cvk/PLLL7Xul8vlWL58OZYvX15jG3d3d/z999+1Hqdv3744ffp0rW2mTZuGadOm1dqGjNtgPxcM9HVGVEIW0vKK4GglRzdPW0jEInx/5Do+3nEJP/yTgOzCEnw2sgOkEq5yQkRkSB7rwWMifScRixDsZVdl+6TerWFjbor3fjuL308lIbewFMvHdoZcWvPQcyIial74T1cyWiMDW+LbcYGQmYixLy4NL/1wArl3OYkYEZGhYMghoxbi64T1E4NgJTdB9I1sPP9tJNLyih7+QiIi0nsMOWT0unnaYtNrwXCwkiEuJQ+jVkbiZmaBrssiIqLHxJBDBMDXVYEtbwSjla05ErMKMXJlJC7eqduMmkREpJ8YcojucbezwJY3guHjbIWM/GI8vzoSUQlZui6LiIgeEUMO0X0cFXJsej0YXT1skFdUhpd+OIF9l1If/kIiItI7DDlED1CaSfHfV4MwwMcRxWVqvLY+Br/F3NZ1WUREVE8MOUTVMDOVYNVLgXi2cwuUqwX8a/MZfH/kuq7LIiKiemDIIaqBVCLG/43qiEm9PAEAH++4hM93xXG9KyKiZoIhh6gWYrEI/w5rh/cGtwUArDh4DR/+cQ7lagYdIiJ9x5BD9BAikQhv9vXGomf9IRYBP0fdwtSfTqGotFzXpRERUS0Ycojq6IVurbBibGeYSsTYdSEFr66NRn5xma7LIiKiGjDkENXDYD8XrJ3QFRamEhy7lokXVh9HZn6xrssiIqJqMOQQ1VMPb3v8/Fp32FqY4lxSLkavisTt7EJdl0VERA9gyCF6BB1aWmPzG8FoYW2G6xkFGLUyEldS83RdFhER3Ychh+gReTlYYsuUYLRxtESKqgijv43EqcRsXZdFRET3MOQQPQYXpRl+fT0YAW7WyCksxdjvTuDQ5XRdl0VERGDIIXpsNham+GlSEHq3scfd0nJMWheNbWfu6LosIiKjx5BD1AAsZCb4YXxXDO/oitJyAW//chrrI2/ouiwiIqPGkEPUQExNxFj6fABeDnaHIAD/+fMCluy9zGUgiIh0hCGHqAGJxSLMe6o9ZoS0AQAs2XsFc/+6ADWXgSAianIMOUQNTCQSYUbIE5j/dHuIRMC6yJuYsSkWJWVqXZdGRGRUGHKIGsnLwR5Y8nwATMQi/HXmDib99yQKS7gMBBFRU2HIIWpETwe0wPfju8BMKsHhy+kY+/0J5BSW6LosIiKjwJBD1Mj6tnXEhklBUJpJcToxB899G4mU3CJdl0VEZPAYcoiaQKC7DTa/EQwnhQyXU/MxcuUxXE/P13VZREQGjSGHqIk84WSFLW/0gKe9BZJy7mL0qkicu52r67KIiAwWQw5RE3KzNcfmN4Lh10KBzIISvPDdcRy7lqHrsoiIDBJDDlETs7eU4efJ3RHc2g75xWV45cdo7DqfouuyiIgMDkMOkQ5YyaVYM6ErBrd3Rkm5Gm/+FINN0Ym6LouIyKAw5BDpiFwqwfKxnTGmqxvUAvD+b+ew8uA1LgNBRNRAGHKIdEgiFmHRs/6Y0tcLAPDZrjgs/PsSgw4RUQNgyCHSMZFIhPcH++DfQ9sBAL47koB3Np9FWTmXgSAiehwMOUR6YvKTrfF/oztCIhbht1O38caGUygqLdd1WUREzRZDDpEeGRXYEt+OC4TMRIy9l1Lx8o9RUBWVolwt4ERCFmIyRDiRkIVyrmpORPRQJrougIi0hfg64b+vdsOkdScRlZCFIUuOoLRcjbS8YgAS/PfKSbgo5Zgz3BeD/Vx0XS4Rkd7ilRwiPRTU2g6/vN4dVnITJOXcvRdw/icltwhTNpzCrvPJOqqQiEj/MeQQ6SkfZwXkJpJq91XerJq37SJvXRER1YAhh0hPRSVkIT2/uMb9AoDk3CJEJWQ1XVFERM0IQw6RnkrLK2rQdkRExoYhh0hPOVrJG7QdEZGxYcgh0lPdPG3hopRD9JB2l5JzOUMyEVE1GHKI9JRELMKc4b4AUGvQmb/9El5ZE83bVkRED2DIIdJjg/1csHJcZzgrtW9JuSjlWDm2M+Y/3R4yEzEOXU7HkCVHsO9Sqo4qJSLSP5wMkEjPDfZzwUBfZ0ReTcOeIycwqHcQgr0dIRFXXN/p3toOb/98GnEpeZi47iReDnbHh0PbQS6tfvg5EZGx4JUcomZAIhYhyNMWgfYCgjxtNQEHAJ5wssLWqT0xsZcnAOC/kTcx7Jt/cPGOSlflEhHpBYYcIgMgl0rwn2G++O+r3eBgJcPVtHyMWH4U3x+5DjUnCyQiI8WQQ2RAnnzCAbum90ZIOyeUlKvx8Y5LGL8mCqkqPpRMRMaHIYfIwNhZyvDdy4H45Bk/yKViHLmSgcFLDmP3hRRdl0ZE1KQYcogMkEgkwtggd2x/qzfauyqQXViK19fHYNbv51BYUqbr8oiImgRDDpEB83a0xB9v9sTrfVpDJAJ+jkrEsG/+wfmkXF2XRkTU6BhyiAycqYkYs4a0w08Tg+CkkOF6egGeWXEUqw5d40PJRGTQGHKIjEQPb3vsmv4kBrd3Rmm5gE93xmHs9yeQnHtX16URETUKhhwiI2JjYYqV4zrjs5H+MJNKEHk9E4OXHMHOc8m6Lo2IqMEx5BAZGZFIhOe7tsKOt3uhQ0slcu+WYspPp/DeljMoKOZDyURkOBhyiIxUawdL/DalB97s6wWRCPj15G2EfX0EZ27l6Lo0IqIGwZBDZMSkEjHeG+yDnyd3h6tSjhuZhRi58hiWH7iKcj6UTETNHEMOEaF7azvsnP4kwjq4oEwt4Ivd8Xhh9XEk5fChZCJqvhhyiAgAoDSXYtkLnfB/ozvCwlSCqBtZGLzkMLaduaPr0oiIHglDDhFpiEQijApsib+n90aAmzXyisrw1s+nEf5rLPKKSnVdHhFRvTDkEFEV7nYW2PxGMN7u7w2xCPj9VBLCvv4HMTezdV0aEVGdMeQQUbWkEjHCB7XFpteD0cLaDIlZhXju20gs3XsFZeVqXZdHRPRQjxVyPv30U4hEIsyYMUOzraioCFOnToWdnR0sLS0xcuRIpKamar0uMTERYWFhMDc3h6OjI959912UlWnPz3Hw4EF07twZMpkM3t7eWLt2bZX3X758OTw8PCCXyxEUFISoqKjH+ThEVI2uHrbYOaM3RgS4olwt4Ku9l/H86uO4lVWo69KIiGr1yCEnOjoa3377LTp06KC1febMmdi2bRs2b96MQ4cO4c6dO3j22Wc1+8vLyxEWFoaSkhIcO3YM69atw9q1azF79mxNm4SEBISFhaFfv36IjY3FjBkzMGnSJOzevVvTZtOmTQgPD8ecOXNw6tQpdOzYEaGhoUhLS3vUj0RENVDIpVgyphOWPB8AK5kJYm5mY+jSI9h6OknXpRER1eiRQk5+fj7Gjh2L7777DjY2Nprtubm5+OGHH7B48WL0798fgYGBWLNmDY4dO4bjx48DAPbs2YOLFy9iw4YNCAgIwJAhQ7BgwQIsX74cJSUlAIBVq1bB09MTX375Jdq1a4dp06Zh1KhR+OqrrzTvtXjxYkyePBkTJkyAr68vVq1aBXNzc/z444+Pcz6IqBYjOrXA39N7o4u7DfKKyzBjUyym/3IaKj6UTER6yORRXjR16lSEhYUhJCQEH3/8sWZ7TEwMSktLERISotnm4+ODVq1aITIyEt27d0dkZCT8/f3h5OSkaRMaGoopU6bgwoUL6NSpEyIjI7WOUdmm8rZYSUkJYmJiMGvWLM1+sViMkJAQREZG1lh3cXExiouLNX9XqVQAgNLSUpSW8of0gyrPCc+NftCX/nC2kmL9hECsOpyAZQev48/YOzh5Iwv/N8ofXdxtHn4AA6IvfUIV2B/6pTH7o67HrHfI+eWXX3Dq1ClER0dX2ZeSkgJTU1NYW1trbXdyckJKSoqmzf0Bp3J/5b7a2qhUKty9exfZ2dkoLy+vtk1cXFyNtS9atAjz5s2rsn3Pnj0wNzev8XXGLiIiQtcl0H30pT9aA3jbF/jvFQmScorw4vdRGNhCwOCWakiMbEiDvvQJVWB/6JfG6I/Cwro9E1ivkHPr1i1Mnz4dERERkMvlj1SYLs2aNQvh4eGav6tUKri5uWHQoEFQKBQ6rEw/lZaWIiIiAgMHDoRUKtV1OUZPX/vj5eIyzN8Rhz9O38GeJBFSRTb4crQ/3G0N/x8O+tonxor9oV8asz8q78Q8TL1CTkxMDNLS0tC5c2fNtvLychw+fBjLli3D7t27UVJSgpycHK2rOampqXB2dgYAODs7VxkFVTn66v42D47ISk1NhUKhgJmZGSQSCSQSSbVtKo9RHZlMBplMVmW7VCrlN0QteH70i771h41Uiq+e74T+Pk748I9zOHM7F08vj8Tcp9pjVGBLiEQiXZfY6PStT4wd+0O/NEZ/1PV49bqoPGDAAJw7dw6xsbGaP126dMHYsWM1/y+VSrFv3z7Na+Lj45GYmIjg4GAAQHBwMM6dO6c1CioiIgIKhQK+vr6aNvcfo7JN5TFMTU0RGBio1UatVmPfvn2aNkTUtIZ3dMWuGU+im6ctCkrK8e6Ws5j282nkFvL5CCLSjXpdybGysoKfn5/WNgsLC9jZ2Wm2T5w4EeHh4bC1tYVCocBbb72F4OBgdO/eHQAwaNAg+Pr64qWXXsLnn3+OlJQUfPTRR5g6darmKssbb7yBZcuW4b333sOrr76K/fv349dff8WOHTs07xseHo7x48ejS5cu6NatG5YsWYKCggJMmDDhsU4IET26FtZm+Hlyd6w6dA1fRVzGjrPJOHUzG189H4Dure0AAOVqAVEJWUjLK4KjlRzdPG0hERv+1R4ianqPNLqqNl999RXEYjFGjhyJ4uJihIaGYsWKFZr9EokE27dvx5QpUxAcHAwLCwuMHz8e8+fP17Tx9PTEjh07MHPmTCxduhQtW7bE999/j9DQUE2b559/Hunp6Zg9ezZSUlIQEBCAXbt2VXkYmYialkQswtR+3ujlbY8Zm2KRkFGAF747jil9vNDORYGFf19Ccm6Rpr2LUo45w30x2M9Fh1UTkSESCYIg6LoIXVGpVFAqlcjNzeWDx9UoLS3F33//jaFDh/L+th5ojv1RUFyGBdsv4pfoWzW2qbyGs3Jc52YXdJpjnxgy9od+acz+qOvvbyMb6ElETclCZoJPR3bA8hc6oaYbUpX/ypq37SLK1Ub7by4iagQMOUTU6GwtZagtvggAknOLEJWQ1VQlEZERYMghokaXllf08EYA0lR1a0dEVBcMOUTU6Byt6jZ56OKIy9hw/Cbyi8sauSIiMgYMOUTU6Lp52sJFKa/xuZxKN7MK8dHW8+j2yV7M+v0szt3ObZL6iMgwMeQQUaOTiEWYM7xiss8Hg47o3p//G9UBH4W1Q2sHCxSWlOPnqFsYvuwfDP/mH/wclYgCXt0honpiyCGiJjHYzwUrx3WGs1L71pWzUo6V4zpjVBc3TOrdGvvC++CX17rjqY6uMJWIcS4pF7N+P4eghfvw7z/O4cIdXt0horpp8MkAiYhqMtjPBQN9nWud8VgkEqF7azt0b22HzPxi/HbqNn6OuoWEjAL8dCIRP51IREc3a4zt1grDOrrA3JQ/xoioevzpQERNSiIWIdjLrk5t7SxleO1JL0zq1RrHr2fip6hE7LmQgjO3cnDmVg4WbL+IZzq3wItBreDjzAk9iUgbQw4R6T2xWIQe3vbo4W2PjPxibD55Gz9HJSIxqxD/jbyJ/0beROdW1ngxyB1h/i4wM5XoumQi0gMMOUTUrNhbyjClrxdef7I1jl7LwMYTiYi4mIpTiTk4lZiD+dsu4NnOLTE2qBXaOFnpulwi0iGGHCJqlsRiEXq3cUDvNg5IyyvSXN25nX0Xa4/dwNpjN9DVwwYvdGuFof4ukEt5dYfI2DDkEFGz52glx9R+3pjSxwuHr6Rj44lE7ItLQ/SNbETfyMa8bRcxsnNLvBjUCt6Olroul4iaCEMOERkMsViEvm0d0betI1JVRdgUfQu/RCXiTm4RfjyagB+PJqCbpy3GBrXCYD9nyEx4dYfIkDHkEJFBclLI8faANpjazxuHLqdh44lE7I9LQ1RCFqISsmBjLsWowJZ4oVsrtHbg1R0iQ8SQQ0QGTSIWob+PE/r7OOFOzl1sir6FTdG3kKIqwndHEvDdkQQEt7bDi0GtENreGaYmnCOVyFAw5BCR0XC1NsPMgU/grf7eOBCfjo0nbuLg5XREXs9E5PVM2FmYYlSXlnixWyu421noulwiekwMOURkdEwkYgz0dcJAXyfczi7UXN1JyyvGt4eu49tD19HL2x4vBrXCQF8nSCVVr+6UqwWcSMhCTIYIdglZCPZ21Jq5mYh0jyGHiIxaSxtz/GtQW0wf0Ab74tLw04lEHLmSjn+uZuCfqxmwt5ThuS4Vz+642ZoDAHadT8a8bReRnFsEQIL/XjkJF6Ucc4b7YrCfi24/EBFpMOQQEaHi6k5oe2eEtnfGraxC/BKdiE3Rt5GRX4wVB69h5aFr6N3GAe2crbD68HUID7w+JbcIUzacwspxnRl0iPQEn7AjInqAm6053g31QeSs/lg5tjN6t7GHIACHL6fj22oCDgDNtnnbLqJcXV0LImpqDDlERDWQSsQY4u+C9RODcOjdvhje0bXW9gKA5NwiRCVkNU2BRFQrhhwiojpwt7NASDvHOrU9dDkNRaXljVwRET0Mn8khIqojRyt5ndqtOnQd647dRE9vewxo54j+Po5wUtTttUTUcBhyiIjqqJunLVyUcqTkFlX7XA4AmJtKYCmTIC2vBHsvpWLvpVQAgF8LBfq3dUT/dk7o0EIJMYebEzU6hhwiojqSiEWYM9wXUzacggjQCjqVkWXxcx0R2t4ZF5NV2H8pDfvi0nDmdg7OJ6lwPkmFr/dfhb2lKfq1rbjC06uNPazkUh18GiLDx5BDRFQPg/1csHJc5/vmyang/MA8Oe1dlWjvqsRbA9ogPa8YB+PTcCA+DYcvZyAjvwSbY25jc8xtSCUiBHnaob9PRejxsOdMy0QNhSGHiKieBvu5YKCvMyKvpmHPkRMY1Duo1hmPHaxkGN3FDaO7uKGkTI3oG1nYdykN++NScSOzUDPx4PztF9HawQIDfBzR38cJXTxsqp1tmYjqhiGHiOgRSMQiBHnaIvOSgCBP2zov6WBqIkZPb3v09LbH7OG+uJ6ej/1xadh3KQ3RN7JwPb0A19MrFg61kpvgySccMMDHEX3bOsLWwrSRPxWRYWHIISLSodYOlmjtYIlJvVtDVVSKI5czsC8uFQfj05FVUIIdZ5Ox42wyRCKgcysbzW0tH2criER8eJmoNgw5RER6QiGXIqyDC8I6uKBcLeDM7RzNw8uXklWIuZmNmJvZ+GJ3PFyVcvRv54gBPk4I9rKDXCrRdflEeochh4hID0nEInRuZYPOrWzwTmhb3Mm5iwPxadh/KQ3/XM3AndwibDieiA3HEyGXitHTyx79783J46I003X5RHqBIYeIqBlwtTbD2CB3jA1yx92SckRez8C+S2k4EJeGO7lF2BdXccUHAHxdFBW3tdo5omNL61qfFypXC4hKyEJaXhEcreToVo/ni4j0HUMOEVEzY2YqQX8fJ/T3cYIgCIhLycP+uDTsj0vDqcRsXExW4WKyCssOXIWdhSn63puTp/cT9lDcNyfPrvPJVYbCuzwwFJ6oOWPIISJqxkQiEdq5KNDORYGp/byRmV+MQ5fTsS8uDYcvpyOzoAS/nbqN307dholYhG6etujv4wgTiQjz/rpYZebmlNwiTNlwCivHdWbQoWaPIYeIyIDYWcrwbOeWeLZzS5SWq3HyRjb2x6ViX1warqcX4Ni1TBy7llnj6wVUzN48b9tFDPR15q0ratYYcoiIDJRUIkawlx2Cvezw7zBf3MgowP64NPx+6jbO31HV+DoBQHJuEaISshDsZdd0BRM1ME6lSURkJDzsLfBqL09MfrJ1ndov2nkJ6yNv4Fp6PgShpiVJifQXr+QQERkZRyt5ndqdvZ2Ls7dzAQDOCjl6eNuhp1fFbM3Oyrodg0iXGHKIiIxMN09buCjlSMktqvLgMVDxTI6tpSnGB7sj8loWYm5mI0VVhN9PJeH3U0kAgNYOFujpZY8e926HWZtzyQnSPww5RERGRiIWYc5wX0zZcAoiQCvoVD5m/MkIPwz2c8HbA4Ci0nKcvJGNo9cycOxqBs4l5d5bY6sA64/fhEgEtHdVVIQeb3t09bCBuSl/vZDu8auQiMgIDfZzwcpxnavMk+NczTw5cqkEvdrYo1cbewBA7t1SHL+eichrmTh6NQNX0vJxPkmF80kqfHv4OqQSETq1srl3a8sOHd2suZo66QRDDhGRkRrs54KBvs71nvFYaSZFaHtnhLZ3BgCkqYpw7F7gOXYtE0k5dxGVkIWohCx8tRcwN5Wgm6ftvSs9dmjnrICYQ9OpCTDkEBEZMYlY9NjDxB0Vcozo1AIjOrWAIAi4mVl479ZWJo5dy0B2YSkOxqfjYHw6AMDWwhTBre00DzK725lzRXVqFAw5RETUYEQiETzsLeBhb4GxQe5QqyuWnTh2LQNHr2bgREIWsgpKsONcMnacSwYAtLA2Qw8vO/T0rniQ2VHBkVvUMBhyiIio0YjFIvi6KuDrqsCk3q1RWq7GmVs5OHo1E0evZeB0YjaScu5ic8xtbI65DQDwdrRETy879PC2R/fWdlCaSR/yLhULjZ5IyEJMhgh2CVkI9nbkbM3EkENERE1HKhGji4ctunjYYnpIGxSWlCH6RjaO3Xue5/ydXFxNy8fVtHysi7wJsQjwb6FED2979PSyRxcPG8ilEq1jai80KsF/r5zkQqMEgCGHiIh0yNzUBH2ecECfJxwAADmFJTh+PVNzped6egHO3M7Fmdu5WHnwGkwlYnR2t9YMV0/JvYtpG09zoVGqFkMOERHpDWtzUwz2c9EEk+Tcuzh2L/Acu5qJFFURjl/PwvHrWfgy4nKVeX4qcaFRAhhyiIhIj7kozTAysCVGBraEIAhIyCjA0WuZOHY1A4evpKOguLzG13KhUWLIISKiZkEkEqG1gyVaO1jipe7u2Ho6CTM2xT70dbP/PI+h/i7o6mGLTq2sYSHjrz5jwZ4mIqJmyamOQ82vpOVj6b4rACrmBfJzVaCLhy26etiiq4cN7CxljVkm6RBDDhERNUt1WWjU3lKGt0O8EXMjG9E3KoarVz7I/MM/CQAALweLe4HHFt08bdHSxoyTExoIhhwiImqW6rLQ6IIR7THYzwUvdfcAACTl3MXJGxVLTkTfyMLl1HxcSy/AtfQC/BJ9CwDgpJBpAk9XD1u0dbLiMhTNFEMOERE1W/VZaBSomF25RUALPB3QAkDFkPWTN7IRfSMLUTeycO52LlJVxdh+Nhnbz1bMyGwlN0EXdxt0vRd6OrRUQmaiPVcP6SeGHCIiatYqFxqNvJqGPUdOYFDvoDrPeGxtbooQXyeE+DoBAO6WlCP2Vg6ib1Rc6Tl1Mxt5RWU4EJ+OA/fW3jI1ESOgpTW6etqgi4ctAt1toJA/fFZmanoMOURE1OxJxCIEedoi85KAoDqspF4TM1MJgr3sNEPOy8rVuJSch6gbWYhOyMLJm1nIyC9B1L0rP8A1iEWAj7MCXT0qrvZ087Dl+lt6giGHiIioBiYSMfxbKuHfUomJvTw1c/VE38hCVEI2Tt7Mws3MQlxMVuFisgrrIm8CAFrZmt97rqfiak9re4s6PcxcrhYQlZCFtLwiOFrJ0e0xAhsx5BAREdXZ/XP1PN+1FQAgVVWE6BtZOHkjG1EJWbiUokJiViESswrx26mKRUftLU3Rxd323nM9NvB1UcBEItY6tvYaXBW4BtfjYcghIiJ6DE4KOYZ1cMWwDq4AAFVRKU7drHiYOTohG7G3c5CRX4JdF1Kw60IKAMDCVILO7jb3go8N0vOKMeOXWK7B1cAYcoiIiBqQQi5F37aO6NvWEQBQXFaOc7dz73uup+Jh5iNXMnDkSkatx+IaXI+HIYeIiKgRyUwk6OJhiy4etkDfiuduLqfm3XuuJwtHr2Ygu7C0xtdXrsH1z9V09HnCscnqNgQMOURERE1IIhahnYsC7VwUeDnYA3+eTsL0OqzB9cqaaPi6KNDRzRoBLa3R0c0a3o6WvLpTC4YcIiIiHarrcHNBAC7cUeHCHRU2nkgEUPFsj39LpVbwcVHKuSzFPeKHN/mflStXokOHDlAoFFAoFAgODsbOnTs1+4uKijB16lTY2dnB0tISI0eORGpqqtYxEhMTERYWBnNzczg6OuLdd99FWVmZVpuDBw+ic+fOkMlk8Pb2xtq1a6vUsnz5cnh4eEAulyMoKAhRUVH1+ShERER6oXINrppiiQgVo6wOv9cPK8Z2xutPtkaQpy3MTSUoKCnH8etZ+PbQdUz56RR6fLofQQv3YfJ/T2L5gav450oGcu/WfCvM0NXrSk7Lli3x6aefok2bNhAEAevWrcPTTz+N06dPo3379pg5cyZ27NiBzZs3Q6lUYtq0aXj22Wdx9OhRAEB5eTnCwsLg7OyMY8eOITk5GS+//DKkUikWLlwIAEhISEBYWBjeeOMN/PTTT9i3bx8mTZoEFxcXhIaGAgA2bdqE8PBwrFq1CkFBQViyZAlCQ0MRHx8PR0feryQiouajLmtwzRnui1a25mhla46h/hWjrMrVAq6m5ePMrRycvpWDM7dyEJ+ah7S8YkRcTEXExf9dZGjtYIEAN2sEuFmjY0tr+LhYGcXSFCJBEKpbvLXObG1t8cUXX2DUqFFwcHDAxo0bMWrUKABAXFwc2rVrh8jISHTv3h07d+7EsGHDcOfOHTg5VUyhvWrVKrz//vtIT0+Hqakp3n//fezYsQPnz5/XvMeYMWOQk5ODXbt2AQCCgoLQtWtXLFu2DACgVqvh5uaGt956Cx988EGda1epVFAqlcjNzYVCoXic02CQSktL8ffff2Po0KGQSjllua6xP/QP+0S/NPf+aIh5cu6WlOPCnVzE3srBmdu5iL2VjVtZd6u0M5WI0c5VgU5u1ujopkTHltbwsLNo0IVIG7M/6vr7+5GfySkvL8fmzZtRUFCA4OBgxMTEoLS0FCEhIZo2Pj4+aNWqlSbkREZGwt/fXxNwACA0NBRTpkzBhQsX0KlTJ0RGRmodo7LNjBkzAAAlJSWIiYnBrFmzNPvFYjFCQkIQGRlZa83FxcUoLi7W/F2lUgGo6IjSUuO9nFeTynPCc6Mf2B/6h32iX5p7fwxoa4++bXrj5M1spOUVw9FKhi7uNpCIRXX+TCYioGMLK3RsYQXADQCQWVCCc0m5OHs7F2dvq3A2KRfZhaU4c+/qTyWF3AT+LZTo2FKJDi0V6NhSCXtL2SN9lnK1gOPX0hGTIYLyShq6ezk06APSdT4f9T3wuXPnEBwcjKKiIlhaWuKPP/6Ar68vYmNjYWpqCmtra632Tk5OSEmpmPwoJSVFK+BU7q/cV1sblUqFu3fvIjs7G+Xl5dW2iYuLq7X2RYsWYd68eVW279mzB+bm5g//8EYqIiJC1yXQfdgf+od9ol8MoT8kADIB7L7UcMf0BuBtDzxjB2QWAzfzRbiZL0Jivgi38wFVURmOXsvE0WuZmtfYmApwtxTQylKAu5UANwtA9pC7XGcyRfj9hhg5JSIAEvz3SiysTQU866FGR7vHunmkUVhYWKd29Q45bdu2RWxsLHJzc7FlyxaMHz8ehw4dqneBujBr1iyEh4dr/q5SqeDm5oZBgwbxdlU1SktLERERgYEDBzbLS7+Ghv2hf9gn+oX98ehKy9W4nJqPs0kVV3vO3M7B1fQCZJeIkJ0lQmxWRTuxCGjjaIkOLZXo0KLiis8TjpaaJSp2X0jFmsgzVWZuzi0RYc1lCb4Z0xGh7Z3wuCrvxDxMvUOOqakpvL29AQCBgYGIjo7G0qVL8fzzz6OkpAQ5OTlaV3NSU1Ph7OwMAHB2dq4yCqpy9NX9bR4ckZWamgqFQgEzMzNIJBJIJJJq21QeoyYymQwyWdVLb1KplN8QteD50S/sD/3DPtEv7I/6k0qBAHcZAtztNNvyi8tw7nYuztzO0dzaupNbhPjUfMSn5mNzTBIAQC4Vw7+FEv4tlPj9VFKVgAP8b+bmT3bGY0iHFo9966qu/fvY8+So1WoUFxcjMDAQUqkU+/btw8iRIwEA8fHxSExMRHBwMAAgODgYn3zyCdLS0jSjoCIiIqBQKODr66tp8/fff2u9R0REhOYYpqamCAwMxL59+zBixAhNDfv27cO0adMe9+MQERERAEuZCYK97BDs9b/gk6YquvdQcw7O3KoIQHlFZYi+kY3oG9m1Hq9y5uaohCytYzameoWcWbNmYciQIWjVqhXy8vKwceNGHDx4ELt374ZSqcTEiRMRHh4OW1tbKBQKvPXWWwgODkb37t0BAIMGDYKvry9eeuklfP7550hJScFHH32EqVOnaq6wvPHGG1i2bBnee+89vPrqq9i/fz9+/fVX7NixQ1NHeHg4xo8fjy5duqBbt25YsmQJCgoKMGHChAY8NURERHQ/R4Ucg9o7Y1D7ijsnarWAhMwCxCbmYGts0kPX4gKAtLyih7ZpKPUKOWlpaXj55ZeRnJwMpVKJDh06YPfu3Rg4cCAA4KuvvoJYLMbIkSNRXFyM0NBQrFixQvN6iUSC7du3Y8qUKQgODoaFhQXGjx+P+fPna9p4enpix44dmDlzJpYuXYqWLVvi+++/18yRAwDPP/880tPTMXv2bKSkpCAgIAC7du2q8jAyERERNR6xWAQvB0t4OVjC1dqsTiHH0apuMzw3hHqFnB9++KHW/XK5HMuXL8fy5ctrbOPu7l7ldtSD+vbti9OnT9faZtq0abw9RUREpCcqZ25OyS2q9rkcEQBnpRzdPG2brKZ6LetAREREVJ3KmZsBVFmi4v6Zm5tyQVGGHCIiImoQg/1csHJcZzgrtW9JOSvlWDmuc51nbm4oXIWciIiIGsxgPxcM9HVG5NU07DlyAoN6ByHY27FJr+BUYsghIiKiBiURixDkaYvMSwKCPG11EnAA3q4iIiIiA8WQQ0RERAaJIYeIiIgMEkMOERERGSSGHCIiIjJIDDlERERkkBhyiIiIyCAx5BAREZFBYsghIiIig2TUMx4LQsU6qSqVSseV6KfS0lIUFhZCpVJBKpXquhyjx/7QP+wT/cL+0C+N2R+Vv7crf4/XxKhDTl5eHgDAzc1Nx5UQERFRfeXl5UGpVNa4XyQ8LAYZMLVajTt37sDKygoikW7W1dBnKpUKbm5uuHXrFhQKha7LMXrsD/3DPtEv7A/90pj9IQgC8vLy4OrqCrG45idvjPpKjlgsRsuWLXVdht5TKBT8gaFH2B/6h32iX9gf+qWx+qO2KziV+OAxERERGSSGHCIiIjJIDDlUI5lMhjlz5kAmk+m6FAL7Qx+xT/QL+0O/6EN/GPWDx0RERGS4eCWHiIiIDBJDDhERERkkhhwiIiIySAw5REREZJAYcoiIiMggMeRQFYsWLULXrl1hZWUFR0dHjBgxAvHx8boui+759NNPIRKJMGPGDF2XYrSSkpIwbtw42NnZwczMDP7+/jh58qSuyzJK5eXl+M9//gNPT0+YmZnBy8sLCxYseOjCjdRwDh8+jOHDh8PV1RUikQhbt27V2i8IAmbPng0XFxeYmZkhJCQEV65caZLaGHKoikOHDmHq1Kk4fvw4IiIiUFpaikGDBqGgoEDXpRm96OhofPvtt+jQoYOuSzFa2dnZ6NmzJ6RSKXbu3ImLFy/iyy+/hI2Nja5LM0qfffYZVq5ciWXLluHSpUv47LPP8Pnnn+Obb77RdWlGo6CgAB07dsTy5cur3f/555/j66+/xqpVq3DixAlYWFggNDQURUVFjV4b58mhh0pPT4ejoyMOHTqEJ598UtflGK38/Hx07twZK1aswMcff4yAgAAsWbJE12UZnQ8++ABHjx7FkSNHdF0KARg2bBicnJzwww8/aLaNHDkSZmZm2LBhgw4rM04ikQh//PEHRowYAaDiKo6rqyv+9a9/4Z133gEA5ObmwsnJCWvXrsWYMWMatR5eyaGHys3NBQDY2trquBLjNnXqVISFhSEkJETXpRi1v/76C126dMHo0aPh6OiITp064bvvvtN1WUarR48e2LdvHy5fvgwAOHPmDP755x8MGTJEx5URACQkJCAlJUXr55ZSqURQUBAiIyMb/f2NehVyeji1Wo0ZM2agZ8+e8PPz03U5RuuXX37BqVOnEB0dretSjN7169excuVKhIeH48MPP0R0dDTefvttmJqaYvz48bouz+h88MEHUKlU8PHxgUQiQXl5OT755BOMHTtW16URgJSUFACAk5OT1nYnJyfNvsbEkEO1mjp1Ks6fP49//vlH16UYrVu3bmH69OmIiIiAXC7XdTlGT61Wo0uXLli4cCEAoFOnTjh//jxWrVrFkKMDv/76K3766Sds3LgR7du3R2xsLGbMmAFXV1f2B/F2FdVs2rRp2L59Ow4cOICWLVvquhyjFRMTg7S0NHTu3BkmJiYwMTHBoUOH8PXXX8PExATl5eW6LtGouLi4wNfXV2tbu3btkJiYqKOKjNu7776LDz74AGPGjIG/vz9eeuklzJw5E4sWLdJ1aQTA2dkZAJCamqq1PTU1VbOvMTHkUBWCIGDatGn4448/sH//fnh6euq6JKM2YMAAnDt3DrGxsZo/Xbp0wdixYxEbGwuJRKLrEo1Kz549q0ypcPnyZbi7u+uoIuNWWFgIsVj7V5lEIoFardZRRXQ/T09PODs7Y9++fZptKpUKJ06cQHBwcKO/P29XURVTp07Fxo0b8eeff8LKykpz31SpVMLMzEzH1RkfKyurKs9DWVhYwM7Ojs9J6cDMmTPRo0cPLFy4EM899xyioqKwevVqrF69WtelGaXhw4fjk08+QatWrdC+fXucPn0aixcvxquvvqrr0oxGfn4+rl69qvl7QkICYmNjYWtri1atWmHGjBn4+OOP0aZNG3h6euI///kPXF1dNSOwGpVA9AAA1f5Zs2aNrkuje/r06SNMnz5d12UYrW3btgl+fn6CTCYTfHx8hNWrV+u6JKOlUqmE6dOnC61atRLkcrnQunVr4d///rdQXFys69KMxoEDB6r9nTF+/HhBEARBrVYL//nPfwQnJydBJpMJAwYMEOLj45ukNs6TQ0RERAaJz+QQERGRQWLIISIiIoPEkENEREQGiSGHiIiIDBJDDhERERkkhhwiIiIySAw5REREZJAYcoiIiMggMeQQERGRQWLIISIiIoPEkENEREQG6f8BNPdurbHlydoAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Nuevamente, no es fácilmente identificable el punto de inflexión de la curva, por lo que se calcula el coeficiente de silhouette."
],
"metadata": {
"id": "MEisDA3kCB1m"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import silhouette_score\n",
"random_state = 20\n",
"k=2\n",
"while k < 7:\n",
" kmeans_scaled2 = KMeans(n_clusters=k, n_init=20, max_iter=300, random_state=random_state)\n",
" kmeans_scaled2.fit(scaled2_df)\n",
" y_pred = kmeans_scaled2.predict(scaled2_df)\n",
" print(\"Kmeans silhouette para k =\",str(k), silhouette_score(scaled2_df, kmeans_scaled2.labels_))\n",
" k=k+1"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "KmC7Dp_ERbkC",
"outputId": "4d6f03ad-ef29-4a66-c411-744cbae44a9c"
},
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Kmeans silhouette para k = 2 0.27215772748597616\n",
"Kmeans silhouette para k = 3 0.1873573938236654\n",
"Kmeans silhouette para k = 4 0.185703573112081\n",
"Kmeans silhouette para k = 5 0.1893515048309627\n",
"Kmeans silhouette para k = 6 0.16383685754736438\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"En base al coeficiente de silhouette para k=2 igual a 0.272, que es el mayor, se selecciona k=2."
],
"metadata": {
"id": "-7Q6FAwjDZIw"
}
},
{
"cell_type": "code",
"source": [
"random_state = 20\n",
"kmeans_scaled2 = KMeans(n_clusters=2, n_init=20, max_iter=300, random_state=random_state)\n",
"kmeans_scaled2.fit(scaled2_df)\n",
"y_pred = kmeans_scaled2.predict(scaled2_df)"
],
"metadata": {
"id": "CDchI4UjYARy"
},
"execution_count": 19,
"outputs": []
},
{
"cell_type": "code",
"source": [
"reduX = PCA(n_components=2, random_state=0).fit_transform(scaled2_df)\n",
"plt.scatter(reduX[:, 0], reduX[:, 1], c=kmeans_scaled2.labels_)\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 430
},
"id": "cVDttNHgTjDA",
"outputId": "22059a2a-cffe-4b07-f2b7-c24d0f893d0f"
},
"execution_count": 20,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX+ElEQVR4nOzddZhUZfvA8e9zzuR2sDQCimKLSaivhWIhtmJgd9er+DMwXrG7ExUxX8XGF7DFwk4UBAnp7Zo6z++PM1vs5O7M7s5yf65rL9g5dc/u7Jx7nrgfpbXWCCGEEEJkCKOzAxBCCCGESIYkL0IIIYTIKJK8CCGEECKjSPIihBBCiIwiyYsQQgghMookL0IIIYTIKJK8CCGEECKjSPIihBBCiIzi6OwAUs2yLP755x9yc3NRSnV2OEIIIYRIgNaaqqoq+vbti2HEblvpdsnLP//8w4ABAzo7DCGEEEK0wZIlS+jfv3/Mfbpd8pKbmwvYTz4vL6+ToxFCCCFEIiorKxkwYEDjfTyWbpe8NHQV5eXlSfIihBBCZJhEhnzIgF0hhBBCZBRJXoQQQgiRUSR5EUIIIURGaXPy8vHHHzN27Fj69u2LUorp06c3bgsEAlx++eVstdVWZGdn07dvXyZMmMA///wT85yTJk1CKdXia9NNN21riEIIIYTohtqcvNTU1LDNNtvwwAMPtNpWW1vLt99+y9VXX823337Lq6++yrx58zjooIPinneLLbZg+fLljV+ffvppW0MUQgghRDfU5tlG++23H/vtt1/Ebfn5+cycObPFY/fffz877bQTixcvZoMNNogekMNB79692xqWEEIIIbq5DhvzUlFRgVKKgoKCmPv9+eef9O3blw033JBjjz2WxYsXd0yAQgghhMgIHVLnpb6+nssvv5zx48fHrL0yfPhwpkyZwtChQ1m+fDnXXXcdu+66Kz///HPUojU+nw+fz9f4fWVlZcrjF0IIIUTXkfbkJRAIcOSRR6K15qGHHoq5b/NuqK233prhw4czcOBAXnrpJU455ZSIx0yePJnrrrsupTELIYSwaa0h8C2E/gaVB+6dUcrb2WGJ9Vxau40aEpe///6bmTNnJl3xtqCggE022YT58+dH3WfixIlUVFQ0fi1ZsqS9YQshhAC0fy56zRh06Xh0xRXo8rPRq0ahax63kxohOknakpeGxOXPP/9k1qxZFBcXJ32O6upqFixYQJ8+faLu43a7G5cCkCUBhBAiNXTgR3TpCRBaZ9yhrkFX3Qo1rWeaCtFR2py8VFdX8/333/P9998DsHDhQr7//nsWL15MIBDg8MMPZ+7cuTz33HOEQiFWrFjBihUr8Pv9jefYa6+9uP/++xu/v/TSS/noo49YtGgRc+bM4ZBDDsE0TcaPH9/2ZyiEECJpuupOIARYkbdXP4i2Sjs0JiEatHnMy9y5c9ljjz0av7/44osBOOGEE5g0aRJvvPEGAMOGDWtx3AcffMDuu+8OwIIFC1izZk3jtqVLlzJ+/HjWrl1LSUkJu+yyC1988QUlJSVtDVMIIUSSdGgV+OfE2SsEde9A9nEdEpMQzbU5edl9991j9nkm0h+6aNGiFt+/8MILbQ1HCCFEqlhrE9jJRFtriL/+rxCpJ2sbCSGEaMkogbhpSQhl9uqIaIRoRZIXIYQQLSizB7h2AcwYeznBs39HhSREC5K8CCGEaEXlXgo4iXabULkXooz8Do1JiAaSvAghhGhFOTdDFT8Hjk3X2VCIypuEyj61cwITgg5aHkAIIUTmUc6tUD2mowO/2fVeVC64dkQpZ2eHJtZzkrwIIYSISTk3A+dmnR2GEI2k20gIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJkFElehBBCCJFRJHkRQgghREaR5EUIIYQQGUWSFyGEEEJklDYnLx9//DFjx46lb9++KKWYPn16i+1aa6655hr69OmD1+tl9OjR/Pnnn3HP+8ADDzBo0CA8Hg/Dhw/nq6++amuIQgghhOiG2py81NTUsM022/DAAw9E3H7rrbdy77338vDDD/Pll1+SnZ3NmDFjqK+vj3rOF198kYsvvphrr72Wb7/9lm222YYxY8awatWqtoYphBBCiG5Gaa11u0+iFK+99hoHH3wwYLe69O3bl0suuYRLL70UgIqKCnr16sWUKVM4+uijI55n+PDh7Ljjjtx///0AWJbFgAEDOO+887jiiisSiqWyspL8/HwqKirIy8tr71MTQgghRAdI5v6dljEvCxcuZMWKFYwePbrxsfz8fIYPH87nn38e8Ri/388333zT4hjDMBg9enTUYwB8Ph+VlZUtvoQQQgjRfaUleVmxYgUAvXr1avF4r169Greta82aNYRCoaSOAZg8eTL5+fmNXwMGDGhn9EIIIYToyjJ+ttHEiROpqKho/FqyZElnhySEEEKINEpL8tK7d28AVq5c2eLxlStXNm5bV48ePTBNM6ljANxuN3l5eS2+hBBCCNF9pSV5GTx4ML1792b27NmNj1VWVvLll18ycuTIiMe4XC623377FsdYlsXs2bOjHiOEEEKI9Y+jrQdWV1czf/78xu8XLlzI999/T1FRERtssAEXXnghN954IxtvvDGDBw/m6quvpm/fvo0zkgD22msvDjnkEM4991wALr74Yk444QR22GEHdtppJ+6++25qamo46aST2v4MhRBCCNGttDl5mTt3LnvssUfj9xdffDEAJ5xwAlOmTOHf//43NTU1nH766ZSXl7PLLrswY8YMPB5P4zELFixgzZo1jd8fddRRrF69mmuuuYYVK1YwbNgwZsyY0WoQrxBCCCHWXymp89KVSJ0XIYQQIvN0ep0XIYQQQoh0keRFCCGEEBlFkhchhBBCZBRJXoQQQgiRUSR5EUIIIURGkeRFCCGEEBlFkhchhBBCZBRJXoQQQgiRUSR5EUIIIURGafPyAEIIIbo+bVVC4CdAg3NLlFHQ2SEJ0W6SvAghRDekdT268maoewXwhx91or2HoHInoozszgxPiHaR5EUIIboZrYPostPB/xVgNdsSgLpX0ME/oGgqSrk6K0Qh2kXGvAghRHfjmwn+L2iZuDSwIPA91L/VwUEJkTqSvAghRDeja18i9tu7Ed5HiMwkyYsQQnQ3oWVEbnVpYIX3ESIzSfIihBDdjVECqBg7KDB6dFQ0QqScJC9CCNHNKO+hgI6zz2EdE4wQaSDJixBCdDfeA8ExFDAjbDTBHAjeQzo6KiFSRpIXIYToZpRyo4qeBveurTe6RqCKnpM6LyKjSZ0XIYTohpRRhCp8FB38O1zvRYNrB5Rjw84OTYh2k+RFCCG6MeUYCI6BnR2GECkl3UZCCCGEyCiSvAghhBAio0jyIoQQQoiMIsmLEEIIITKKJC9CCCGEyCiSvAghhBAio0jyIoQQQoiMIsmLEEIIITKKJC9CCCGEyCiSvAghhBAio0jyIoQQQoiMIsmLEEIIITKKJC9CCCGEyCiSvAghhBAio0jyIoQQQoiMIsmLEEIIITKKJC9CCCGEyCiOzg5ACCFE16W1huCvEFoKKh9cO6CU3DpE55JXoBBCiIi0/xt05bUQ/KPpQaMH5FyKyjq08wIT6720dhsNGjQIpVSrr3POOSfi/lOmTGm1r8fjSWeIQgghItD+H9ClEyA4v+UGaw268gp07bTOCUwI0tzy8vXXXxMKhRq///nnn9l777054ogjoh6Tl5fHvHnzGr9XSqUzRCGEEBHoqslACLCibL8FPAejjKwOjUsISHPyUlJS0uL7m2++mY022ojddtst6jFKKXr37p3OsIQQ3YwOLkHXvQiB30B5Ue49wbs/SknLbVvo4GIIfBtnpzrwzQLvQR0TlBDNdNhsI7/fz9SpUzn55JNjtqZUV1czcOBABgwYwLhx4/jll19intfn81FZWdniSwix/tC109BrRkPN4+D/BHwz7W6N1WPQwUWdHV5mslYlsJMJoRVpD0WISDoseZk+fTrl5eWceOKJUfcZOnQoTz75JK+//jpTp07FsixGjRrF0qVLox4zefJk8vPzG78GDBiQhuiFEF2R9n2GrpwEaJq6N7T9j7UKXXYSWgc6JbaMZpTE34cQmD3SHooQkSitte6IC40ZMwaXy8Wbb76Z8DGBQIDNNtuM8ePHc8MNN0Tcx+fz4fP5Gr+vrKxkwIABVFRUkJeX1+64hRBdl1U6AfxfEW1cBoAquAfl2a/jguomrDWHQ/Bnov9sPaiec1BGTkeGJbqxyspK8vPzE7p/d8hU6b///ptZs2bx6quvJnWc0+lk2223Zf78+VH3cbvduN3u9oYohMgwWgfA/yWNLS0RmWjfR5K8tIHKu9yebYQi0s9Y5V4oiYvoNB3SbfTUU0/Rs2dPDjjggKSOC4VC/PTTT/Tp0ydNkQkhMleI2IkL9nbpNmoT5doRVfg4mP3W2ZCHyr0ask7qnMCEoANaXizL4qmnnuKEE07A4Wh5uQkTJtCvXz8mT54MwPXXX8+IESMYMmQI5eXl3Hbbbfz999+ceuqp6Q5TCJFhlPKgzUEQ+pvoSYxGObfswKi6F+XeGXrMgsA3EFoCqhDco1BKWrtF50p78jJr1iwWL17MySef3Grb4sWLMYymxp+ysjJOO+00VqxYQWFhIdtvvz1z5sxh8803T3eYQogMpLJPRFdeF20r4ALvIR0ZUrejlAGuHYEdOzsUIRp12IDdjpLMgB8hRGbTOoQuvwh8M7B7wRsGl5oAqIL7UJ7RnRWeECIJydy/ZVVpIUTGUspEFdyFyrsZHJsCDlBe8ByIKv6vJC5CdFOyMKMQIqMpZULWobJQYCfTVg3Uv4n2fQzaD86tUVlHokypmC5ST5IXIYQQ7aIDv6HLTgKrlMap1f5P0TUPQf4tKFlCQKSYdBsJIYRoM23VhBOX8oZHwv9aQAhd8W+0/4fOCU50W5K8CCFEN6S1D+3/Fu3/Gm2lcc23+jfCLS7RKvEqdM1T6bu+WC9Jt5EQokvTWoP/c7T/c8BCObcD9+72WBfRitZBdPUDUPsM6Krwoy609xBU7uUpr4qrfR8RrQqvLQT+D1J6TSEkeRFCdFk6uARddiaE/qTh7UrzGBh9ofAhlHOzzg2wi9Faoysug/p3aJlM+KHuZXTgFyiehlKeFF7UT9xKxzqYuusJgXQbCSG6KG3VoEuPh9Bf4UeC4S/AWokunYAOreqs8Lom/5dQ/zaRkwkLgr9A7cupvaZzG2LfSgyQKscixSR5EUJ0TfVvgPUP9hpG6wqBrkLXTuvoqLo0XfcyDQX6ou/zYkqvqbKOxO42isZCZU1I6TWFkORFCNEl6bq3iXdTpP7NjgonM4QWEznZa6AhtCyll1RmH1T+Tdi/q+aJU/j24j0SPPun9JpCyJgXIUTXpKuIO5bCqu6QUDKGUUTLZRIiUAUpv6zyHgLmYHTNk+D7EAiCc0u7xcVzAErFSkKFSJ4kL0KIrskxBIJ/EL0lwQDHhh0ZUZenPOPQvlgze4y0LVSpXMNQrnvTcm4h1iXdRkKILkllHU3sLhALlXVsR4WTGTx7g2NzIo97McEokp+Z6BYkeRGim9M6gK57HWvtsVirdsNacyi65ll7LZquzLkDeMdH2ajAvSd49uvQkLo6pZyooing2rnhERrHDTmGooqeR5nFnRKb1iG0VY7W9Z1yfdG9KK11nE7lzJLMktpCdHda16FLT4XA1zSNhQjfzMyBqKLnUGZJJ0YYm9Yaap9D1zwennkEGMX2WIrsU1HK2bkBdmE6uAB8nwMhcA6zF0rshLEn2qpG1zwGtc+DLsdOPHdHZZ+Fcg3r8HhE15XM/VuSFyG6MavyOvumEXEApwnOHTGKn+nosJKmtQWhfwALzL4oJcP1MoG2qtGl4yH4Jy1fg3a3liq4H+XZq1NiE11PMvdv6TYSopvSVmW4IFm0mSchCHyBDs7vyLDaRCkD5eiPcmwgiUsG0dX3R0hcwB7LZKErLkVbtZ0Qmch08i4gRHcV+AXwx9/P/7U9s0dEpa0yqHvdTvRUFsqzNzh3kCnAMWjth7oXiZ48a9A1UP8uZB3WkaGJbkCSFyG6rURvrHIDjkXXTUdX/B/20gR2Y7WunQLO7e31lYyCToyuCwutsJOTmBzo4B/yChRJk24jIbor55aAO/5+rh3THkqmsuo/Qlf8GwhgF8wL0Th9O/A9uuxsutmwwdRR3gR20gnuJ0RLkrwI0U0pIweyjiL6n7kJrp1Rjo06MqyMoXUQKi6NsUcIAnMh8F2HxZRJlFkCjq2IfZsJoTyjOyok0Y1I8iJEN6ZyLwXX8PB3DX/uzaZK59/eGWFlBF37EuiKOHuZ6Pr/dUg8mUjlnE30MS8muEaiZMVp0QaSvAjRjSnlQRU+gSq4B1wjwNwAnNui8m5A9Xit0wqWZYTaFxLYyQIpuhaV8uyFyrsOe2q0Ef43PNTSuR2q4L7OC05kNBmwK0Q3p5QDPPuhpBptckJLEthJo2SmVkwqazy494a619Chv0Blozz7gnN7ma0l2kySFyGEiMTIhrhLKBjgHdch4WQyZfaAnNNkVpFIGek2EkKISDxjifsW6T0SZeR2SDhCiCaSvAghRAQq+3hQWUStg2OUoPKu7NCYhBA26TYSQnR5Wmu7rkrdyxBaCqoY5R0L7t1QykzLNZXZF4qeRpedBdYqGtbjgRA4NkEVPopSnrRcuzvR2g/BeaAtcAxBGdmdHZLoBiR5EUJ0aVqH0BVXQv1r2AlECDDRvrfBuR0UPpa2rhvl3ApKPgDf++jAD4CJcu0MruEy2DQOrUNQ8wi65qlmU8496KwjUDmXoIysTo1PZDZZVVoIkXLa/wO67iUILgQjH+U5ADz7oJQr+XNV34+uvjfKVgPce2EUPtC+gEVKaa3RFZdB/RsRthrg3BpV9CxKJVABWqw3krl/S8uLECJltNboyhugbipNrSQG2jcbajaBwin2zJOEz+ezP7lHZYFvFjq4GOXYoJ3Ri5TxfxklcQGwIPA91L0KWeM7MqpuQ1ulUPscuu41sCrAHIDKOhq8h7bpA0ImkuRFCJE6tc+GExdoXAOoocJqcAG6/HxU8bTEzxf4GXRV3N20bzb4QNe9CboSzA3D9UV2QymZl9DRdN3LNCWvkSh07fP270gkRQcXoUuPAauUpr+t39CV10Dda1D41HrRJSfJixAiJbQOoWsei7GHvRaQDvxkjyVJSLSb3zqq70frauzFE4HQMrT/Q3DvDwV3pG1Qb7J0aDm69nnwfQiE7EJtWcegnJt2dmipFfqb2L87bQ+8FknRWqPLzwOrjJbLLoRf94Ef0NV3ovKu6ozwOpR8JBFCpEZoIVgr4+xkgu/TxM/p2Jj4n7E06Boa38DtYOx/fO9CzeOJXy+NtO8z9Op9oOZRCP4OwT+h7mX02nHommc7O7zUUoXEvb2o/A4JpVsJfGfP3IqaGFpQ+xLaqu7IqDqFJC9CiNTQCbaSEEz4lMooDBeLi9Zy0vAWFm3xP42unWKvEN2JdGiNPeUaPy1jDQEaXXUD2j+3c4JLA+U9iOi/E7ArEx/cQdF0I4HviH/brofg/I6IplNJ8iKESA3HQFDxaniEwLlNUqdVeVeCYyNaF4szATdx38asteFujE5U9zJ24hJtcqeJrpnScfGkm2cMOIYSOek0wShEZR3X0VF1AwnesteDcV7d/xkKITqEUh7wHk30txUTzP7g2iW58xr5qKIXUbn/tlfFxglGD8g+BbxHEbUCbgudWxFC++cQuyUiBP7POyqctFPKhSp6Glw7hR8xaHxdODZCFU2TFc3bwrUzsV9H2N1xjm42hioCGbArhEgZlXs+OvBduHkbmpIGE1QWquCBNs3+UUY2ZJ+Cyj6lxePaNwddNyX2wUYRmAOTvmZqJZI8dauSWyijCFX0NDowD/xzsFvdhslq0u2gnJugXSPB/xWRx70oVPYJ68V0aUlehBApo5QXip6BulfQtc9BcAkYueAdh8o6HmX2Se0FXSPB3DDG7BaFyjoBpZypvW6ynDuBfy7RPzWbzVopuhflHArOoZ0dRrehCu5Cl54QHrhrYL+mwtPSPQdA9lmdG2AHkQq7QoiMZte9OBasNbRo6SEE7jGogrtQqnM/p+nQCvTqvbAHK0d+y1WFT6PcIzs0LpGZtPZD/Xvoutftei+OgSjvEeAamdGtWsncv9M65mXSpEkopVp8bbpp7L64l19+mU033RSPx8NWW23FO++8k84QhRAZTjkGoXq8Y4+JcWwGRj/7TbzgAVTBPZ2euAAoszeq4B7spKr5IFb7/yrnEklcRMKUcqG8YzGKHsfo8SpGwV0o96iMTlySlfa/6i222IJZs2Y1XdAR/ZJz5sxh/PjxTJ48mQMPPJBp06Zx8MEH8+2337LlllumO1QhRIZSRn7EMTFdifKMhh5vo2ungu8D0EFwbW93p7m26+zwhMgoae02mjRpEtOnT+f7779PaP+jjjqKmpoa3nrrrcbHRowYwbBhw3j44YcTOod0GwkhhBCZp8t0GwH8+eef9O3blw033JBjjz2WxYsXR933888/Z/To0S0eGzNmDJ9/Hn0Koc/no7KyssWXEEIIIbqvtCYvw4cPZ8qUKcyYMYOHHnqIhQsXsuuuu1JVFXmhtRUrVtCrV68Wj/Xq1YsVK1ZEvcbkyZPJz89v/BowYEBKn4MQQojU0lqjrVp0wlWZI5zDKkXXvoCufghd9zpa16UwQtHVpXXMy3777df4/6233prhw4czcOBAXnrpJU45JTV90xMnTuTiiy9u/L6yslISGCGE6IK0VYmueQJqnwddDjjRnv1ROWegHEMSO4e20NX32mtEEcIe9ByEykmQezUq69B0hS+6kA4dhl9QUMAmm2zC/PmR113o3bs3K1e2XNht5cqV9O7dO+o53W43brc7pXEKIYRILW2VodceHa7J01DvJgD1b6Hr34OiKQkNXNbV90PNg80eCa9bpWvQlVeAkYXy7Jvq8EUX06HLA1RXV7NgwQL69IlcqGrkyJHMnj27xWMzZ85k5EiZQiiEEJlMV94GocW0LtQXAvzo8gvidiNpqzLc4hKNQlfdTjrLl2mt0f5vsSqvwyq/CKvqdnRwUdquJyJLa/Jy6aWX8tFHH7Fo0SLmzJnDIYccgmmajB8/HoAJEyYwceLExv0vuOACZsyYwR133MHvv//OpEmTmDt3Lueee246wxRCCJFG2qqC+jeIXAUZwAJrJfg+jn0i32zsBS6jXslOkIK/tS3QOLSuQ5edgS49GmpfgPp3oeYJ9Jp9sKpuS2vSJFpKa7fR0qVLGT9+PGvXrqWkpIRddtmFL774gpKSEgAWL16MYTTlT6NGjWLatGlcddVVXHnllWy88cZMnz5darwI0Y3Yb/AWSkVacVh0S6GFxE46AEwI/g7sEX0Xq4KmkvgxWBVJhZcoXXE1+BsSrHUSsZrHwOgF2RPScu320toC/xd2cmfkg+tf9pphGUqWBxBCdAjt/wpd/Tj4PwFC4NgMlXUCeA9u02KNInPowB/otQfG2ctA5f4blX1y9PPUv48uPzPu9VSP2ShHaidu6NAy9Oo9ibmAptEDVfJxl6jq3Jz2fYau+D+w/ml6UHlR2WdB9hldpjJvl6rzIoQQuvYldOnxTYkLQHAeuvIKdMXl9qdC0X05hoDRN85OFrj3jL2Le1cwioFoN1sTXMNTnrgA4Pso/j7WGgj+mvprt4P2z0WXnQrW8nU21KGr74SaBzonsHaS5EUIkVY6tAxdeQ32J9bmTe3hhKX+dah/sxMiEx1FKQOVc3aMPQxw74NyDIpzHicq70bs5GXd25cJyo3Kvap9wUaj64meNDXfz5ee60e7nFWKrr4Pa9UeWCuHYa3eF13zFNqqtbdX3Yb9txe5xUhXP4S2yjou4BSR5EUIkVa69kViv+kb6JpnOyoc0Vm8R0D2udivBRP79hMe9+Qagcq/JaHTKM9eqMInwLF580fBNQpV9DLKOTS1cTdwbErcsTaY4NgoPdePQAeXoNcchK5+AKxloGshtBBddTO69Cgs/28Q+I7YcQeh/r2OCjllulbHnBCi+wn8QvRZJgBWl2tqF6mnlELlno/2Hoyu+y+EloDKQ3kPAOcOSY27UO6dUe6d0cHFYJWB2Rtl9op/YHu4RoA5AELLiJwMmODZD2UUpTeOZnTFRWCtXSeecAtLcD5U35HAWczwOTKLJC9CiPRSbuxP2zEGOipnR0UjOplybIDKvShl54INUnKuuNdSBhTcjS49DrSflgm5CWZfVO6VHRILgA78CoEfY+wRAv9nCZwpCEb0QrBdlSQvQrTDwp/+5uU73uST/36Bvz7ABpv14+Bz92Pfk/fEdMhUYADl3h3tmxVjDxPceyV0Lnu652fouulgrQKjD8p7qD1Is4vMmIhH6zqofxcdnA94UJ69Uc7NOjsskQDl3AqKp6OrHw2P0/KDyoesI1HZp6KMwo4LJvBDAjuFwLFFeAp6tNZPD3jGpDCwjiFTpYVoo69nfMc1425Ba00oaDfbKqXQaHbabzuue+0yHE75fKCtWvSavcEqpfUbqAIUqvgVlDN2PSe7QNjZ4U+TJk3r2oTAvTeq4C6UcqXjKaSMrn8fXXEp6Grsz47hQcyuf6EK7kYZOZ0coUiU1pY9iFd5OyVx1rUvoSsTGJycdyNU3ohdZ6d1d5fKuxaVdWzK42sLmSotRJrVVtVxw5F3EgpajYkLhAuwafj63e947Z53OjHCrkMZWaiip8NTXMF+22mYLeKwk444iQuArrge/J+Hvwu1/Nc3C111e7vitMu+f4euecKerRFIbZVW7f8eXX4O6JrwI0Ea4/d/ii4/Vyq0ZhClDPu13Vktfq6RxJ39pLJQ3rGo4ufBuVXLbUYvVP7NXSZxSZZ8LBSiDWY/9wl1NfVRh3ForXntvnc4/JKxHfbmtnZ5GW8+9B4fvPAZddX1DNy8P2PP3IddDh3eopJ1Z1COIVAyy+4u8X0MOmA3wXsPR5nFcY/XodVQP53osyY01D6PzjkPZeQmHZ8OLkaXnx8eONzws7LQzh1RBfegzB5Jn7PVNaob6mlEetFY4J9jdwW4hrX7WqL7U44BaPfe4SUTInUJKcg6HqW84NwCVfyy3VUZXAJGHjiHZXSVa0lehGiDP7/5C9M0WrS6rGv1krV88dY39NmwFwM375/WJGb+9wu5bK/rqK2swwrZMVWsruT7939mtyNHMfG58zHNzn2jUsoD3kNQ3kOSP9j/JbFnLAH4IPANuHdP6tTaKkOXHtNsxkWz32ngW7u4Xo/pKNX21eu1VRsuKx+rZcVE17+LkuRFJEjlT0aXnQKB72laNqGhK3UMKuf8lvs7htgFA7sBSV6EaAOHy0EiBauuGWfXrhi4eX9Ovfk4Rhy4fcpjCQVDXH3QLS0SF6Dx/x+//DlDdxzCEZeMTfm1O04wsd10gvs1V/uCXRk1YqtOCEILoP5t8B6a/Lkb1RM7cQFQ4bEwQiRGGblQNA18H4QHsa8Bsz/Ke0RGDWJvCxnzIkQb7LTftoSC8VoCmiz+bRlXj7uZD19MZOpicua8MZc1S9e2SFya01rz6t1vYVkZXII/gTExoMC5RdKn1nXTiV3ES6Hr3kj6vC1PkQcqXneWhXIMbt91xHpHKQfKszdG4QMYxS9iFNyBco/o1okLSPIiRJvsuN8wBgzti+lI7E+oYSDmPWc/ht8XSGksv3z2O6YzdpfQmmWlrFlWmtLrdiTlGALOnWisyNqKCe49UWaf5E9ulcfZQSddxEtrv70sgmX/zJVyQNbRxH7LNcDThi410S1pqxod+A0dXCgDuSOQ5EWINjBNk8kzrqLXwBIADCORNU+guqyGL96cm9JYErp2Evt1VargVjBKaP22ZdhN5Xk3tO3EjgHE7gI0wRyY0Km0VY1VeQt61Qj06j3Qq0ZgrT0S7fsIlX0GmINpnYDZz0flXZ3Q4GWRuXToH3TNVHT1Y+j6D9C6deuttsqxKq5BrxqJXjsOvWYMes3e6LrXOiHirkuSFyHaqNfAEh77+S4mPncBuxw2gs2Gbxz3GMM0WLlodUrj2GaPLQkFYnRhKeizYS+K+3Zc2fJ0UGZfVI/pkH12uCKoC4x+qJwLUMX/bfOMIOUdT+zxKCFU1pFxz6OtanTpeKh9quXYlcCP6LLToP49VPELkHUMKG/TdsemqIIHUVnj2xS/6Pq09mGVX24ntFU3oKvvRJefYX/v/7ppP6sKvXY81L0MNFvgMbTEXn29+uGOD76LkiJ1QqTIol+WcNpWF8fd75Inzmbfk/ZI2XUty+LkzS5k+V8ro457Of/B0xh75j4pu2ZH0DoEvo/R/s+BEMq5LXj2SXkhOq396NKT7JlKrca+KHvWRsE9cccQWFV3Qs2jEc7RwIHq+SnKKELregitAOVBmZlXml0kxyo7D3wzaf3aCNc6Kn4Z5dwMq+ouqHkkwn4NFKrkfZTZL63xdhYpUicySjAQpGxlOfW1HbuUfKoN3Lx/3CnRTreDnQ/eMaXXNQyDG9+aSGGvfPva4cs3jMcZe9Y+HHjG3im9Zrrp4CL0mn3R5WdA7VS7hkvFxejVu6P9iZRFT5xSLlTRE5A1oWWLiMqD7LNRBXfGTVy0DkHt88Qe+BuCcNO/Uh6UY1BGJS5ah+yujuqH7EJ+wb86O6SMoAO/gu89Ir82LCBk/0y1TuA1pNC1r6QlzkwjU6VFpylbVcHzN73KjCffp666HsNQjBq3I8dedThDts28WRdKKU69+TiuHndz1HUIx19xKLmFqS8B33/jPjzx693MfPojPnzpM2oqahm05QDGnjmGrXbdLKNmHtjdL8eHpy9Di2nSVim67CTo8XbbBudGoZQHlXclOucCezVepcAxtFVtF60DoGtB5bQs8KUr7K+YNDqwIIEJ9umjtR+CCwEFjsGoBBfE1P5v0eUXgLUSe8yOhqpb0O7RqPxbZVmDGHT9WzQtZxFJCHz/swd36/L4JwwtSV1wGUy6jUSnKF1RxnkjrmTNstIWXR2GaWCYBjfPuIptdk9+2mtX8NFLc7jnrEepKqvBMA2skIXT7WD8FYdy3DWHZ1Qi0Rl0zVR01Q1EH4diQvbJGLmXdVxMwfn2eIP6d4AgqGzwHoHKPgNlFtvrN60aFv9E7n0xCu9Nd7itaO1HVz8Etc+CrrQfNIpQWSdC9mkxK63q4Hz0mkOJvDaOAa6dUIVPy+s6CqviSqibTtxaRT0+gTV7xNnPhKyjMfKuTV2AXUgy929peRGd4tHLnmXtP6WtxmhYIQutNTcdew/T/n4oI1dm3u3IUYwctyNfvDmXlYtWk1ucy84H75iWFpfuQPu+RNc+E64S6iB+Jd0Q1L0NHZS8aP8P6NIJ2DfvcGy6BmqfRde/B8UvEX0K97o6vqde6yC67JzWFX6tUnT1XRD8A/LviJp86OrHgABRuz38X0Dga3DtlIboM58yB6BjdgVhL+5oFqE9Y6B+BrFaaZTngFSHmJEkeREdrnJtFR++OCdqaX1taUqXl/HVu98xcuwOHRxdarjcTv51+MjODqPLs6ruhZr7id2sHoGuTVdILS+jLXTFxdgzP9Z9vYbAWoWu/A8qb2JiJ/R/jbZqUUZWiiONoX4G+D+KslFD/VvgPQTcu7beqi17e8zfjYmuewslyUtk3kOg+p4YOyhwbgfWWlT2Gej6mdhJZuRWLpypr9KdiSR5ER1u2fwVcavTmg6Dv39ZkrHJi4hP+z4MJy6QVOKC0eb1WXRoNdS9jPZ/C5go9872zYUQ1M9GW+Wg68NdKyHAFWeMQXi8gp4IqiD+mAW9Bl01GZXfxpo0cWgdhMDP9nNwDEGZPdC1L9C07k0kJrr2BVSE5MVubYpXVFE3dUWJVpTZG3IusFu5ItLg/wy9enfw7AcFD0DlxPCYLwf2780C9+6o/Nuley5MkhfR4TzZ8Re4syyNO6vtC+F1JeWrKyhfVUlR7wLyipNf8bi70jVTSLrFBQALlXVc8tern4kuvzB8PQtQaP+HUHVr+LF140g0NgtlLUFnHQs1DxK7ZoyGulfRuZegjIKkn0PUs2oNtc+gax5uVg3YQLv3geCfxJ0FFVoYZZsbjCKwYlVnVmAOaFPc6wuVcxYYPdDV94O1PMpeFtS/C6F/oMdslP9jdGCevaCpZ0+7yrRoJMmL6HADN+9P78E9WbFwVdR9tNaMPKhrtbporflm5o+88eAM/vzmL9xZbnY9dDhjzx5DzwGtC6T9+e1fPPl/zzP3f9+DtmcjjThwe06+6RgGbZG+N3utNb9/NZ/fPv8DwzTYdvRWDNysf9quZ1+zHrQPVC5KJTiuw/8tyScuCtz7gmffyHFYZXb9FKOgxWwkHfjTni1DiKbkouFff5RrJRObG5VzJrr+bQgtirNvAAI/gvtfSZw/Nl19R7jGTHNWuLZIvE/qym41irRFKbR3PNQ8RPQEyLIXAhQxqawjwHsYuupmqH2ayEmuBYHvUP6PUZ4xKM+Yjg4zY0jyIjqcYRgcf80R3HbSAxG3K0Ox5zG70HtQzw6OLDqtNQ9dNIXX7n0Hw2FghcfrvHT7G0y//10mz7iKLXfetHH/X+bM47K9JtnjenTTOb5851u+e/8n7vrkBoYMs6eDL/3jH955bBaLf1+GN9fLvw4bwciDdsDhTP7P858FK7jhyDuZ/91ClKHsFn2t2X6fbZg49Xzye6R2Bp72f23PwvF/Cmgwiu0KstmnoprXTGkzL1Bn/9fog8o+AbJOaJUg6eBidNVtLQqBaecwVM5FKPdIe0AwmvgrO7eBUQLOLVDKgc4+GSqvSeCg1MWhg4sjJC4NQsRPXjTKG33FcZV9Mrp+Rjgpi5DQZZ+NcmyQWLDrOaUMtO8TYv/+DXTtfyVxiUOmSotO8+Ktr/Pklc+BUo39uKFgiJ0P2YmJU8/H7e063Uazpn7MLRPui7hNGYqsPC/PL34Yb44XrTUnb34h//y5HMtq/edlmAYbbzeY+7+8mWk3vcpTVz2P6TAIBa3GqdUDN+/PLTOvobhPYcIxVqyp5PRtLqV8VUWrWVyGaTB4ywHc9+VknK7EanvEo+veRldcgn1zbH5TM8C5FRQ+hqqfha59HkJ/26sqe8ehso5FmSVYZWeC7yOit3AoyLkM5T3Y3scoidiqo4OL0WsPB13VOg5AFdyHrry2Wd2Y1FK516CyjwvHsgi9Jl4lY2e40m7iv9tY7KqsjxK7paghgVn39WiA2RdV/CbKyI56tLbK0VW3h6f8hluqjL6onLPtKeMyDiNh1sod49cEcmyO0WN6h8TTlchUaZERjvr3OPY6bldmPv0Ry/9aSW5RDnscvXOXLFD3yp1vogyFjpCMaEtTU17L+9M+5YDT9+bXz/9g6bx/op7LClnM+3oBL972Ok9d9TxA48yrhqRj6R//cPXYyTzw9S0J3xjeePA9yleWR0yYrJDFgh/+5pP/fsme43dJ6HyxaKsSXXEFkWdFWBD4CdYcgraW0ThYVFdCzcPo2mlQPA2VdRLa936Mq7hRWYe1uMlrqxRCy0Hloxx2V5iuuilC4hKOA4Wu+L8IMbaVQVMiYEH2WZB1bONW5RiEdv0L/J9FiCd8vPfglCUuAISWJbBTtM+oFngOjJm4ACijAJV/Izr3cjsRxQ2OjRLvIhRNzF4QrCRmHSOzb0dGlJEkeRGdqkffIsZPPKSzw4jJ7wuw4PtFMfcxTIOfPv2NA07fm6V/RE9cmnvjgRlRE6JQ0OLPbxfy0ye/seHWA3nr4f/x7pPvU76qgh79itn/1L3Y/7S98OY0dc3MfOajiIlLA2UoZk39OCXJC3WvY38Cj3FTtJY1/b/547oKXXY2qsd74N4PfO9GCdgEqxKMQnTwb3TVLeB7v/F82rElZJ8Kvg9ixKHtGUDmEAhV0/YkRtmLQXr2BasMzH4o76EoR+uxSyr/FnTpcRBaQFOp5XAC59walXtlG2OIwmjngps1D6Pde6Jcw+LuqoxcMLZs3/XWc8p7JLrqPzH2CKG8h3dYPJlKkpdupKqsmi/f/paailr6b9KHYXtuiWlmXpG3VAkFQ3w943sW/7YUT7aHkQftQEn/4rRdr6GFJDs/sRoeqxbH7sYwTIP/3v0W879ZyOplaxuTnMVVS3nk0md494nZ3PnR9Y0zmCpLq2KeT1uailXxStg32z+4FEJLwcgDR8slBnTwD+zZOHGqhkYUgtAitG92OBmJFkA9uuoOyL043C1UQ4vkI/grVFyY4CXntyHOllT2KajsCfH3M4uh+L9Q/7q9Do21xk52so4Ez/4pX1hSeQ9E106JtQexx1iY6NqpCSUvIgW8h0PdSxBcQOvWOQNcI8C9W2dEllEkeekGLMtiytUv8MqdbxLwBe0ZAlpTMqCYy546h2333KqzQ0yb+lofpcvLyM7PajEY9fsPfmbycfdSurwMwzTQlub+859g35P24Nz7T8XlTnzch8vtZOiOQ/jzmwVRWzaskMU2u9ufSLffZxs82W7qa6IvNJlbmE1VWU3M61ohiznTv269QYNGs2TeP9x7zuNc9cJFAPQe1JO/flhEtFFspsOgz5D4CwHq4Hx05Q3g/7zZwRtA7iUoz3729+0ejGtC3StEn+kDTTVUqsOJS6RuoY5ggHMHyDo64SOUkQVZ41FZ49MYV/hazq3R7tEtWqWaGMQfHBwC/zfpCU60oowsKJqKrrzOnhrd+Dtz2uOH8q6IuVyDsEmHZTfw6GXP8vzNrxHw2Z+CG8Zgr1lWysR9/8OvX/wR9djaqjreemQmd5zyIHef8QifvPpl3AJyXcHa5WXcedpDHNrjJE7Y+DwO73kKl+45iR8//pU/vlnAxP3+Q9nKcqBpyQFtaWY89QF3nvpQUtda+udycgqyYnbJZBdksftRowDwZnsYP/HQmOc87pojyOvRvpovVsjik/9+wdrlZQAccPreMW9ToaDF/qfsFfOcOjgfvfZI8H+1zsFL0OUXNK5oqzyjaVurSzNWFfE/P1nhmUyd9Jo0ilA556CKnkh5i0kqqYK7wHMwTW/p4X/N/onVYJGbZYdSRgFGwV2oko9RBQ+hCh5B9ZyDkT/Jrusi4pLZRhlu9dK1HDvorIjjJsDuethm9y24dWbr6ZvfzPyB6w6/g7rqusbupVAwRJ8NezF5xv/Rb0jqVu1NpTX/lHLe8ImUrihvtagjwJBtBzP/u4WtZtw09/gvdyVU++SnT35j4r43EgwEoy5n0HDtG9+8gh333RawE8gpV7/AC7dMR2uNaRqEQhamaTBh0lEcfcXBPHvdy0y98ZWov7tEXf/65YwcuwP+ej+X7HEtf8z9q/VzV7DbEaP4v+cvjDkA2Co9HfyfEDVZUF5UyeegvOjSI+1qrm1NLFwj7HVx2i1W9dh2cO8N+XdhGF03aVmXDq2wZ3BpHzg2AddwdPXtUPMEsSrsknU8Rl7qxuJoq8auZYMFzs1Q7R2XI9YLydy/peUlw3300pyY262QxXezf2pshWjw929Lufqgm6mvrgdtJy0NLS4r/17NZXtdR31t9G6PznTv2Y+xJsqijlbI4o+5C2ImLqbD4INpn8a9jt8XYNKht+H3BWImLmAnKzcffx++ej8/fPQL70/7lG1234KpCx/gzNtP4LCLDuTsu0/ihWWPMn7iISilOOrycWy1iz2WpD1TTRsWr3R5XNw68xoOOG00Tk9Tt1h2fhbHXXU4E6eeH/M6OrQ6vAZOjGRE14HvPTvmwkfA0bDyt0nTTByHXeY8KsPeP27iYoAjkcGhOtzq0NCVlaJWBN9MlO9/qTlXB1Fmb1TWUajsCSj3CPv35B2P3cIV6XevAIXKOiYl19faj1V1G3r1KHTZCeiyk9CrdsEqvxxtyRICInVkzEuaLf1zOQt//BuXx8lW/9qcrNzExwr4fQHef+4T3nl8NquXrKGoTyH7nrQHoyfshjfbblqsWF2JaRoErdiffivWVFHYq6Dx+9fufruxO2VdVshi9ZK1fPjCZ+x78p4Jx9sRFv78N5+/Mbd9J1GKyrWtB7cu+mUJ0+97ly/f+QYrZNFzQI+I+0WiLU3l2iqO2eBMKtc0HVPYu4Azb5/AoRc2rQT73fs/8dJtb/DtrB+xQhYl/YsIBS1KV5Qn/VScbicDhvblrx//Jrcoh5L+xZz/4GmcMvkYFv60GMM0GLLtYFyeBFoPrBXEHx9hNk7NVUYRuuglqJ4MtS8DDYslWvaHfPf+4HuHpjL7zVtI4rWU2DfVaJVfWzJQuf9G515pl+f3/wzBdr5GwufVtc+gvAem4FxNtK6D4N+gnGAOTvt0Y+XoD4UPocvOpuXq0AbgQBXci3IMavd1tNZ2FWPf+7R8HQXtwcvB36H4haSKF2qr2l5Ooe718KyxDVBZR4N7tIwLWc9J8pImyxeu5M7THub7939ufMyd5ebQC/bnhOuPijsLqKaylsv3vp55Xy9onE679p9S/vhmAa8/MIM7PryO/B55lAzoEbdVwDANivoUtHjs4/9+Efe4D1KUvNRU1FBTUUt+SV67C889fe1L7Y5Hhyz6bNirxWMfvfw5Nx1zN0o11VwpXV6e9LmbJy4AZSvKmXzcvWgNex27K288+B73nft4YzE6gDX/lKEtzYChfVk2fzlWKMFuJAU9+hVxwibnNXY9bT5yEwZttQHfvPcDq5euJTs/i72P343DLjqAnhuUxDlfQQIXDdkL/Rm9wHsYqvZBdO3T6+xjgf9/oHpC/gPgew+Cf4FRYH/VvxX/MkYxeMZB7RNxdlSQNcFuxan6T7N1fVLBgsBvKTubtmrQ1fdA3Yt2CxaA0QdyzgDv+LQWelPuXaHk/fCilJ8DGuUaDt4jUWavqMfp4GIIfE/DisbKjFH12v8Z+GZH2WhB8HeofQWyj48br9b16PoPoOr68O80PGMqtAzt/wxcu0Ph/V16HJJILxnzkgZrl5dx1naXUbG2qrGMfAOlYMxJe3DJ42fHPMctJ9zH+9M+jdj9YZgGO+23LTe8cQWVpVUc1fd0gv7IgycN02DQFgPw1ftZ8ddKvLle9jpmV955bBaBKMc0KOpTyIvLopUdj2/e1/N55rqX+Ord70CD0+Nkn+N347hrj6BH3+T7wP2+AAflH0/IH3+MRbT6KWB3Gz2/5JHGlqhVi1czYePz7G6zNP015Jfkcfv7kzht64tTdg3DUKCIm+wYpkFWrpc7P7qOwVsNjLmvteZwCP5M7JaR8I3EvWfsqc4RxlJYpRMS6C7KRvX6Gl16dHhMTYxYHFtB1klQeXGcc7aVQhVNQ7m2b9dZtK5Hrz0u+s826xSMvMvbdY1U0qHV6Iorw92IDQzwjEXlTYpY1M4quwB8/yNmxWTHxhg9oievWofQ1Q9A7VPhGWbRKMg+AyM3Xb930RlkzEsne+nW16lY0zpxAdAaZjz5AX/9+HfU48tWVfDB85ETF7C7db54+xuW/7WSvKJcTrsl8gq7DQNY//rxb5b9uZxQ0KK6rIa3HvkfgUD8mSLlqyqoraqLu18k387+iQt3uYq57/3QeLMO1Ad496n3OXPby7j7rEeZMORcju5/OlePu5m5//shYhdWg1AoxIMXPpVQ4gKQ3yMPwxH55X3KTcc2Ji6hYIjHr3jO/l2lMY2vWF3JlKtfwDCi/8kZpkFOYba9JlECLK0TaqWxQha1VXVcf+SdMX/GACr3kob/xdgrfA7f+3H2C9mf9HWz15qONTW64dIKpRwQ+JW43UsqH6pvjn/ONtPo0pPtFoj2qJ0GwZ+I+nxqn0AHfm/fNSLQgd+wKq7FWnMYVulx6Jqn44490VY1uvSY8Cyv5iyofxNddlrL32mD0FJiD97WdnXkaFu1thOmmvvjJC7hc9VOtRcEFeslSV5STGvNu0/Ojjtg9L2nPoi6/fcv/4zbpYOGnz+z3+wOveAALnnibHr0a9maUdy3sOlm1eyeFUrwRm2FLFb+vTr+jusIBUPcfPy9hMIDaFucM2hRsbqStx+dyfK/VrL2nzK+euc7Ju57Iw9dPCXqzfXxK57j7UdnJnT9QVsO4IGvb2bncTs1JnAAvQaVcNlT53DEpQcBdkXa8QPO4IMXPot7U0+FRb8uifm6sEIWQX+Q3Y4cGfM8jc8piZCtkMXSef/w40e/xtxPuUeiCh5MomprnCB0Tbh0f5hza2IPqDXBGR6kqxKoxRNaAVb01clTw4+ufbZdZ9C10+LvU34BOvBLu67T4nzVD6PXjgsXRPsJ/F+hq25Cr94bHZgX/cC6FyG0mMiJiAWBuZFb3MwexL2lRFkWQYfWoCuvh/rXYh/f4qBqCP6Z+P6iW5HkJcX89X7qqmJ/GrAszdrlpVG3J9r33Xy/fU/ag6mLHuSeOf9h8oyrePznO6kur2n3NFxPVvJjVL569zvKVpTHvnazTQ039NfueYcPnm89C6hsVQWv3fN2wjfr4685gvJVFVz21Nm8sPQR7vrkBh7+7jaemX8/+5ywOwDvPjGbW0+8n7KViVecbS9vjifuAr9aayZOvYAb356I0+1s1QpjOgzcWcn385sOjScb/pgbv9Ks8uyJKvnY7pJpNxNUUxeDXbQtVmIeQmWFx0S49yTuzCGr/ZVz4wtB3ZtJH6VD/2BV3Ya1eq9wMhDnBRxahF57GLpuepuibHHt+tno6jsbTtx8C+hKdNnJ6CitYLr25Tixmui6V1s9ai+gGet3a6C8h7W+Xt2r6NX/grrnYhwrREuSvKSYy+PCkx37hm8YqsXMn3VtNmJjHM7Yb9pKKbbadbMWj5mmyeYjNmGHfbbBCllxk6h45x+4eX96D44xQC+Kv39d2qLFI+FrGor/3tW6P/zTV7+I2WLRnMvj5IYj7+ScHa/giN6nMeWaF/nrx0V89c53vD/tU+pq6vHV+Xjk0meSjq89cgqy2fv43eLev3y1fu4/7wmG77cdj/5wO3seswtm+LXgdDsYffxuXDntwoSvu9WIam6c+hdvLfqR1//8gX0PvhldMwWtAzGPU8oJZj/a9xZhgmffFoMqlWMwKu+apu1NW+x/jH7owO/o0EpU9smktS8vKcl1n2r/N+g1+0HNkxBakuhRgIWuuKLd3VS65jGi/+5CYK0OV3eNIO7q2yEIrWz9sHs0OKK1rJlg9GxVpVj7PkdXTKRNBQ9VDjg2Tv440S2kdbbR5MmTefXVV/n999/xer2MGjWKW265haFDh0Y9ZsqUKZx00kktHnO73dTXZ0bfplKKMSfuwZuP/C/imBewu20aWgAiye+Rx+gJu/G/KR9GHbA7atwO9BoYffaIw5XYr7ZhKYF1aa05/hp7qftQMIQyVMzxGs15czxtavHRluaPb/4iGAjicDqorarjpdte55U734xa8n5d/vqmm7Kv1sc7j80C7BaLUNDCm+Nhz/G7UFNRG+0UaeGr8zNgaL+E9n3zof+xzwm7s+lOG3PFM+dz0SNnUF1eS25hNi6PC601fTfqxT9/rYx5bx99eCmX3r0Ey4KGX11Wdqm9CnPtK2gj2+52MUvsheC841pMY1Xu3dG+GTEiNcHoYd8II5ald6Cyz2p1lMo6Fswh6JonwuMqgthPRNmLOdbcj66532558U6AuimJ/NjSyABzoxaP2H8zfsDVqqVU6zp02Rl2obg2Fc9T6NrnUW0cwKu1HwLfxtnLRPs+Q3nHtd5k9IRQFbFXPW5dwFIpJxQ9aScjvlktj3dugyq4o9Vq2rrmEezXSrKFDhVkHSPVaNdjaW15+eijjzjnnHP44osvmDlzJoFAgH322YeamtiDsfLy8li+fHnj199/Rx/c2hUd+e9xMdfO2WLUUDbebsOY5zj77pPYfOQmQHhWCTR2IQzeagMufqz1TaG5vkN648mJ3+WzxSg7kTQdJqbTRBkK02Fw1l0nUlNZx2lbX8y+rqPZz3U0Vx5wEz98GL9PftS4HeN2j8SilKK2qo6L/3U1z09+DV9tAoM842gYQ1RXXc/bj81qV3xtEfQHufusRxp/l7GYDoNX73mHd5+YzfT73+WPuX9R1LugsVaLUoqTbhwfM3EpKA6w91Gl/PxVNr76pj9zpcIHhf6wp8BayyHwE7ryGvTaI9BWs+5M7/72lOiIn6TDM44K7gLPQTTWZWnYV/WA7BMg8C060HqcjXIPh5wzgeavUd3sX21Pu00ocUn3L9NCZdmD4q1QGVblLehVI9Art0Kv3Aqr/Ap0cEHT7nVvga6k7VV/QxCIsKZVwhLJ9O1WnkhU1pFxjrVr9lhrxmGtOQir8iZ0cKF9rJGHUfgAqscsVN5/UHnXo4rfwCh+AWW2TN61rgP/HNpUodn1L1TO+ckfJ7qNtLa8zJjR8lPblClT6NmzJ9988w3/+te/oh6nlKJ37/gLyHVVFasrYy7K98uceSz6ZQmDtoi+5og328Nts6/lk/9+ybtPzGbV4jUU9y1kzIl7sPvRO8ddWPC3z/+gvjp2hdx+Q3pz1yc3MO/r+Xz00hxqKmrpO6QPo4/flUcueYYPXvis8VOlZWm++d8PfD3jOy56+Az2P2101POW9C9mzIl78N6UD5JqgTFMg81GbIzpMJl6/css/Dn2ANd26eDeCK01q/6O1xxvCwUtPnj+0xbjfwZs2pcrn7uQjYYNYtXiNfzy2TxcHmdjS5NStGidqihzcPkRQwB7vIvLbaEMzYAhPsaesJY9Dy3DdDRPFoDgAnTFlajCh8Pn9KALH4PS40FX0LQ6cbhCbv7NqNASdPAvwA3KAMcQ0CF7xeeaR5ulIwqMDVA5J6Gd20PFleHZN6kQ5Zdp9IHsk1GOjdBGEVTdEV76IBkKXP+ya7SsOSxCzH67AFv9u1D0NMo1DB34lqbCfG1lJ4Fa10Hd9PDq1KvA7I3yHgneg1Aq8ocTpdxoxybhwazRXuga5do28ibvEeFBvgsjPIdwouib3bQt+Ce69hnIv6WxJUc5BoAjzppKicw8W5dzB1T28eDeR4rUrec6tEhdRYU9OLKoKPZMhurqagYOHIhlWWy33XbcdNNNbLHFFhH39fl8+HxNN+nKys4vQT31hlfi7nPv2Y9x50fXx9zH4XSwx9E7s8fROycdwzuPz8YwVcyptA1jKYbuOIShOw5pfPx/T3/IBy98BtCiS6khkbj7rEfZfNTQmMnXeQ+cSsAXYPZzid8srJDFEZcchN8X4O3HZqUvcclAS37/h7O2/3fU7et2q2mrqTUiFFTUBe3f9bzvTeZ9l82Hrxcw6alFOF3NDwyB7wN0cAnKMQDt+xzKzw8nLs1WJzZKoOBhqHkA7ZtFY+VcTXg9m4gRgvU3unISTcsIpJlVDoHf0FY5yjsWHaGrIyajBJzbg+/jdeqdrCsE+OzqsiUN08fbkx0bKPeuaKsUXXp8OAkJn9NajQ78YE+9LnoGZURe3FNlnYiujLZWkQKVZRcBjLTVyLZXPa64FnwzaWqhcdCUzDRPauz/64rLwbEpyhl5WIDWPrtYIQY4NgSVa/+MrQRnNKoCjOL4s7bE+qHDBuxalsWFF17IzjvvzJZbRl+vZOjQoTz55JO8/vrrTJ06FcuyGDVqFEuXLo24/+TJk8nPz2/8GjAggRVU0+zbWdHewJvEWuk5FZb9Gb9S66olkauRTr/vnZi1RrSlOWPYJdxx6kOUr448W8fldnLJE2fhjNNCBDTWY5lw7ZHsfPBOrP2nlNrKttWXEZEppdlh90qufOhv7n7zT/Y/bi2fvRupCJRG++agA3+gy04Ld3+AfQMLv56sNVB+enhcQ8O2ZFh0zCrRdVD/KtQ8hF6zL/gT7IopfsuebZVzGfhm0LTsQSyW3QXn/wTlGkHbu4wU4ALvkeiK/wvf7KEpGQqfN/gbuvI6e4uOsMyH9zDwHB7+pvnbvAk47NaV2qfRtS+jrdZLYCijCKPwPlTJh6iC+1EFD4UH2zZLYiPErmuntnrUXu/odvSqkei149Brx6JX7Qo1j4L3GBJOZFXrwnhi/dVhLS/nnHMOP//8M59+GntBvJEjRzJyZFOdi1GjRrHZZpvxyCOPcMMNN7Taf+LEiVx8cVOVxcrKyk5PYOLWaAFCAXshxIZF9VItrzgXw1BYMbptcgsivxn89ePiuN09Vkjz3pQP+OHDn7n/y5vJK279CfCbmT8S8MWe1QKwwdB+XPrk2Y2tP26vlPxOJafL4urHFjF87ypCQTAdNP6rLbu3p4Xq+9CuYdjr4ER6HYQS/7TcJYT/HkML4++qeqIcQ+xjqm9L8joKHfgJsk4l8ZWum3cvKcBjd9tpf4Q1gpqzC8ZZq+fZ45dQaNcIVPYpKPeudndv/n/Asxu6Zqpdmh8nODaAwE924tJw7crrIPcSVPZJra6izN5g2l34uvpuYiedIfC1bGnVOoAuOz1cVbnZz0OX2lO53QeAYwcIxkssTfDGWuxTrG86pOXl3HPP5a233uKDDz6gf//+SR3rdDrZdtttmT8/cj0Ht9tNXl5ei6/O1qNf5EJMzZkOM+p0Ysuy+HrGdzx62TM8fPEUPn7lc4IJVMRtbs9jdo2ZuBimwejjI487SnSmkrY0y/9axZP/93zE7csXRJhOGUF+SS7lqyv5dvZP+Op8FPUupN/GmTvmqas55arl7Lin/enaDP9qG/6N+KFXrw6Xee8q05Q7irJXY1YG+Oe2IUHTUPdueOHKBFtePAfZXSeY9vHKjfbPQfs+Jv7PX0NoHo2Db/1foMtOQdc8ZT8bpVCeMRjFz2L0+hqVc2Z4FlJDUtowy8uPrpqMVXaBPRi5+jF06J8I10vgOVkVWFV3o/0/2N/XvxUelBvlWN/bdlKSfS7RW2AMUC57llobaB1E+z5E105D172Dtjp2pqFIj7S2vGitOe+883jttdf48MMPGTx4cNLnCIVC/PTTT+y///5piDBxlWurWPrncjxZbgZtOSDmtOGDzz+Ahy58Kub5dj1sRMRidP8sWMH/HXATS/9Y3jgm5b93v01Rn0JueONyNtl+o1bHRLLLoTux4dYDWfRL60GvhmmQW5jNuHMjf5IZedD2fPJK/IUbG7z92EyOuHQs/Ya0HFOw7uKH0fzw4a/88GHTjJSCXvmUd2DxuO4sKzfEAcetxYjSwBe5HuL6lrSEOXeAhtaH5rOukhGaH16PKUH1b9Bi5o8uh5rH7RomSbPPoasmg2sXlLOpBorWPntRyFh87wImGg3Vt6OzJqByr2gaGOsaEe7GitX6Ugs1j6BrHkQ7dwRdT9xWqKrrUTkXo4teh/JTwkljwws2BCoHVfhwq9lKidD1s9CV17SsXaO8kHM+ZJ2c1sUwRXqldWHGs88+m2nTpvH666+3qO2Sn5+P12vXk5gwYQL9+vVj8uTJAFx//fWMGDGCIUOGUF5ezm233cb06dP55ptv2HzzzeNeM9ULM5auKOPhS57h45fnNN7Mew4s4firD4+64rJlWZy4yfks/ytyy4PT7eTRH++g/8Ytb/a1VXWcssVFlK0oa5U4GKaBN8fDYz/dSUn/4oRiL19dwX+OvpvvP/i5sZXHClkM2LQf175yCQM3H8C8uQt486H3+PPbv/Bkudnl0BEM2XYQV4y5EctKbr2fjYYNYugOG7HtXlux8yE7YTpMDsw6Nu4CkCJ9dtijkv88l0B3yXpPQdYJjYtIav936NKj2nYeozdYK2n7uBdo32wlE7yHo7LPAKMQZWSj6z9Al5+R/Kmyz2xc/FAHF6DXHEDiz6tZApIAVfAguP8F9f9rWvnauR14D2hRf6g5rX2AYdeYWXeb72N73Jb9Xevr5f4blX1qQrGJjpHM/TutyUu0rPapp57ixBNPBGD33Xdn0KBBTJkyBYCLLrqIV199lRUrVlBYWMj222/PjTfeyLbbRpnWt45UJi9lqyo4b/hEVi9dG3Hmy0k3jueYKw+NeGxNRQ1Xjb2Znz9tudhaUZ8Crnvt32y6U+vKkG88+B73nfd49JmfpsGRl43jlJuOSep5LPhhEd/O/JFQMMRmIzZh6902RynF09e+yNQbXmks4AZ2LZncwhzGTzyEJ66cFnW16mgait716FfEZVPO4ZlJL/HLZzHWURFpNXx0Jdc/I8lLQsyNMEreRQfmoasfBV/ySwJ0PQ7w7AeOzaH6ljYc70L1nIMy7PdSXfdquCJuWwrLxWKAcxuM4hfj7ql1COpeQNc8DaFF2NPZR6KyT0O5dw7vo9Frx8aZLu4JP7e2tHKJdOgyyUtnSGXy8tBFU5h+/7tRp+wqQ/HcooeitoRorZk19SPeengmddX1DNy8PydefzT9No48ZfPi3a/h509+i1lNttegEqb+9WDSz0VrzW9f/skfcxfgdDmwQhb3nvN45J0V5BXl8NC3t/HsdS8z48kIi7CJjOB0hXj0g3n02iCAKWUxYlNF4BgEge/oXl1nDR8i2/ic3Huj8q5FmfZSITrwG7rmWXtwro43ri25aeOq109R69eAnbjo8gvDY7Jodm67pUrlXYfKGm/Pllt7YPzr5d8Wucqw6BTJ3L87tM5LJgkFQ3FXh1ZK8b8pH3LsVa0XG6uprGXSobfx/fs/YzoMtKX5+9elfPjSHCZceyTHXX14q5ap2sq6uGXw66uTXyZh8e/L+M/4u/jrh7+jLgfQgobKtdXcePRd3DbrGmY9+xHBQEdMbRWpFvCbnLTz5hSWBDjk9NUcetpqnDKZKzJdCoE2jnXp0tqZiPlmodfMgcInUa5tUc7NUAU3obUfvTJ62YsmLqLPXFs31FDsmdN1r4HvvQgbwrVmKieBa9cExywZbR/bJDqdJC9RVJVVx13YUCkVdVzLLRPu48eP7EGoTeNX7D/eZya9REn/4lZjZgZtOYBFPy+OOlDWMBQbbNY0W6u+1sfsqR/z3pQPKVtRTs+BPdjvlL3Y7ciROF1OtNa8+dB7PHzJ0wT94T/uJBrafvv8D44ddLYkLhnM4bQYe8Jaxp2yhj4D/VghWqx1JER8GnSdPX6k5MPGbhalXGijV3h8T4xjE+peUmBuiDKy7KN0AEJLw48PaBw0rGufJXZrjkLXvRRx9erWLDD7JrCf6IokeYkiK9eLYRpxq7zmFbfuL/37t6V8/sbc6AcpeO4//2WfE3dvMWvpwDP2YfbU6BVpLUtz0NljAHsw7qV7TOLv35aisFtTVi1ezY8f/cpbj/yP0cfvzsMXP9XudYEqVnd+xWLRNg6nxQ3PLmTYLtWNjxmmnbwIkRzLLlhY/xZkHY0OzrcL0unYS5DYEkleNFgrsdYcBWYJ+L8MV3bGXigy+yTIOgmCfxC7BceCwG+o3IFo53b2+l3RBhirPHDvkUBsoiuSz19RuDwudjlkp6i1WMDuWtpj/C6tHv/yrW9iHoeGFQtXsWRey1oKmw3fmFEH7xjxEKVgl0OHs+vhIwC49cQH7ON1U2tKQ12XX+fM454zH0nJgoYicx186hqG7VKNYbRsaZFWF9Ekxy7TH3HxzXUZaN8Xdh2XNQdA7fP21O5U0dUQ/M4ez6KblUqwVqGrbkFXXAHEq9htQHilaZV3Jfbn88gveJV3NUpJH2qmkrexGI75v8MwHUbElYCVoRh18I4RV4f21fkTqh8QCC+qFwqFeOSyZxibezxzpreuNNmjXxGn3nwc59x7Mkv/WM4f3yzg63e/i9oq1L2GYIu20Yw7ObGFIEWmCq/k7Wr9ASpxteAdb691FJcFvo+g5kEaV/5uMydJr29VPx2c2xA70bJQHrs7Xjm3RhU9B451xuWYA1AF98pA3Qwn3UYxbLTNIG5+72omH3sPa5aVYjoMLEujtWbPY3bhokfsugn1tT7WLF2LJ9tNj37FbDRsEKFg7KZSp8dJn4164a/3c96IK/nrx7+j7rv5yE34ZuYPPHa5vW6IFFYS8WTlWPTsF39pBpGhVD54D0VlHYtybIBVerzd1ZI0C2ofS2L/mjjbE10WoS2vzXCy1vj/dZMnE4xe4GkqaKpc26B6vIIOzofQP2AUgGNLu4qyyGgyVToBoVCIuTO+Z+HPS/BkuRkxdnt6D+pJ5doqnr72Rd6b8iG+WrvvN69HLn037MWiX5bgq/NHXCPIMA32PGYXNti0P6/e8zblqxKoJtvehWrFesXptnhr4U+dHYZIF/ceGIWPNH6r/T+gS8djl/zvxsyNULkXo8svBvw0JTQhe2xM7pUo13b2mkwi40idlxQnLxGvU1rFBaP+j38WrIw7qHdd7iy7jkFDwiNEOtz84gK2HlndtI6R6FZUzoWonLPtxKV2ang9ppV06wTGMQyjx0toqxzqXkUHfobQWrtYnbU8vJPdlabyJoYX2RSZQuq8pFFNRQ1z3/uBd5+YzbL5K+KuvhyJJC2iI7x4f0+G7VyN1tHWMBKZTFffjQ7+CfVv077lBFLJBKMobauOK+9Y+1+jALJPhrp30BUXrbOXBv9n6LWHQ/ErksB0U9LykqBQKMQz177EK3e+ib9exhKIzLDP0Wu54NaljdV1JYmJQ/UBvTz+fl1CouNLOpKCwheg/EzQZSk+txfV87PGOjNa+9CrdgZdRdQ+dVWIKv4vytE/8nbRpSRz/5ZRSwl6+OKnmTb5VUlcREaZ+WIRZauc0vqSqIxJXKDrJS5A3o0Y7m2h5CPwHglEXlCxTbxHt1yHqH62XXsm1mBAXYZecxg6tCru6bVVhq59CV39KLru7fCij6KrkuQlAcsXrmT6/e/KgFmRcbb9VzUlfQNS20WknzkU5T0cAMPwYOTfiNH7B4zef6AKHolzMKB6EHP6dN0UtL9ZKYnQUhKrT1OGLr8oanVxrTVW1T3oVbugK69GV9+FrrgIvWoUuq47LM7ZPclbWgLen/Zpi0q4QmSKwZvWEeoKQyFE9xeaB7XPRd7m3g3c+xI5OVHg3hNyLyX2J0QDXdNsMVkjn4RbnwJfo0tPQltVrTbp6vug5gGa1l8K/8HoKnTFJej6WYldQ3QouSMnoHxlRcRCdUJ0db46Q7qLRILiVa+NT9c8hNatZzspZaAK7kTlXACqsNmGfMg+B1VwH/g/IfYtKQS+j5taUDx7k1jLS1hgDnrVCLuVRdtJj7YqoObRGAcpdNUdSa0JJzqGJC8JKO5XlPR0aCG6gi9m5kl3p0hQCsbzWash+FvETUo5UDlno3p+iip+C1X8JqrnZxi556OUE3QiK0+HaGhtUUYRZJ+SZIABqHkAXXWb/W39bOx6MdFoCC0Ir6kkuhJJXhIw+rhd5f1fZKQ1y13MfLkQS7qOREfR9TE3K+VEOTdBOYcCDrTvM6yKqyH0N7GTFwWOoY0rTAOonIsgoRWk11H7FDq0Irw2UwK3Qas8+WuItJLkJQE9+hVz7P+14Q9EiC7gvon9+ezdfABCQXvtK2kFF+mia99o7JaJuZ9VgV57NLrsJKh7EYLz4h2ByjqhxSNKGRj5k8G9d/KB1r8NZn8SGjdj9kv+/CKtJHlJ0IRJR3LWnSeSW5TT4vHs/CyUjIcRXVjAZ3Dj6YO4/tSBBPwKpWTatEij+hfR1XfF3U2XnQfB7xM4YfjFam6EDs5D172J1i27elTBXeDYPIkgDbS1Fty7gyqIsZ8JrhFSJ6YLkiJ1SQr4A/z86e/UVdezwab9+PvXpUw69LaUX0eIVOrV38/97/1BTl4II4kxjkK0jStcUC4/4lYd+AW99pAEz+WgacmD8CJvqhBV+ADKtUPTOUPL0WsOAF1DQgO9jB7g3BYcG0HNw03nbmSCcqGKXkQ5N00wVtEeUqQujZwuJ9vuuRWjDtqR/pv0ZdS4HTnkAnsVU8OUH6fomsZfsJKsXElcREfxg+8DtLbQvs/Q1Q+gqx+y12HSGl3zQoLnUbRcqymcXOgye+pzcFHTnmYfVNFz4a6gBFhrwPe+nbg4dwBznWUEXMNRRS9L4tJFSctLCmit+fzNubx27zv89vkf+OpijV4XomM5nBavzfsZl6db/amLLk1B9plQ/669aGLjlOaQnSSE5qfmGlnjMfImtXhUawtd9wpUXk9T7ZZE4j0f5d3PHpxr9kGZfVIQo0iGtLx0MKUUow7akdtmXct2e2+N4ZAfq+g6snItSVxEB9NQ8yyEloS/D9FY/C0liUv4GnVv2//TIbS2p3orZWBkHYkqfg2c2yd+rtqnweyPcm0niUsGkLtsCmmt+erd77CCUhNGdB21VQZ+n4zQFR3FAJUD1JD2la51JVbpceiVm6NXboG1Zhy6bjpaa5RzY1TO+eFYEjlXOQQXpDVckTqSvKSQ1horKAU1RNcSDBi8/2oBwdaFT4VID+2mY6ojavB/3XSt4Dx0xb/RFf+HVfs2uuwU0LXJnU9kBEleUsgwDAZvPVCmTosuZ9rdvairNrGkUVCknQWs7cDrNU84wi/w+leg8iLsMS8JvuhVDjg2THFsIl0keUmhmooa9jt5T7Ql2bvoWlYucfPIpD6yurQQERmQdQxKeTo7EJEgR2cH0B188t8veOGW6fwx1+4vdWe58NX6UUrJgl6iy9h5v0qsEDJdWmSQ5jVe0sg1ErLPTv91RMrI57B2en7ya1x/xB3M//avxsd8tfZUadMhdwnRdWz7rypJXERmyb0qvedXBWAOBv/nsGoY1up90DXPNs5cEl2XJC/t8PevS3jy/6YBYEXoKgoGZISk6Co0T97UR8a8iAyhwDUKlXU0GGlcV0iXQ2ghjeNiQovQVTeg1xyCFYi8OrboGiR5aYe3H52FKTVdREZQvP5ED56+tXdnByJEAjRgga4C954pPncCEypCf8DacVhrj0eHVqb4+iIV5M7bDn/9+DchqekiMobipQdKWLbQ2dmBCBGf/2t06QSon5Xa85qDE983MBddeizaqk5tDKLdJHlpB0+OR6ZFi4xihQxO3XUz7p/Yj4BfXruiKwtB8DfQy+PspxIsRJcFJR+Bew8San1piCG0BOpeTXB/0VEkeWmHXQ4ZLtOiRcaxLMVbzxRzy7kbdHYoQsSRSJKhEixEZ2GYfcBaTrLF6HTdf9Haj/Z9jq6fhQ42LXGg/V9hlZ2NtXJHrJU7YZVfjPb/kNT5RfJkqnQ77HH0KKZe/zJrlq1t1X2kDCWJjeiytFZ88lYB875fxdBhdZ0djhBRJPIemmjXfT06tBqMIuykKNH3Zw2hJehVu4Iua3rUOQwcw6BuCvbCk+Hq6vXvouvfhrzrUVlHJXgNkSxpeWkHt9fNbbOvpffgXoA9NbpherQ3x4PDJbmh6LpMh2bWy0WdHYYQMRigetC0KnWk7Um8huteQXnGkVzLiwJd3SJxASDwYzhxgZZrOIUAja68pkULjUgtubu2U58Ne/HEr3fx1TvfMfe97wkFQgzdaQjuLBeTj723s8MTIirLgrI18hYgujILjB4QqqD1Io8m4ICc86DqxgjbW9P+uajsM0Hl2jOZEhIt0YnX4mOga59D5V2b4HVEMuSdKwVM02Tk2B0YOXaHxsfeePC9ToxIiPgMBT16SzEu0cWFfo/woAOcO4K1DKquS/xc/k/Q5ecDbiDR5KWtQuFFI0FbtVD/Frr+PdA14NgElXU0yrl5Sq+og0uh/h20LkcZfcF7IMooSOk1ugpJXtKkbGV5Z4cgREyhkGKfo0o7OwwhkmSC0QsCX9KmVaB97wG5qQ4qMh1CBxfbU76tf2gcaxP4AV33Ajr7LFTOhSjVvpl/WgfRlTdC3fPhaxhoQlA1GXKvQGUfn4In07XImJc0+erd7zo7BCFi0Ow2rpQNN6/v7ECESFLIbnFB06bkBUh/q0tYaAF6zf5grQg/0BBvuIur5iGof7Pdl9FVt4YTl3BxP4Lh/wfsisF1r7f7Gl2NJC9pULaynD++WdDZYQgRg8JXZxKUXiORsTJlNqef6ONjFLrm0XYt4KtDa6H2WWL9PHT1PWjdvQqqdkjy8sADDzBo0CA8Hg/Dhw/nq6++irn/yy+/zKabborH42GrrbbinXfe6YgwU2bx78sy5+9KrLe+nJnHfx/u2dlhCLEe0xD8o/VMpmT4ZhN3sHJoKQQjjR3KXGlPXl588UUuvvhirr32Wr799lu22WYbxowZw6pVqyLuP2fOHMaPH88pp5zCd999x8EHH8zBBx/Mzz//nO5QU6ZiTWVnhyBEXFrDa0/0IBR/koYQIp10Oxbx1TUkdCvX3WuJg7QnL3feeSennXYaJ510EptvvjkPP/wwWVlZPPnkkxH3v+eee9h333257LLL2GyzzbjhhhvYbrvtuP/++9Mdasr0HiSfZkUmUJStcrJ6mauzAxEiw6RwaQ2jtz0dvK3MQcSftq3A7F4VtdOavPj9fr755htGjx7ddEHDYPTo0Xz++ecRj/n8889b7A8wZsyYqPv7fD4qKytbfHW2AUP74nBGK6okRNdiGNLHKURiDMi5DHuibmoSGJV9Akq141bs3hWMkhjxmODaDWV2rxXl05q8rFmzhlAoRK9evVo83qtXL1asWBHxmBUrViS1/+TJk8nPz2/8GjBgQGqCbwdvjpf9Th3d7ulvQqSV0vQZ6KOkn4zaFSIhRn+U9wBU4YPYtWLa+R7vHAZZJ8TcRQfno+vfRfs+ROvWS3ko5UDl34JdtG/dW7oJKhtyL29fnF1Qxs82mjhxIhUVFY1fS5Ys6eyQADjlpvFsuPUGrV7bhqkwzIz/sYtuICcvxAW3LkFybCESZC1Dl54ArpFQ8gGorHacTIF7NEpFLremg/Ox1h6FXrM/uvwCdNnp6FWj0NUPtpo5pNy7oIqeA9fwlucnBLoSSo/CqrodbXWfcS9pvYv26NED0zRZuXJli8dXrlxJ796Rm7B69+6d1P5ut5u8vLwWX11Bdn42d31yAyfdMJ6S/sUAeLLd7HfyXlz7yiWYLulWEp1FM2SrWl786Re23bWms4MRIoOEIPQ31P8PFfghPFi27ZTyRnxcB5eg1x5tr5/UYkMNuvpudNXk1udybYtR9DTk3tDwSLPjKqHmcXTp0d0mgUlr8uJyudh+++2ZPXt242OWZTF79mxGjhwZ8ZiRI0e22B9g5syZUffvyrw5Xo658lCmLX6Y94Iv8mbVVC585AxGjduJOz+4jpzC7M4OUayXFIt+9xDwSQugWF+1p7nRsMv8hxbS7luoe4+ID+vqB8KJUZSpgLXPoIOLWx9nVUPVf7Cf37qDeC0ILkDXPNieiLuMtL97XXzxxTz22GM8/fTT/Pbbb5x11lnU1NRw0kknATBhwgQmTpzYuP8FF1zAjBkzuOOOO/j999+ZNGkSc+fO5dxzz013qGllGC1/1GuWlVJdJp96RecIBgzKVsvqIGJ91Z4WestOLFQObS/oZYDnAJSjP2CvfaRrX8QqvwCr9Gyof53YtVsMdN1rrR+ufxPwxYgrBLUvoLW/jXF3HWl/9zrqqKNYvXo111xzDStWrGDYsGHMmDGjcVDu4sWLW9zYR40axbRp07jqqqu48sor2XjjjZk+fTpbbrllukPtUM9MeqmzQxDrNc3/HTOYEWMqOejEtfQZmPlvZkIkrqJ9hzs2BvdoYBIxkwyVF169uvmH1xC4d0Pl/wcAHfgFXXpyuFCdQfxpzwAKrNa10nTwT+yBuzHqxuhqsNaC2SeB63RdSrenLnEXVFlZSX5+PhUVFV1m/Mu66qrrOChvQmeHIdZbmoZmc8PUGIbm2icXsdNeHbTeixCZrvhtDOfGWJX/gdpniNrSkX02eA6F+tcgtASMApRnLDi3RimFtirQq/e2x6QklLQ0MCH7TIzcC1o8alXdBjVPEq/irur5VZdcbTqZ+7e0G3eCylK5SYjO1NTfb4UU2oLrTx3E01/8RnGvdlT6FGJ9Ya0BNkblXo62/FD/fISdDKh5EIILUQW3o5Sz9S51r4KuIPnupxDKO67Vo8q9D7rmsRjHGeDcrksmLsmSEXudIOiXeuyi69BaEQooZkwr6uxQhMgMVqn9b+AH8H8QbSf7H98MdPU9rbZqHULXvUWbxs14j0U5BrV+3Lk1OEdgdx1FolE5Zyd/vS5IkpdOUNAzH2VIcQ3RdViW4oc5OZ0dhhCZQQewyi9Clx4LVuQCqs12htpn0Vat/Z220DVPoFf/C4I/JXlhD2Sfjcq7KuJWpRSq8H5wbh9+xEFTNWAXKv9mlHuXJK/ZNUm3USfIzsviX0eM5KOX5sjq06KL0BhKXoxCJKTy38ntr+vQ/i/AvQe68mqoeznBA01wbInKngDKA66RKCP2hwxl5EHRsxD43p7SrWtRjo3AO65bdBc1kOSlk5x4/dHMnfE9tVV1aEtuGqLz9B3s45SrljFqHxmLJUTalF+OJgDUJnFQCJVzJsqzV1KXUkqBa1uUa9ukjotHh1ZA3etoaxXK6AHeg1Bmv5ReI1GSvHSS/hv34Z7PbuSesx7jp09+6+xwxHpq2C6V3DRtIaa8EwiRZslMzw5PmfYeC+490xVQTFpr8H9pt+BoA6xF9gDjcHwaC6rvRmedgMq9on2LS7aBTJXuAn75fB4X7hy5D1OIdHrmq1/o2S8o6xsJ0ZU4NoGsCSjvEZ2ywK8OzkeXnQuhv7AH/1rEGuOgcs5D5ZzX7usmc/+WAbtdwBYjhzJx6vmdHYZYD3mztSQuQgA4tunsCJoE/4DKa+wFGYN/d+ildWg1eu2x9hpOgF0zJnYbh65+HG11bMV4SV66iD2P2ZX7v5zMyIO2x3SYoKD34J64s1ydHZropgZvVkdugUzbF8KejROAvLs6O5BmLPDNRK89DB38q8OuqmunhmvPJPPeUAf+z9IVUkTS092FDN1xCNdPvwKw+xuVUnzy6hdcf/gdnRyZ6I7GnbJaWl2EAEBD8DeonBh/1w4VsleSrrweVTQlJWfUoeXo2hch8B1goty7gvdQlJFv71D3OslV+204cTIDkdtPkpcuqqGfc5dDhuPN81JXWdfJEYnM1rQkQIOinkG0RhIYIQD7b6S+jccqMPrYp9AraNPNP6oQ+Oegg0sbF3JsK133Frri39jx2TFq/2dQfT8UPm7PTtKVbTu5Y6N2xZYs6TbKAJK4iPZryFCa+q5ff6KHJC5CtFn4j0cVQPaZqB5vokpeB+/RgCfx0xgJTjUOLU42wBZ04Fd0xaXYizY2T6603bpTdiraKgNzAOt+0InNAMdQcHTs4smSvHRxZavaufqpEM243Jrwx0O+/yybT97Oo3vNNxSio7ig6GVUzy8wci9CGbkoIx8jfxKq5+eo4rfAuV2ccyi7+FwCdODHdkWra54melJi2atN172KyhpP4tVTTVBuu3JvB38SkuSli/vls3mdHYLoRvw++09+94PLOPS0tVSVmQT8nRyUEBnJB6VHQu2zrbYoIxvl3ASs1XHOoe3VphNR/17yITbn+4DYg3A12vcReA8NLy8QLz1Q4NoVVfxflHOL9sXWBpK8dHFWKJV9p0IAKD5+o5CSfj72PKQc0wHBAGiNtMIIkRSNrvoPuu7NyJuNQuJ3wST46SH4C9pqTxXsBGYP6QBKuVBFT0LWCaCymrapHKBh9qsJKPB/hK55Cq07/hOQJC9d3GbDh3RKkSLRnWksS/HgVQM4dofN+fMHLw4nLVqKJZERInG6+j4i1XtVnoNTfKVgm46yx7IMIfYt34TwcgJKeTHyJqJK5qCKX4Xc60DXAIHwviEaC9fVvYKunNSmuNpDkpcurucGJYw8aAcMU35VIlWakuFbXl7A0G3tAeHKaJp5pJTMQhIiYaFF4Wq06/AeEh4Aa7bzAgrMfvbg4CTo4HyssrPRq0ZC8Dtiz4LSKO/RLa9qZKGcW0L9a3YMEcfCaKj7LzqYYPdXisgdMQNc9OgZ9Nu4j7TAiJTa45AyhmxZL0mKEKkQqc6Jcoa7X2KvBJ0IlXViUvcAHfgNvfbw8FiXWEmL3QWk8v6DcmzQ+jyhFRD4Ps45FPjaOSYnSVLnJQMUlOTzwFeTefeJ93n38dms+Hs1oWCIQL3dhOd0Owj42tacKNZfR5+/Uuq8CJESjnALSxMdWo4uPcFulWlsJ4jWehGHex/IOi6pQ3TltaDriZ50KMAL7n+hsk9GuYZF3s1KpO6LgbYqk5pg3V6SvGQIb46XQy84gEMvOKDxsZqKGkJBC5fXyRsPvMfrD8xg1eI1GA4DKygDfUV0hqHZYIhPEhchUkHlosvPt1eA9h4KKgdddlqzmUQN78dJJi4qH5V3FXgORKnEu550cH64tSTmXqiix1CuHWPvZvbGThVifUAOoszWrTbpJN1GGSw7P5u84lw8WR6OvGwczy16iHfqp/Fu/fNs9a/NMB3y6xWROd0ao73d8EIkZD3IkHUZ+L9AV01Gr94LXfu8vbhiUusDtaYKbkd5xyWVuAAQXJTgfvEXfVRGHnj2J/a4HS949kvsmikid7duxulyYhgGVzx7Pj36FaOMpjcO+ZQtGvjqFKUrJXsRHSGb9edWo0FXQdXNtG+QrgGukeDatW2Hq9wEL5PYWByVe0l42ve6z8m+qaj861BGduLxpcD68opa7/Qc0IOHvr2Vk28cT98hvcnOz2KDzfpz9t0nMWTbwZ0dnuh0iree6UFIFpUWaecB1bE3ts5lAT7aNLYFABM8B6MKH0apNt6iXduBURRnJ2/CyZEy+6CKXwHPvrRIYBybogoeQXkPbluc7aB0pMnpGayyspL8/HwqKirIy8vr7HC6pNnPfcLNx9/b2WGITubJCnHHa/MZvFk9ZrPRbzKIV4iOYoJrFCrv/yDwI+AA13CUWdLuM+vaaTHrr6icC1E5Zyd/XqscQv+Ayok4O6k9krl/S8vLemiP8TvjyXZ3dhiik9XXmlx22BCmP9GD2uqmt4LFf7h48cEenRiZEN2Bg/jjfULg/xRUFsp7MMp7YEoSFwC841E5lzWLw4F9yzcg+wzIPqtNp1VGAcq5ecoTl6TjkJaX9dO1h9zK52/ORVvd6tcv2sjlsejZz4+/3sBXp7hvxp/07BeQFhiRgDZO/+1oxgCwSoGa9p/L7G+3PkSdhmyA9zCoe5VEBu2qoufiz/ppI22VQd3baGs5yigBzwGpS5BSLJn7t0yVXk8ddPYY5rz+dWeHIboIf73B0gX26rZXP75QEheRhAxIXABVcCs4h6FrX4Wqa0m81L7CHucRAhyo3IvB6I2uuCjG/g5UzsVosy9U35PAJdL3QVsZhZB9XLeb8yXdRuup7UZvzb6n7NnZYYhOE/mGM3JMOTvvVymJi+hGlN1S4twWpUyM7CNQJbPAuVMCxxrgGgHZJ6PyrkH1/AyVfYo9ddh7bNM+jUzARBXchTKLUVnjid9GkIX2f4+2IlToFVFJ8rKeUkpx8aNnsuUum3V2KKJTtG7qNwzNOTctk8RFdCPhqby5V7eYuaPMvqiC2xM43gBzEEbupaisY1FGgX28UnYyU/AAuHayy/+rQvAcgip+DeXZ297PKILsE+Ncow6qrkavGY0OzEv+Ka6npNtoPaaU4sppF3D2Dv+mfHVlprT+ipRRoDRo+w1+q5HVlPSRZSZEN5Pzb5Rnj9aPG0WAB6iPcbCFMvtH3KKUAs/ejYlKNCrnErS2oHYKkcfIhN94rVJ02UnQYxbKyIp5TiEtL+u9kv7F3PfFZEYcsH1nhyI6WE5+kKKSQOP3PfoEYuwt1h8Ns1LaogvWc6l9DK39rR5WymWv+hyzmJyCdtYwUcrEyLsCVfIxmJsSfQaSBdYaqH+7XddbX0jLi6D3oJ7c8MYVrF66liXz/uGz6V/yxgMdu0Ko6HjVFQ5As8HGdYzYp5KtRlRTX6vwZEkTXOrFmZHj2ByCv3ZYNDE5h0Hg27Yda/ZBFT2Brn0RAt8AJmg/BOZG2LkjZilpe4ZR/XvgHds6gpxz0L737aQhwqwglXtpymbmKLMnOrSQ2M9ZoX0fobKOSMk1uzNJXkSjkv7FlPQvZvlfKzo7FNFhFIv/9LD4Ty8vPdALb3aIAyes5YR/L8cppYBSKBeoIvKNS4GuhoLnofxE7OqsnST7XKh5gLYlFSa4d7KrseZe2Pio1iF09V1Q8yT2DB8DsMAoBnMIBL6mvWsAxeZAB75FRUpezJ5Q/DK68ibw/Y/Gbh2zHyrnPJT30BTHEq9bVtvJnohLkhfRykbbDOrsEESHamrGrqsxeeWREhb86uHGZxe2qLwr2qMyxjYNocUow0IXvwZrD6DTBqBZZe24toXKOq7Vo0qZqNxL0dmnQP379to/5kBw7wqBX9ClHdHKEL0bTJm9UYX3okNrIfQ3qCxwbNL20vyxOLaA4M/Eqg+jXFul/rrdkIx5Ea0M3XEIg7YcsF4sBita05bi24/y+OStgs4OZf0S/AvDOQQKn+i8GOqeS3DHdacHK1TejSjHkKhHKKMQlXUYKvtElGcPlHKgXNugci5sR8CJCKJcIyNu0VqjfXOwys5Brz0UXTERXf8uWKvSEonKnkD0xAXsMTbSZZQISV5EK0oprnj2fLw5HgyjdQZjmPKy6e4MQ/POc/EWdhMpFV680HDvgiroymuPGeDeE4weYJSA5yAoeBiMArTvQ7RVndTZVM7ZkH9fonuv871J7A4E067x4m4920hrja66CV12IvjeB2s5hBZCzSPoNfui/W0c9xOLZyx4Grqi1k0ADVT+LSizd+qv2w3JXUhEtNE2g3jw61vYaf/tWm2zLPuTg+loz5LvoiuzLMU/i7rDoJdUvsWl8/XuQDs2afxOefYFo08ar9dWJrjHYBQ+iNFzDqr4v/aA2PIz0eXnoMtOR68ahVV1G1pHH9+hdQCr9iWsyv9g1UwBZyL1pgww+tP0e1Dg3g2KXoHsU5via9iGAqMIVfg4SkX43dW/CbVPh79pPubGAl1vP5cUF45TSqHyJ6PybwfnltiJlwfc+6CKXkR5D0rp9boz6dEWUZUMKOaPuQtQhmq5BlL4v6FgiOOuOZw+g3vRZ8Ne/N8BN1FXHatmgsgcmvyiDK/5kn2+PWvG/2mKTpjOcShBWDsWy7UbKv96+9O3a2eof430DmZNhgFmf1TeNQBoqxS99miwVtDyZ1MPNY+hQysg/3a7HkqY1hpdfS/UPEyL51V1E+AEYk/XV9njwXs0WGvBKEAZ+fYG1+Zo9xh07TQI/m6veOzZD7wHo4yciOfSNU/SOHi4FQt0JdS/BVlHxv6xJEkpBd6DJFFpJ0leRFQfvjiH0hXlUbcbpsEfcxewzW5b8PS1L0ri0o0oBaOPKOvsMNpO9UDlnIVSJlb9R1A5Caxl7Txpw00uXVN8Nfg/Qa89Cnq8BlnHQP0rabhOW7gh+zRU9gmNCYOuedruaon2s6h/E7ImgGubxod09R1Q82iUa8SrM2TYFWyNHIiQkCjXNqhm11qX1hb4P0X7PgHtS2Bquon2f4VKcfIiUkOSFxHV3Pe+RylFtIXHrZDF1zO+56t3vpNxMN2IaWp69PWzz5GlnR1KG4TLwedPAqsMq/y8cL2RVL0+DXBsBsGFQDrWogmBtRJddp49/iIlorUuNGhYdDDG8VnHYOSe3/LhupeIl8TpqjtRxXbXjLZKoeaxNsRrf6/yrkGZxQkcHyGO4FJ02WkQWoB920s0+ZRZC11VWu44ixYt4pRTTmHw4MF4vV422mgjrr32Wvz+2PPXd999d7tPsNnXmWeemY4QRQJCwVDUxKVBQ3eSFYr15ii6Po1S9u9y4NA6bvvvArLzMvB3avZHFTwI7t3RZSdA4PvwhkjPpS1vfxYElwHprMVh2bVPrDUpOp8G977YpfDBvnkrwInKOR/cBxN7PI+F8o5reUat7a6beAI/NL6H6Lo3SShpMDex1wpq4NwKVfAIKuvo+MdGoHW9/VoILQo/EiSxrrgQyjWiTdcU6ZeWlpfff/8dy7J45JFHGDJkCD///DOnnXYaNTU13H577MWwTjvtNK6//vrG77OyZI2HztJ/aL/ODkF0GIV9j9HsNq6cXv0zZKkAYwDk34TSFWD0BOc2dmth3ZsQ/DPGgSa4dgX/h224aC2xWzI6QjJdVw5U/vWAw640a62wC8R5xqCMQgguRvvfAx3peSnw7I9ybt7yUaXQcdcFAqgF6x8w+0EowW47szeqxytgrQY8bW5taVT/DoSWJHmQATjQ9R+idRXKexjKyG1fHCKl0pK87Lvvvuy7776N32+44YbMmzePhx56KG7ykpWVRe/eMlWsK/Bmd4fZJiI5ii/+l8/R563uxBhy7JYCXwLjPZybQt3LaJWF8uyDfUNX6Pq3iN1dEoLgr6i8yejK64G6BGMzwMgNF3PrDAa497L/Df5lF3yzSoncEmQnOCrv/xpXQybrsNZ7OTaAomnoiksh+EezLQ7wHoXKmxg5FMfGEPwpfsg6XDHY6BV/XwBHP3vdITM1H550/f9IfpySBfjB/x7430NX3YLOvRoj+5iUxCTar8PGvFRUVFBUFL9uxHPPPcfUqVPp3bs3Y8eO5eqrr47Z+uLz+fD5msppV1bGqmQpkuGr82OYhnQJrWeCwY7o5491M6kB338TO41vdvg/BrruBbuCaeHjYFUQt3VEV6OyDkO7doC1h9qJQFwW6M4sEWCB9mEUPd7iUR1aga66FerfpbFLxByMyr3AnnUTh3JuCsVvQuBHCM4D5QH3Ligjxnu2csUPV2WB2df+r3csuvpW4iURyptYgqB1HdS9iw7+BsqFcu8Bzu1bzG6yd6yJe017JtUGEFpK5BL+IaiahGUUYXj3jbBddLQOSV7mz5/PfffdF7fV5ZhjjmHgwIH07duXH3/8kcsvv5x58+bx6quvRj1m8uTJXHfddakOWQA9B/RorOki1g/K0Gw1vKYDrqSJ3jKS7CfkZv8Gf0eXnwHGEOAHoo9tUGAOsP9bMTHcZZIgnZ7qq4kxwGi9crMye6MK7kRbV9s3YJVtJy/r3shjUErZM4NizNhpoK1yCPwQ/6Se/VHKE46xJ9p7LNRNjb6/ezTKuXH86/s+RpdfFE447duYrnkMnNtAwcMtu5ocG4N/LtFfCwY4NrUr21bFuZdU3YT2jEnq5yrSI6kRa1dccUWrAbXrfv3+++8tjlm2bBn77rsvRxxxBKeddlrM859++umMGTOGrbbaimOPPZZnnnmG1157jQULFkQ9ZuLEiVRUVDR+LVmSbN+miGa3I0fidDujbjdMA0+WdC11NwdOsAeKag2oPMg6PQ1XMUnPuJGQ3Xrg2orYgzI1KusYdODP8IrHbamlkob5DqowznktlHtM9MONQpRzK5Rjw/TeYAPfE3+RQexkohmVdzVknUjr56jAcyiqIH6lXR34FV12pr2YJYTjCMcS+BG9Zn+s+o/tqdGA8h5N7N9veE2mxoJ1sXZd0YbxMyIdkvrru+SSS/jtt99ifm244YaN+//zzz/ssccejBo1ikcfjTa3P7rhw4cDdstNNG63m7y8vBZfIjWy87M5/dbjI24zTAO318Xxk6QGQvegAc0ldy6h34Z+rJCdvPzy07GgNKlrpPVA9jmkdwqqw15gzzs+ynYDnDuA97Bms5HawCgJ/8cu7d4+CrJORhU/R9NsoHWZYA4Gz+h2XisF4sxCbKDW6VpSSmHkXYnq+Q3kXgXeYyH3Mij5FqPg5siVcNe9dM1jNLxeI2wFXQblp6LXHoIOrUI5N7FnVdkRrBshuHYH78GJj2PSyS1/INIjqXekkpISSkpK4u+I3eKyxx57sP322/PUU09hGMn/cX///fcA9OnTFctkrx8OPnc/snK9PHX1C6xZ2jQ1cotRQznv/lPYYLP+vHz765SvkrFGmc1+U3/lYfvve/BmdTx1cx9WLFvIE3O3oP2tJAry70W5d0YZOVj+TyHwUwrOG4kG7UPlXQuOweiax5sW2lPZ4D3aHguiXOj2lPzPPhtl9kb7ZtuDUh2bgP/rNs5gMlE5p9tjTAofRZef16JLBIJgDrKrvdY+gzZ6g2cvlPK2Pf72cG5F/PoxgLP18iIAysgOL1KYHK0te8ZUIi1lwT/QZadA8euonHPBHISuecQe0wNg9ERlTYDsk1DKgTYKIFQR/7wpGkgs2kfpeIU82mDZsmXsvvvuDBw4kKeffhrTbHqDaJhJtGzZMvbaay+eeeYZdtppJxYsWMC0adPYf//9KS4u5scff+Siiy6if//+fPTRRwlfu7Kykvz8fCoqKqQVJoVCoRDzvppPTUUtfTbqTf+NmxLKL9/5lmvG3SIDe7sFe7ZOc8/8fhq98s5txzlNcO+FUXh/01Xq3kJXXNyOc8am8iahsuyBn1qH7IJvOgiOQY1jMAB06B/06j1oS8VcVTQN5dqhxWNWxZVQ9yrJJmUq93JU9ilNcTUORv0JtAOog7rXAR+NReVUNir3SlRW56xCbJVfYk9DjphImODaudXA4vbS2o9euWVSx6jCx1Du3cLHh1tmdBCMHijV9KHaqnkWqm6IfTLHlhg9oo/BFO2TzP07LQN2Z86cyfz585k/fz79+/dvsa0hVwoEAsybN4/aWnugnMvlYtasWdx9993U1NQwYMAADjvsMK666qp0hCiSZJomm48cGnHb8P2347bZ1/LUVc/z86e/R9xHZIrW3RVOPm/n+TQqe53xbp4DwPcp1CdzI4hXCbaBYa903BCBMsExJHJ0Zl+0Zz+on0FyCYcXnNu3flgnOuW6IdQ+qJzzUetMYVbKC1mHojgUXfMUumpys63hn4GuQVf+Hyh3p6yTo/KuRQfnQ/A3Ws4eswdDq/yb03BVJ6gi0IlWfzbR9bMakxellH18BMp7mN0yY0UbkG1AfuxJJ6LjpKXlpTNJy0vnunSvSfz08W/SCpMGhqGwrI79c3U4Td5YXIOp5yVxlKKpS8GFKrjNXiV5HVprdOkx4fL9sYLY3O7ucQyButeIWxjNHIRR8r+Eo9VWNbrsVHsRx0S6QgDc+2IU3tv6XNUPoavviX8OVQi5l6O842KO89C6Dr1qVHi6bxRGb1TJBwmNF0k1reuhbjq69sVw8bseKO/h4D0s6oKIbb+Wha64Ksn1ngzwHIhRkFjSoUOr7NdCcJ0PYaoYCh/DcCXX6iOS0+ktL2L9ddxVh3PZXjJ1PZU2GjaQqtIaVjcbcxRNVq6Xrf61GW6vG9NhUFNVy08f/dbmRTP3GL8LpvFOcpNxVA549kY5NgfvuKaVf9fdTSnIuxa99lDsC6ybmJlg9kUVv9Q48NPyfxpntodhT41NJlwjB4qmgu9DdN1rEPg17iKOKuesyBu8h0P1fcSvMVNhT8t1bQ+OgdH3830cO3EBsFag/d+h3DvE3i8NlPJA1tFtLt2flNqn2rRQpXJskvi+Zk9UjzfQgd/Rvg/tljTXbhjuyGN3ROeR5EWk1LA9tuT8B0/jvnMfb1z3SLTdvifvQVHvQl64ZXrMn+eATftyyPkHMPq4XfHmtBzE+fmbc7lm3C1JX9vhNDn15mPBuSy8SGCCGYzRAyPBLgPl3BQKH0SXXxjucjGwW26CdtdD4ZMtZqwo7+FxWjYslPeQxOJsHodygGc0yjMarX3o0oZ1kSJcJ/tUlHOzyOcxSyDvBnTlleHnET1OtB9d8yQqP0aybyUwgBSg4jx0zvn2YORuWINE6yC65sk2HGnYs8qSpJyb2q9N0WXJUsAi5caeuQ9T5t3LxttvGH9nEdOMJz/ghVumx+yGMx0mO+27LWPP3KdV4gLgbkstHgWHXzKWot6FqOxjSbzpxQT3rsldyr07quRTe3aQ9xDwHoEqeBjV412Uo+WYObLGh8vMR+oiMezZLe7dk7p+q3iUG1X0FGSf0nKBQLM/Ku96VM5lsY/POgxVOMXuaogpBPVvxN4l0Zkt1lp05bXoyjgDTjNVaFF4raNEmYBC5d3Y/rWRRJckLS8iLfpu1Jsrnj2fU7a4sC0TOUQz8cYPWSGLlYujr0C85c5DySnIpro8scq5SimyC7I49MID7e+dW0LOZejq20hkTIjKOjah67Q4xsiBrGPiVn9RRgEUP48uvzRcXK5xC3j2ReXdCGh0/XvowA+AiXLtAq6dkqw260XlXma3ZoSWAE67JUgl9nlPuUeinVuC/4PYO+patNbRY3ONAKOPPZ4kkT+kuqlo7wEoV4TBxJlMJ1lE0DUclX0Gyj0yPfGITictLyJtNti0H6ffErnInUgdwzTIL46+4q3L4+LoKxLvStFobnjzCgp7No1VUTmnoQqfANdIIrd6mICJyr8D5RicePBtoMy+GMXTUMVvo/L+g8q/GVXyIUbB3RBcgF69u10npWYK1DyBLjsevXYcOrQ8+WspN8oxBOUYmHDi0sgxkMg/q2aMvjGTKqVMVP4NNA2CjsdE176QRJAZwjEYVAKrOuffj+r1A0bRFElcujlpeRFpdcSlB+HN83Dv2TIGJl1CwRB7HfevmPscedlBVKyu4OU73ox/Qg311b5WDyv3rqhwl5AOLkLXTgP/HOwqpSNRWceiYg0+jXVJ7YP6/6GDv9uDQN17oZybxzxGOTeGZuvg6NAydNmJzaYrNytfH/wTXToBeryFUh2zpIXyHoGunRJjDwOVFa0KcLPzuP8FhVPshReDP8fZOwTBP5MJMyMo5UJnHQs1jxK55c+0u/U8o5NPMkVGkuRFpN2Bp+9D3w17c/k+3bQ/vg0Gb7UBI8fuwNa7bc4VY25s83kMQ7H9Ptuw5S6xBxcqpTj9tgnkl+Tx+BXPxT2vv94f+3yOQai8K5OKNRrt+wRdfrE9AwcHGg3V96Fdu6IK7kYZCXziBnTN06DriXxzC9lLBtS/Y4+r6QDKuTE6+zSoeSzCVhMcQyHruMTO5R6Bcr+KtXKXOAtDKkjw55VpVM656MCP4YS5efelASoPVfCgJC7rEflNiw6x3eit2Xxk4lMWuyulFHtP2I1Hf7iDk24cz7Z7bUXPDXq0+Xx7Hrsr17xyacLjObbfJ/6KwSjYcOu2taAkSwd+QZedAbpheYkgjYOD/XPQZWeRcCmq+reJPbDYQNe90/Zg20DlXIrKux6Mvs0e9djje4qmooys5E6YdQix37Y1ynNAGyLt+pRy2dVy8262lydQ+WD2h+yzUD3eSmg1atF9SMuL6DDnP3gqZ277784Oo9OYDpOxZ+/DGbc1reliGAZn3nki1x9xe1IDm705Hh754Q76DO6ZVAxDhg1m6I5D+PPbvyIOBDYdBtvvsw29ByV33rbS1Q8RfZG9EAS+sgfmunZM4GTxBiRb4fWCOo5SCrKOBu+R4SUK/GAOTD5paThf1rF2d52upXWiZtozsTwdX223oyjltCsPZx3a2aGITiYtL6LDbLTNYEYdtEN6FxTuoobtsSUv/vMo59x9Mg5ny88Mux46nGteuoQe/SKXLV+XUoojLxuXdOLS4PJnziWnIBvD0fLP3zANCnsXcuHDZ7TpvMnS2g++2cRuLXGg6xNsLTEHE/stLfoyAemmlIFybIRybtbmxAVAmb1RRc82W9HaQeNnUHMwqujZdp1fiEwhywOIDlW+uoKLdr2aZX8up3u98qIzTIOXVz5OXlHssQh+X4BX736bf+Yvx+F0MHvaJ9TX+BpbSBqWB9hp/2257rV/t0qCYmn4M2/oXlq1ZA0v3/4G7035gLqqenIKs9n/1NEcfsnYFrOM0klbVehV8ab0muHy7rfFP1/tK+HicNGp4lftqd8ZTusg+D5A+78FZaBco8A1qlsWqBPrj2Tu35K8iA5XU1HD6w+8x9uPzGTtcnuBtVCw+66FdONbExm+f+zy4p+8+iX3n/cEpcvLGh/LLshii5FDWfTLEmqr6ui/SV8OOnsMe47fBdMRfx0brTWfvvYVr979Fr9+/gfKUAzbfQsOv+QgdgiPfdFaEwwEcbqc7XuSbaC1hV41AnR5jL0Me+HCnLMTOF/AHj/j/4yW3VDhRQOzTsHIu7x9QQsh0kaSF0leMsqTVz3P8zd1z2Xm+w7pxZR598X8RDznja+59pBb7W8i/DVe8vhZ7Hvynklf+7F/P8tLt7+BYRpNrTfh/59+2wSOuGRs0udMNavqbqh5mOiF7wxUyYcos3dC59PaDzWPomunghVeedjcAJV9ul25V1omhOiykrl/y5gX0ekOOW8/lJHem0pR74K0nj8iBYdfNDbmDVNrzcMXP20PA4ryMeLRfz+L3xdI6tLfzPyBl263S883H5jb8P9HL3uGBT8sSuqc6aCyTw2PQ1m3Jcn+mancyxNOXCA8IyXnXFTJJ6ges+zEp8dMVNaRkrgI0Y1I8iI6XWGvAi569My0nX/LXTbl2b8e4P6v/r+9e4+Kus77AP7+/QYGJh1QkEvIRTRXYBUFRFTWC0KaWa1K6Jbuqmvq0yIkWE/g9oRaKxialCZIx/XJnlxac9Ws0FjOCm1ieMtKBQ+PmQRy8REBuQww83v+MEnCGa7D8Bvfr3PmHPnNb36/93wPnvnwne8lCXNWhvXagOF7PwxFxc//lcSfCrGQhcGYs+pRg9coyC/C9SvlBsf/1N68jTOfn+9StkM7Mttk+iWFhYgjO4916ZrGIIgDIdjtAx5aBAj37MtkMRLCoLcgDFjWvesKlhAs3CEoDK9gS0TyxKnS1C/M/uMM7N9yGMUFpb16XVEUsG7fGiitlRg1fgSGjnTG+eMX8OPlri8Vf3foRMSLT8LDxw0Ntxvh4eOKwU62OLQ9E//K+BKN9RpYKi3h6DEEv57sheamFlhZK/Vesqr8VqduXVXeyd2Ff1J46n8N7omkbdHh0lf9YyVWQbSBYPMKJPVaQHsdEKwB8WEWHUSkF3teqN94Jr73127Q6SSsHLsWeUdOI+v9HCx0WdnpwkXxi6nEd7/W0dQ3YeaS6Zi7ejb8ZoyB26ihuF1Vh/qaBkg6CZp6DYovlWBH9G7Ms1uKI2mf671HZ6dHO7h27ry7LJUd/12itO77QbqGCIIKgsVw9pYQUYfY80L9xoxnf4P0l/biVkWN3nMGO9viVkVNl/ZJul1Vh1d/u7nLebR6ei4+3nkMowIfwcwl0wEA72/Yj5z9eQDQLldzYzPe/tO7qCq7hT+sX9DuWiP9h8PdeyiKC0r1riQ72MkW/mG+enP+cLEYh7ZnIv/oOehadBgzxRtegY/gRulN6PTM4hJEAZOe6sTCb0RE/RB7XqjfUCgUSP9mq97eiPCYJ7B0w+86v1x8T+m5jSAK+OjNOxscaho0OLg9s8NLvb9xP77/7lrrz1qtFrkf5SFu1muoraq7/3v6qfMh8u3leqdG5/z9BFaNexGZu7NR8cMN3Ci5idyP8pB74CQg4b49GKIoQDXQGrOfC+0wNxFRf8SeF+pXBjsOwt+Kd+GrzLM4+NZnaKhtgOcYDyzZuACDHQeh4XYDdr20Fw23G022S7Wkk/D9t9fQUNeI77/5AfU19R2+RhAFfLorC6u3L0eTphnr5yfjVOa5NtOYf8nJwwGrtizBlPlB932+7GoFEhe/1W6NnLs/67Q6WFpZoKVZC0mSIECABAkqGxU2ffbnPluMjoiot7F4oX4paLY/gma3X9hNNVCFhI9exCtPJkKn1Zl0cTtBEAwOir2XpJNw9UIxAGBvwoc4fexrAGj3elEhwmWEM17865/gPXEkRFF/5+gnaZ8bnKV0d58i3yk+uHCiAIIoYlzIaIT9fioG2HAJeSKSLxYvJDv+Yb5IPZuMgymfIvfASdTXNkDbbGh/nK4RBBgsCgRRwCPjPGH9kBU8x7jD0toSzY2G12ERBAEP2ajQWK/Bx6nH9PYa6bQ6/Hi5FJZWFgYLFwA4n3Ox4xlFeZfx2uE4RMB8N+sjogcPx7yQLHl4u+KFtJWIfuc5DBw0oFevHfLsFAxysNG7Toqkk/D0T6vTDrAdgMeWzehw7RhJkjAlfCKufncNDbWNBs8VRQHf5FzsMGenFvbjrB0iMkMsXkiWJElCasx/4y/PpKDmRm2Pr6ewVMAvdAx2nt6M+PejsSnzzxhgo2pTIIiKO/9+OvYJhPwuuPX4is2LMMLXQ++173wV5IRpEZN6nPNeAWG+HS5Ed3cPIyIic8LihWQpP/McDr79GQD0yuwjbbMW549fwLrHN+HHy6UY6T8cfy14C0vWL4S9y+CfBtbeuc+xPf/C3vV/R3PTna+KVANVeDtvEyLWPtmmmLhb+Lh5DUVydgKU1koMG+0OldraYBadTsKYqT4dZp6zMgwWlgq9nStarQ7zoh/vzNsnIpIVFi8kS4c7WP6+O3RaHWr+rxavLXgTkiTBxl6N77/9ATevV7UZW1JbVYcPXj+ADU9vhVZ7Z6yN0lqJlcl/wJHa9/Hy3ijMjZqN8DVPIOnYK0g/vwWO7g4AAOuHrPDU87P0fuWjsBDhFTQSo8aP6DDvkKH2SDjwEiyUFm3aQmEhQhAExOz6D4wKfKQnTUJE1C9xV2mSpacd/4jqXvi6SJ+Uf7+O2pu38V9PJRk875WMGExbMLlL127SNGP9vDdw6ujXP0+VFgABApyGOWDr8Q1wdBvS6etVXKvEkbQsnDp6DtoWLcZO+zWefH4mPHzcupSLiMiUuvL5zeKFZOkZt1W4UXLTKNcWRREr3liM88cvID/znN4ZPaJChO80HyT/M6HL99Bqtfj3P/Lx2btZKC0qh62DGmG/n4aZS6bjIbWq4wsQEZmZrnx+c6o0ydLk3wbi0/Qso6zzIkGCwkKB4sJSg1ORdVodSrqzwSPurCY8LWJSrw/iJSJ6EHDMC8nSvOjHIYiiUTbwk3QS/B/1hdpuYIdToAcO7t1p2kRE1DEWLyRLrr9ywcZD/wmlqnd3RhYVIsbPGgsPb1eEPjvF4LmCKCB00dRevT8REXWMxQvJVuBjfth3LQ3PrJvX6deIChGO7kMQ8sxvANyZmQOgdTXb4b4eiP+fFwAAjy6ZBid3h9Zz7qWwEGHnPAizn5vR07dBRERdxAG7ZBbSX9qL/VuP6H1eEAFJBzi6D8Eb/3wVLiOc8U3uRWTuzkZpUTkGOdggdNEUBM+bAAvLn4eClf9QifXzk1F07nuIChGCcGfZ/WGj3bD+Hy9h6CMP98XbIyIye5xtxOLlgSNJEj7cfAh/SzrUZpdnR7chGPorZ9g62GLinABMeXoilFZd+6pJkiRcOFGI88cvABIweooXfKf6GGW8DRHRg4rFC4uXB5amQYNvci+hsU4DDx9XuHsNNXUkIiLqBE6VpgeWlcoKgbPGmToGEREZEQfsEhERkayweCEiIiJZYfFCREREssLihYiIiGTFaMXLsGHDIAhCm0dSkuEdehsbGxEZGQl7e3sMHDgQ4eHhKC8vN1ZEIiIikiGj9rxs3LgR169fb31ERUUZPD8mJgZHjhzB/v37kZOTg9LSUsyfP9+YEYmIiEhmjDpVWq1Ww9nZuVPnVldXY/fu3di3bx9mzLiz5PqePXvg7e2NkydPYuLEicaMSkRERDJh1J6XpKQk2Nvbw8/PD8nJyWhpadF77pkzZ9Dc3IywsLDWY15eXnB3d0deXp7e12k0GtTU1LR5EBERkfkyWs9LdHQ0/P39YWdnhxMnTiA+Ph7Xr1/Hm2++ed/zy8rKoFQqMWjQoDbHnZycUFZWpvc+iYmJ2LBhQ29GJyIion6sS8VLXFwcNm/ebPCcS5cuwcvLC7Gxsa3HfH19oVQqsWrVKiQmJsLKyqp7ae8jPj6+zb2qq6vh7u7OHhgiIiIZufu53Zldi7pUvKxduxZLly41eM7w4cPvezwoKAgtLS24evUqRo0a1e55Z2dnNDU14datW216X8rLyw2Om7GysmpTDN19825ubgZzEhERUf9TW1sLW1tbg+d0qXhxcHCAg4NDt8J8/fXXEEURjo6O930+ICAAlpaWyM7ORnh4OACgsLAQ165dw6RJkzp9HxcXFxQXF0OtVnPXXyOpqamBm5sbiouLufllH2B79y22d99ie/et/tzekiShtrYWLi4uHZ5rlDEveXl5+OqrrxASEgK1Wo28vDzExMRg8eLFGDx4MACgpKQEoaGh2Lt3LyZMmABbW1ssX74csbGxsLOzg42NDaKiojBp0qQuzTQSRRGurq7GeFv0CzY2Nv3ul9+csb37Ftu7b7G9+1Z/be+OelzuMkrxYmVlhYyMDKxfvx4ajQaenp6IiYlpMzalubkZhYWFqK+vbz22bds2iKKI8PBwaDQazJo1Czt37jRGRCIiIpIpQerMyBiie9TU1MDW1hbV1dX9snI3N2zvvsX27lts775lLu3NvY2oy6ysrJCQkNCrs8ZIP7Z332J79y22d98yl/ZmzwsRERHJCnteiIiISFZYvBAREZGssHghIiIiWWHxQkRERLLC4oW67erVq1i+fDk8PT2hUqkwYsQIJCQkoKmpydTRzMY777yDYcOGwdraGkFBQcjPzzd1JLOUmJiIwMBAqNVqODo6Yu7cuSgsLDR1rAdGUlISBEHAmjVrTB3FbJWUlGDx4sWwt7eHSqXCmDFjcPr0aVPH6jYWL9RtBQUF0Ol02LVrFy5cuIBt27YhLS0N69atM3U0s/Dhhx8iNjYWCQkJOHv2LMaOHYtZs2ahoqLC1NHMTk5ODiIjI3Hy5ElkZWWhubkZM2fORF1dnamjmb1Tp05h165d8PX1NXUUs1VVVYXg4GBYWloiMzMTFy9exNatW1tXvJcjTpWmXpWcnIzU1FRcuXLF1FFkLygoCIGBgdixYwcAQKfTwc3NDVFRUYiLizNxOvNWWVkJR0dH5OTkYOrUqaaOY7Zu374Nf39/7Ny5E6+//jrGjRuHlJQUU8cyO3Fxcfjyyy/xxRdfmDpKr2HPC/Wq6upq2NnZmTqG7DU1NeHMmTMICwtrPSaKIsLCwpCXl2fCZA+G6upqAODvspFFRkZizpw5bX7Pqfd9/PHHGD9+PCIiIuDo6Ag/Pz+8++67po7VIyxeqNcUFRVh+/btWLVqlamjyN6NGzeg1Wrh5OTU5riTkxPKyspMlOrBoNPpsGbNGgQHB2P06NGmjmO2MjIycPbsWSQmJpo6itm7cuUKUlNTMXLkSBw7dgzPP/88oqOj8d5775k6WrexeKF24uLiIAiCwUdBQUGb15SUlOCxxx5DREQEVqxYYaLkRD0XGRmJ7777DhkZGaaOYraKi4vxwgsv4IMPPoC1tbWp45g9nU4Hf39/bNq0CX5+fli5ciVWrFiBtLQ0U0frNqPsKk3ytnbtWixdutTgOcOHD2/9d2lpKUJCQjB58mSkp6cbOd2DYciQIVAoFCgvL29zvLy8HM7OziZKZf5Wr16NTz75BLm5uXB1dTV1HLN15swZVFRUwN/fv/WYVqtFbm4uduzYAY1GA4VCYcKE5uXhhx+Gj49Pm2Pe3t44cOCAiRL1HIsXasfBwQEODg6dOrekpAQhISEICAjAnj17IIrszOsNSqUSAQEByM7Oxty5cwHc+espOzsbq1evNm04MyRJEqKionDw4EEcP34cnp6epo5k1kJDQ/Htt9+2ObZs2TJ4eXnh5ZdfZuHSy4KDg9tN/b98+TI8PDxMlKjnWLxQt5WUlGD69Onw8PDAli1bUFlZ2focewd6LjY2FkuWLMH48eMxYcIEpKSkoK6uDsuWLTN1NLMTGRmJffv24fDhw1Cr1a3jimxtbaFSqUyczvyo1ep244kGDBgAe3t7jjMygpiYGEyePBmbNm3CggULkJ+fj/T0dFn3lLN4oW7LyspCUVERioqK2nWxcwZ+zy1cuBCVlZV49dVXUVZWhnHjxuHo0aPtBvFSz6WmpgIApk+f3ub4nj17OvwKlai/CwwMxMGDBxEfH4+NGzfC09MTKSkpWLRokamjdRvXeSEiIiJZ4QAFIiIikhUWL0RERCQrLF6IiIhIVli8EBERkayweCEiIiJZYfFCREREssLihYiIiGSFxQsRERHJCosXIiIikhUWL0RERCQrLF6IiIhIVli8EBERkaz8P7Qa0BVEJmdDAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En este caso, no es fácilmente identificable la \"separación\" entre los cluster. Se observa que los puntos más separados del cluster amarillo (los que están arriba) podrían jugar un rol en esa división."
],
"metadata": {
"id": "FPq7rylR1LVB"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se graficará el coeficiente de silhouette para el caso que presenta un mayor valor, esto es, para el caso sin escalamiento de los datos."
],
"metadata": {
"id": "uJnyvWIHCzyQ"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import silhouette_samples\n",
"\n",
"def plot_silhouette(dataset, model):\n",
" use_indices = model.labels_ >= 0\n",
" use_labels = model.labels_[use_indices]\n",
" use_data = dataset.iloc[use_indices]\n",
"\n",
" n_clusters = len(np.unique(use_labels))\n",
"\n",
"\n",
" fig, ax1 = plt.subplots()\n",
"\n",
" silhouette_avg = silhouette_score(use_data, use_labels)\n",
" print(f\"The average silhouette_score for {model.__class__.__name__} is : {silhouette_avg}\")\n",
" sample_silhouette_values = silhouette_samples(use_data, use_labels)\n",
"\n",
" y_lower = 10\n",
" for i in range(n_clusters):\n",
" ith_cluster_silhouette_values = sample_silhouette_values[use_labels == i]\n",
" ith_cluster_silhouette_values.sort()\n",
" size_cluster_i = ith_cluster_silhouette_values.shape[0]\n",
" y_upper = y_lower + size_cluster_i\n",
" ax1.fill_betweenx(np.arange(y_lower, y_upper),\n",
" 0, ith_cluster_silhouette_values, alpha=0.7)\n",
" ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))\n",
" y_lower = y_upper + 10\n",
"\n",
" ax1.set_title(f\"{model.__class__.__name__}\")\n",
" ax1.set_xlabel(\"The silhouette coefficient values\")\n",
" ax1.set_ylabel(\"Cluster label\")\n",
"\n",
" ax1.axvline(x=silhouette_avg, color=\"red\", linestyle=\"--\")\n",
" ax1.set_yticks([])"
],
"metadata": {
"id": "WQTCneHFe-vf"
},
"execution_count": 21,
"outputs": []
},
{
"cell_type": "code",
"source": [
"plot_silhouette(df_new, kmeans)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 489
},
"id": "OuQfePjTfDLz",
"outputId": "87c05537-b3cf-4b9f-f30b-d2a250121cf2"
},
"execution_count": 22,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The average silhouette_score for KMeans is : 0.6921952814682361\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAHHCAYAAAAMD3r6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIR0lEQVR4nO3deXwT1f4//tfMZCZrk3Rf05YWKJR9K0KBIltZBFEUFEUWBS+LoFxAvS6AC6gfFZfLBfXeC+gPBAUVL3JRVEDBDSzLFZAri+L3yiKK7NAl8/sjJBDaQlOSTJbX8z7yYDqZzrzbqXdeOefMGUFVVRVEREREfiJqXQARERFFFoYLIiIi8iuGCyIiIvIrhgsiIiLyK4YLIiIi8iuGCyIiIvIrhgsiIiLyK4YLIiIi8iuGCyIiIvIrhgsiIiLyK4YLogg1f/58CIKATZs2ea0/duwYCgoKYDAYsGrVKkybNg2CIEAURfz888+V9nP8+HEYjUYIgoBx48YFq3wiCmMMF0RR5Pjx4+jRowe2bduGd999Fz179vS8p9fr8eabb1b6nnfeeSeYJRJRBGC4IIoSJ06cQHFxMbZs2YJly5ahV69eXu/37t27ynCxaNEi9OnTJ1hlElEEYLggigInT55Ez549UVJSgmXLllUZFgYPHowtW7bg+++/96w7ePAgPv30UwwePLjK/Z47dw5Tp05F3bp1odfr4XA4MGXKFJw7d85ru3nz5qFLly5ISkqCXq9Hfn4+5syZU2l/2dnZuO6667B+/XpP101OTg5ef/11r+3Kysowffp01KtXDwaDAfHx8ejQoQNWr15dm18PEfkZwwVRhDt16hR69eqFjRs34u2338Z1111X5XadOnVCRkYGFi1a5Fm3ZMkSWCyWKsOI0+lEv3798Oyzz6Jv3754+eWX0b9/f8yaNQuDBg3y2nbOnDnIysrCX/7yFzz33HNwOBwYM2YMZs+eXWm/u3fvxk033YTu3bvjueeeQ2xsLIYNG4bt27d7tpk2bRqmT5+Oa6+9Fn/961/x0EMPITMzEyUlJbX9NRGRP6lEFJHmzZunAlCzsrJUWZbV9957r8rtpk6dqgJQf/31V3XSpElq3bp1Pe+1adNGHT58uKqqqgpAHTt2rOe9N954QxVFUf3888+99jd37lwVgLphwwbPutOnT1c6bnFxsZqTk+O1LisrSwWgfvbZZ551hw8fVvV6vfrnP//Zs65Zs2Zqnz59avJrICINsOWCKMIdOnQIBoMBDofjitsOHjwYu3fvxsaNGz3/Vtcl8vbbb6Nhw4Zo0KABjhw54nl16dIFALBmzRrPtkaj0bN87NgxHDlyBEVFRdi7dy+OHTvmtd/8/Hx07NjR83ViYiLy8vKwd+9ezzq73Y7t27fjhx9+qNkvgYiCiuGCKMK98sorUBQFPXv2xK5duy67bYsWLdCgQQMsWrQICxcuREpKiicsXOqHH37A9u3bkZiY6PWqX78+AODw4cOebTds2IBu3brBbDbDbrcjMTERf/nLXwCgUrjIzMysdKzY2FgcPXrU8/Vjjz2GP/74A/Xr10eTJk0wefJkbNu2rWa/ECIKOJ3WBRBRYOXn52PlypXo2rUrunfvjg0bNly2FWPw4MGYM2cOYmJiMGjQIIhi1Z9BnE4nmjRpgueff77K993H2LNnD7p27YoGDRrg+eefh8PhgKIoWLlyJWbNmgWn0+n1fZIkVbk/VVU9y506dcKePXuwfPlyfPTRR/j73/+OWbNmYe7cubjrrrsu+/sgosBjuCCKAgUFBXjvvffQp08fdO/eHZ9//jkSExOr3Hbw4MF49NFHceDAAbzxxhvV7jM3Nxdbt25F165dIQhCtdv961//wrlz5/D+++97tUpc3G1SG3FxcRg+fDiGDx+OkydPolOnTpg2bRrDBVEIYLcIUZTo2rUr3nzzTezevRs9e/bE8ePHq9wuNzcXL7zwAmbOnImCgoJq9zdw4ED873//w2uvvVbpvTNnzuDUqVMALrREXNzycOzYMcybN6/WP8tvv/3m9bXFYkHdunUr3QJLRNpgywVRFLnhhhvw2muvYcSIEejXrx9WrVpV5XYTJky44r6GDBmCt956C3/605+wZs0aFBYWoqKiAt9//z3eeustfPjhh2jdujV69OgBRVHQt29f3H333Th58iRee+01JCUl4cCBA7X6OfLz89G5c2e0atUKcXFx2LRpE5YuXcrpyYlCBMMFUZQZPnw4fv/9d0yaNAk333wzmjVrVqv9iKKI9957D7NmzcLrr7+Od999FyaTCTk5OZgwYYJnYGdeXh6WLl2Khx9+GJMmTUJKSgpGjx6NxMREjBgxolbHHj9+PN5//3189NFHOHfuHLKysvDEE09g8uTJtdofEfmXoF7cVklERER0lTjmgoiIiPyK4YKIiIj8iuGCiIiI/IrhgoiIiPyK4YKIiIj8iuGCiIiI/EqTeS6cTid++eUXxMTEXHbaYCIiIgodqqrixIkTSEtLq/a5Q4BG4eKXX36p0eOfiYiIKPT8/PPPyMjIqPZ9TcJFTEwMAFdxVqtVixKIiCgYTp0C0tJcy7/8ApjN2tZDV+X48eNwOBye63h1NAkX7q4Qq9XKcEFEFMnOP7gOAGC1MlxEiCsNaeCATiIiIvIrhgsiIiLyKz4VlYiIAkenA4YOvbBMUYFnmoiIAkevB+bP17oKCjJ2ixAREZFfseWCiIgCR1WB06ddyyYTwIkTowJbLoiIKHBOnwYsFtfLHTIo4jFcEBERkV8xXBAREZFfMVwQERGRXzFcEBERkV8xXBAREZFfMVwQERGRX0XVPBcVzgqcKT+jdRlERNGj4iwMN/YHAJytOAOUqtrWEyXMsvmKTy4NpKgKF7+c/AVPb3xa6zKIiKLLmHTXvxunaVpGtKhjq4M/t/6zpjWwW4SIiCiCXJN6jdYlMFwQERFFClEQ0SKphdZlMFwQEVHgKGfK8Ndus/HXbrOhnCnTupyIlxGTAZNs0roMhgsiIqJI0SCugdYlAGC4ICIiihiN4xtrXQIAhgsiIqKIIAgCMq2ZWpcBgOGCiIgoImTFZEEnhsYMEwwXREREESDXnqt1CR4MF0RERBEgxZyidQkeodF+QkREEckpCfiuIMuzTIGTYcnQugQPhgsiIgqYckWHuTOu07qMiKdICtIsaVqX4cFuESIiojAXZ4iDJEpal+HBcEFERBTmQmm8BcBwQUREAaScKcNz172C5657hdN/B1CSKUnrErxwzAUREQWU/my51iVEvFALF2y5ICIiCnOp5lStS/DCcEFERBTGZFFGmjl07hQBGC6IiIjCWkZMBmRJ1roMLwwXREREYSzUukQAhgsiIqKwlhETOjNzuvFuESIiChhVFPBD0zTPMvlfKE377cZwQUREAVOm1+HF52/QuoyIFm+M17qEStgtQkREFKZsehusilXrMiphuCAiIgpTKeYUCELodTcxXBARUcAoZ8owc8A/MHPAPzj9dwAkGBO0LqFKHHNBREQBFXPsrNYlRKx4Q+iNtwDYckFERBS20iyhNTOnG8MFERFRmAq1R627MVwQERGFIaPOCLvernUZVWK4ICIiCkOp5lToxNAcOslwQUREFIYcVofWJVQrNCMPERFFBFUU8FP9JM8y+U8oPrDMjeGCiIgCpkyvw//97Waty4hIofhMETd2ixAREYUZURBD8mmobgwXREREYSbBmBCygzkBhgsiIgog+WwZpt/2Oqbf9jrks5z+219CdfIst9CNPUREFPYEFYg/dMKzTP6RZg7tcMGWCyIiojCTagndO0UAhgsiIqKwIkBAXmye1mVcFsMFERFRGEkwJcAkm7Qu47IYLoiIiMJIKM9v4cZwQUREFEZC/U4RgHeLEBFRAKkCcCAr1rNMVy/ZlKx1CVfEcEFERAFTZpDx5D8Ga11GRMm152pdwhWxW4SIiChMJBgTYNPbtC7jihguiIiIwkQdWx2tS6gRdosQEVHAyGfLMGXs2wCAZ2bfjDKDrHFF4S3LmqV1CTUSUi0XM2fORJs2bRATE4OkpCT0798fu3bt0rosIiKqJUEFUn86itSfjnL6bz9IMadoXUKNhFS4WLduHcaOHYuvvvoKq1evRllZGXr06IFTp05pXRoREZHmwuFOESDEukVWrVrl9fX8+fORlJSEb7/9Fp06ddKoKiIiIu3FGeJg19u1LqNGQqrl4lLHjh0DAMTFxWlcCRERkbayrFkQhPCYLCRkw4XT6cS9996LwsJCNG7cWOtyiIiINOWIcWhdQo2FVLfIxcaOHYvvvvsO69ev17oUIiIizYXLYE4gRMPFuHHjsGLFCnz22WfIyAj9B7QQEVHVVAH4LTnGs0y1Fy6DOYEQCxeqquKee+7Bu+++i7Vr16JOnfCYLISIiKpWZpAxdeEdWpcR9gQIiDOEz/jDkAoXY8eOxaJFi7B8+XLExMTg4MGDAACbzQaj0ahxdURERNqIN8ZDlsJnArKQGtA5Z84cHDt2DJ07d0ZqaqrntWTJEq1LIyIi0kyyOXy6RIAQa7lQVU7fRkQUSeRz5bj3vncBAC/MugFl+pC67ISNJGOS1iX4hGeZiIgCRnCqyPrvYc8y1U6OPUfrEnwSUt0iREREVFm6JV3rEnzCcEFERBTCbHobEo2JWpfhE4YLIiKiEFY/tn7YTPvtxnBBREQUwponNde6BJ8xXBAREYUonahDXmye1mX4jHeLEBFRQJ2wGbQuIWzl2HJg0IXf74/hgoiIAqbUKOPBZXdqXUbYCrdbUN3YLUJERBSCJEFCx/SOWpdRKwwXREREIahRQiPY9Daty6gVdosQEVHAyOfKMebBfwEA/jazL6f/9kFRRpHWJdQazzIREQWM4FRRb9svnmWqmZbJLZEXF353ibixW4SIiCiE2PV23JJ3i9ZlXBWGCyIiohAhQMCIxiNgkk1al3JVGC6IiIhCxM15N4ft7acXY7ggIiIKAfnx+eiQ3kHrMvyCAzqJiIg0ZJJNuLHejWiT3AaiEBmf+RkuiIgooM4ZeKmpjiAIGJQ3CK2SW2ldil/xjBMRUcCUGmX8ecXdWpcRkhKMCRiUNwgN4xtqXYrfMVwQEREFWcvklrgl75awvyukOgwXREREQaITdbi5/s1on9YegiBoXU7AMFwQEVHA6ErLcde0VQCAv0/riXIlei87kiDh1ga3om1qW61LCbjoPctERBRwYoWKxt/85FmOZrc1vA0FqQValxEUDBdEREQBZNPbcEveLWiS2ETrUoKG4YKIiCgAMq2ZKM4uRqP4RtCJ0XW5ja6floiIKMBSzam4qf5NYf1U06vFcEFEROQHeXF56JHVA/Vj60f0nSA1wXBBRER0FZJMSbih7g1RNabiShguiIiIasGiWNAhvQOKs4ohS7LW5YQUhgsiIgqYUqOMcR+P1boMv5EECQ3iG6BRfCMUpBTAoDNoXVJIYrggIiK6ApvehiYJTdAtqxsSjAlalxPyGC6IiIiq0TypObo4uqCOrU7UD9L0BcMFEREFjK60HHc89TEA4PUHuoX89N+iICLVnIoWyS3QOrk1WylqKbTPMhERhTWxQkXLz/YAAP6/yV01rqZqNr0NzRKboY6tDpokNOE4Cj9guCAioqhi09vQNKEp0mPSkWXNQoYlg10efsZwQUREEU0QBNSPrY/8+Hw0TWiKBGMCw0SAMVwQEVFEkUUZDqsDyaZkpFvS0SKpBWx6m9ZlRRWGCyIiCnt5cXlom9IWOfYcxBvi2TKhMYYLIiIKK5IgIcWcggZxDVDHVge59lzEKDFal0UXYbggIqKQJggC6tnrIdeei7r2usi150bdI8zDDc8OEREFTKlBh4n/GuVZrol4YzwcMQ6kW9JRz14PSeYkWBVrIMskP2O4ICKiwBEElBorP9RLJ+qQZEpCsikZ2bZsxBviEW+MR6IxkfNMRACGCyIiCghFUpBtzUaDuAaw6W2w6W0wy2akmFMgi3yKaCRjuCAiohqTBAmyJMMiW5BmSYNZNiPRmAizbIYsyjDJJiSbkmHVW6GICoTSUuDuu13f/MorgF6v7Q9AQcFwQUREAACDzgCdqINdb4dVsSLBmABZlBFvjEeKOQWx+ljEGmJ9G0xZXg4sWOBanj2b4SJKMFwQEUUQAQKseitsehsMkgEp5hQYdUboRB0EQYAiKrDIFiiSghglxtPaYJEtHOtAfsNwQUQUAkRBhFFnhFk2Qy/pYdQZIYsyZEmGQTJAr9NDJ+ggCqKnC0ISJdj1ds/X7mVOIEVaY7ggIgoASZBgUSywKlZY9VaYdWYYZSNMOhMMkgFGnRE2vQ1G2Yh4QzxilBiIgqh12UR+wXBBRFFJgACDzgCzbPZ0ESiiApNsgizKMOqMrjEIgg4QABGiZztJlCAJEhRJgSzIEEURkiBBJ+pg0pmgl/SQREnrH5FIMwwXRBTyBAgQBRGSKMEgGSBLMsyyGZLgushLogRZdN3BEGtwDTp0dyuIwoULv0W2wKJYYNQZ2UpAFEAMF0R01dytAFbFCkmUoIgKFEmBTtR5PuFLggSjbIRRZ3StExVPN4EsydCLes/4Ap2og17Sw6AzQBIkjiEgCjMMF0RRRhRExCgxiDfEw6AzeAYRulsAREGEAMFzgXcHBEmUYFWsMOqMsMgWmGTX2AFREHnxp+qZTMDhwxeWKSowXBAFgSi4+utFQfQ00wsQIEsydILOc1F33w0gCIKnK0An6jwXeFEQPZ/s3fsSBRGyJEOEa78QAFmUPd0Hiqi4ZkSUZM96hgEKGkEAEhO1roKCjOGCIpIgCNAJOhh0Bs9FXXD/7/yF1b0sQECMEuO5518SJIii60Jvkk3QCTrPhdl9+5+7r9+gM0AWZa8wIAqip6/fHRSMkhGyxOmOiSg6MFxQrZhkE0w6k+fTtPuTtwjR6xP1xc3sF1/M3Rd494XY0/R+fuCdXtJ7PrW7L+DuEfzuT/6SKMGoM0Iv6b32wWZ6ohBy7hwwcaJr+fnnOUNnlGC4CCPuOf3dF9OLL+LuC7ZO0HmazN2fti++qLub1fU6PfSSHonGRJhkV0gA4NlOEiTPekEQPBd09615vM2OiGqkvBz4299cy888w3ARJRgurkAQBK++bvenaEmUPP3j7pnzLv5ULuL8bXM6A2KUmAtN5hBhVswQIXptL8D1Sduut3sG2YmC6DWgjp/GiYgoHERVuEiXjHgmvv0VtxMFATpBgnRR871P1PP/Vpx/nTt5yQZHfd8nEVE4On32wvJ37wKmMH1+SWIDILmRa4AqXVFUhQvx3HGYdizXugwiouhxtvzC8vZ3AUMYXnYa9gVSGmtdRVjhFHVERETVyWwHNL1F6yrCDsMFERFRVZIaAgUjASkMW1s0xnBBRER0qaSGQKfJgGLWupKwxDhGRESBo0jAC30uLIcDSzKDxVViuCAiosARBSAxjC7SOj3Q8c8MFleJ3SJERERu7cYBsVlaVxH22HJBRESBU14BvPWda3lgY0AXwl0jjW4EHAVaVxER2HJBRESBU64CH+xyvcrVK2+vlZQmQOMBWlcRMWrUcnH8+PEa79Bqtda6GCIioqDTW13dIbzl1G9q9Ju02+1XnAZbVVUIgoCKigq/FEZERBQUjfoDRrvWVUSUGoWLNWvWBLoOIiKi4EtpAtTvpXUVEadG4aKoqCjQdRAREQVXbDbQ/h5A5PBDf6vVb/Tzzz/H7bffjvbt2+N///sfAOCNN97A+vXr/VocERFRwFwzBjDYtK4iIvkcLpYtW4bi4mIYjUaUlJTg3LlzAIBjx45hxowZfi+QiIjI77Lacz6LAPI5XDzxxBOYO3cuXnvtNciy7FlfWFiIkpISvxZHRERhTpGAp4tdr1CZ/tuUALQapnUVEc3n+2527dqFTp06VVpvs9nwxx9/+KMmIiKKFKIAZIRY10OzW9gdEmA+t1ykpKRg9+7dldavX78eOTk5fimKiIgoIBLzgOwOWlcR8XwOFyNHjsSECRPw9ddfQxAE/PLLL1i4cCEmTZqE0aNHB6JGIiIKV+UVwLLvXK9yjedBUsxA4b3AFeZtoqvnc7fIAw88AKfTia5du+L06dPo1KkT9Ho9Jk2ahHvuuScQNRIRUbgqV4F3driW+zTQ9olWzQYDpjgNC4gePp9mQRDw0EMPYfLkydi9ezdOnjyJ/Px8WCyWQNRHRER09RLqA7ldtK4iatQ6QyqKgpiYGMTExDBYEBFRaMu/npNlBZHPv+ny8nI88sgjsNlsyM7ORnZ2Nmw2Gx5++GGUlZUFokYiIqLai68LpLXUuoqo4nPLxT333IN33nkHzzzzDNq1awcA+PLLLzFt2jT89ttvmDNnjt+LJCIiqh0BaD2CrRZB5nO4WLRoERYvXoxevS486KVp06ZwOBy49dZbGS6IiCh0NB4AxOdqXUXU8TnK6fV6ZGdnV1pfp04dKIrij5qIiIiunjkBaHSD1lVEJZ/Dxbhx4/D44497nikCAOfOncOTTz6JcePG+bU4IiIKc4oIPNbN9VKC3DXR6AZA0vLe1+hVo9/6jTfe6PX1xx9/jIyMDDRr1gwAsHXrVpSWlqJr167+r5CIiMKXKAK5GswtIZuAjILgH5cA1DBc2Gzec7APGDDA62uHw+G/ioiIiK5WoxsAg1XrKqJWjcLFvHnzAl0HERFFovIKYNUPruWe9QBdEJ6Mqlg4YZbG2BlFRESBU64Cb25zLXerG5yrTvPBgJ6TO2qpVqd56dKleOutt7B//36UlpZ6vVdSUuKXwoiIiHxmzwRyrtW6iqjn89Ddl156CcOHD0dycjI2b96MgoICxMfHY+/evV5zXxAREQVdk5s5YVYI8PkM/O1vf8Orr76Kl19+GYqiYMqUKVi9ejXGjx+PY8eOBaJGIiKiK7M5gPTWWldBqEW42L9/P9q3bw8AMBqNOHHiBABgyJAhePPNN/1bHRERUU01uYmtFiHC57OQkpKC33//HQCQmZmJr776CgCwb98+qKrq3+qIiIhqIqUp4GirdRV0ns/hokuXLnj//fcBAMOHD8d9992H7t27Y9CgQbjhhqufZvWzzz5D3759kZaWBkEQ8N577131PomIKILpDMA1owFB0LoSOs/nu0VeffVVOJ1OAMDYsWMRHx+PL774Av369cPdd9991QWdOnUKzZo1w4gRIyrNDEpERGFGEYGHOl9YDoRG/QGTBrOAUrV8DheiKEK8qE/rlltuwS233OK3gnr16sW7ToiIIoUoAvlJgdu/PRPI6xO4/VOt1ChcbNu2rcY7bNq0aa2LISIiqjHZCLS5C9Dxidyhpkbhonnz5hAE4YoDNgVBQEVFhV8KIyKiCFDuBD7d41rukgvo/NQ1opiBovuBxDz/7I/8qkbhYt++fYGug4iIIlG5E1iw2bXcqY7/wkWbkQwWIaxG4SIrKyvQdRAREdVMi9uBrHZaV0GXwdlGiIgofDS5GWjYV+sq6ApC7qmoJ0+exO7duz1f79u3D1u2bEFcXBwyMzM1rIyIiDRVpwhoPEDrKqgGQi5cbNq0Cddee+GJdhMnTgQADB06FPPnz9eoKiIi0pTNARSM4kRZYcKncFFRUYENGzagadOmsNvtASmoc+fOnEaciIgukI1Au7GAFHKfh6kaPo25kCQJPXr0wNGjRwNVDxER0QWmeKD740BcHa0rIR/4HAMbN26MvXv3ok4dnmgiIroCWQQmdbiw7BMBaPsnwO7we1kUWD7fLfLEE09g0qRJWLFiBQ4cOIDjx497vYiIiDwkEWiR5npJPl5y8q8HUjnrczjyueWid+/eAIB+/fpBuGhgjaqqnKGTiIj8I60l0Mx/z62i4PI5XKxZsyYQdRARUSQqdwIbfnItF2bVbIZOnR4oGMk7Q8KYz+GiqKgoEHUQEVEkKncCr250Lbd1XDlciDqg/Xg+Qj3M1WqGzs8//xy333472rdvj//9738AgDfeeAPr16/3a3FERBRNBKDwXiCjtdaF0FXyOVwsW7YMxcXFMBqNKCkpwblz5wAAx44dw4wZM/xeIBERRQFBdM1l4WijdSXkB7W6W2Tu3Ll47bXXIMuyZ31hYSFKSkr8WhwREUWJJjcDdTpqXQX5ic9jLnbt2oVOnTpVWm+z2fDHH3/4oyYiIoomzW/jw8gijM8tFykpKV4PFnNbv349cnJy/FIUERFFibxeQH4/3hkSYXwOFyNHjsSECRPw9ddfQxAE/PLLL1i4cCEmTZqE0aNHB6JGIiKKRHG5QMuhWldBAeBzt8gDDzwAp9OJrl274vTp0+jUqRP0ej0mTZqEe+65JxA1EhFRuJJFYHy7C8tuaS1cd4awxSIiCWotH0FaWlqK3bt34+TJk8jPz4fFYqnx9x4/fhw2mw3Hjh2D1WqtzeFr5/e9wKoHg3c8IiLyJslAs1uBvN4MFmGoptdvn7tFRowYgRMnTkBRFOTn56OgoAAWiwWnTp3CiBEjrqpoIiKKYJZkoPezQIM+DBYRzudwsWDBApw5c6bS+jNnzuD111/3S1FERBQhKpzA1z8DO8qBor8AMSlaV0RBUOMxF8ePH4eqqlBVFSdOnIDBYPC8V1FRgZUrVyIpKSkgRRIRUZiS7cBLS13LD/IDaLSocbiw2+0QBAGCIKB+/fqV3hcEAdOnT/drcUREFKaMcUDTgUB8UwB/17oaCrIah4s1a9ZAVVV06dIFy5YtQ1zchYfKKIqCrKwspKWlBaRIIiIKE7LJNSFWg+sAnQKcOqV1RaSBGocL99NQ9+3bh8zMTAgcjENERG46PeC4Bmg9HJCNWldDGvN5QOfOnTuxYcMGz9ezZ89G8+bNMXjwYBw9etSvxRERUQgTdUBaS6DDfcCAfwLtxjBYEIBahIvJkyfj+PHjAID//Oc/mDhxInr37o19+/Zh4sSJfi+QiIhCjKgD6nUH+jwHdL4fyLwGkHyek5EimM9/Dfv27UN+fj4A1+PX+/btixkzZqCkpAS9e/f2e4FERBQqBKBeN6DRjYAp7sqbU9TyOVwoioLTp08DAD7++GPccccdAIC4uDhPiwYREUWQmFQguwNQpwiwJPr2vYoCzJt3YZmigs/hokOHDpg4cSIKCwvxzTffYMmSJQCA//73v8jIyPB7gUREpJGYVNedH7ldaj+jpiwDw4b5tSwKfT6PufjrX/8KnU6HpUuXYs6cOUhPTwcA/Pvf/0bPnj39XiAREQWRpACOAqBgFHDdLKBuV07VTT6r9YPLrgYfXEZEFEJkI5DSFIjLARxtAWuq//ZdXg58+KFrubgY0HHgZzir6fXb57O8f//+y76fmZnp6y6JiCjYJBnI6gAkNXAFikDdQnruHHDdda7lkycZLqKEz2c5Ozv7shNoVVRUXFVBRETkZ5ICWNOA2DqA3QHYMwFrOu/4oIDxOVxs3rzZ6+uysjJs3rwZzz//PJ588km/FUZERLUkiIAtw9XVkd4SiK/nmoqbKEh8DhfNmjWrtK5169ZIS0vD//3f/+HGG2/0S2FERFRDkgwkNwbSWwEJ9V2tFJKsdVUUxfzW+ZWXl4eNGzf6a3dERHQp2QjYs1y3iMakuLo37Fmu7g3e0UEhxOdwcelEWaqq4sCBA5g2bRrq1avnt8KIiKKb4OrasKYCKc2AlMaAKZ4tEhQWfA4Xdru90oBOVVXhcDiwePFivxVGRBQ1RB1gTnC1RMSkue7gSMgDFJPWlRHVis/hYs2aNV5fi6KIxMRE1K1bFzreYkREVJlsAgw2QB8DKBZX94Y+BjAnAsmNXF0bos9zGoYHRQH++tcLyxQVfE4DRUVFgaiDiCg8yUZAZwAMdtdzN2yZQFpz1zp9DKC3Rm5wqAlZBsaO1boKCrIahYv333+/xjvs169frYshIgo5xljAGOfqorAku1ob4uu6BlTq9K4AQUReahQu+vfvX6OdCYLASbSIKDQZ7IAouVoUFJPrX1E+HxAsrkmlDHbXhFN6iytUuFsfeCdG7VVUAJ9/7lru2BGQJG3roaCoUbhwOp2BroOIqHqC5Op+kBTX3RKKBTDHu9YL4vmwYHS95x7P4B7fYLC5XoGa3pou7+xZ4NprXcsnTwJms7b1UFBwBCYR+Y+oc13UdQbXRV8Qzv8rAhAurBMlV1AQda6WA1F2LUs6QIlx3XJpir0QDizJbD0gCiM1Dheffvopxo0bh6+++qrSk9COHTuG9u3bY86cOejUqZPfiyQifxBcF2/Z7PqEL+pcF3tRcl3c3UFAlFwtAu71isk1KNH9PaJ0/nslV/dBTJqrC0E2ul4MAURRr8bh4oUXXsDIkSOrfMSqzWbD3XffjVmzZjFcUJQQXM9qcDfLe14XfTrXGQGD9Xxzve78hfn8SxDOX8B1rguy+6Ltbvb3ek9yHU8Qqv7XfbH3tBaIF/bl1YLAiz4RBUeNw8XWrVvx9NNPV/t+jx498Oyzz/qlKIp2gvdF2n2hleSLmtfh3dTu/pStt7j+dV/MJeVC87v7IuxeFkRA0rua5d0Xdfen+YvDgvt7DLbztxVKF94jIqJKahwuDh06BFmuftpZnU6HX3/91S9FkR8Jkne/98WfbHWGC4PkZOP52+3M1XxCxoVlSfH+NC2IruPolAuj7y8OBhcf3/0J2+tT+vmLvHtaY160iYjCWo3DRXp6Or777jvUrVu3yve3bduG1NRUvxWmKa9BZtJF/dCidzO4+9PxpRdi94XS3XftNagNF76uqmlbsVx0LPF807be+zgXf5q/dFvF3Z8unw8BUTx5DxERaaLG4aJ379545JFH0LNnTxgMBq/3zpw5g6lTp+K6667ze4H+9LuSjtV1n7nyhsH45Kxe8q/7bt/Sq93pyavZARGRX4llpah3z4MAgB+2HoBTDp0pwLPizWicboNZkSo9M4uujqCqqnrlzVzdIi1btoQkSRg3bhzy8vIAAN9//z1mz56NiooKlJSUIDk5+Yr7On78OGw2G44dO1blANFA+em3U3jsXzuCdjwiIgpN/Zqn4bqmaZBEhgpf1PT6XeOWi+TkZHzxxRcYPXo0HnzwQbgziSAIKC4uxuzZs2sULIiIiLQ0qI0DPRqlaF1GRPNpEq2srCysXLkSR48exe7du6GqKurVq4fY2NhA1UdERGFMcFYg68ddAICfsvOgitpN/y1LIoYVZuOanHjNaogWtZqhMzY2Fm3atPF3LUREFGHkslI88vgwAMDouetQqtdmGnadJGByzzzkJlo0OX604a0EREQU8W5smcFgEUQMF0REFNFubJmBYo6xCCo+uIyIiCLWgFYZ6N0kQuZgCiMMF0REFHEkUcDA1g50bZikdSlRieGCiIgizqA2DnRtyOkRtMIxF0REFFGSbQYU1k3QuoyoxpYLIiIKmApJh+XX3+VZDrRUuwFTejaAQdZuPg1iuCAiogCq0Ml4v/+ooBzLrNfhni71YDVU/wRvCg52ixARUdjTSQLGd62HZKvhyhtTwLHlgoiIAkZwOpF6YB8A4EBqHaii/z/TCoKAoe2zUTeJk2SFCoYLIiIKGLnsHB5/+FYAgZv+u6h+AtrncgBnKGG3CBERha14i4KbWzu0LoMuwXBBRERh64522bwzJAQxXBARUVgqbpyCRmlWrcugKjBcEBFR2Emw6NGvWRoEQdC6FKoCwwUREYUVSRRwX/f67A4JYQwXREQUVu7qmIMUG+ezCGW8FZWIiAKmQtJhVc/bPctX69oGSSioE3fV+6HAYrggIqKAqdDJeHvQeL/sSxCAHvl80mk4YLcIERGFhcK6CUji9N5hgS0XREQUMILTibjfDwIAfo9LqfX038k2Awa14WRZ4YLhgoiIAkYuO4dnJvcHUPvpvyVRwO1ts2BSeMkKF+wWISKikCUIwOjOucjnZFlhheGCiIhC1o0tM9AiM1brMshHDBdERBSSOtRLQK/GKVqXQbXAcEFERCEn3qJgUBsHp/cOUwwXREQUUgQBGNGhDgdwhjGGCyIiCin9W6SjQQoHcIYzxkIiIgoYpyjh0y43eZavpG6SBX2apAa6LAowhgsiIgqYclnBwiFTarStSa/DiA51OM4iArBbhIiINCcIAu7tVg/JnN47IrDlgoiIAkdVYTnxBwDgZIzdNVqzCsWNkpGbaAleXRRQDBdERBQwSulZvDihGED103/nJlkwoGVGsEujAGK3CBERaUYUBdzSxgFR5DiLSMJwQUREmrm+eRpy2B0ScRguiIhIE9fkxPO20wjFcEFEREHX3GHH8MJs3nYaoTigk4iIgqpFph2jOuVCJ/HzbaTimSUioqCxmxTc0T4bio6Xn0jGlgsiIgoYpyhhQ2EfAECs1YQ/da0Hq0HWuCoKNIYLIiIKmHJZwT/vmgoAGN0uB5nxJo0romBguxQREQVcUV4iWmXFal0GBQnDBRERBY6qIkVXgVvy48H7QqIHu0WIiChgEqUKPDmkveuLkycBs1nbgigo2HJBREQBIQjA0PbZWpdBGmC4ICKigOiRn4KGqVatyyANMFwQEZHftc6Ow4BWfNJptGK4ICIiv0qy6jG8MBsSn3QatRguiIjIbywGHe7rVh8GWdK6FNJQSIaL2bNnIzs7GwaDAW3btsU333yjdUlERHQFggBM6dkASVaD1qWQxkIuXCxZsgQTJ07E1KlTUVJSgmbNmqG4uBiHDx/WujQiIrqM7vnJSLcbvVdKEnDTTa6XxNaMaBFy4eL555/HyJEjMXz4cOTn52Pu3LkwmUz45z//qXVpRERUjc4NknBDiyoGcBoMwNtvu14GtmhEi5AKF6Wlpfj222/RrVs3zzpRFNGtWzd8+eWXGlZGRETVaZ0dh9vbZvJJp+QRUn8JR44cQUVFBZKTk73WJycn4+DBgxpVRURE1WmbE4eRHetAEHhnCF0QUuGCiIjCR4d6CbirQw500mUuJadOuUZ6CoJrmaJCSIWLhIQESJKEQ4cOea0/dOgQUlJSNKqKiIgu1b5uAoZckwWRc1lQFUIqXCiKglatWuGTTz7xrHM6nfjkk0/Qrl07DSsjIiK3drnxGFGYffkWC4pqIfdU1IkTJ2Lo0KFo3bo1CgoK8MILL+DUqVMYPny41qUREUW9llmxGFHIMRZ0eSEXLgYNGoRff/0Vjz76KA4ePIjmzZtj1apVlQZ5EhFRcMVbFIzsmMOuELqikAsXADBu3DiMGzdO6zKIiOi8eIuC+7rX5+2mVCMhGS6IiCh01Ekw454u9WAzyVqXQmGC4YKIiKqVEWvE+G71YDXUMlhIEtC794VligoMF0REVKUkqx73da9f+2ABuKb8/uAD/xVFYYGdZ0REVInNJGNcl3qwmxStS6EwxHBBREReDLKE8V3qVX7CKVENsVuEiIg86iSYr26MxaVOnQKSklzLhw8DZrN/9kshjeGCiIgAAMk2A0Z2yvFfsHA7fdq/+6OQx3BBRBTlZElE14ZJuKlVBmfeJL9guCAiimJ1Esy47Zos1ElgdwX5D8MFEVEUkiUR3fKTcV3TVBhkzj9B/sVwQUQUZewmBcMLs9E43aZ1KRShGC6IiKJIg9QY3NkhB3Fmzl9BgcNwQUQUJTo3SMLtbTODO2hTFIGiogvLFBUYLoiIIpwoChjQMgM9G6cE/+BGI7B2bfCPS5piuCAiimANU63o0zQVDVOtWpdCUYThgogoAtlMMvo0SUXHeolQdOyOoOBiuCAiiiCCAHSsl4iBrR0wKiFwi+mpU0B2tmv5xx85/XeUYLggIooQqXYD7uqQg+xQmxDryBGtK6AgY7ggIooAfZuloW+zNEgip+8m7TFcEBGFKVkS0TzTjnY58WjmsGtdDpEHwwURUZipk2BGUV4iWmTGwqLn/41T6OFfJRFRmEi1GzDkmmzUT7bw6aUU0hguiIhCXG6SBa2yYtGhbgLMbKmgMMC/UiKiEJVmN6JjvQR0z08O35YKUQRat76wTFGB4YKIKMRkxZvRp2kqWmXFal3K1TMagY0bta6CgozhgogoBAgC0CIzFl0aJHGqbgp7DBdERBrSyyKaZtjRt1ka0u1Grcsh8guGCyKiIDPrdchNtOCanDi0yoqFTorgsQinTwP5+a7lHTsAk0nbeigoGC6IiIJEL4voUDcRN7ZMh0EOged+BIOqAj/9dGGZogLDBRFRgOUkmtE6Ow7X5iXxCaUUFRguiIj8TJZE9GqSghaOWCRZ9dHTSkF0HsMFEZGfCIKAvBQL7miXjWSrQetyiDTDcEFEdBUMioRmGTZkxJrQKM2KrPgQe9w5kQYYLoiIaqFxug3tc+Mj/24PolpguCAiqgGzXoeseBPqJcegaboN2QlsoagRQbhwK2q4TmFOPmO4ICKqht2koFVWLBqnW9Ek3Ra+z/fQkskEbN+udRUUZAwXREQXyYg1IsVmREGdWDRJt/PWUaJaYLggoqiXajegcZoNLTJjkZcSo3U5RGGP4YKIok6CRY+uDZNQLzkGZkVCYoyeXR6Bcvo00KaNa3njRk7/HSUYLogo4gkCkGIzoHVWHNrlxiPRoocoMkwEhaq6niniXqaowHBBRBFJlkRkxZvQItOOlpmxSOKkVkRBw3BBRGEv1W5Amt2InAQzYk0KcpMsiDcr7Oog0gjDBRGFlVS7AdnxZqTYDKiTYEa63Qi7SdG6LCK6CMMFEYW0eIuCNtlxaJ0dh2SrHiaF/7dFFOr4XykRhQy9LCIzzoyMWCPyUmKQFWfiWAmiMMRwQURBZTPKSIzRw2aSkZNgRrLVgFSbERaDDmZF4jiJSCMIQFbWhWWKCgwXRBQQcWYFSVY9UmxGpNsNiDHIrtkvrQYGiGhiMgE//qh1FRRkDBdE5DO9LMKgk2DSS0iOMcBqlGEzysiMNyHFakCsSYFRkbQuk4g0wnBBRF4kUUBukgWOWBPMegl2kwK7UYZeFhFnUhBrViDzEeNEdBkMF0RRxGLQwShL0OtExJn1SLbqkWTVwxFrQpxZgdUoMziQf505A3Tq5Fr+7DPAaNS2HgoKhguiCKLoRMSaFSiSiGSrAQ1TYxBrUpBsNcBukmGQ2VVBQeZ0Aps2XVimqMBwQRSiFJ0ISRQgCgJ0ooBEqx5JMQbE6HUw63WQRNd6m0lGrEmBzSgjwcJZKYlIewwXRAEiiQJsRhmSKEAQBCRb9Yi36GHRSzDKEmTJFR6MsgSrUYZRlmBSJCg6ESZFB0XH7gkiCk8MF0Q1IAg431IgIjFGj1SbAYkxrpYE96BHoyxBJwnQ60ToRBF6ncgnbxJRVGK4oKgmigLsRhlNMmywm1xjFcx6VwuCSdEh1qQg1ixDr+NYBSKimmK4oLAlCIAoCOe7EVxdDXpZgiQKUCQRBlmCURZh0uug14mwGmSYzy/bjDLsJtfXvDuCiMi/GC4oJBhkCUZFQoJFjwSLApOig04SEKPXQS+LkEQROlFAqs0Ak6KDzShzkiaicJGQoHUFFGQMF1SJThKgk0TIooAYgwxRgOcOBEEABAgQBJyfK0GBRa+D1ShDFASI51sTdJKrRUGvE8/f7eDqbjDIkud9nSjAcH7OBd7hQBShzGbg11+1roKCjOEiQgkCoBNFWAyuT/lWg4xYswxFEqHoXK+48zMtioKARIvrQVJmRYKO3QRERHQVGC5ChF4WPZ/iDbJ0fmChDibFdZuiRa+DIokwKq4xBZIowKCTYDG4blnUnR9nYFSk84EBbA0gIiJNMFxcgVFxXehxvrlfgKtVQNGJkCXXRd3dhaA/Hw5Mig5mveSZw8Ci18GouLoD3MHBFQJc3+tuTSAiijhnzgC9ermW//1vTv8dJSIuXJwtq8C5cidUVYVTBcqdTpwrc8KpqogzKyjKS4RFr4NJcbUKmPWSZzyAXucKBHqd6+JvlCV++iciuhpOJ7Bu3YVligoRFy4MsnTZ5yfc0S47eMUQERFFIbbFExERkV8xXBAREZFfMVwQERGRXzFcEBERkV9F3IBOIiIKMSaT1hVQkDFcEBFR4JjNwKlTWldBQcZuESIiIvIrhgsiIiLyK4YLIiIKnLNngT59XK+zZ7WuhoKEYy6IiChwKiqAlSsvLFNUYMsFERER+RXDBREREfkVwwURERH5FcMFERER+RXDBREREfmVJneLqKoKADh+/LgWhyciomC5eHbO48d5x0iYc1+33dfx6mgSLk6cOAEAcDgcWhyeiIi0kJamdQXkJydOnIDNZqv2fUG9UvwIAKfTiV9++QUxMTEQBCFoxz1+/DgcDgd+/vlnWK3WoB2XqsdzEpp4XkIPz0loirbzoqoqTpw4gbS0NIhi9SMrNGm5EEURGRkZWhwaAGC1WqPijyCc8JyEJp6X0MNzEpqi6bxcrsXCjQM6iYiIyK8YLoiIiMivoipc6PV6TJ06FXq9XutS6Dyek9DE8xJ6eE5CE89L1TQZ0ElERESRK6paLoiIiCjwGC6IiIjIrxguiIiIyK8YLoiIiMivIi5czJ49G9nZ2TAYDGjbti2++eaby27/9ttvo0GDBjAYDGjSpAlWrlwZpEqjhy/n5LXXXkPHjh0RGxuL2NhYdOvW7YrnkGrH1/9W3BYvXgxBENC/f//AFhiFfD0nf/zxB8aOHYvU1FTo9XrUr1+f/x/mZ76ekxdeeAF5eXkwGo1wOBy47777cPbs2SBVG0LUCLJ48WJVURT1n//8p7p9+3Z15MiRqt1uVw8dOlTl9hs2bFAlSVKfeeYZdceOHerDDz+syrKs/uc//wly5ZHL13MyePBgdfbs2ermzZvVnTt3qsOGDVNtNpv6//7f/wty5ZHN1/Pitm/fPjU9PV3t2LGjev311wen2Cjh6zk5d+6c2rp1a7V3797q+vXr1X379qlr165Vt2zZEuTKI5ev52ThwoWqXq9XFy5cqO7bt0/98MMP1dTUVPW+++4LcuXai6hwUVBQoI4dO9bzdUVFhZqWlqbOnDmzyu0HDhyo9unTx2td27Zt1bvvvjugdUYTX8/JpcrLy9WYmBh1wYIFgSoxKtXmvJSXl6vt27dX//73v6tDhw5luPAzX8/JnDlz1JycHLW0tDRYJUYdX8/J2LFj1S5dunitmzhxolpYWBjQOkNRxHSLlJaW4ttvv0W3bt0860RRRLdu3fDll19W+T1ffvml1/YAUFxcXO325JvanJNLnT59GmVlZYiLiwtUmVGntuflscceQ1JSEu68885glBlVanNO3n//fbRr1w5jx45FcnIyGjdujBkzZqCCjzT3i9qck/bt2+Pbb7/1dJ3s3bsXK1euRO/evYNScyjR5MFlgXDkyBFUVFQgOTnZa31ycjK+//77Kr/n4MGDVW5/8ODBgNUZTWpzTi51//33Iy0trVIIpNqrzXlZv349/vGPf2DLli1BqDD61Oac7N27F59++iluu+02rFy5Ert378aYMWNQVlaGqVOnBqPsiFabczJ48GAcOXIEHTp0gKqqKC8vx5/+9Cf85S9/CUbJISViWi4o8jz11FNYvHgx3n33XRgMBq3LiVonTpzAkCFD8NprryEhIUHrcug8p9OJpKQkvPrqq2jVqhUGDRqEhx56CHPnztW6tKi1du1azJgxA3/7299QUlKCd955Bx988AEef/xxrUsLuohpuUhISIAkSTh06JDX+kOHDiElJaXK70lJSfFpe/JNbc6J27PPPounnnoKH3/8MZo2bRrIMqOOr+dlz549+PHHH9G3b1/POqfTCQDQ6XTYtWsXcnNzA1t0hKvNfyupqamQZRmSJHnWNWzYEAcPHkRpaSkURQlozZGuNufkkUcewZAhQ3DXXXcBAJo0aYJTp05h1KhReOihhyCK0fN5PmJ+UkVR0KpVK3zyySeedU6nE5988gnatWtX5fe0a9fOa3sAWL16dbXbk29qc04A4JlnnsHjjz+OVatWoXXr1sEoNar4el4aNGiA//znP9iyZYvn1a9fP1x77bXYsmULHA5HMMuPSLX5b6WwsBC7d+/2BD0A+O9//4vU1FQGCz+ozTk5ffp0pQDhDn9qtD3GS+sRpf60ePFiVa/Xq/Pnz1d37Nihjho1SrXb7erBgwdVVVXVIUOGqA888IBn+w0bNqg6nU599tln1Z07d6pTp07lrah+5us5eeqpp1RFUdSlS5eqBw4c8LxOnDih1Y8QkXw9L5fi3SL+5+s52b9/vxoTE6OOGzdO3bVrl7pixQo1KSlJfeKJJ7T6ESKOr+dk6tSpakxMjPrmm2+qe/fuVT/66CM1NzdXHThwoFY/gmYiKlyoqqq+/PLLamZmpqooilpQUKB+9dVXnveKiorUoUOHem3/1ltvqfXr11cVRVEbNWqkfvDBB0GuOPL5ck6ysrJUAJVeU6dODX7hEc7X/1YuxnARGL6eky+++EJt27atqtfr1ZycHPXJJ59Uy8vLg1x1ZPPlnJSVlanTpk1Tc3NzVYPBoDocDnXMmDHq0aNHg1+4xvjIdSIiIvKriBlzQURERKGB4YKIiIj8iuGCiIiI/IrhgoiIiPyK4YKIiIj8iuGCiIiI/IrhgoiIiPyK4YLC0tq1ayEIAv7444+gHXPatGlo3ry55+thw4ahf//+nq87d+6Me++9N2j1RDJVVTFq1CjExcVBEARs2bKlynW+/M61+Jvxp/nz58Nut2tdBlGNMFxQyBEE4bKvadOmaVLXpEmTKj2LJhRVdxENp/CzatUqzJ8/HytWrMCBAwfQuHHjKte98847NX7iZPv27XHgwAHYbDa/1fnjjz96gg4RXRAxT0WlyHHgwAHP8pIlS/Doo49i165dnnUWiwWbNm0Kel0WiwUWiyXox41Ge/bsQWpqKtq3b3/ZdXFxcTXep6IofOIxUZCw5YJCTkpKiudls9kgCILXuosv8N9++y1at24Nk8mE9u3be4UQAFi+fDlatmwJg8GAnJwcTJ8+HeXl5dUee+3atSgoKIDZbIbdbkdhYSF++uknAJW7RaridDoxZcoUxMXFISUlpVIry/79+3H99dfDYrHAarVi4MCBXo90vrSrBQDuvfdedO7c2esYM2fORJ06dWA0GtGsWTMsXboUgOuT9LXXXgsAiI2NhSAIGDZsGIYNG4Z169bhxRdf9LQA/fjjjwCA7777Dr169YLFYkFycjKGDBmCI0eOXPbn3LBhAzp37gyTyYTY2FgUFxfj6NGjAIBz585h/PjxSEpKgsFgQIcOHbBx40av77/cMYcNG4Z77rkH+/fvhyAIyM7OrnIdULk15ty5c7j//vvhcDig1+tRt25d/OMf/wBQdYvO+vXr0bFjRxiNRjgcDowfPx6nTp3yvJ+dnY0ZM2ZgxIgRiImJQWZmJl599VXP+3Xq1AEAtGjRAoIgeJ2ni89XRkYG5syZ47V+8+bNEEXR8/f1/PPPo0mTJjCbzXA4HBgzZgxOnjxZ7Tm42r8VADh69Chuu+02JCYmwmg0ol69epg3b161xySqKYYLCmsPPfQQnnvuOWzatAk6nQ4jRozwvPf555/jjjvuwIQJE7Bjxw688sormD9/Pp588skq91VeXo7+/fujqKgI27Ztw5dffolRo0ZBEIQa17NgwQKYzWZ8/fXXeOaZZ/DYY49h9erVAFz/R3/99dfj999/x7p167B69Wrs3bsXgwYN8ulnnjlzJl5//XXMnTsX27dvx3333Yfbb78d69atg8PhwLJlywAAu3btwoEDB/Diiy/ixRdfRLt27TBy5EgcOHAABw4cgMPhwB9//IEuXbqgRYsW2LRpE1atWoVDhw5h4MCB1R5/y5Yt6Nq1K/Lz8/Hll19i/fr16Nu3LyoqKgAAU6ZMwbJly7BgwQKUlJSgbt26KC4uxu+//w4AVzzmiy++iMceewwZGRk4cOAANm7cWOW6qtxxxx1488038dJLL2Hnzp145ZVXqm1t2rNnD3r27IkBAwZg27ZtWLJkCdavX49x48Z5bffcc8+hdevW2Lx5M8aMGYPRo0d7Quw333wDAPj4449x4MABvPPOO5WOI4oibr31VixatMhr/cKFC1FYWIisrCzPdi+99BK2b9+OBQsW4NNPP8WUKVOqPQ81cbm/FQB45JFHsGPHDvz73//Gzp07MWfOHCQkJFzVMYkARNYj1ynyzJs3T7XZbJXWr1mzRgWgfvzxx551H3zwgQpAPXPmjKqqqtq1a1d1xowZXt/3xhtvqKmpqVUe67ffflMBqGvXrq3y/alTp6rNmjXzfH3pk0GLiorUDh06eH1PmzZt1Pvvv19VVVX96KOPVEmS1P3793ve3759uwpA/eabb6rcp6qq6oQJE9SioiJVVVX17NmzqslkUr/44guvbe6880711ltvVVX1wu/m0icxFhUVqRMmTPBa9/jjj6s9evTwWvfzzz+rANRdu3ZV+Xu49dZb1cLCwirfO3nypCrLsrpw4ULPutLSUjUtLU195plnanzMWbNmqVlZWV7bVLXu4p9p165dKgB19erVVdZ26e/lzjvvVEeNGuW1zeeff66Kouj5G8rKylJvv/12z/tOp1NNSkpS58yZo6qqqu7bt08FoG7evLnKY7pt3rxZFQRB/emnn1RVVdWKigo1PT3ds5+qvP3222p8fLzn60v/W/DH30rfvn3V4cOHX7Z2otrgmAsKa02bNvUsp6amAgAOHz6MzMxMbN26FRs2bPBqqaioqMDZs2dx+vRpmEwmr33FxcVh2LBhKC4uRvfu3dGtWzcMHDjQs19f63HXdPjwYQDAzp074XA44HA4PO/n5+fDbrdj586daNOmzRX3v3v3bpw+fRrdu3f3Wl9aWooWLVrUuE63rVu3Ys2aNVV+ut+zZw/q169faf2WLVtw8803V7m/PXv2oKysDIWFhZ51siyjoKAAO3furPUxa2LLli2QJAlFRUU12n7r1q3Ytm0bFi5c6FmnqiqcTif27duHhg0bAvA+p+4uOvc5ranmzZujYcOGWLRoER544AGsW7cOhw8f9vo9fvzxx5g5cya+//57HD9+HOXl5dX+rdZETf5WRo8ejQEDBqCkpAQ9evRA//79vca0ENUWwwWFNVmWPcvu7gun0wkAOHnyJKZPn44bb7yx0vcZDIYq9zdv3jyMHz8eq1atwpIlS/Dwww9j9erVuOaaa3yux12Tu56aEEURqqp6rSsrK/Msu/vgP/jgA6Snp3ttp9fra3yci/fXt29fPP3005Xeqy5UGY1Gn49ztcesCV/rOnnyJO6++26MHz++0nuZmZme5as9p2633XabJ1wsWrQIPXv2RHx8PADXWJnrrrsOo0ePxpNPPom4uDisX78ed955J0pLS6sMF/74W+nVqxd++uknrFy5EqtXr0bXrl0xduxYPPvssz7/fEQXY7igiNWyZUvs2rULdevW9en7WrRogRYtWuDBBx9Eu3btsGjRohqHi8tp2LAhfv75Z/z888+e1osdO3bgjz/+QH5+PgAgMTER3333ndf3bdmyxXOBy8/Ph16vx/79+6v9hK4oCgB4xkBcvP7SdS1btsSyZcuQnZ0Nna5m/3fQtGlTfPLJJ5g+fXql93Jzc6EoCjZs2OAZS1BWVoaNGzd6Bl7W5pg10aRJEzidTqxbtw7dunW74vYtW7bEjh07fP77uFh1v+uqDB48GA8//DC+/fZbLF26FHPnzvW89+2338LpdOK5556DKLqGwr311luX3Z8//lbc+xk6dCiGDh2Kjh07YvLkyQwXdNU4oJMi1qOPPorXX38d06dPx/bt27Fz504sXrwYDz/8cJXb79u3Dw8++CC+/PJL/PTTT/joo4/www8/eJrHr1a3bt3QpEkT3HbbbSgpKcE333yDO+64A0VFRWjdujUAoEuXLti0aRNef/11/PDDD5g6darXBSQmJgaTJk3CfffdhwULFmDPnj0oKSnByy+/jAULFgAAsrKyIAgCVqxYgV9//dXzCTY7Oxtff/01fvzxRxw5cgROpxNjx47F77//jltvvRUbN27Enj178OGHH2L48OHVXjAffPBBbNy4EWPGjMG2bdvw/fffY86cOThy5AjMZjNGjx6NyZMnY9WqVdixYwdGjhyJ06dP48477wSAWh2zJrKzszF06FCMGDEC7733Hvbt24e1a9dWe5G+//778cUXX2DcuHHYsmULfvjhByxfvrzSgM7LSUpKgtFo9AxKPXbs2GXra9++Pe68805UVFSgX79+nvfq1q2LsrIyvPzyy9i7dy/eeOMNr/BRFX/8rTz66KNYvnw5du/eje3bt2PFihV++3un6MZwQRGruLgYK1aswEcffYQ2bdrgmmuuwaxZszyfqC9lMpnw/fffY8CAAahfvz5GjRqFsWPH4u677/ZLPYIgYPny5YiNjUWnTp3QrVs35OTkYMmSJV41P/LII5gyZQratGmDEydO4I477vDaz+OPP45HHnkEM2fORMOGDdGzZ0988MEHntsi09PTMX36dDzwwANITk72XCwnTZoESZKQn5+PxMRE7N+/H2lpadiwYQMqKirQo0cPNGnSBPfeey/sdrvnE/Sl6tevj48++ghbt25FQUEB2rVrh+XLl3taIZ566ikMGDAAQ4YMQcuWLbF79258+OGHiI2NBYBaHbOm5syZg5tuugljxoxBgwYNMHLkSK9bSy/WtGlTrFu3Dv/973/RsWNHtGjRAo8++ijS0tJqfDydToeXXnoJr7zyCtLS0nD99ddfdvvbbrsNW7duxQ033ODVjdOsWTM8//zzePrpp9G4cWMsXLgQM2fOvOy+/PG3oigKHnzwQTRt2hSdOnWCJElYvHhxjX9+ouoI6qWddkRERERXgS0XRERE5FcMF0RERORXDBdERETkVwwXRERE5FcMF0RERORXDBdERETkVwwXRERE5FcMF0RERORXDBdERETkVwwXRERE5FcMF0RERORXDBdERETkV/8/SGZ+UKpGdPQAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"El gráfico muestra que el valor escogido para el número de cluster es una buena elección para los datos proporcionados, debido a que los tres grupos presentan puntuaciones superiores al promedio."
],
"metadata": {
"id": "6kxJwyWH1Ppz"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación, se analizarán cada uno de los tres grupos formados."
],
"metadata": {
"id": "o6fRGSKjGzGu"
}
},
{
"cell_type": "code",
"source": [
"random_state = 20\n",
"kmeans = KMeans(n_clusters=3, n_init=20, max_iter=500, random_state=random_state)\n",
"kmeans.fit(df_new)\n",
"y_pred = kmeans.predict(df_new)"
],
"metadata": {
"id": "8L-_yun5LFUY"
},
"execution_count": 23,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se agrega al dataframe la información del cluster al que pertenece el registro."
],
"metadata": {
"id": "ktgX-vLhHBMI"
}
},
{
"cell_type": "code",
"source": [
"df_new[\"Cluster\"]=y_pred"
],
"metadata": {
"id": "k37wpCCqpkGi"
},
"execution_count": 24,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#Temperatura ambiente\n",
"df_new.groupby(['Cluster'])[\"TA\"].describe().round(2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "kifSuTmoLPAG",
"outputId": "c79f48bb-31ee-46d1-8fa8-6e6c9695bce6"
},
"execution_count": 25,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 14.16 5.21 3.4 10.2 13.2 17.3 32.6\n",
"1 2283.0 14.46 4.08 3.6 11.2 13.9 17.3 29.0\n",
"2 2866.0 11.08 3.26 3.1 8.8 10.6 13.0 26.7"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
14.16
\n",
"
5.21
\n",
"
3.4
\n",
"
10.2
\n",
"
13.2
\n",
"
17.3
\n",
"
32.6
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
14.46
\n",
"
4.08
\n",
"
3.6
\n",
"
11.2
\n",
"
13.9
\n",
"
17.3
\n",
"
29.0
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
11.08
\n",
"
3.26
\n",
"
3.1
\n",
"
8.8
\n",
"
10.6
\n",
"
13.0
\n",
"
26.7
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 25
}
]
},
{
"cell_type": "markdown",
"source": [
"La temperatura promedio es parecida entre los cluster 0 y 1, mientras que el cluster 2 se caracteriza por tener una temperatura inferior."
],
"metadata": {
"id": "l-559FfkbgWV"
}
},
{
"cell_type": "code",
"source": [
"#Humedad relativa\n",
"df_new.groupby(['Cluster'])[\"HR\"].describe().round(2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "U5yXrwMlgCM4",
"outputId": "ac19f987-9200-4ebf-b83b-834945cf9dbf"
},
"execution_count": 26,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 69.90 19.46 9.8 54.6 73.6 86.3 100.0\n",
"1 2283.0 76.94 17.29 26.5 64.4 78.7 92.2 100.0\n",
"2 2866.0 83.89 14.83 20.4 75.9 88.3 95.6 100.0"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
69.90
\n",
"
19.46
\n",
"
9.8
\n",
"
54.6
\n",
"
73.6
\n",
"
86.3
\n",
"
100.0
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
76.94
\n",
"
17.29
\n",
"
26.5
\n",
"
64.4
\n",
"
78.7
\n",
"
92.2
\n",
"
100.0
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
83.89
\n",
"
14.83
\n",
"
20.4
\n",
"
75.9
\n",
"
88.3
\n",
"
95.6
\n",
"
100.0
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 26
}
]
},
{
"cell_type": "markdown",
"source": [
"El promedio de la humedad relativa es distinto en los 3 cluster, habiendo una diferencia de 7% entre el 0 y el 1, y también del 7% entre el 1 y el 2."
],
"metadata": {
"id": "-CyTCcI0bwPv"
}
},
{
"cell_type": "code",
"source": [
"#Precipitaciones\n",
"df_new.groupby(['Cluster'])[\"PP\"].describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "QJ2vp_IyubuK",
"outputId": "6b18665c-d035-4763-ee04-78a1f40e4f06"
},
"execution_count": 27,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 0.006825 0.179033 0.0 0.0 0.0 0.0 9.5\n",
"1 2283.0 0.098336 0.737446 0.0 0.0 0.0 0.0 17.0\n",
"2 2866.0 0.025645 0.231563 0.0 0.0 0.0 0.0 5.1"
],
"text/html": [
"\n",
"
\n"
]
},
"metadata": {},
"execution_count": 29
}
]
},
{
"cell_type": "markdown",
"source": [
"La velocidad del viento promedio es distinta en los 3 cluster, siendo mayor para el cluster 1 y menor para el cluster 2."
],
"metadata": {
"id": "IyOq8T4RcNfr"
}
},
{
"cell_type": "code",
"source": [
"#Rágafa de viento\n",
"df_new.groupby(['Cluster'])[\"RV\"].describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "dSfoJUnpukse",
"outputId": "c955968a-f313-4948-8b0a-ef3914a60e73"
},
"execution_count": 30,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 14.469401 7.338526 1.1 8.6 13.3 19.4 38.5\n",
"1 2283.0 14.342970 6.434811 1.4 10.1 13.7 17.3 58.7\n",
"2 2866.0 6.581612 4.928230 0.0 3.6 6.1 9.0 51.1"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
14.469401
\n",
"
7.338526
\n",
"
1.1
\n",
"
8.6
\n",
"
13.3
\n",
"
19.4
\n",
"
38.5
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
14.342970
\n",
"
6.434811
\n",
"
1.4
\n",
"
10.1
\n",
"
13.7
\n",
"
17.3
\n",
"
58.7
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
6.581612
\n",
"
4.928230
\n",
"
0.0
\n",
"
3.6
\n",
"
6.1
\n",
"
9.0
\n",
"
51.1
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 30
}
]
},
{
"cell_type": "markdown",
"source": [
"La ráfaga de viento es menor para el cluster 2, coincidiendo con que este grupo también presenta la velocidad del viento promedio más baja."
],
"metadata": {
"id": "rSxJ2F5WHrLY"
}
},
{
"cell_type": "code",
"source": [
"#Dirección del viento\n",
"df_new.groupby(['Cluster'])[\"DV\"].describe().round(2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "HqLlhb7VunHP",
"outputId": "31ab8cf7-2048-4aff-910a-e1ddeb6e89d5"
},
"execution_count": 31,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 160.64 29.62 83.0 142.0 162.0 181.0 232.0\n",
"1 2283.0 302.73 28.29 231.0 282.0 303.0 324.0 355.0\n",
"2 2866.0 8.88 20.18 0.0 0.0 0.0 0.0 86.0"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
160.64
\n",
"
29.62
\n",
"
83.0
\n",
"
142.0
\n",
"
162.0
\n",
"
181.0
\n",
"
232.0
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
302.73
\n",
"
28.29
\n",
"
231.0
\n",
"
282.0
\n",
"
303.0
\n",
"
324.0
\n",
"
355.0
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
8.88
\n",
"
20.18
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
86.0
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 31
}
]
},
{
"cell_type": "markdown",
"source": [
"Hay una gran diferencia en la dirección del viento.\n",
"El cluster 0 se caracteriza por una dirección aproximadamente sur (160 grados). El cluster 1 se caracteriza por una dirección aproximadamente nor-oeste (300 grados). Y el cluster 2 por una dirección norte (8 grados)."
],
"metadata": {
"id": "dhrlvHzfcZJl"
}
},
{
"cell_type": "code",
"source": [
"#Nivel del mar\n",
"df_new.groupby(['Cluster'])[\"PRS\"].describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "-pcpKWCLuq1K",
"outputId": "07f6ba95-29b1-4c18-9409-8e6537266eb5"
},
"execution_count": 32,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 2.282768 0.370058 1.22 1.98 2.26 2.56 3.31\n",
"1 2283.0 2.321599 0.369025 1.16 2.04 2.29 2.58 3.40\n",
"2 2866.0 2.287313 0.366482 1.19 2.00 2.26 2.56 3.34"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
2.282768
\n",
"
0.370058
\n",
"
1.22
\n",
"
1.98
\n",
"
2.26
\n",
"
2.56
\n",
"
3.31
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
2.321599
\n",
"
0.369025
\n",
"
1.16
\n",
"
2.04
\n",
"
2.29
\n",
"
2.58
\n",
"
3.40
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
2.287313
\n",
"
0.366482
\n",
"
1.19
\n",
"
2.00
\n",
"
2.26
\n",
"
2.56
\n",
"
3.34
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 32
}
]
},
{
"cell_type": "markdown",
"source": [
"No se observan grandes diferencias. Esto se debe a que este atributo presenta pequeñas variaciones a lo largo del año."
],
"metadata": {
"id": "F_u1C3S8c8q5"
}
},
{
"cell_type": "code",
"source": [
"#Temperatura del océano\n",
"df_new.groupby(['Cluster'])[\"TW\"].describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "jYrKvAHAuss3",
"outputId": "efb71706-4953-4953-d405-b42d00a69986"
},
"execution_count": 33,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% max\n",
"Cluster \n",
"0 3121.0 13.293682 1.311902 11.16 12.400 12.98 13.8100 18.27\n",
"1 2283.0 13.390710 1.329994 10.75 12.445 12.99 14.1550 17.81\n",
"2 2866.0 13.190122 1.220973 10.98 12.460 12.90 13.4175 18.26"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
count
\n",
"
mean
\n",
"
std
\n",
"
min
\n",
"
25%
\n",
"
50%
\n",
"
75%
\n",
"
max
\n",
"
\n",
"
\n",
"
Cluster
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
3121.0
\n",
"
13.293682
\n",
"
1.311902
\n",
"
11.16
\n",
"
12.400
\n",
"
12.98
\n",
"
13.8100
\n",
"
18.27
\n",
"
\n",
"
\n",
"
1
\n",
"
2283.0
\n",
"
13.390710
\n",
"
1.329994
\n",
"
10.75
\n",
"
12.445
\n",
"
12.99
\n",
"
14.1550
\n",
"
17.81
\n",
"
\n",
"
\n",
"
2
\n",
"
2866.0
\n",
"
13.190122
\n",
"
1.220973
\n",
"
10.98
\n",
"
12.460
\n",
"
12.90
\n",
"
13.4175
\n",
"
18.26
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 33
}
]
},
{
"cell_type": "markdown",
"source": [
"No se observan grandes diferencias."
],
"metadata": {
"id": "xX9JPx1vIXOC"
}
},
{
"cell_type": "markdown",
"source": [
"La características que más diferencian a los distintos grupos son:\n",
"\n",
"* Cluster 0: temperatura alta, humedad baja, viento medio y sur.\n",
"\n",
"* Cluster 1: temperatura alta, humedad media, viento alto y nor-oeste.\n",
"\n",
"* Cluster 2: temperatura baja, humedad alta, viento bajo y norte."
],
"metadata": {
"id": "Ko7fxyETdCuc"
}
},
{
"cell_type": "markdown",
"source": [
"Como conclusión final de este método, se destaca que el coeficiente de silhouette alcanza su valor máximo cuando los datos no han sido sometidos a escala. Este resultado nos muestra la influencia del escalamiento, donde la disparidad en el comportamiento y rango de los diversos atributos es clave.\n",
"\n",
"Tomemos, por ejemplo, las mediciones de temperatura ambiente y temperatura del agua. Mientras que la temperatura ambiente puede variar en un rango de aproximadamente 30ºC, la temperatura del agua abarca solo unos 8ºC. Al aplicar el MinMaxScaler, ambos atributos quedan normalizados en el mismo rango. Sin embargo, esto plantea un dilema, ya que la variación relativa en la temperatura del agua es mucho menor en comparación con la temperatura ambiente.\n",
"\n",
"Este fenómeno puede tener implicaciones significativas. Si, por ejemplo, la temperatura del agua se mantiene casi constante, con una variación de apenas 1ºC a lo largo del tiempo, la aplicación del MinMaxScaler asigna valores de 0 a 1, equiparándola con la variación mucho mayor de la temperatura ambiente. Esta homogeneización de escalas puede distorsionar la representación de la importancia relativa de las variables."
],
"metadata": {
"id": "VvZ7b947I5_t"
}
},
{
"cell_type": "markdown",
"source": [
"**DBSCAN**"
],
"metadata": {
"id": "skc4_-MbvoNM"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.cluster import DBSCAN\n",
"from sklearn import datasets\n",
"import matplotlib.pyplot as plt"
],
"metadata": {
"id": "M66u8WMjvnqV"
},
"execution_count": 43,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Para utilizar el método DBSCAN, se partirá seleccionando el valor óptimo para el eps, para los datos no escalados, datos escalados con MinMaxScaler y datos escalados con StandardScaler."
],
"metadata": {
"id": "NUvgqY5oOIix"
}
},
{
"cell_type": "markdown",
"source": [
"**Sin escalar**"
],
"metadata": {
"id": "bbkf5qPkOW38"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.neighbors import NearestNeighbors\n",
"import numpy as np\n",
"\n",
"nbrs = NearestNeighbors(n_neighbors=10).fit(df_new) #n_neighbors es minpts\n",
"distances, _ = nbrs.kneighbors(df_new)\n",
"\n",
"distances = np.sort(distances, axis=0)\n",
"distances = distances[:,1]\n",
"plt.axhline(y=7, color='r', linestyle='--') #Ajustar el valor de y, el cual representa el eps\n",
"plt.plot(distances)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 447
},
"id": "rhkz_QzwMCX3",
"outputId": "8eea8dd6-aa66-4407-a546-49dfe5f54591"
},
"execution_count": 39,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[]"
]
},
"metadata": {},
"execution_count": 39
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"
\n"
]
},
"metadata": {},
"execution_count": 66
}
]
},
{
"cell_type": "markdown",
"source": [
"Al analizar las tablas anteriores, se destaca una diferencia significativa entre los outliers y el grupo principal, especialmente en:\n",
"\n",
"* Precipitación promedio (1mm vs 0mm)\n",
"\n",
"* Velocidad del viento promedio (12.6 km/h vs 5.4 km/h)\n",
"\n",
"* Ráfaga de viento promedio (22.6 km/h vs 11.3 km/h)\n",
"\n",
"Estos resultados indican que el modelo está identificando predominantemente como outliers aquellos días con precipitaciones. Esta observación cobra sentido debido a que las condiciones climáticas en la ciudad de Valparaíso experimentan variaciones mínimas a lo largo del año, y los días con precipitaciones significativas son escasos. En consecuencia, el modelo parece destacar estos eventos climáticos poco frecuentes como puntos atípicos.\n",
"\n"
],
"metadata": {
"id": "RK_f8Zjh18PI"
}
},
{
"cell_type": "markdown",
"source": [
"**REGRESIÓN**"
],
"metadata": {
"id": "KaV1DZldvqKI"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se aplicarán métodos de regresión para analizar los datos."
],
"metadata": {
"id": "BCmFfb3VUXmP"
}
},
{
"cell_type": "markdown",
"source": [
"**Predicción de la temperatura ambiente**"
],
"metadata": {
"id": "OjnZQkhqpsvk"
}
},
{
"cell_type": "markdown",
"source": [
"**REGRESIÓN LINEAL**"
],
"metadata": {
"id": "cxUZnwj2tdSr"
}
},
{
"cell_type": "markdown",
"source": [
"Se comienza aplicando una regresión lineal."
],
"metadata": {
"id": "v-mAMW32gjKn"
}
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"pd.set_option('display.max_columns', None)"
],
"metadata": {
"id": "YH3jdK_JkoO9"
},
"execution_count": 79,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"El primer paso corresponde a cargar los datos a utilizar."
],
"metadata": {
"id": "fwfjwxaHtvi2"
}
},
{
"cell_type": "code",
"source": [
"df=pd.read_csv(\"datos2022.csv\", sep=\",\")\n",
"df['fecha']= pd.to_datetime(df['fecha'])"
],
"metadata": {
"id": "cd5Q2Gdhknrt"
},
"execution_count": 80,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df.head(2)"
],
"metadata": {
"id": "4KLp0QKNlGWJ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
},
"outputId": "a649be89-5388-43bf-8e41-6474dba4267e"
},
"execution_count": 81,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" fecha TA HR PP PA VV RV DV PRS TW\n",
"0 2022-01-01 00:00:00 11.2 81.8 0.0 975.0 3.9 14.0 177.0 3.11 15.47\n",
"1 2022-01-01 01:00:00 11.0 81.5 0.0 974.0 2.3 8.6 208.0 3.04 14.90"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
fecha
\n",
"
TA
\n",
"
HR
\n",
"
PP
\n",
"
PA
\n",
"
VV
\n",
"
RV
\n",
"
DV
\n",
"
PRS
\n",
"
TW
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2022-01-01 00:00:00
\n",
"
11.2
\n",
"
81.8
\n",
"
0.0
\n",
"
975.0
\n",
"
3.9
\n",
"
14.0
\n",
"
177.0
\n",
"
3.11
\n",
"
15.47
\n",
"
\n",
"
\n",
"
1
\n",
"
2022-01-01 01:00:00
\n",
"
11.0
\n",
"
81.5
\n",
"
0.0
\n",
"
974.0
\n",
"
2.3
\n",
"
8.6
\n",
"
208.0
\n",
"
3.04
\n",
"
14.90
\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
]
},
"metadata": {},
"execution_count": 81
}
]
},
{
"cell_type": "markdown",
"source": [
"A continuación se selecciona la variable de respuesta (y) y los atributos (X) a utilizar.\n",
"\n",
"En este caso elegimos y como la temperatura ambiente (TA), y los demás atributos corresponderán a las demás columnas del dataframe, excepto la fecha.\n",
"\n"
],
"metadata": {
"id": "HgsQqvchto8Q"
}
},
{
"cell_type": "code",
"source": [
"y = df.pop('TA')\n",
"X=np.array(df.iloc[:,1:] )"
],
"metadata": {
"id": "P0WecPpScywZ"
},
"execution_count": 82,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se dividen los datos en datos de entrenamiento y de validación, en este caso, se escoge un 70% y 30% respectivamente."
],
"metadata": {
"id": "QADvwk7TuOOR"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "zOebSYFhtlvE"
},
"execution_count": 83,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se escoge el algoritmo a utilizar, en este caso Regresión Lineal, y se entrena el modelo con los datos de entrenamiento."
],
"metadata": {
"id": "j3-4SGDYunic"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"lm = LinearRegression()\n",
"lm.fit(X_train,y_train)"
],
"metadata": {
"id": "T1vpI9Yrs9Kz",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"outputId": "a3fdd038-f0b0-413c-b304-01c8fc13c608"
},
"execution_count": 84,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LinearRegression()"
],
"text/html": [
"
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()
"
]
},
"metadata": {},
"execution_count": 84
}
]
},
{
"cell_type": "markdown",
"source": [
"Se evalúa la métrica correspondiente al coeficiente de determinación, utilizando los datos de entrenamiento."
],
"metadata": {
"id": "k_eMf-xA2TgE"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n",
"print(\"R^2:\", lm.score(X_train, y_train).round(3))"
],
"metadata": {
"id": "GRfzoB4_vwmB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "2849b81c-2302-4164-9b17-ca8b598835c5"
},
"execution_count": 85,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.775\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"A continuación, se predicen los valores de la variable de respuesta con los datos de validación."
],
"metadata": {
"id": "Ww4woYRd3UzT"
}
},
{
"cell_type": "code",
"source": [
"y_pred = lm.predict(X_test)"
],
"metadata": {
"id": "vxBR_eQU-F8n"
},
"execution_count": 86,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se evalúa la métrica con los datos de validación:"
],
"metadata": {
"id": "Zm4J_TbC-rA4"
}
},
{
"cell_type": "code",
"source": [
"print(\"R^2:\", r2_score(y_test, y_pred).round(3))"
],
"metadata": {
"id": "G-wPWA5Y-tea",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9c8824d9-1045-46d9-c632-691b05760221"
},
"execution_count": 87,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.769\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Esto significa que aproximadamente el 77% de la variabilidad en la variable dependiente puede ser explicada por el modelo de regresión. En otras palabras, el 77% de las fluctuaciones de le temperatura ambiente son capturadas por las variables independientes incluidas en el modelo.\n",
"\n",
"\n"
],
"metadata": {
"id": "mSiod2wygV_x"
}
},
{
"cell_type": "code",
"source": [
"print(\"Error absoluto medio: %.2f\" % mean_absolute_error(y_test, y_pred), \"ºC\")"
],
"metadata": {
"id": "Jwcxae7P-wnv",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7bdaa13c-f0e4-4c94-a7fe-f02de855ecd8"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Error absoluto medio: 1.71 ºC\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Este valor indica que, en promedio, las predicciones del modelo tienen un error absoluto de aproximadamente 1.71 grados Celsius con respecto a los valores reales. En otras palabras, las predicciones tienden a desviarse, en promedio, alrededor de 1.71°C de los valores observados."
],
"metadata": {
"id": "iV-67SvLhQqL"
}
},
{
"cell_type": "markdown",
"source": [
"**DATOS ESCALADOS**"
],
"metadata": {
"id": "xnBcEOdz7Jqn"
}
},
{
"cell_type": "markdown",
"source": [
"**MinMaxScaler**"
],
"metadata": {
"id": "FshOmEr7v-1x"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se estudiará el efecto de escalar los datos, para lo cual se utilizará la función MinMaxScaler."
],
"metadata": {
"id": "uf83FBWchtuo"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import MinMaxScaler\n",
"scaler = MinMaxScaler()"
],
"metadata": {
"id": "o3cHPvSxhk96"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se escalan las variables independientes (X)."
],
"metadata": {
"id": "SrFqisLNh0mt"
}
},
{
"cell_type": "code",
"source": [
"scaler.fit(X)\n",
"X_scaled1=scaler.transform(X)"
],
"metadata": {
"id": "CAx3IDNMgzgm"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se repite lo anteriormente realizado."
],
"metadata": {
"id": "k0O8X-sNiWFz"
}
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X_scaled1, y, train_size = 0.7, test_size = 0.3, random_state = 5)\n",
"lm = LinearRegression()\n",
"lm.fit(X_train,y_train)"
],
"metadata": {
"id": "ZNmMOoluiTST",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"outputId": "5e927540-d9a6-4402-ab05-773afb9805d6"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LinearRegression()"
],
"text/html": [
"
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()
"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"source": [
"print(\"R^2:\", lm.score(X_train, y_train).round(3))"
],
"metadata": {
"id": "QYzEbBdoios7",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e6b73720-2e77-4b73-9739-2d221ab1744e"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.775\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"y_pred=lm.predict(X_test)\n",
"print(\"R^2:\", r2_score(y_test, y_pred).round(3))"
],
"metadata": {
"id": "9sFzU0I2ip-i",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f2d311a1-0c64-44bf-f8f0-b3495e289dc8"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.769\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(\"Error absoluto medio: %.2f\" % mean_absolute_error(y_test, y_pred), \"ºC\")"
],
"metadata": {
"id": "Xj6DDjDxi3ol",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "0380b2f1-87b5-4069-e4d0-1a49ee974d0b"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Error absoluto medio: 1.71 ºC\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Dado que estamos utilizando una regresión lineal, el escalado de datos no influye en el coeficiente de determinación ni en el error absoluto medio. Sin embargo, los coeficientes asociados con cada una de las variables independientes sí experimentan cambios. Cuando aplicamos escalamiento a los datos, la interpretación de cuál de estas variables tiene un impacto mayor en la variable de respuesta se simplifica, facilitando la comprensión de su contribución relativa."
],
"metadata": {
"id": "YwoP9_Htg6nr"
}
},
{
"cell_type": "code",
"source": [
"print(\"Intercepto en y:\")\n",
"lm.intercept_.round(2)"
],
"metadata": {
"id": "YKub0m6adZ-s",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "0a11227a-af48-4cf2-f954-022f76be06bb"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Intercepto en y:\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"22.69"
]
},
"metadata": {},
"execution_count": 18
}
]
},
{
"cell_type": "markdown",
"source": [
"Este valor indica el valor esperado de la variable dependiente cuando todos los atributos son cero.\n",
"\n"
],
"metadata": {
"id": "EivIzLeymUYM"
}
},
{
"cell_type": "code",
"source": [
"print(\"Coeficientes de cada atributo:\")\n",
"lm.coef_.round(2)"
],
"metadata": {
"id": "2MamH6i-1blm",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "10d7cc74-e1f5-4895-cd16-c2a73aedca60"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Coeficientes de cada atributo:\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([-13.87, -8.49, -5.46, 11.1 , -4.01, 0.65, 0.05, 5.64])"
]
},
"metadata": {},
"execution_count": 19
}
]
},
{
"cell_type": "markdown",
"source": [
"Cada valor en nuestros resultados representa cuánto se espera que la variable dependiente cambie por cada unidad de cambio en el atributo correspondiente, manteniendo constantes todos los demás atributos.\n",
"\n",
"Para ilustrar, si incrementamos el primer atributo en una unidad, anticipamos una disminución de aproximadamente 13.87 unidades en la variable dependiente.\n",
"\n",
"La consideración del signo y la magnitud de los coeficientes es esencial. El signo nos indica la dirección de la relación (si es positiva o negativa), mientras que la magnitud nos proporciona información sobre la fuerza de esa relación.\n",
"\n",
"A pesar de que estamos utilizando un modelo lineal y las métricas evaluadas no han cambiado, el escalado de los datos juega un papel crucial al ofrecer una interpretación más clara de los coeficientes asociados con cada variable independiente. Esto simplifica la identificación de qué variable tiene un impacto mayor o menor en la variable de respuesta.\n",
"\n",
"Especialmente, al observar los valores más bajos, 0.65 y 0.05, correspondientes a DV (dirección del viento) y PRS (nivel del mar) respectivamente, se destaca que estas variables tienen una influencia relativamente menor en la variable de respuesta en comparación con otros atributos."
],
"metadata": {
"id": "5sJTqZQMmZUZ"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se grafican los resultados."
],
"metadata": {
"id": "BkEqjGdIhwrP"
}
},
{
"cell_type": "code",
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import PredictionErrorDisplay\n",
"\n",
"fig, axs = plt.subplots(ncols=2, figsize=(8, 4))\n",
"\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"actual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[0],\n",
" random_state=0,)\n",
"axs[0].set_title(\"Valores reales vs predichos\")\n",
"\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"residual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[1],\n",
" random_state=0,)\n",
"axs[1].set_title(\"Valores residuales vs predichos \")\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"id": "stqxsutbnAKI",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 407
},
"outputId": "64897595-a61d-4fde-c980-303c01b3c40c"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wU9f3/nzOz7cpegzuOLk1BiihWRMCKYuyxkgSxhCj2qL+giV2JFf1aQE1CjLFhQRMTRaMiKioWkCK9c3Bwx93tla0z8/n9Mbtzu3d7vcPn+XicsrOzM5+Z2f18Pu/35/1+vRUhhEAikUgkEolEIpFIWoDa0Q2QSCQSiUQikUgkXR9pWEgkEolEIpFIJJIWIw0LiUQikUgkEolE0mKkYSGRSCQSiUQikUhajDQsJBKJRCKRSCQSSYuRhoVEIpFIJBKJRCJpMdKwkEgkEolEIpFIJC1GGhYSiUQikUgkEomkxUjDQiKRSCQSiUQikbQYaVhIWsTWrVtRFIW///3vHd2UTsvEiROZOHFiRzdjv+Oggw7i8ssvt18vWrQIRVFYtGhRk45z+eWXk56e3rqNk0g6ObLvrpum3JvLL7+cgw46qE3b8/e//x1FUdi6dWubnudA45577kFRlIRtNceVxhAbe956661WbF3XRRoWBxBnn302qampVFRU1LnPlClTcLlc7Nu3rx1bJpFIJJK6kH23RCLpKkjD4gBiypQpBAIBFixYkPR9v9/Pe++9x+mnn063bt3auXUSScsYP348gUCA8ePHd3RTJJJWRfbd7Uv//v0JBAL8+te/7uimSNqZdevW8eKLL3Z0M7o00rA4gDj77LPxer28+uqrSd9/7733qKqqYsqUKe3csmqqqqo67Nx+v7/Dzn0g0VbPWFVVPB4Pqiq7Ncn+hey766e1+25FUfB4PGia1qrHlbQOwWAQ0zTb5Nhutxun09kmxz5QkCPwAURKSgrnn38+n3zyCXv37q31/quvvorX6+Xss8+mpKSEW2+9lZEjR5Kenk5GRgZnnHEGP/30U6PO9emnn3LCCSeQlpZGVlYW55xzDmvWrEnYJxbf+PPPP3PZZZeRnZ3NuHHj7Pf/+c9/MmbMGFJSUsjJyeGSSy5hx44dCcfYsGEDF1xwAfn5+Xg8Hvr06cMll1yCz+ert30TJ05kxIgR/PDDD4wfP57U1FTuuOMOAEKhEHfffTeDBw/G7XbTt29fbr/9dkKhUMIx5s2bx0knnUReXh5ut5tDDz2UOXPmNOr+NPYcH3/8MePGjSMrK4v09HQOOeQQu511MWLECE488cRa203TpHfv3vzyl7+0t73++uuMGTMGr9dLRkYGI0eO5Kmnnqr3+LH448cee4zZs2fTv39/UlJSmDBhAqtWrUrYN5a/sGnTJiZPnozX67UnP6Zp8uSTTzJ8+HA8Hg89evRg+vTplJaWJhxDCMEDDzxAnz59SE1N5cQTT2T16tW12lVXjsW3337L5MmTyc7OJi0tjVGjRiW9xoKCAs4991zS09PJzc3l1ltvxTCMhH2qqqr4/e9/T9++fXG73RxyyCE89thjCCES9mvOc5NI6kL23dW0Rt/d0O+zrhyLd999lxEjRuDxeBgxYkTSFaS6+qFkx1yxYgWXX345AwcOxOPxkJ+fzxVXXNHocLYPPvjAflZer5czzzyzVt9YWFjItGnT6NOnD263m549e3LOOefUm6/x2GOPoSgK27Ztq/XezJkzcblcdj/dGs9x7NixpKSkMGDAAObOnZuwX+x+vv766/zxj3+kd+/epKamUl5eDlj9++mnn05mZiapqalMmDCBr776qtb5vvzyS4466ig8Hg+DBg3i+eefT9quZDkWZWVl3HzzzRx00EG43W769OnDb37zG4qLixP2M02TBx98kD59+uDxeDj55JPZuHFjrXO8+eab9u+je/fu/OpXv6KgoCBhn+Y8t86Co6MbIGlfpkyZwksvvcT8+fO57rrr7O0lJSUsXLiQSy+9lJSUFFavXs27777LhRdeyIABA9izZw/PP/88EyZM4Oeff6ZXr151nuN///sfZ5xxBgMHDuSee+4hEAjw9NNPc/zxx/Pjjz/WSnS78MILGTJkCA899JA9QXvwwQf505/+xEUXXcRVV11FUVERTz/9NOPHj2fZsmVkZWURDoeZNGkSoVCI66+/nvz8fAoKCnj//fcpKysjMzOz3nuxb98+zjjjDC655BJ+9atf0aNHD0zT5Oyzz+bLL7/kt7/9LcOGDWPlypXMnj2b9evX8+6779qfnzNnDsOHD+fss8/G4XDw73//m2uvvRbTNJkxY0ad523sOVavXs0vfvELRo0axX333Yfb7Wbjxo1JO814Lr74Yu655x4KCwvJz8+3t3/55Zfs2rWLSy65BLAG10svvZSTTz6Zhx9+GIA1a9bw1VdfceONN9Z7DoB//OMfVFRUMGPGDILBIE899RQnnXQSK1eupEePHvZ+uq4zadIkxo0bx2OPPUZqaioA06dP5+9//zvTpk3jhhtuYMuWLTzzzDMsW7aMr776yvYa3XXXXTzwwANMnjyZyZMn8+OPP3LaaacRDocbbOPHH3/ML37xC3r27MmNN95Ifn4+a9as4f3330+4RsMwmDRpEscccwyPPfYY//vf/3j88ccZNGgQ11xzDWAZOGeffTafffYZV155JaNHj2bhwoXcdtttFBQUMHv27BY9N4mkPmTfXU1L+u7m/j4/+ugjLrjgAg499FBmzZrFvn377Ilfc/n444/ZvHkz06ZNIz8/n9WrV/PCCy+wevVqvvnmm1qJxfG8/PLLTJ06lUmTJvHwww/j9/uZM2cO48aNY9myZfazuuCCC1i9ejXXX389Bx10EHv37uXjjz9m+/btdSadX3TRRdx+++3Mnz+f2267LeG9+fPnc9ppp5Gdnd3i51haWsrkyZO56KKLuPTSS5k/fz7XXHMNLpeLK664ImHf+++/H5fLxa233kooFMLlcvHpp59yxhlnMGbMGO6++25UVbUdfl988QVHH300ACtXruS0004jNzeXe+65B13XufvuuxPGqbqorKzkhBNOYM2aNVxxxRUcccQRFBcX869//YudO3fSvXt3e98///nPqKrKrbfeis/n45FHHmHKlCl8++239j6xMe+oo45i1qxZ7Nmzh6eeeoqvvvrK/n0097l1GoTkgELXddGzZ09x3HHHJWyfO3euAMTChQuFEEIEg0FhGEbCPlu2bBFut1vcd999CdsAMW/ePHvb6NGjRV5enti3b5+97aeffhKqqorf/OY39ra7775bAOLSSy9NOM/WrVuFpmniwQcfTNi+cuVK4XA47O3Lli0TgHjzzTebfB8mTJggADF37tyE7S+//LJQVVV88cUXCdtj9+err76yt/n9/lrHnTRpkhg4cGCtc02YMKHJ55g9e7YARFFRUZOubd26dQIQTz/9dML2a6+9VqSnp9vtvvHGG0VGRobQdb1Jx48985SUFLFz5057+7fffisAcfPNN9vbpk6dKgDxhz/8IeEYX3zxhQDEK6+8krD9ww8/TNi+d+9e4XK5xJlnnilM07T3u+OOOwQgpk6dam/77LPPBCA+++wzIYT1XR8wYIDo37+/KC0tTThP/LFibYz/XgshxOGHHy7GjBljv3733XcFIB544IGE/X75y18KRVHExo0bhRDNf24SSX3IvtuipX13Y36fdd2bnj17irKyMnvbRx99JADRv39/e1vNfqi+YyYbQ1577TUBiMWLF9vb5s2bJwCxZcsWIYQQFRUVIisrS1x99dUJny0sLBSZmZn29tLSUgGIRx99tM5rrYvjjjsuof8TQoilS5cKQPzjH/8QQrTOc3z88cftbaFQyP4OhsNhIUT1/Rw4cGDC/TJNUwwZMkRMmjQpoT/3+/1iwIAB4tRTT7W3nXvuucLj8Yht27bZ237++WehaZqoOQ3u379/wrhy1113CUC88847ta4hdt5YG4cNGyZCoZD9/lNPPSUAsXLlSiGEEOFwWOTl5YkRI0aIQCBg7/f+++8LQNx1111CiJY9t86ADIU6wNA0jUsuuYSvv/46YUnt1VdfpUePHpx88smAFWcYi1U3DIN9+/bZS8Y//vhjncffvXs3y5cv5/LLLycnJ8fePmrUKE499VT++9//1vrM7373u4TX77zzDqZpctFFF1FcXGz/5efnM2TIED777DMA2xuycOHCZsXYut1upk2blrDtzTffZNiwYQwdOjTh3CeddBKAfW6wwhNi+Hw+iouLmTBhAps3b653Gbix54h5Lt57770mxZMefPDBjB49mjfeeMPeZhgGb731FmeddZbd7qysLKqqqvj4448bfex4zj33XHr37m2/PvrooznmmGOSPuOY1z/Gm2++SWZmJqeeemrCPRgzZgzp6en2Pfjf//5HOBzm+uuvT/De3XTTTQ22b9myZWzZsoWbbrrJvpcxknkCa34PTzjhBDZv3my//u9//4umadxwww0J+/3+979HCMEHH3wANP+5SST1IfvualrSdzfn9xm7N1OnTk3wwp966qkceuihTW5/jPgxJBgMUlxczLHHHgtQ77P6+OOPKSsr49JLL024Vk3TOOaYY+xrTUlJweVysWjRolohpg1x8cUX88MPP7Bp0yZ72xtvvIHb7eacc84BWv4cHQ4H06dPt1+7XC6mT5/O3r17+eGHHxL2nTp1asL9Wr58ORs2bOCyyy5j37599j2oqqri5JNPZvHixZimiWEYLFy4kHPPPZd+/frZnx82bBiTJk1qsI1vv/02hx12GOedd16t92qOI9OmTcPlctmvTzjhBAB7HPn+++/Zu3cv1157LR6Px97vzDPPZOjQofznP/8BWvbcOgPSsDgAicW4xxIBd+7cyRdffMEll1xiJ6uZpsns2bMZMmQIbreb7t27k5uby4oVK+qdNMdiMg855JBa7w0bNsz+4cczYMCAhNcbNmxACMGQIUPIzc1N+FuzZo0dYzxgwABuueUW/vKXv9C9e3cmTZrEs88+22BsZ4zevXsndAKxc69evbrWeQ8++GCAhPjmr776ilNOOcWORc7NzbXjdOtrQ2PPcfHFF3P88cdz1VVX0aNHDy655BLmz5/fqMHw4osv5quvvrLjNhctWsTevXu5+OKL7X2uvfZaDj74YM444wz69OnDFVdcwYcfftiYWwfAkCFDam07+OCDa8WAOhyOWuECGzZswOfzkZeXV+s+VFZW2vcg9n2qea7c3Fyys7PrbV9sQBwxYkSD1+LxeMjNzU3Ylp2dndCpb9u2jV69euH1ehP2GzZsWEJbW/LcJJL6kH23RUv67ub8PuvqhyD5/WosJSUl3HjjjfTo0YOUlBRyc3Pte9rQGAJw0kkn1brejz76yL5Wt9vNww8/zAcffECPHj0YP348jzzyCIWFhQ227cILL0RVVdtBJYTgzTff5IwzziAjIwNo+XPs1asXaWlpCdtiz6vmOJLsuwaWwVHzHvzlL38hFArh8/koKioiEAg0+9lt2rSpUWMIkGC4APYYFRtH6vuNDR061H6/Jc+tMyBzLA5AxowZw9ChQ3nttde44447eO211xBCJCiKPPTQQ/zpT3/iiiuu4P777ycnJwdVVbnppptafYIU74UAa2BUFIUPPvggqSpHfDGzxx9/nMsvv5z33nuPjz76iBtuuIFZs2bxzTffNBj7WvO8sXOPHDmSJ554Iuln+vbtC1idzcknn8zQoUN54okn6Nu3Ly6Xi//+97/Mnj273nvU2HOkpKSwePFiPvvsM/7zn//w4Ycf8sYbb3DSSSfx0Ucf1atYcvHFFzNz5kzefPNNbrrpJubPn09mZiann366vU9eXh7Lly9n4cKFfPDBB3zwwQfMmzeP3/zmN7z00kt1HrupxHtQY5imSV5eHq+88krSz9Sc5Lc1ran+0pLnJpHUh+y7k583du627lcbQ115ETWFIMDKZViyZAm33XYbo0ePJj09HdM0Of300xscQ8DKs4jPo4vhcFRP7W666SbOOuss3n33XRYuXMif/vQnZs2axaeffsrhhx9e5zl69erFCSecwPz587njjjv45ptv2L59u52PF6Mlz7EpJPuuATz66KOMHj066WfS09NrJe63JXV9d0QNcY/G0Nzn1inowDAsSQdy//33C0D89NNPYvTo0WLIkCEJ7x922GHixBNPrPW53r17J+QL1Iwb3bVrlwDE7bffXuuzp59+uujevbv9OhanWzPW9ZFHHhGAWLduXZOv66uvvhKAuPPOO+vdb8KECWL48OG1tk+ePFn07t07IWYzGbE43fiYTSGqY/9jsbCxc8Xfs8aeIxkPPvigAMTHH3/c4L5HH320OPbYY0UkEhHdu3dPiBtNhmEYYvr06QIQGzZsqHO/2DOvGV8thBDHHHOMOOSQQ+zXU6dOFWlpabX2u/baa4WmaUljjON59dVXBSA+/PDDhO179+5tMMfiu+++E4CYPXt2veeoq42x72eM3/72t0LTNFFeXp6w3zfffJM0pyWepjw3iaQ+ZN/dsr47GTV/n3Xdm5q5YkIIceihhybkWPz0008CEAsWLEjY75NPPkk4ZklJiQDEvffem7Df+vXrBSDuvvtue1vNHIv58+cn5NU0hfXr14vU1FQxZcqUBvd97rnnBCDWrl0rbrzxRpGamioqKyvr/UxTnqPD4ah1vDlz5ghAfP3110KI6n69Zh5HLN/j+eefr/c8uq6LlJQUcckll9R6b/LkyQ3mWAwfPlwcdthh9Z6jrjbW/B4tWbJEAOK5556rdYxhw4bVymmJpynPraORoVAHKDEP11133cXy5ctr6Z9rmlbLyn7zzTdrSaLVpGfPnowePZqXXnqJsrIye/uqVav46KOPmDx5coNtO//889E0jXvvvbdWG4QQthRfeXk5uq4nvD9y5EhUVW22l+Kiiy6ioKAgaYGcQCBghwLEPBPx7fP5fMybN6/VzlFSUlLr/ZhnpjHXd/HFF/PNN9/wt7/9jeLi4oQwKKCWpKGqqowaNarRx3/33XcTvg9Lly7l22+/5YwzzmjwsxdddBGGYXD//ffXek/Xdfu7c8opp+B0Onn66acT7vWTTz7Z4DmOOOIIBgwYwJNPPpnwXYTmeZAmT56MYRg888wzCdtnz56Noij2dbf0uUkk9SH77uS0Zb8af2/iw3w+/vhjfv7554R9+/fvj6ZpLF68OGH7c889l/A62RgCjevbJk2aREZGBg899BCRSKTW+0VFRYBV3yMYDCa8N2jQILxeb6Pu8wUXXICmabz22mu8+eab/OIXv0gIXWrpc9R1PUH2NRwO8/zzz5Obm8uYMWPq/eyYMWMYNGgQjz32GJWVlbXej90DTdOYNGkS7777Ltu3b7ffX7NmDQsXLmywjRdccAE//fRTUmnhpo4jRx55JHl5ecydOzfh/nzwwQesWbOGM888E2j5c+toZCjUAcqAAQMYO3Ys7733HkCtwekXv/gF9913H9OmTWPs2LGsXLmSV155hYEDBzZ47EcffZQzzjiD4447jiuvvNKWLMzMzOSee+5p8PODBg3igQceYObMmWzdupVzzz0Xr9fLli1bWLBgAb/97W+59dZb+fTTT7nuuuu48MILOfjgg9F1nZdffhlN07jggguadV9+/etfM3/+fH73u9/x2Wefcfzxx2MYBmvXrmX+/PksXLiQI488ktNOOw2Xy8VZZ53F9OnTqays5MUXXyQvL4/du3e3yjnuu+8+Fi9ezJlnnkn//v3Zu3cvzz33HH369EnQjK+Liy66iFtvvZVbb72VnJwcTjnllIT3r7rqKkpKSjjppJPo06cP27Zt4+mnn2b06NF23kB9DB48mHHjxnHNNdcQCoV48skn6datG7fffnuDn50wYQLTp09n1qxZLF++nNNOOw2n08mGDRt48803eeqpp/jlL39p15OYNWsWv/jFL5g8eTLLli3jgw8+SJD5S4aqqsyZM4ezzjqL0aNHM23aNHr27MnatWtZvXp1owaVeM466yxOPPFE7rzzTrZu3cphhx3GRx99xHvvvcdNN93EoEGDAFr83CSS+pB9d3Laul+dNWsWZ555JuPGjeOKK66gpKSEp59+muHDhydMbDMzM7nwwgt5+umnURSFQYMG8f7779eqP5KRkWHHzkciEXr37s1HH33Eli1bGrzWjIwM5syZw69//WuOOOIILrnkEnJzc9m+fTv/+c9/OP7443nmmWdYv349J598MhdddBGHHnooDoeDBQsWsGfPHlt2vD7y8vI48cQTeeKJJ6ioqKjlnGrpc+zVqxcPP/wwW7du5eCDD+aNN95g+fLlvPDCCw0WqVNVlb/85S+cccYZDB8+nGnTptG7d28KCgr47LPPyMjI4N///jcA9957Lx9++CEnnHAC1157Lbqu289uxYoV9Z7ntttu46233uLCCy/kiiuuYMyYMZSUlPCvf/2LuXPncthhhzV4nTGcTicPP/ww06ZNY8KECVx66aW23OxBBx3EzTffDNDi59bhdNBKiaQT8OyzzwpAHH300bXeCwaD4ve//73o2bOnSElJEccff7z4+uuva4X1JJPQE0KI//3vf+L4448XKSkpIiMjQ5x11lni559/TtinruX0GG+//bYYN26cSEtLE2lpaWLo0KFixowZ9jL75s2bxRVXXCEGDRokPB6PyMnJESeeeKL43//+1+C117WcLoQlCffwww+L4cOHC7fbLbKzs8WYMWPEvffeK3w+n73fv/71LzFq1Cjh8XjEQQcdJB5++GHxt7/9rcFQqMae45NPPhHnnHOO6NWrl3C5XKJXr17i0ksvFevXr2/w+mIcf/zxAhBXXXVVrffeeustcdppp4m8vDzhcrlEv379xPTp08Xu3bvrPWbsmT/66KPi8ccfF3379hVut1uccMIJ4qeffkrYt64woxgvvPCCGDNmjEhJSRFer1eMHDlS3H777WLXrl32PoZhiHvvvdf+Lk6cOFGsWrWq1pJ1XTKPX375pTj11FOF1+sVaWlpYtSoUQlhS40NhRLCknm8+eabRa9evYTT6RRDhgwRjz76aEL4RWs8N4mkPmTf3fy+uzG/z7ruzdtvvy2GDRsm3G63OPTQQ8U777wjpk6dmhAKJYQQRUVF4oILLhCpqakiOztbTJ8+XaxatarWMXfu3CnOO+88kZWVJTIzM8WFF15oh13VFwoV47PPPhOTJk0SmZmZwuPxiEGDBonLL79cfP/990IIIYqLi8WMGTPE0KFDRVpamsjMzBTHHHOMmD9/foP3OcaLL74oAOH1ehMkUoVonef4/fffi+OOO054PB7Rv39/8cwzz9S6RuqRtF22bJk4//zzRbdu3YTb7Rb9+/cXF110kfjkk08S9vv888/FmDFjhMvlEgMHDhRz585N2sfXHFeEEGLfvn3iuuuuE7179xYul0v06dNHTJ06VRQXF9fbxrq+R2+88YY4/PDDhdvtFjk5OWLKlCkJ0u2t8dw6EkWIZsQESCSSA5atW7cyYMAAHn30UW699daObo5EIpFIuhgTJ06kuLiYVatWdXRTJK2MzLGQSCQSiUQikUgkLUYaFhKJRCKRSCQSiaTFSMNCIpFIJBKJRCKRtBiZYyGRSCQSiUQikUhajFyxkEgkEolEIpFIJC1GGhYSiUQikUgkEomkxcgCec3ENE127dqF1+tFUZSObo5EIpG0CUIIKioq6NWrF6oqfVHxyHFAIpEcCDRlHJCGRTPZtWsXffv27ehmSCQSSbuwY8cO+vTp09HNaFUMw+Cee+7hn//8J4WFhfTq1YvLL7+cP/7xj40yFOQ4IJFIDiQaMw5Iw6KZeL1ewLrJGRkZHdwaiUQiaRvKy8vp27ev3eftTzz88MPMmTOHl156ieHDh/P9998zbdo0MjMzueGGGxr8vBwHJBLJgUBTxgFpWDSTmDcrIyNDDigSiWS/Z38M9VmyZAnnnHMOZ555JgAHHXQQr732GkuXLm3U5+U4IJFIDiQaMw7IgFmJRCKRHJCMHTuWTz75hPXr1wPw008/8eWXX3LGGWck3T8UClFeXp7wJ5FIJJJq5IqFRCLpUpimYPWuckr8YXJSXQzvlYGq7n/edEnb84c//IHy8nKGDh2KpmkYhsGDDz7IlClTku4/a9Ys7r333nZupUQikXQdOnTFYs6cOYwaNcpeRj7uuOP44IMP7PdfeOEFJk6cSEZGBoqiUFZW1uJjAgSDQWbMmEG3bt1IT0/nggsuYM+ePa19eRKJpJVZsrGYqfOWMv3l77l1/k9Mf/l7ps5bypKNxR3dNEkXZP78+bzyyiu8+uqr/Pjjj7z00ks89thjvPTSS0n3nzlzJj6fz/7bsWNHO7dYIpFIOjcdWnn73//+N5qmMWTIEIQQvPTSSzz66KMsW7aM4cOH8+STTxIMBgGrQy8tLSUrK6tFxwS45ppr+M9//sPf//53MjMzue6661BVla+++qrRbS8vLyczMxOfzydjayWSdmDJxmLuWLCSypBOdqoLl6YSNkxK/RHS3RoPnTeSsYO7d3Qz9zv2576ub9++/OEPf2DGjBn2tgceeIB//vOfrF27tsHP78/3RiKRSGI0pa/r0FCos846K+H1gw8+yJw5c/jmm28YPnw4N910EwCLFi1qtWP6fD7++te/8uqrr3LSSScBMG/ePIYNG8Y333zDscce26JrkkgkrY9pCuZ8vonKkE5+hsdOIPOoGvkZKoXlIeZ8voljB3aTYVGSRuP3+2tpsmuahmmaHdQiiUQi6dp0muRtwzB4/fXXqaqq4rjjjmuzY/7www9EIhFOOeUUe7+hQ4fSr18/vv766zqPJZP2JJKOY/WucjbtrSQ71VVLlUJRFLJSnWzaW8nqXfJ3mYyqqqqObkKn5KyzzuLBBx/kP//5D1u3bmXBggU88cQTnHfeeR3dNIlEIumSdLhhsXLlStLT03G73fzud79jwYIFHHrooW12zMLCQlwuV62Qqh49elBYWFjnMWfNmkVmZqb9J4siSSTtR4k/TMQQuLTkXZZbU4mYghJ/uJ1b1vlZtWoVV155JUuWLOnopnQ6nn76aX75y19y7bXXMmzYMG699VamT5/O/fff39FNk0gkklbFNAUrd/r4fH0RK3f6MM22yYTocFWoQw45hOXLl+Pz+XjrrbeYOnUqn3/+eYuMi7Y45syZM7nlllvs17FiIRKJpO3JSXXh1BTCholH1Wq9HzJMnKpCTqqrA1rXeVm1ahX33HMPoVCI//3vfxx33HH7ZT2K5uL1ennyySd58sknO7opEolE0mYs2VjMnM83sWlvJRFD4NQUBuWlc82EQa2em9jhKxYul4vBgwczZswYZs2axWGHHcZTTz3VZsfMz88nHA7XUpjas2cP+fn5dR7T7XbbSlOyGJJE0r4M75XBoLx0Sv0RaupNCCEo80cYlJfO8F7ydxkj3qg44ogj+MMf/iCNColEIjnAiAmfrNldTprbQZ7XTZrbwZrdFdyxYGWrqyp2uGFRE9M0CYVCbXbMMWPG4HQ6+eSTT+z3161bx/bt21stt0MikbQuqqpwzYRBpLs1CstDBCIGpikIRAwKy0OkuzWumTBIJm5HqWlU3HnnnbhccjVHIpFIDiRqCp94nBqqquBxauRnuKkMGcz5fFOrhkV1aCjUzJkzOeOMM+jXrx8VFRW8+uqrLFq0iIULFwJWPkRhYSEbN24ErNwJr9dLv379yMnJAeDkk0/mvPPO47rrrmvUMTMzM7nyyiu55ZZbyMnJISMjg+uvv57jjjtOKkJJJJ2YsYO789B5I+3lXJ8pcKoKw3p622Q5t6uyefNmaVRIJBKJpEnCJyP7ZLbKOTvUsNi7dy+/+c1v2L17N5mZmYwaNYqFCxdy6qmnAjB37tyEKqfjx48HLHnYyy+/HIBNmzZRXFzc6GMCzJ49G1VVueCCCwiFQkyaNInnnnuuHa5YIpG0hLGDu3PswG6y8nY99OvXj9GjRxOJRKRRIZFIJAcwjRE+8bWy8EmHFsjrysjCSBKJpLOi6zqmabaKUSH7urqR90YikXRmVu70Mf3l70lzO/A4awufBCIG/pDO878+st4Vi6b0dZ0ux0IikUgkTWPVqlXMmzfPTmx3OBxypUIikUgOcDpC+EQaFhKJRNKFiSVqv/POO3z44Ycd3RyJRCKRdBI6QvhEGhYSiUTSRamp/nTyySd3dJMkEolE0omICZ8M6+nFH9LZWxnCH9IZ1tPLQ+eNbHXhkw4vkCeRSCSSpiMlZSUSiUTSGNpT+EQaFhKJRNLFkEaFRCKRSJqCqiqtJilb73na/AwSiUQiaTUqKiq4//77pVEhkUgkkk6HNCwkEomkC+H1epkxYwZHHXWUNCokEolE0qmQoVASiUTSBRBC2JVTx48fzwknnFCrkqpEIpFIJB2JXLGQSCSSTs6qVau46aab2Ldvn71NGhUSiUQi6WxIw0IikUg6MbFE7c2bN/P66693dHMkEolEIqkTaVhIJBJJJ6Wm+tPVV1/d0U2SSCQSiaROpGEhkUgknRApKSuRSCSSroY0LCQSiaSTIY0KiUQikXRFpGEhkUgknQghBH/5y1+kUSGRSCSSLoeUm5VIJJJOhKIo3HXXXbzxxhtceeWV0qiQSCQSSZdBGhYSiaTdMU3B6l3llPjD5KS6GN4rA1U9sOVTKyoq8Hq9AOTk5HDNNdd0cIskEolEImka0rCQSCTtypKNxcz5fBOb9lYSMQROTWFQXjrXTBjE2MHdO7p5HcKqVau47777uOaaazjxxBM7ujkSiUTSZenqjquu3n5pWEgkknZjycZi7liwksqQTnaqC5emEjZM1uyu4I4FK3novJEHnHERn6i9ePFiJk6cKIvfSSQSSTPo6o6rrt5+kMnbEomknTBNwZzPN1EZ0snP8OBxaqiqgsepkZ/hpjJkMOfzTZim6Oimths11Z9mzpwpjQqJRCJpBjHH1Zrd5aS5HeR53aS5HbbjasnG4o5uYr109fbHkIaFRCJpF1bvKmfT3kqyU121Js+KopCV6mTT3kpW7yrvoBa2L1JSViKRSFqHru646urtj0caFhKJpF0o8YetpV1VIRA2qAhGCIQNhLA6SremEjEFJf5wB7e07ZFGhUQikbQeXd1x1dXbH4/MsZBIJO1CTqoLU5hs3ecnYpoIAYoCbodKrteDpio4VYWc1P1/gv3DDz9Io0IikUhaiZjjyqUl95e7NRVfJ3ZcdfX2xyNXLCQSSbvgC4SpChsEIgaKAg5VQVUUAhGTglI/e8tDDMpLZ3ivjI5uapvzm9/8huuuu04aFZ2AgoICfvWrX9GtWzdSUlIYOXIk33//fUc3SyKRNIGcVBdOTSFsmEnfDxlmp3ZcdfX2xyMNC4lE0uaYpuD5xZtxO1QcqoJpgsBasdAUiBiCsGEwffzALiWr1xQ2b95MJBIBrKXtSZMmSaOigyktLeX444/H6XTywQcf8PPPP/P444+TnZ3d0U2TSLo0pilYudPH5+uLWLnT1+a5AcN7ZTAoL51Sf8QOr40hhKDMH+nUjquu3v54ZCiURCJpc2Lxo3leD3qaoKgiREg3EKZlXHicGqkujcyU/XOiHcupGDVqFDNnzsTpdHZ0kyTAww8/TN++fZk3b569bcCAAR3YIomk69MRkqmqqnDNhEHcsWAlheUhslKduDWVkGFS5o+Q7ta4ZsKgTuu4UlWF6eMHcttbK9heEiAjxUGG20HYFF2i/fHIFQuJRNLmxMePprsdHNQ9lf45afTJTqF/ThoDuqeiqkqXiB9tKvGJ2oZh1PJGSTqOf/3rXxx55JFceOGF5OXlcfjhh/Piiy92dLMkki5LR0qmjh3cnYfOG8mwnl78IZ29lSH8IZ1hPb2dvkbSko3FPL94M2HdJBDR2V0WYENRJaVVoS7R/njkioVEImlz4uNHPaqGgkKKSwM0AAIRo8vEjzYFqf7Uudm8eTNz5szhlltu4Y477uC7777jhhtuwOVyMXXq1Fr7h0IhQqGQ/bq8vPMrtEgk7UVNydSYupFH1cjPUCksDzHn800cO7Bbm3nexw7uzrEDu3WpytXxhWNz0lz0yHBTEdQpD0RwOTSmjx/YZYwKkCsWEomkHdif4kcbizQqOj+maXLEEUfw0EMPcfjhh/Pb3/6Wq6++mrlz5ybdf9asWWRmZtp/ffv2becWSySdl84imaqqCiP7ZDLh4FxG9sns1EZFsvoVmqqSleqib04qEcPKT+wK9StiSMNCIpG0ObH413S3RmF5iEDEwDQFgYhBYXmoS8WPNgZpVHQNevbsyaGHHpqwbdiwYWzfvj3p/jNnzsTn89l/O3bsaI9mSiRdgsZIph4otYoaS2cxxloTGQolkUjahVj8ayypz2daxfKG9fS2aVJfR6BpGoqiSKOik3P88cezbt26hG3r16+nf//+Sfd3u9243e72aJpE0uWoGfJak64kmdpe7E/1K2JIw0IikbQbXTH+tTkMGzaMRx55hN69e0ujohNz8803M3bsWB566CEuuugili5dygsvvMALL7zQ0U2TSNoE0xRt1v/GQl7X7K4gP0NN8MDHQl6H9fTuVyGvLWV/NMakYSGRSNqVWPzr/saqVatITU1l4MCBgJQt7QocddRRLFiwgJkzZ3LfffcxYMAAnnzySaZMmdLRTZNIWp22loHt6pKvHcH+aIwpQmofNovy8nIyMzPx+XxkZHSdBy6RSFqfWE6Fy+XikUceoU+fPh3dpFZD9nV1I++NpKsQrzyUnerCpamEDZPS6IS/NeVMEwyYaMhrW9ex6MpUPxsjqTHWGaRmm9LXyRULiUQiaQHxidrDhw8nLy+vo5skkTSLtgyTkXQc7S0De6CEvLYW+1v+oTQsJBKJpJlI9SfJ/kJHVEuWtA9NUR5qrTDV/TXkta3Yn4wxaVhIJBJJM5BGhWR/oa4wmVi15M4QiiFpPvuj8tD+yP5ijEnDQiKRSJrIhg0bpFHRimzZsoUvvviCbdu24ff7yc3N5fDDD+e4447D4/F0dPP2azpDtWRJ27I/Kg9JOi/SsJBIJJIm0rdvX4YMGYLL5ZJGRQt45ZVXeOqpp/j+++/p0aMHvXr1IiUlhZKSEjZt2oTH42HKlCn8v//3/+qsLSFpGR0RJiNpX9pDeUjm50hiSMNCIpFImojH4+Huu+9GVVVpVDSTww8/HJfLxeWXX87bb79N3759E94PhUJ8/fXXvP766xx55JE899xzXHjhhR3U2v0XGSaz/9PWMrAyP0cST/KeRCKRSCQJrFq1ivnz59uvPR6PNCpawJ///Ge+/fZbrr322lpGBVhVridOnMjcuXNZu3atXR9E0rrEh8kkQ4bJ7B/ElIeG9fTiD+nsrQzhD+kM6+ltUQ5NLD9nze5y0twO8rxu0twOOz9nycbiVr4SSWdHrlhIJBJJA8Qnaufm5nLiiSd2dJO6PJMmTWr0vt26daNbt25t2JoDl+aEyciwl65JaysPyfwcSTKkYSGRSCT1UFP96fjjj+/oJu0XlJeXN3pfWXyu7WhqmIwMe+natKbykMzPkSRDGhYSiURSB1JStu3IysqqNRmpC8Mw2rg1BzaNLdAlZWkl8cj8HEkypGEhkUgkSZBGRdvy2Wef2f/eunUrf/jDH7j88ss57rjjAPj666956aWXmDVrVkc18YCioTAZGfYiqYmUsZUkQxoWEomkXehKcdmlpaXce++90qhoQyZMmGD/+7777uOJJ57g0ksvtbedffbZjBw5khdeeIGpU6d2RBMPOOoLk5FhL5KatIeMraTrIQ0LiUTS5nS1uOzs7GymTZvG0qVLueOOO6RR0cZ8/fXXzJ07t9b2I488kquuuqoDWiSpiQx7kdSkrWVsJV0TKTcrkUjalK4kRyiEsP89efJk7r77bmlUtAN9+/blxRdfrLX9L3/5S1IpWkn7I2VpJcloKxlbSddFrlhIJAcobRmaFDv2vsoQT36ygYpghJ6ZKZ06LnvVqlX84x//4E9/+hNerxeg0cnFkpYxe/ZsLrjgAj744AOOOeYYAJYuXcqGDRt4++23O7h1EpBhL5K6aW0ZW0nXRhoWEskBSFuGJsUfOxAxKA9EcDs0qsIG6e7qLqczxWXHJ2q//vrrXH311R3WlgORyZMns379eubMmcPatWsBOOuss/jd734nVyw6CTLsRVIfrSljK+naSMNCIjnAaEvJyJrHdmgK5YEIIcOgoDRA7+yUBOOiM8Rl11R/konCHUPfvn156KGHOroZknporCytRCI5cJGGhURyANGWkpHJji2E5clSAEMIiiqCpLnS7PPWF5fdHipSUlK28/DFF1/w/PPPs3nzZt5880169+7Nyy+/zIABAxg3blxHN08SRYa9SCSS+pCGhURyANGWkpHJju1xqbgdGsGIgaZCSDcJRkxSXFq9cdntoSIljYrOw9tvv82vf/1rpkyZwo8//kgoFALA5/Px0EMP8d///reDWyiJR4a9SCSSupCqUBLJAURjJCMjzQxNSnZsBYVcrxtVUTAMgSkgYpgEIgaF5aGkcdntoSJlGAbPPvusNCo6CQ888ABz587lxRdfxOl02tuPP/54fvzxxw5smUQikUiagjQsJJIDiLaUjKzr2OluB72zU3A5NBACXzBSpxxhzXAqj1NDVRU8To38DDeVIYM5n2/CNEXN0zcJTdO46667OOWUU6RR0QlYt24d48ePr7U9MzOTsrKy9m+QRCKRSJqFDIWSSA4g2lIysr5jp7k00twah+R7ufGUIXRPcyeNy27r6r5+v5/U1FQAevbsyY033tjkY0han/z8fDZu3MhBBx2UsP3LL79k4MCBHdMoiUQikTQZuWIhkRxAxCQj090aheUhAhED0xT1hia13rEd3D7pEE48JI+RfTKTnqMtQ7VWrVrFlVdeyXfffdfkz0ralquvvpobb7yRb7/9FkVR2LVrF6+88gq33nor11xzTUc3TyKRSCSNRK5YSCQHGG0pGdnSY8eHU3lUrdb7zQ3Vik/UXrhwIUceeaQsfteJ+MMf/oBpmpx88sn4/X7Gjx+P2+3m1ltv5frrr+/o5kkkEomkkShCiJYFKx+glJeXk5mZic/nIyNDVhqVdD3ao/J2U49tmoKp85ZGw6nctUK1CstDDOvp5aVpRze6rVL9qWW0Z18XDofZuHEjlZWVHHrooaSnp7fp+VqKHAckks5Fe8iUH4g0pa+TKxYSyQFKa0pGmqZgZYGP5dvLEAoc3jeLkb2Thzs11KbWrO4rjYquwRVXXMFTTz2F1+vl0EMPtbdXVVVx/fXX87e//a0DWyeRSLoC7SFTLmkYuWLRTKSnSiKxWLKxmFkfrGH9nkoiUUUoh6pySH46M88Y1qwOPWGAiIZTNXWAkEZF69AefZ2maezevZu8vLyE7cXFxeTn56Prepuct6XIcSA50mssaW9iMuWVIZ3sVBcuTSVsmJRGHVI1FQglTUOuWEgkknZhycZibp6/nKKKEArgUBVQwDBMVu8q5+b5y5l90egmd+itUd33iy++kEZFJ6e8vBwhBEIIKioq8Hg89nuGYfDf//63lrEh6dxIr7GkvakpU24XaFU18jNUCstDzPl8E8cO7NbuBu6BaGR3qCrUrFmzOOqoo/B6veTl5XHuueeybt26pPsKITjjjDNQFIV333233uPec889DB06lLS0NLKzsznllFP49ttv7fe3bt3KlVdeyYABA0hJSWHQoEHcfffdhMNNV5qRSA5UTFPw3KJNlFSFUQCnQ0VTVTRFxampKAqUVIV5btHGZtWdiIVqTTg4t04VqfqYPn06V111lTQqOjFZWVnk5OSgKAoHH3ww2dnZ9l/37t254oormDFjRru1589//jOKonDTTTe12zn3J9qjuKWkc6HrJgt+LOCZTzew4McCdD15jaS2pCky5e3Jko3FTJ23lOkvf8+t839i+svfM3Xe0v3+d9ChKxaff/45M2bM4KijjkLXde644w5OO+00fv75Z9LS0hL2ffLJJxut4nLwwQfzzDPPMHDgQAKBALNnz+a0005j48aN5ObmsnbtWkzT5Pnnn2fw4MGsWrWKq6++mqqqKh577LG2uFSJZL9j9a5y1hVWIITAoakoVP8+FUXBoaoYpmBtYUWz6040lW3bttG3b19UVUVVVc4555w2P6ek+Xz22WcIITjppJN4++23ycnJsd9zuVz079+fXr16tUtbvvvuO55//nlGjRrVLufb3+jMXmNJ2/Di4k08u2gTFYEIJpan+t73VzNj4iCuHj+o3drRGJlyXzNlyptLXaFZMSN7fw7N6lDD4sMPP0x4/fe//528vDx++OGHhCqsy5cv5/HHH+f777+nZ8+eDR73sssuS3j9xBNP8Ne//pUVK1Zw8sknc/rpp3P66afb7w8cOJB169YxZ84caVhIJI2kxB8mbJgIAcls/timiFF3h67rJv9esZuCMj+9s1I5a1RPHA5rcGjqEnIsp+LYY4/llltuQVVlmZ7OzoQJEwDYsmUL/fr16zAJ4MrKSqZMmcKLL77IAw880CFt6Oq0dXFLSefixcWbePjDdRimwKEpOBQwBfj8ER7+0Io8aS/joq1kypvLgW5kd6ocC5/PB5DgtfL7/Vx22WU8++yz5OfnN/mY4XCYF154gczMTA477LB6zx1/3pqEQiFCoZD9ury8fZfUJJLORk7UC6Mo1DIuBIKIYWIKCOsm6e7anX193q7hvTKbFKcdn6hdUVGBrusy/KkL8emnn5Kens6FF16YsP3NN9/E7/czderUNj3/jBkzOPPMMznllFPqNSzkOFA3ndFrLGkbdN3k2UWbMEyBy6GgKtYzVxVQFZOwLnh20SamjR1gO4rakuG9MhiUlx6VKVdryZSX+SMM6+lleK/2EVg40I3sTuPSM02Tm266ieOPP54RI0bY22+++WbGjh3b5JCG999/n/T0dDweD7Nnz+bjjz+me/fky04bN27k6aefZvr06XUeb9asWWRmZtp/ffv2bVJ7JJL9jeG9Mjgk34uiKOiGicDKowgbJsGIiSFAAIGIwcXPf8Od76wALG/Ovf9ezZ8/WIvPH0FVFVyagqoq+PwRZn2wlhmv/tjoOG2p/tT1mTVrVtL+OS8vj4ceeqhNz/3666/z448/MmvWrAb3leNA3cR7jZPR3l5jSdvx7xW7qQhEcGjVRkUMVVFxaAoVgQj/XrG7XdoTkylPd2sUlocIRAxMUxCIGBSWh5osU95SGmNkR+KMbNMUrNzp4/P1Razc6WtWTmJnotOsWMyYMYNVq1bx5Zdf2tv+9a9/8emnn7Js2bImH+/EE09k+fLlFBcX8+KLL3LRRRfx7bff1lIYKSgo4PTTT+fCCy/k6quvrvN4M2fO5JZbbrFfl5eXy0FFckCjqgrXThzEhr0VFFWEiOjWCkWyLlE3Ba8s3UFheZBgxGTJpn32foYpUDQVh6qgYBA2oMwf4dCeXjucqa4lZGlU7B9s376dAQMG1Nrev39/tm/f3mbn3bFjBzfeeCMff/xxgiJVXchxoG46k9f4QFTiaQlNvV8FZX5MwFHHLqoCRnS/9mgPWEqCD5030l7p9kVlyof19La7IllTQrP2RxW1TmFYXHfddbz//vssXryYPn362Ns//fRTNm3aRFZWVsL+F1xwASeccAKLFi2q85hpaWkMHjyYwYMHc+yxxzJkyBD++te/MnPmTHufXbt2ceKJJzJ27FheeOGFetvodrtxu93Nuj6JZH9l7ODuzL5oNLM+WMO6wkqMGt5KJfqfWLWcT9YWkepQbKNCwYrLjegmOFQURQVMBOALWklv9rFqLCErZTukUbGfkJeXx4oVKzjooIMStv/0009069atzc77ww8/sHfvXo444gh7m2EYLF68mGeeeYZQKISmVU8M5DhQN61d3LK57I8TtbakOferd1YqKlbfnexxmsLq23tnpbZLe2K0hkx5a9BYI9sXCPPHd1ftdwneHRoKJYTguuuuY8GCBXz66ae1PFZ/+MMfWLFiBcuXL7f/AGbPns28efOadC7TNBNiYwsKCpg4cSJjxoxh3rx5MtFTImkmYwd3570Z47hgTO+E7YqCncGdEGYa/1uzyl4gAN0wMePqdUaShFTELyGHQiFM05RGxX7ApZdeyg033MBnn32GYRgYhsGnn37KjTfeyCWXXNJm5z355JNZuXJlwhhz5JFHMmXKFJYvX55gVEgaJuY1HtbTiz+ks7cyhD+kM6ynt10mSVLutmk0936dNaon3hQnuiEwRWI/bQoT3RB4U5ycNaphsZ3WaE88LZUpbw0aE5o1ffxAnl+82U7w9jg1VFXB49TIz3BTGTKY8/mmLhkW1aErFjNmzODVV1/lvffew+v1UlhYCEBmZiYpKSnk5+cnTdju169fghEydOhQZs2axXnnnUdVVRUPPvggZ599Nj179qS4uJhnn32WgoICOzEwZlT079+fxx57jKKiIvtYzUkQl0i6Gq0dKqCqCuE4/fJa4j7xfaOo0VEqoIjam51J4lPjl5BHHjyGWbNmMWDAAGlUdHHuv/9+tm7dysknn4zDYQ1Lpmnym9/8pk1zLLxeb0JOH1ir3d26dau1XdI4Ospr3JFKPK3dn7ZHKFdL7pfDoTJj4iAe/nAdYV3g0EzUqCqUbgg0VWHGxEFNStze35SUGgrN8nqc+22Cd4caFnPmzAFg4sSJCdvnzZvH5Zdf3ujjrFu3zlaU0jSNtWvX8tJLL1FcXEy3bt046qij+OKLLxg+fDgAH3/8MRs3bmTjxo0JoVdgraJIJPszbRUq0D8nreGdgDS3g5AetpK749SkBCCi3hkFyPQkdk9CCHZv2cDQg/LtOO1DDjmk2e2VdB5cLhdvvPEG999/Pz/99BMpKSmMHDmS/v37d3TTJM0g5jVuTzpKiae1+9P2CuVq6f2KScnGlP0Mov12qrNZdSz2RyWl+ozsz9cX7bcqah1qWDRnEp/sM/HbPB4P77zzTr3HuPzyy5tkuEgkHU1rebDasmjP78YP5P8+3YBuiiTys9XkprvQVJXC8qD1XtybRjRmNzPFyZ6KcEKc9u4t69n7+T/pV5BP8a+PriXEIOn6HHzwwRx88MEd2ob6cvcknYNk/WFHyN22dn/ankXVat4vgSAYNtFNE4eq4nIoDd6vq8cPYtrYAXXWImpJe2rSVSfadRnZna32RmvSKZK3JRJJ3bSWB6utl5pdLo2Lj+zDK0t3ALVDm8AaHFRVJddrJcAWVQQx4vbLTHEy48TEOhY+UxDZu5XKr1/jkO4ejh45tJagg6Trccstt3D//feTlpaWoLSUjCeeeKKdWiXp7NTVH04ant+uE7XW7k9berymOp/iJ7Z6RFBUESKkG7ZTyKGqpLq0Bu+Xw6Fy3hG9692nMezPE+1kdCYVtdZGGhYSSSemNT1Y7bHU/OD5owB44/ud6HFJZw5VYcLB3dlUVGUrxnRLc5HmVtlTEcahKlx6dD9+f8rBtrcrtoT8/fKfeHXOv+mTn8aYMTJRe39h2bJlRCIR+9910VHVuCWdj/r6w+37quiW7mK3L9QuE7XW7k9bcrzmOJ9iE9sVO8vwhwwEoKkKimoZKcGIgUDgC7TPCsH+PNFORmdRUWsLpGEhkXRSWtsj1l5LzQ+eP4q7fzGcuYs3s62kiv45afxu/EAcDpVXl27n9aXb7TAol6ZyeN+spAOgqiooZTv4z9//D48q1Z/2Nz777LOk/5YceDTG215ff9gjQ6GgLAiKglNTKCwPkpXqatOJWok/TChioChQHojg1FQyUxy2wmRT+9Pm9s/NdT6pqsL08QO56h/fo5sCp0OxFPqEFZLq1BRcmsbzizczdlD3pM+jtQVAuvJEu6vX3mhNpGEhkXRSWtsj1ppLzQ11oi6Xxg2nDLFfL9lYzHOLNrK2sIKILlAU6JXl4bJj+nPZ0f2SdsDr1q2TdSokkv2cxnrb6+oPK0M6RRUhghGd8kCEdLcDVVUorQqjqkqbTdQWrdtLiT+C8Efsbbt9kOv1kOt1Nzl0pzn9c0udT5kpLtJcGioKEdNEF1bfnOJUyfV60FQl6RjTVgnmXXWivT/U3mhNpGEhkXRSWnuFobWWmpN1ogNz05k0vAemCUKBw/tmMbK3pSG+ZGMxN89fTklVOCHvYsPeSp7+dAMDu6cl7Xx79+5N7969CakeTrjwt6zbG2B4L2eX7nAl1Zx//vmN3rchQQ5JbbpC9emmeNuT9YeVIZ2C0gCmEKjR/izd7SCkm7gcKr85rj/jBue2+rW/uHgTL3+9jZppZIaAwvIgAoFh0qTQneb0z01xPg3vlZE04V1VVA7q5iFsCDtx2+O0zm+aotYY05YJ5qYp8HqcXDFuAGVVEbJTnXRLd3fK726MmvfDqSlUBHVW7Cjj92/+xKO/HMW4Ibn1HqMjVNTaEmlYSCSdlNZOZmuNpeb4TjQr1Ylpgi8Q5utNxXy5sRiF6sS/Q/LT+X+nD+XhD9dSVBGyt9sF8UyToooQsz5Yw3szxtU674rCIHsOPpetJSF+eHeNrKC7n5GZWT2QCiFYsGABmZmZHHnkkYBVFbusrKxJBojEoitUn26qt71mfyiwEo5NIXBoipV0jCDV5SAnzfr8kk37mD6+dcNndN3k2UWbMKLedN0UCKoLfQLsLQ/RN9vTpNCd5vTPjXU+fbmxiEcWrq0z4T1iClJcGpA4ztQcY9pSAKS+72xnNSpq3o+qsMFuX5CQbhXEqwjpXPfaMp659PAGjYv9CVluWiLppMQ8WKX+SC2Z5ZgHa1BeepOS2VpSGTe+E013Oyj0hdhW4mdfVcRWdrISAMEwTVbvKuf6135k7e4KFMCpqqiKgqIoqIqCM2pkrCusZGWBVYdm1apV/Pe//7UNmI2lOt60FFlBdz9k3rx59l+PHj246KKL2LJlC++88w7vvPMOmzdv5pJLLqF7984xEe4qdJXq003xtkPt/jAYNgnpBpqqgADdFLgd1d72mp9vLf69YjcVgQgOTcGhqTgdKjXnvQI487DeTTbimto/56S60BRBcWWIveVBSqvCmGZ1odKQYWKagn98vS3p9+HFxZvolu5q9BjT1GfWWLrKd7Ym8fejKmxQUBogGDGs8c2hoqkK5YEIt721otNeQ1sgVywkkk5KWyWzNTemM9aJuh0au8qCmEJgJq0ro0S9YCa+gI4pwOVQkg5EmqagGybLdpSh+XZyzz33EAyG0EftpjK1335RgVXSMH/729/48ssv0bRqj6mmadxyyy2MHTuWRx99tANb13XoStWLmxrqWbM/dGlWqI6igW6CpijkequvuTXrHsSHlf24rRQTcERvn6YoqA4VES34aYVBCdJctVeZG0NT+uclm4oprookKPDF8jy6p7so84cxhCCsG/TMTAEgGLFqVWR6HJQFImSkOElza40aY9pCAKQrfWdrErsfTk1hty9or55ZafCgKVZocFXI6LTX0BZIw0Ii6cS0VTJbc2I6Y52oPxzBFAJNVdD12oaFbgpUhYT3TVOgJRtnox8v2LSO9997kVAoRJ8hh7I8pfd+VYFVUj+6rrN27dpaldTXrl2b4IGV1E9Xql7cnFDP+P5w7e4KBGCa4HEoZKa6EEIQCBt4nGqr1T2oGaITMaxaD4YpiDVbQbEKgipW/6cAvbNS7WM0Nd+lMf3zi4s38ejCdRhmYh8cy/MoD0TISnUihEFOmpuqsEFRRZCQbibUqthVFuDmUw9h4erCBseYtqg10ZW+szXJicupiK2exYwKsIY3RYGMFEenvYa2QBoWEkknpjMls8UGC6sDVZMWwIsRNkRCzLFpgtBEjU7X8uyZ+7az6LUP8WiWpOwJF/6WH95ds99VYJXUzbRp07jyyivZtGkTRx99NADffvstf/7zn5k2bVoHt67r0JWqFzdXTCLm0V9Z4OPOBSvZUlwFQFFFyJ4wuzQVTVU5rG9mi+oeJEtUDkZ0fAEd3QQFE0fcvTaFiW4IMlOdnDWqp32M1s53ic/zcDkUBNbKr7ViYhE2TKYc04+/L9lGWDfZ7QtiCIFDtYwgAYQNg5DfoCKo89K0oxs0ftqi1kRX+s7WxK4FsqPMcp45Eu+HbgpSnCoZbgdFVeFOeQ1tgTQsJJJOSnskszXFkza8VwZ5GW6KK0NoqmiwcFlsgIsdLqJbg7CiWCEDumESKtqK8f2buPt4bUnZdXsDB1QFVgk89thj5Ofn8/jjj7N7924AevbsyW233cbvf//7Dm5d16ErVS9uSainqioc1jeLc0b34uEPLa+9Q1PQVDAF+MMGmmoyfkjt+guNpa4QnVS3k7wMN3vKQ0RMAYqJqljn1Q1rJXfGxEE4HGqbKSjF53moijUhjw/HMkwTUwh2lQXRFCvJ3RDWSkTsOhSsMC5dCBauLmT6+IENetPbIjy3K31naxK7H79/8ycqQjqGKazwJ6yVq1h4Xji6CtQZr6EtkMnbEkknpD2S2ZZsLGbqvKVMf/l7bp3/E9Nf/p6p85bWeWw1Wh1bVRV0QyAQNGb4sDTR3aiqgmGaRHQTwzQRgXL837zBoBx3QkXt+CRNU5gEwgYVwQiBsIEpzGYlrUs6N6qqcvvtt1NQUEBZWRllZWUUFBRw++23J+RdSOqnLQQf2pKWikks3lBMmlsjNZrPYESj5lJdGmlujcUbijHNepZW66G+EJ08r4duaU4UrJCoiCEwTWul4v+dfghXjx9UyzDxODVUVcHj1MjPcFMZjbtvTvsKyvyYkJA0rqDYanuGsAyd934qoDJiEogYaGpiFXuBwBTgdmjsLQ82OuG6Jc8sGV3tO1uTsYO78+gvR5GR4sQwrVUKU1grFb2zU0hzaZ3+GlobuWIhkXQyWpLM1tgViOZ60i45si/zvtrC1n1+TBN79aEuNBU8To3rTxrCh6sKWVdYQdgwcWkqhwwcyMEDfo1RsjOh+F3MC3Tz/OWs31OJEMIOcVAUhW5prk4tQShpHrqus2jRIjZt2sRll10GwK5du8jIyCA9Pb2DW9c16IrVi5sjJmGagveW72J1gY8Mj5OMFAehSFwdBpdKMGK2KK69oRCd/AwrGfqCMX3J8DjonZXKWaN64nBY+7dl7kDvrFRULOMhdpsMIYjoZkJtjTSXg4pQBAFWYVKHsPtsw7Rqf+RluPGHjSaF6bRmUbeu+J2tybghuTxz6eHc9tYKqkIGGSkOMtwOwqagsDzUJa6hNZGGhUTSyWjugNTYWN7mGi6x45f5IwhTYGIlaCdThlIAt1Olh9eDP2LQNyeVf1yRLIb3GAzDaMArHU2MjNI8/6OkM7Nt2zZOP/10tm/fTigU4tRTT8Xr9fLwww8TCoWYO3duRzexy9BVqhc3t4BfrB/6eVc5pYEIvqBOUaUVZpKT7rLzuGrG5jf1fI0J0XE7NM4a1SupYdCWuQNnjerJve+vxuePoComihLNsYjbR1Oge7qLdLeDzfuqULDuQSyh2OPUyPW60VQFp2o2OUynNYu6teV3tr0KRY4bksvjFx5mX0NRVbhT/u7aA2lYSCSdjOYMSE1ZgWiO4RJ//Jw0F+keB3vLQwQihvU5LEnZVJeGx+kg1amR4tII6iZOwxq0VFVBKdvBZ2+9xR/+8Ae7c69pVMQMH8MUHJyXTkiv9kS6HQp7KsIHlHTfgcCNN97IkUceyU8//US3bt3s7eeddx5XX311B7asa9KaHuUYdU3Q6pu41fVeU5wg8Z/3BcL88d1VVIZ0VDXqeReWCMQuX5ASf5iemSlW9e242PzmJFC3NFG5LXIHdN3k3yt2U1DmZ/zg7vx3VSFhXaCpVlhTPLleD6qqkuJS8Dg0QrpBXoYbp6baqzoIKCwPNTnhui1oi+9sexeKbItr6IpIw0Ii6WQ0dUBq6gpEUw2XZMf3ODUUBfb4ggQilqfMMCFiCLJSNVLdjlqD76pVq7jnnnsIhUK88cYbTJ06Nen54w0fa2CE+IqwnVl+UNI8vvjiC5YsWWKHw8U46KCDKCgo6KBWdW1a06Nc1wRt/JDuLN5QnHTiBtT5mVe+3d6gE6TmOR0qBHQTIQTZqS52lQUSlOfAqtGws8RP72wPZQGd3lkpLN9Ryl++3EJVE8M+Wxqi09oKSi8u3sSzizZREYhY+RWA06Hi0BTCerUks6ZYRkWu1w1YzqI8r5sdpX4qgzq5GR7cmhUq1tlCjVr7O9sWifMN0ZrX0FWRhoVE0slo6oDU1BWIphouyY5fGdLZVRqTL7QKVBmmwB822FnqJ9frJqwLe9D6+efV0eJ3QdJ6DaE0/0gW/FiQEJMcoyvLD0qah2maGIZRa/vOnTvxer0d0CJJjCUbi5m5YCU+f4RUl4bX40BVYcXOMr7etI9Ul0aPDE/CxO3m+csBq09InNSV893WElyaSr+c1DqdIKYQ9spE7PPlwQjlFSFUBcK6iSnAqalEaoQA6aZg274AqgI7DMH9769BIOidlYLHqSU9X12rny0J0WnN3IEXF29KUL9yRFWoQhETBTh+SHeWbS8lzeWge7rlkInH6VDJTnXSNyeNwjI/hREThKBXVgp/PHPYfhem05WL7u0PSFUoiaSTERuQ0qPVUAMRA9MUBCJG0kSwxkzEI3ET8aaqcNQ8vhCCogrLqIjJLILlOTSFtWpRVB5iaH46D503koxgIffccw8bdpXwfWUW32VN4KlFW7n1zeUc+dD/eHHxpoQ2xBs+yejM8oOS5nHaaafx5JNP2q8VRaGyspK7776byZMnd1zDDnBMUzDrgzXsKgtQGYqwtyLEjlI/hb4goYiBYVphSG6Haise9chwUVIVpqQqTA+vO0ENKdPjJKxbtR5qEnOCbNxTwX3v/0xJVZhMj9M+tqYqqIqCaVorE1p0m9OhJqgjiehfTpqL7l43prAUm3aVBakM6bXOF3O61MXYwd15adrRPP/rI3nswsN4/tdH8tK0oxs1GW8NBaWaNSscqoqqWOFMVg0LWLnTx2F9MjEEtZxLsT790F6ZnH5oPlVhE39IpypksGlvJTe8vrxWH9zVaYqzTdL6yBULiaQT0hRPWWwiHjIM0JUEZRQFpdZEvKmetJorHMGISUg3URSisrMWLk1FINANgSEEpx7ag8KtG5j52EMUllSw19WLzKN+ieZ02QaJzx/h4Q/XAXD1eCt8oi2KMEk6N4899hinn346hx56KMFgkMsuu4wNGzbQvXt3XnvttY5u3gHLq0u38/PuChAioQZNIGzaq5VhwyQYMUmJSr4GI6YtoeoL6GSlOe2EakNYEtWRGp+JEdFNiirD7KkIoSgKgVI/bodKrteDQ7XOr0ZXSGP9jqYoqA7Vln1VsJSS0twOW1jCoSkYplXPIc2t1ZngXRctCW9padx9spoVdrsUFYdmUhGMMKpvNgVlwTr79H7ZKTz2cfWqR119cHslO7clctW7Y2myYREIBBBCkJpqlavftm0bCxYs4NBDD+W0005r9QZKJAcqjR2QhvfKoFu6i7WFFdEVCEtFye3Q6J7uojJk1JqIN8VwqTnR103TliuML4KnqqCgoiomIV3w8H9/pvjDZwhXlkL3gWQedxFOpxNHdJleVUBVTMK64NlFm5g2dgCOqHeyq8sPSppG3759+emnn3jjjTf46aefqKys5Morr2TKlCmkpKR0dPMOSExT8PrS7ZhC4NKs1QKwFIU0FQxDYJjWv3XTBDQqQzq7fQFiCxK7ywOUBSLket2kux22cWBS/ZkYlSGdXb4AhmkZBw4NQCEQMSkoDdAry4PboRIIWyFzQghE1NAxo/UDrE9YhkCsn7GabRXPC+kGwXC1QdNeq58tMUxiNSscNbo7IaL9rxAYAvb4Alx1wkA+XFXI5qLEPv3qEwZww+vL7VUPu6hejT74kHwvL36xpd2SnduKrlx0b3+gyYbFOeecw/nnn8/vfvc7ysrKOOaYY3A6nRQXF/PEE09wzTXXtEU7JZIuS0s8QI0ZkL7ZvI+9FSF7QNY0QEAgrLO9RCfP6046EW+s4VJzou9xqna4ARCdBKi2F9CMRjAFdOh/8q8pWvk5YvgZKJoT3QRFsarTQpzHLRDh3yt2c94Rve22dQXJTEnLiUQiDB06lPfff58pU6YwZcqUjm6SBCucpLA8iKYoUKMUZmwRMdYHOFSVypBOQWkAw6wOYVQVhWDEoKA0YBULc2s4NUuhSKuxErm3PIhuWGFVhmk5SFRFwalCJLrakJHiwB81LCKGSFgxjWECpiGoCFoGjduhEoiYOKIqUjGDpqusfiatWWFaSnnxSlDvLd/F5+uLGNYzg2tPHEzfnFS7T39v+a4GVz3KAxFumf8TQLsmO7cFctW7Y2myYfHjjz8ye/ZsAN566y169OjBsmXLePvtt7nrrrukYSGRxNHWcnfx0qz9clIprgwR0q0VhZiBkOt1c+zAbkk/31hPWvxEf+OeCnu7gpUYGJskmKZJOBxGcTitcIRuPVHHXcie8hCAXRlWVao7e1UBA8szV/OcUrpv/8fpdBIMBju6GZIalPjDIMDtUC3Z6LjKzYqCrcjkUBXcToVt+4KYwgqzMXRrxqsCiqagG5ZhkOpKieYFqJQFIiiqYoWlBCPR6tAKPbM8FFWECUYMFM06p6JYwhAh3UgoyFlfTZtYOFWu10NBaQDdsMI3VUUhEDG6zOpnzZoVQii1EtZjlAd1VuwsZ2dpgIfOG2n37XWtesRQFYgI8Id0Buamd/lk58626h0OG8xdvJltJVX0z0njd+MH4nLVV7upa9Nkw8Lv99sqHR999BHnn38+qqpy7LHHsm3btlZvoETSVWkPubv4JDWPUyPd7SAYMe08C4FgX2W4TmnWpqymxE/03/phBy9/s42YLzO2LF+1ZwtlX79F9thf4swbgENVcWrVIQoCy2soqPaBmsL6d++s1FrnlNJ9BwYzZszg4Ycf5i9/+QsOh0z96wzkpLpwOVTcTpWiijAR08qpiP2OY/kWmqZQHtAJRnSrUJtpGRsAugBH1NMejOgUlAXJTnUx5Zh+tkytzxQYhpWM3SsrhXS3E1CixoBAUYSd7G2aWG1QFcJ6w6UyiypDDMv30ivLQ0FZAFVRqAjqOLWus/rpcKjMmDiIhz9cR0gXKNRepXGoCg5VIWIKDNOkIqgnGALJVj3iMaJLH16Ps1HKgl0hD6OzrHrf+c4K3vh+px2qB/B/n27g4iP78OD5o9qlDe1Nk3vwwYMH8+6773LeeeexcOFCbr75ZgD27t1LRoZcVpJIoOVyd/GFkHpnpSaVZYXaSWqKokTjhzW7HeVBPWmSWnNWU2IT/eG9MvhxeylrCyswhUAICBdtxffVa4hImKoNS8nsNRiPS8XjVNntC9qDV8y4QAFTWAoxmalOzhrVsxl3WrI/8N133/HJJ5/w0UcfMXLkSNLS0hLef+eddzqoZQcu8eEkvbI8CauhVp6FQv/sFHpnpbJmdzmmsHqdFKeVbA1QVBG0P2MK6J2Vwp2TLXnTK8cNtCenJZVhHl241u7H0t0OemenUFQRpCpULUPsdmpkpzkpqghZE+UGrsEwBXsrQpgCemV6uHr8oIQQoc42Ga6LmLDFU59upDKoJ7znUBWc0fsWS6bPTnMlGAI1Vz3iw6FMYWKYlsGYneIgEDaqBUCc1spyfLJzexedawkdvep95zsreGXpjlrbdVPY2/dH46LJhsVdd93FZZddxs0338xJJ53EcccdB1irF4cffnirN1Ai6Yo0p7p1jGSFkO59fzUzJg6yB5gYzU1Sq281ZeaClVx9wsAGB+CLj+rH/32yHn/ERCvdTvm3b+DEQOQPJvuY88n1uq28CwVy090UlleHuwhMdNMKkdBUhRkTByU1nCQHBllZWVxwwQUd3QxJDSYNz2d9YQVl/gh5XjdWMrVBIGyQmeLgwXNHcuzAbry3fBf3v7+aNLeDzJRqr3eaK41gxKQqrBMxTB46bySH9c0CElcjTVPwzrKdCTHx6W4HquJha3EVAkuMYmBuKlUhS+a2IaMiRiBiMLpvVptMfFvLc9+Y41w9fhCDctO58Y3lqApUBHVcWmL+gLV6bCllhUzTdijFr3qEdYFDM21VKN0QqKqCW1PYXhokYlYbjzFFLk1VcKoKO0r8/OWLze1edK4ldNSqdzhs8Mb3O+3X8dOAWDjfG9/v5O5fDN/vwqKabFj88pe/ZNy4cezevZvDDjvM3n7yySdz3nnntWrjJJKuSnPl7uoqhJRMlhWal6RW32pKutukoCzAff/+mQyPA5dDreWNivdYhSKCioLNlHz5Coqpk9F7CDnjLkHRHKTFdZa5XreVoFkRsvIsDFAVa6UimcEkObCYN29eRzfhgKKhiWz8bzyomwQjBjtLDVJcGmkujZF9MhP6hHNG97INg8w4ES9FUfA4VcoCgmE9MxjZO/kEr66Y+EDYiBbCU8jP9KAqKmE9kpC0XB8KcPW4gVx30uBW91K3lue+KcfJ9Xrwuh1oqoI/bCSElEJ1iJohRC2HUqyPjTmtjOhnM1OdnDEinwXLCghFDJwOBU2x6mNYilx+PE4Ho/pk8OGqwgO+6Fxjjcm5izdXK5XVeDsWRqibgrmLN3PDKUPao+ntRrOCWfPz86msrOTjjz9m/PjxpKSkcNRRR9XyzEokByrNWUmoWQipLknAmCwrNC9Jra7VlMqQzq6yIKYpUBTISHGiqUqCNwpIWOlw+Hay+9vXUU2d9N5DeODeuxicn8Uf311Vqz2GgH7dUjlzRE9S3Vq9IV6SA5O9e/eybp1lQB9yyCHk5eV1cIv2PxqayNZczcxOdREyDIorw7gdKteeOJjLju6X0Ke0RrJssph4otW1c70u0t0OhBD4gpFGX6vLoXDtxOrzttYKQ10rvj/v8nHD68s48ZA8xg7q3mD/VvM4TlWhIqTz0w4fv3/zJx795SjGDcm19692JJXj0lSrnpAGCgpCWJK7nqgk76G9MmqpHl09fhDTxg5ICLM9c0Q+V778vaXGZQhMExQ1Gu6mWOpbqmpw2vB85i7a1KxV+P2FphiB20qqGnXMxu7XEJ0p76XJhsW+ffu46KKL+Oyzz1AUhQ0bNjBw4ECuvPJKsrOzefzxx9uinRJJl6I5KwmNKoRUQ5YV6k9Smz5+IF6Pk8/XF9mdTbLVFIGl2mKruphgCkGa02F7o55btAkQCR6rgrXfopg6PQYMI/3Yi/hkfQm/OX5wp0iak3QdysvLmTFjBq+//jqGYcXUa5rGxRdfzLPPPktmZttMVGbNmsU777zD2rVrSUlJYezYsTz88MMccsghbXK+jqYhQYkHzh3B84s31/JKp6gO+mRpFJaHWLi6kMuO7lfr2K2RLFszJj4rxcmjC9eytrASIQTBiEk4WpxTNGLVIs3tsCdXzV1hqDlhG5bvTbriW1GlU+q3VlPe/GEnb/+4s84Q1thx449TFTbY7QvYOSmVoQjXvbaMZy49PMG4mDQ8n/V7KqJecEFEt0KZTCFQFavwnaJAfoaH95bvqmXcOBxqwvixcqePTXsryfN60NOscSCkGwjTOo7HqZHq0jAFB3TRuaaKsfTPSavnaNU0dr+G2taZ8l6abFjcfPPNOJ1Otm/fzrBhw+ztF198Mbfccos0LCQSmufBa4wkYDJZVkiepOYLhHl+8eZanc2k4fm1VlOCYdPSlldjcpIirsCU5Y1aV1iBQCR4rAZMvIiU7HzyR51ASKi2x6qjk+YkXYurr76aZcuW8f7779t5e19//TU33ngj06dP5/XXX2+T837++efMmDGDo446Cl3XueOOOzjttNP4+eefayWQd3UaIyjx2Efr2VsebLZXujV+9zVj4q+dONjuR52aYsX/U7/UbAzdsIyCimCk0ZPCeENiR4nfLjgX60PzMjzsKKkiJ81t36OiilBCDhlY/XVdIayQuHJcFbZqfVjVzJVoOBOUByLc9tYKZpw4mIqgzsLVhewtDxIMWyvYsfObpmVcOFWroGBV2OCtH3fyTgPGDSSG7XqcCmlujWC4WlnQ5VAoqgyjREPSDsSic80RY/nd+IH836cb0E1h56zEiBnFDlXhd+MHtqht7aE+2VSabFh89NFHLFy4kD59+iRsHzJkiJSblUjiaKoHryFJwPpkWSFxQF6ysZg/vrsqSWdTzoY9FXicGkWVIXpnWXHLsWraKALdtJRdPM5qz5Q7+nkEmBX7ENm5KIqCqjnodcRJ1j6mSPBYSalYSWN5//33WbhwIePGjbO3TZo0iRdffJHTTz+9zc774YcfJrz++9//Tl5eHj/88APjx49vs/N2BI0RlNi+z0qUzq5jctgYr3RLf/c1VwiOHdjN7kct9SnRKKtCwepH91WG+OtXWxo1Kfxm8z67v64KGVSGdVQF8rwe8rwuwobJlqJKKkI66W4nHqeGKUyKKoIJ5xVYq8yaQyQNYYXqCb1TVaLVyq1/x9qnKVZ1870VQe7912r0aIiq26GRl+EmV3VRXBnG5VC5YEwfSipDvPVjAWY0Py+WnF2fcQO1w3YVEpUFAxEDp6owul/WAVt0rjliLC6XxsVH9rHVn5KtsF18ZJ8WJW63VH2yrWiyYVFVVUVqau2JTUlJCW63u1UaJZHsLzTFg9eQJGBjZVnr6mz0iCAQNghEDMt7ImB9SCfP68HtUAGBboCmWkog8R1oyDBxaSr+PZtZtfgVegw7mr7HnUVIFwk1M/ZXj5WkbenWrVvScKfMzEyys7PbrR0+nw+AnJycdjtne9EYQQkTS1GopldaIAiGTfxhHQRkpThbFNNd12frC+l4adrRrCzwcceClWwrriKomwm1AWridKikODVK/ZFGTQpfXbrdVjzKSnHiC0RACExhrUi4HCrpbgfd091UhHSKKkJ4PQ58fp1omQ27X1Wi/64vhDU2oa8I6YR0M7pSUd2+mPKVaoKOZVQ4VKs43u6yIL2zU+iTnUJheYgVO8pYvascswn5eTEaG7Y7sndmi/JoWpoD0JE5BM0VY4lJydasY+FQlVapY9ES9cm2pMmGxQknnMA//vEP7r//fsBqvGmaPPLII5x44omt3kCJpKvTWA9eTUlATTWqjYImyLIm62wqQzoFpQFMYR0HAVlpTsoCEQrLg6S7HWiqiikEvbI8pLuru4bY4JJv7GXFktcJhcKU79vL1uIKwqaSsMw7NH//9FhJ2pY//vGP3HLLLbz88svk5+cDUFhYyG233caf/vSndmmDaZrcdNNNHH/88YwYMSLpPqFQiFAoZL8uLy9vl7a1BnUJSsRyF6rCOg4FemenUFAWtCeZldFJdDCiY5hWMvWdC1aiKLCvMtzkmO66jIfxQ7rzyrfb6w3pAGuyHNBNuy5OMhyqgsehMbiHl6w0Z4OTwjLD5LWl221nTDBiEjZMNE1BQUE3TAp9QQblppHi1nA7NIK6JbsbMeKEb0VstaK6T6wrhDU2of9ph692qAxWUUAFqwBhxBA4FAVNVVGj7xVVhEjrnkpWqpPVu8opDzY9Pw+aFrbb3DyaZM98YG4ap4/o2ai6Ih2dQ9BcWXewjIu7fzG8TSpvN9fgaWuabFg88sgjnHzyyXz//feEw2Fuv/12Vq9eTUlJCV999VVbtFEiOWAY3iuTvjkpbC32o5sQW/NPd2vcePKQRsmy1uxsaiZmI0AXgjS3gzyvm4KyIH2yU7j4qL5Rj52BQ1MTBheldDtVqxfQL9PJlszeKIefR1AHTbO8c4ZpVYPdWxHim837ZIK2pEnMmTOHjRs30q9fP/r1sxKDt2/fjtvtpqioiOeff97e98cff2yTNsyYMYNVq1bx5Zdf1rnPrFmzuPfee9vk/G1NMs+0ZTRYRex00+ozKkM6umGytcSPS1UoD0bsMA6nppDh0fh5t2VQ9cxMsUOEGhPTXXc8eDnfbS3Bpan0y0lNGtIx64M1lAciVIUN8jPclPkjlhxt3PHVaO0Fp6aRk+Zk0vB8tu2zJvQhwyBFrT3lCUUNg73lIdsZo5smZlTAgmil60DEYFNRFfmZHvIy3Ows8VNUGSbFGS+CYfWHDk21lJoQtgFkmtW5EFA9of/9mz9RGYpgCCv8KSZDKqL3W8SvhmApQGkqhHSDYNjE7bDuoagjhDZ2X+rKz4Omhe02NY8m2TMvC4T5dksJX28uId1tSZPXZSh0hhyCZL+d2CpexDDwBXVG9Mqs06nmcmltIinbEoOnLWmyYTFixAjWr1/PM888g9frpbKykvPPP58ZM2bQs6esnCuRNJf4DnRgbirBiEkgbBA2BTmpTob3atxSZs3OJj4xW0HBtJfVVVRVpbvXTUlVmNF9s5l1/qhag0tPcy+VqxeQ7oTDjz6GH7Insr44iBBRaUIFUlwOuqe7qAwZSWM6O5MUnqTzce6553bo+a+77jref/99Fi9eXCt/MJ6ZM2dyyy232K/Ly8vp27dvezSxxdT0TLscCsUVIXviG3NDbC6qqpXCoABup0p+hlWBOxby4wtEyE5zJhgAzy3aRJrbQVkgkvBbry8ePNPjpKQqjErtPsEK6XCwfk8lKU6VPtmW4ZGd6iIYMSkPhNlXFUZRIN3tJMVp9WkAz322kbBuUh7UKQuE6Z2VgtfjtI9tr8ZmeNhTHrKdMWHDxIjO6BWq8yZCuklBaYBcr5usVBd9c1LZ4wvY7ytYIViaomAIQUQ37e2vLd3Gd9tKEibPYwd359FfjuK615ZRHohUJ2FHHUCqYhkZNe+KooAwQTdNMMClqQQVo9n5ebG2NNZgaOwqfLJnbhmzYTtXRjdMUt2uOhPpO0MOQc3fjtuhUuYPE9INDNN63xcIt7tTrTnqk+2BIkRjRNskNSkvLyczMxOfz0dGhgz9kLQM0xRMnbeUNbvLEzpQsDqIwvIQw3p6eWna0Q12oNXHqiA/w01lSGdnacBerYiYghSnykHd0qKhjIK9lSEeu/AwJhycm2AE7Nu+kVfmPE44HOKII47gnKnXcd0bK0h1ayAUO7/C7VQIRYRdYfevU4+yK+x29DK2pGXsz32dEILrr7+eBQsWsGjRIoYMaZpXsSvemyUbi3lu0UaWbiklYphoqhXeFDEEQgg7XyCeWCJ0dpoLXyCCGu2fDFOQ63WT5nLgcamUVkUorrRyDxSUhN+61+Nk+svfk+Z24HEmelcrghF2lPhRFYX+3dKiycPVVIV0tu6rIj/DQ7f02rmc/rCOLxDh+hOHoGkKLy7eRFXYSPCQ7/ZZCdbd0l2kODWEsFYh0t0OrjphIM99tpFUt7V9Z6mfkF59I2I9rsuhohsmqqpwzIBu/P3yo1hTWMEr327lzR+qE6dj/WyMvAw3mR4npdHQoppe9i83FHHbWyvwh3QyUpw4NKvKtRCgqQqqqtiJ3opiScuaQtAvOxVfUOeQHums3lWOLxBJyLEAKz8vrFv5ed/fcUq71g1audOX8MyFEGzdV0UgYnnSBdaqUP+cNDxOtdY4V/PzNQlEDPwhned/fWS75BAs2VjMrA/W8PPuCiusWFFwO1SyUp2EdJH02bZHmyyHpJE0jK212tOUvq7JKxaLFy+u9/39TUlDImlN6vLct2YSVk3virVUL6K1KazkzPjk7JrLpfHeqC/3riMSCXPEEUdw55138vVWHxFD4Na0qIGjURnS2bavWn/dFII7FqzkzsmWHHVHL2NLJHUxY8YMXn31Vd577z28Xi+FhYWAlTSekpLSwKe7JmMHdyfN7eCql77HqVkKQHvKQ0QMo06xJYElf1pcGVV8U6LhPcIKIVLVEA5VIaybmFge9OzUxBCpi4/qmzQeXAgrZ8A6hyBiGKSQOIkMRqzaJskmlwAeh0a5otOveyp/+3JLNFyquo/LSXOjm4K95SGKKqzVDRXwpji57Oi+jOydicuhsrW4ygpZSnL91qpE9XWfPiIfh0NleK8MphxzEAD/WVFIVVi3K4MrQE6ai7x0S5q2Li/7uCG5PH7hYbYDpjKk223vmelBVVUKSgNETIGmCgxD4HJo+IIR0t0OZpw4mNW7fHZ+nkMzbVWopuTntTY1w3KDEbNGorqwV14URas1zrU0h6C1V8qPHdiNzBQnXrdGZooLp2apJyqKEnUABnlk4TpuNEy6p7nbZWW+NerHtDZNNiwmTpxYa1uCkkG0uJFEIkmkPs99xBRN7kCTdZpgJW9HTMFVJwy0NdgVRcEwBSlOjbyM6uTshpZLx40bR0ZGBkOHDsXlctUKs4olhcf012MDb0FZgJkLVpLhcdjL2GANLLppkumxQiU6QgpPIokxZ84coPa4Nm/ePC6//PI2O284bLRJMmdjKQtY1auzU12EdCtUMhZe05gaEfF501aCs/XbFlge9lSXVZguPmRl4eo9teLB43M8YsfcWxFCVdWEPsofMazQzTq6iZhzpKwquQJUZUintCpir7zket04NRVfIMIT/9uAS7PCberJB0dVrHwHj1PDoan0zUmt1aenuzVSXGqcAWblqIR0g1yv1e/W5SQaO7g7phA89tF6tu+rwu3Q8Id1dvmC5Hrd9Mz0sDdavE4BUl0aw3pm2JPH2ATy2UWbqAhEMLCeZWaqs946Fm1JzfEiJmseezSxf8dqJtUc51qSQ9AWK+Wrd5WzuaiKXK+nlpFbFTaoChms2FnG9a8uI8WpcUi+l2snNv58zTWEOlvdqCYbFqWlpQmvI5EIy5Yt409/+hMPPvhgqzVMItmfiM+fyEp1YpqWF25lgY+ZC1Zy9QkDm9SBJus0u6Vb78UrtQzMTePaEwdTEYzwj6+3EdZNtGi8c10ygWvWrCE3N5fu3a3OcNSoakm8+JjOHl6Fooqgrb+OAoYJHqeD3lkeCsqC7C4L0i8nhaqwYU8g4geTn3f52l0KTyKJ0RGRwHe+s6KW/OT/fbqhVeQnG0v8hC022YuKxdn5E40m6s63PyIEbmf1hCa24rrHF6BHZgo7SwPkZ6gJReE01VpBMLEMlJ2lfnplpuB0qJT5I2SlOOmbncJuXwiPU6szljw7tbYCVLx4hdOhRPso6xjBiEHEEFY1byw1qWQSti6HQs+MFJyaJasdCBvsKPHb8rTxIVeFvhBCWMdyRMN9AhErN6N3dgqpTi2pl33JxmLufHcVPn+EVJdGVqpGSHewtyLEnvKQZZSkOOiR6WXS8B6MG5xba/J49fhBTBs7gH+v2E1BmZ/eWam1Km+3JzVzAByqahmwANHEdo9Tw+Oy2ldznGtuDkFbJXzXtYJSGdLZUeK3vzv+kE4wovPtljAb9lYw+6LRzVZLa6wh1JnqRjX525aZmZnw1717d0499VQefvhhbr/99rZoo0TSpYlPQEt3Oyj0hdhR6mdvRYjKYIRdZQFeX7qdgblplPojtSY7sQ50UF46w3tl2J3mmt3ltrKToljhVKt3laMokOd1k+Z2sLawkr98sZnD+mTx+IWHcWivDPwhnb2VIfwhnWE9vQmd7KpVq/jTn/7EHXfcQUlJSa1riYVZpbs1CsqCBCNWjLbAWnJXFYVcrxtVUUl1Wh6qypA1gQhETFTFGmxVRSFsGJT6I3y5sbg9HoNE0uHc+c4KXlm6o9bkVTcFryzdwZ3vrGiXdsQmbKX+CJqi2JM9heSFvOojYtSQflUgFEk8iFtT0QVMGp5Pultjty9IoS+IIUw0xVJMcmhWcniqS8MwBbt8AaqCEbuPmnnGMNLdGoXlIQIRA9MUBCIGheUh2znSLd1tG0wx4sUrwLpWTYk5RUBTo0VJVQWnpuJ2VE9enRq4ospMsbAXX0BnYG4aH64qtFdjLUPFSmaPRomhm8ISygCcqpXMXVQRJKgbtbzspimY9cEadpUFqAxF2FthjRG+gE7vLA9ej4M+2SnM/fWRvDX9OMYNzqXEH7ZrV8TjcKicd0RvrjtpCOcd0bvDjApIHC8Ky0MIrEm5bphEdNMeLxSUWuNcss/X9dxrCoXEJ3x7nFbYrsepRXMOLYGRmvetPkxTsHKnj61FVQgEIb06MkcgKPQFEutUOCxpYNO0jNpZH6yp93zJxvQ0t4M1uyv4wzsrePjDtTzz6QYW/FiArtcM1Ot8NHnFoi569OjBunXrWutwEsl+Qyx/wu3Q2FUWtGtJKCoIYWmkrymsYOpx/dlZGqhXSxzguUWbKPNHyExx2N5/X8Ba5if67+xUV7QjrY7pfWna0fUul65atYp77rmHUChEz549SU9PT3o9sZjOh/67hp93lyMMUFXLC5jrddshDLGl4tKqcK2qsgrW4K4LwcLVhUwfP1CGQ0kA+OqrrzjyyCP3u4Kr4bDBG9/vtF8n1C2Izjne+H4nd/9ieJuHRcXnYfmCERyqSlhvXhizIBrSgjVJB0vUgbg8iZgnetzg7hzWJ5NHFq5j5c4y6/NKYt/R3evC54/gDxvcfvowzhndy+4bGoolN01Ry8MdW5FBEegmtjxsLNZfCAUw7QTtWN0H3bBU7zTVur6qsE5ZwAp3On1ET577bGNCyFUwYhKIJOaphHWBqggcqopDVQjpJvsqw4zskyhN+urS7fy8uwKEsKRqo7KzwYjBrjKTXK+b0qowKwt8PPbRui4lhFEzB8ChqaCbdkhaqlMjEDHqLLLX1ByC1i4aV3MloSJoCQXEFMYCYYNgpHqyryqgYo11TodKRDdZv6eSlQU+W9AknvqUrzQ1wo6SAHMWbbLzgu59f3WHhbY1liYbFitWJHpUhBDs3r2bP//5z4wePbq12iWR7DfElk/94YhdS0KJDmOKAg5NIWwIlm4p4YFzR/D84s11dqD//GYb320twTDNaIKfFVIUNkyrw8YaMIMRkxSXlrQjrdmZmqbg3U+/4anHHgIjwoTjjubOO+/E5apb+3rs4O48eN5IOwE0NaoKo1DdkauqFW8dNkycjsSqsgKroq3bobG3PCjDoSQ2Z5xxBsuXL2fgwIEd3ZRWZe7izbZXs8Z8x55I6qZg7uLNbaJ5X5P4CdvPu8otwyIaBtXYaKioABK5XhcVwQjBiIkSnUiDNT8IhA2KKsMMzE1jWL4Xh0PlJt3k5vnL8XocuDQtoe9QUMjwOAnqJjnpLluqNpY7dutphwDUkrOF5MXe1Ghsl26Apqrkej0YQthOGdMOzKnGoSgIBZwOy/FjCmtlJpbTEMuJM0xBRdQwKw9FMJI4k2Of1VQrAd7tUBMmz6YpeH3pdkwhcGmKrbilKKBo1kpwmT+MQ1V5+tMNGKbockIYNXMAdpT47fy/vZWhBpONm5JD0JpF45KFVLkcKrt9AbaX+MnP9GCawv7uWOF0apwDTUGLVktfvr0sqWFRlyFUFA2Bi+GIXqvPH+HhDy0nfmc1LppsWIwePdrOgI/n2GOP5W9/+1urNUwi2V+ILXlby/GJk28LBU2BwvIgmSkuXpp2dNIOdMnGYp7+ZIM1UY9KEAoBYd2IFldSrDhpQYLHsL6OdMnGYma9+hFL5s/F0CN4ew+hd+/T+H57eYOD1MjemQzt6WXN7gpynInXZS1r6/TOSmH7Pj+GIVA0YU+gDNMKm8rLcOMPG+1eGVTSedlfFdC3lVS16n6tQfyE7cuNRSxcvYft+6qoCOlEkunO1iAWSpTuduJxamyPSsaiCMoDkYRk4x0lfqa99J0dspTitCpYJ1N6io+1ry/2PJkzoqaHO2IIKyxFCHplWQnUgbBhGxVmVNLVKqsgooXtLMdIr0wPJX7LO/3QeSMZ2TsTVVX45zfbKA9GKPWHiJlhNaLB7HyVaLkGdNMKq7r+5CEJfevqXeUUlgfRFAVqjA2xYnjBiIGqmiiKFRLVUfUcWkLNHIDLju5Xr6GQLJG5LudT/L4lleFWKRpX10pCTpqVn1RQFqC4wjoXRGuYaGo05C6OWKJ6HY8lmSFkCpOiimCNw1hGiqpY8sHPLtrEtLEDOjTUrS6abFhs2bIl4bWqquTm5uLxeFqtURLJ/sTwXhnkZbgprgyhqbFIZgshBLop8EQ7hxJ/OGkSVqyTC+mGLdWnROOFHZqKoVtJmA5NSVDZgLo70iUbi7lx7vts/OCvODDIOWgo/U6awvqiYKM8YMm8gzXDt646YSCzP16PP2xYIQnRgnqx0AdNVXCqZrtXBpVI2pv+OWmtul9rEetvRvbJZPr4QazeVU5RRZCb31iOL6g3+HlLYtrKpcr1usnzutlVFqDUbylPuR0aeRluXJpqe9cfOHdEo5JyfYEwf3x3VZOTcJN5yF9cvInKkIFDU3FpCg5VJRix+tNu6VaRUCtPTGAIgUvT8AV0slKc3Dl5WEJdnhcXb8KMrno4NDCFkhBDL7BCYlwONepIMTEEHNozk8uO7pfQ1hJ/GKIrGUHdxKlSI4THqi2iAt3TXbaynkNVrZWeZoT31EV7FjKtL9m4KYnMNfd1qBDQTarCOn2zU+v8bjVUNK6+kCqvx0n/bgo+v865h/di3ldbreKGNW6VEJY0sENVOTzJagUkV77y+XW7nkzskLEmxEL1KgIR/r1iN+cd0bve6+gImmxY9O/fvy3aIZHst6iqwqVH9+Puf61GNwQOTdgeLd20iuxkpjpBQFaKk5U7fXXWueie7kYvD0YLDFkDkKJEl/QFGIYgxaXhcVaHIiTrSGOGSsTlJSMrB3dGDkNO+w2qw4nHY1JQFuTB/65J8NLFPrd6VznFVSHKqiJkpzoTZG1rhm8dO7AbC1cXsmZ3OZkeT1SW1hoQEdgFkdq7Mqik8/L888/To0ePjm5Gq/O78QP5v083oJvVYTgxYos0DlXhd+ObHwLW0olhbLJ37793NsqoAKsfKw/qdpjQ0Qfl8MvnvyZiVJKb7ibFrdmrmTHv+vOLNzN9/ED++O6qOp0S08cP5PnFm5tUdbm+6x/YPS0hTj/VZSk8uR0q6R4HbqfK3vKQnZib6lI5tFdGwmQ21m9WhQ16Z6WwqyyIboqkKjjxnmsRNQwmjehR63nkpLpwOVTcTpWiijAR05oc22OEYR1fVRR2lPrtcCtFsYy2WJ5CY8N76qKzFDJtiqJTXftWlYfwhw12lPrJ9XqS5is29LtoOKRKA0Xn+EHd+WbzvmionmXwVY/vVqDdIfnpjOyd3IhKpnwViYupixmp8f2FqoABFJT5G39j25FGGRb/93//1+gD3nDDDc1ujESyv3LZ0f1447vtrC2ssD1dimIlEnZPt5Qqema6eXThWjYXVdVZ58IaSDx2saTYAKQpoAsrNMGhqhiGSURQZ0caM1Ryu3cn/+zfobk8qA5nVFc+RDCis2Z3hCtf+s6eMADReGwf5UHd8tCoVjz0sJ5erj1xMH1zUmsN6NVJoro9gQhGmtbJSw4cLrvsso5uQpvgcmlcfGQfXlm6A0iuvnTxkX2anbjdWhNDXTeZ/92ORu2bk+rEEHD9iUP49XGW0/G95bvYvq+KzBSnlecVt0Ib713PTHHVm5Tr9TiblITb0PUni9P3BcJ2TlvEFGSnOsnL8DJpeD7jBnevZZjFe7E9To3e2Za6VKyAXwy3wwq90g0r/NPl0Eh1aYwbnFvrHsZPLHtleSiuDCXIcqMoODQrdy6GGlW2CkYsxb1cr7tR4T110VbyrE2lvkTmmsYkUOe+/XJS2F4SQFEs6dfmFI1rbA2NbuluZp4xjJvnL7dXvWIhdaqqkJPuYuYZw+oc45Kt/Du0uN8MVlRC/O/IjOZB9c5KbeytbVcaZVjMnj27UQdTFEUaFhJJElRVYeYZw5j5zgp8AZ0Ul0aKLVGo41CtwlC7fcGkHftVcXUu0t0Oemen2HUhDDMxvrcsEMEXiOD1aBzWN7tWR7pq1So+Xb6JiJGGS1NRnV4Au9idKYSdQBgLX7h5/nIAAmHDkvwTwk6q9AUirCzwsbM0YK1w1Fje7oyVQSWSjiBWp6JmHQuHqrSojkVrTgz/vWI3gUjDClGaAmluB4YpGN0vi1eXbue1pdvZWRqgPBihIqhT6g/bheFixOd8TTg4t86k3M/XFzU6Cbex158s/GbsoO51Fhr9YmNxQptqerHT3Q7SXGkEwgYFvgCR6OS/Z6YHh6qimyaaouALRhjWMyPpymz8xLIyZNAjw4MQEIgYlAesegg1BbtMAcIQODUVwzTZWxHkmAHd6lz5rW8lpymT+bZ2ADVF0Qmod9+8DDdVwQi3TRpKTrqrySt4TamhoaoKV40bwDOfbaQioNtyAKkuB1eNG9Dgb6/mGBmrqyKw+gZNiTcqLMWyzFQnZ43q2ahraW8aZVjUzKuQSCSNo2aH/uB5I20PWUVIx6kqDM23Yol3+4J1duwfrtrNwNx01hZanVxsQNvtC7Kvqnr526VFQ6JMqAqbjIuryArVkrLFvirCQ88lnDoUj6olFJFyRHXblWjHmO1QWL+3EiGsFRNTgDOqfCFUyyunG4LKkF7nANTZKoNKJB3Fg+eP4u5fDG+1ytutPTEsKPNX17SoZz9VUfCHrYn8Da8tY0ep30qEjiUsK9WF5PK8bnLSXSgotXK+6oq1b6zHOCvFyWMfrWv29dc8f30rH8napCgKqW4HPTNT2FnqxzAttag0lwpGbNXYwaTh+bUMlRi1Es5NgSOqSoWiEYoYljx3nAKRwFKbUqNhsKePyE96fcmuZ2BuGqeP6EnfnFRKKsNs3FPRavKsLaGpik4N7isgJ93FhINrrxQ1RGNyCGOr7Us2FvPKt9txqAq9s1NQFQVTCPxhg1e+3c7wXpmNMi7ix8hF6/by8tfbLAeEUv2cdcOSq58xcVCnTNyGVqxjIZFIElmysZjnFm1kbWEFEd2q+jo038vvosv8y7eXIRTwuh08/tG6ejv2zUVVXHviYHaW+u1OzqUqlPrjjQpLkUIDNNVSjpjz+SauPN5SjoivUzH+uKPY2Hs464uC5GdYoUl2Eamo7GWK0yoIFYxYy/JCVGu/x7dTUSCom6S5HfUOQJ2pMqhE0pG4XBo3nDLEdjx8vbWk2cZ2a+v2985KRQUU1XJQ1GVcKIqCL6BTUhVJkNtUFasYnB25IwS7fUF8gQi5XjeVIZ0+2akUV4VYudOXsEIQ73RorMcY6vdcN+X6a658ODWFiqDOih1l/P7Nn3jk/FF1tinNpZHidKCqlupdTEa1Z6ZVj+W5zzbWG6JWc2JZUhnm0YVrwamxN2KiaUpCXQ6B9edyqLgcGn1zaofFJFvJKQuE+XZLCV9vLiHd7cChKpQHI7jqUOhqijxrS2msMRkzSltD/ak+GrPaHm/Y98xMSfhOZKaIJhn28WPkhINz6ZXp4dlFm6gIRDCwfl+Zqc79r44FwM6dO/nXv/7F9u3bCYcTv2xPPPFEqzRMIunKLNlYbMdc2rHUYfh2Swmrd5XTJzuFfZXhqBa6aa1eONR6O/a+OakJndyekG6HQFmTfWvAVRQFVVHRVINyf4RHP1rHIa4yXpnzOOFwiCOOOII777yT77eX294Yl2aFNSmaJYuoKQq5Xo89kEEsJlzYsZ6GEOhG9SBnqV4pfLmxSBoQEkkDtFZORGvq9gOcNaon976/Gp8/giNaMTpZ0eCIYdYyOgQQSbKzAKrCBv59fpyawg5Rxe1vrsCpKXRLtyZ+sf4w/j40xmNcFog06vr3VYaSCmPEqLnyUxU22O0LEtKtas8VIZ3rX1/GuaN7srrAx5biKrJTnWR4nIRNy9DJSXPywLkjyExxJahRVYWNRoWoxU8sY6FgXo/Dlq215EZVRLS9phBkpli1OmpOoJOtZFk5dGHMaKetGyZej4vSqjAFZQGCuoHX7cTjrDaaWmOC3liaEn4ENGnf5tLQantLDfv6wtSuHj+IaWMH8O8Vuyko89M7K5WzRvXstCsVMZpsWHzyySecffbZDBw4kLVr1zJixAi2bt2KEIIjjjiiLdookXR64juHrBQnD/33Z4oqQrb0ayysIGKYlPojlAcjDOiehlvTKA9GKAtEKCgNoOYoCfHIkNixj+yTaXdyj364lsUbiwFrhcEwRYLUbMzb+Jd/fU7Zl6+SopmcNv44u/hdvDdm7e6K6GBlJZTHx0XHjmepT1ka76YQRHTTDpmAqFKFKfjH19s4rE+WzJ2Q1Mu//vWvRu979tlnt2FL2p/WzIloqpe3IRwOlRkTB/Hwh+vQTSs0UhVWFerYIoRK9b+bgsBySGSnunA7NMoCYTtevmdmCnleV6370JDHeOVOn339blUlGE6UYw0ZJqYpePKTDewtD9ZpxMVPEKvChp1vpqkKWrRQXlkgwt+/3m7351VhA00NkZXi4NBembUUpKbOW0pV2GhWiFbsuaqqpf4UjBgoWlQJMPYQhFXxu2Yl75rXE6s9VlQRxBACp2oZJ+HovUGxxpA95SH2qaGoHLiHNJfWahP0xtCU8COgSfu2tF11OctaYtjXFdVw7cTB9vfI4VA7paRsfTTZsJg5cya33nor9957L16vl7fffpu8vDymTJnC6aef3hZtlEg6NTU9jwLBvsqwXTDH9mLEXPtYk/5g2EDXrA7J41AJREz2lgdJy02zVwWSeV5UVaEiGOHnwvKEdojoKcJxUnV6xT4qvnoVVeiYOYPY2OvUhOJ3MW/MygIfdy5Yyc7SAL2zPKhxdTDcDsWWurO01g3MqNESG2Bj/09xaoR1s9MXa5J0POeee26j9lMUBcNoOJm4q9DaORFN9fI2hliYxbOLNlHuj9hGRFSkKOkKRmNRov+1hCsiRAtj4wtEyE5z1roPL007ul6Pcez6V+wsQzcEYaNaUSk22TOEYEdJFTlp7jqNuNgE0akp7PYF7XwzhRqhXVFcmpXzYFVeVpg+fmCtwnct8WTHP9fu6S5L2tYQWJdk5bWpqkJmiiPpBLrmhNcKd40PZRWYhiUaUvNbFogY7Cz1k+J0kJPmbBflPtMUrCzwsWFPJRMOzmX5jjL2lgfxCeoU+2ipMEhL5ZlNU1BSGcYwTcqDETJTnLWedX11pOqKatiwdzmzLxrdZZ1zTTYs1qxZw2uvvWZ92OEgEAiQnp7OfffdxznnnMM111zT6o2USDoryTyPeyqCdvyrKUARJibRpeu4z+7yBVGjdSg01fJMBSIGPn+EDI+zTs9LbGKCwE7oUgCU2hKWroxu5Iw4jmDZXgaf+mv2+mtP+lVV4bC+WdwxeRh3LFjJnopwLe9PTprVKQbCJla92pjuhYUlf6iSl+FBU5V2S/aTdF1Mszk+765Pa+dEJPPyulSF8pBOeUAnLVoToqkTw6vHD2JojwxufnM5/rCBx6HicqjsKQ816TiQmAguhKXvH4zEcrasiW9INwiGTUuiNsl9qO9eDM5LZ8nGYkwBDs2qVm0K8Iera1LEx78nM+Jy4nIqYvlmVhVuYas9JVyTouByKER0k4pghLmfb2bsoO72fW5piFpNtahcr5syf5iQbmCY1vtD873MPGNY0glozZWsWG5GvJ/LFAIVBYdmJdQYonoMMYRAVeGBc0e0+QR3ycZiZn2whvV7Ku0aDg5VpW9OCr8c0zep9G+M5gqDtDQUMf7zFSGdskCEkqoweRnVq/311ZGa9cGapFENumlSVBFi1gdreG/GuCYbOp1BIKXJhkVaWpqdV9GzZ082bdrE8OHDASguLm7d1kkknZi6PI/xA0n86kFNVMXKjbBCpKK5C4qlJGFVYE3uebEnJmkuHJpKYbllyChJvIh5Xg/dj/sFwjRQNQdZqTprd1fwj2+2MaZfdkLH05D3Byzd8OXbS6kIWQO2gjXAxYdPmaZot2Q/iaSr0do5EZD4261ZZ8apKTy/eDOqojRpgmiaghe+3EzEsKQvK0I6ZqB+pai60FSlWl5XsaJ4yvxhDFMgFKtoZszgACucy6Up7IsYfL5+L0DSSVIslGTpllK7UrFVPdty1MTEJ0yhUNMtHzNeNu6p4L3lu8hKc5KX4WFLUSWmKdAcsVXjxGuOTQAN0wqTckQlX9cVViQYg60RolazT051OUh1OcjLcHPp0f247Oh+dU4ca65kOVTVytWwrgo9esNMBGG9Wm3Koal24rphCjJT2ja3Iua5L4qunDhU61kZhsmW4ir+vmQLh/XJrHeC3FRhkJaGItZK8neoFJQG8IetlZ5emSk4HWqdIVkrC3ysK6y0ohrU6lXG2OuIYbKusJKVBT674ntjrqkzFDiEZhgWxx57LF9++SXDhg1j8uTJ/P73v2flypW88847HHvssW3RRomkUxKb4Gd6HJT5I0QME6dmDTsNSTUCUe+REu1MrPwLTVW4Y/IwunvddXoc4icmuV5LcaSoMoQRHbjDRVsJbPqe/hMutN9XNAeVIZ295UECEYPZH60nza3V6njq8v7ErveKcQNYuSOHeUu2WCFcLg2nqnZYsp9k/6GqqorPP/88qSjI/lQfqbVzImKMHdwdUwhue2sFKU4rqdfrcRAxRLNyN1bvKufnXeVURZ0ImqqgaGDoTTctlBr/3lrit8OpzKhBocblh1WGdAp9QcK6wV++2MKr326v1VfFJndlfisZ2eWwZs2xXLNY0bidZUEiRvVqSDwR3aS4KswD//k5KhFqEtDNqGS3QIvmjcUTexWf10Y0BDXeGGxMiNrQfC+mEHy+vqjO/r65HvmaK1mZKQ5cmlpdzE+xZMXjByoFK6G7pCpMzywPQd1sUweRaQqeW7SJkqpo6LCjuhCcqgkiptWW5xZtbLXQ2paGIib7vMepoeYo9vi6yxege5qrzpCsZTvKrDwgTUm6aqlpVk7Psh1ljTIsOkuBwxhNNiyeeOIJKisrAbj33nuprKzkjTfeYMiQIVIRSnJAUeIP4/NHKNSNZsUcG8IKB1FV1R55FUVhcF56vZ1JzYlJrtdN93QXZYEI+3ZspOirV8GIoG/qSyDjZHTTJGyYFFdYxoeqWEosmqok7Xga0nV3qNZYFNSt5fm2UuOQHDgsW7aMyZMn4/f7qaqqIicnh+LiYlJTU8nLy9uvDIu2yIkAa8Lz/GJrhaFfTqp9XE2lWbkb+ypDlAcjCCHsCZ9A2OGXTSG+GGCSqCKr/cIyKAwh2Fnij0pea/TK9BAxE42jYwd2syd3mSkuKkMBVBQUVUGN1tYpD+j0yHBbieY1VkPAOtcuXwDDFKS6NEvdyTAJ6wEiurWKbCZbBo4Su4Px9yLeGGwoEdmhgi8Q5pp//tCgh7m5Ut01Vzwcmgq6ZcQBxGcuxXICVdVa9dlbHiI71dkkA7epoTgrC3ysKvDZqz/xaiCKouBQVQxTsLbGalBLaGkoYl2fT3c7SMtNw+eP4A8b3H76MM4Z3Svp9dtfq3j1k3hEjf3qoTMVOIzRZMNi4MCB9r/T0tKYO3duqzZIIukqLFq3l6pGVKitDwMrqDU24fc4NcoCkXo/k3RiooBetI2iz/8Jho6rx2DM/keyraQKEfW+CazwqxSnSmo0jrmhjqcuT0hVeQh/2GBHqZ9cr6fN1DgkBwY333wzZ511FnPnziUzM5NvvvkGp9PJr371K2688caObl6r0lTlm8bS2rkbpf6IHU4V8yIr0Xj8cF3WQR0IaitJxSRU49lTHsTpsMKmnJpCj0wPqqYgDKvgXFkgwnOLNtk1c7JTXXbeQGyOpmDlWIR0A4QV2hPSjYTqxUII9vgCRAyBO5o7okSVkeINBVNYdSJUwyRSw7NvTwirI7wYlm/V1dB105YIPX1EPl9vKmZnqZUQnuLU6JnpZm9FiN2+YIMe5pbGzddc8dhR4uetH3awYqfP3kfFuk9aLO9OEYR0g7yMxhu4TQ3FWbKxmAf/uwZfMGLlexgCIxoWF2tH7CojRuuF1rY0FLG+zysoZHicBHWTnHRXnc9pdL8snJqKbpioarWEO4DAmg84NZXR/bIavJ7W/t23Bk02LK666ip+9atfMXHixDZojkTSOanZuR+Sl86CHwtafFzDAEUTeJwamSlOhBAJHqK6BpX4iYnboVK4dT17Fr2MqUdw9RhMxnEXETA0HBpxcbXWQJnurlauqK/jqc8T0i8nhe0lARQF/CG9yWocEkk8y5cv5/nnn0dVVTRNIxQKMXDgQB555BGmTp3K+eef39FNbFVaqmaTjNbO3chKc6KqVgVhwzSJKTmpilWYLGIkd6c6op+puarhiuY7QDRPQdSam1sSqNFQK1VVCIQNiipCBCO6nevw7ZZ9vP3DTvtaFcVSqwtETJxqNLxUAWFCxDBQFQVNVdhXFQIFPA6NPRVB/NG26IZge4nfygMxLAeMI5pf4NSsePeaBpCIbzRWmJimwprCCr7ZXGwXNTNFtcHjdlgOnTyvB900MEzRoIf5m8376p2sN9boqLni0Ts7hZtfX45LUymJhpLF6iDFJIEBJg1PXs27JjEHVEUwQqrLgVNTMYXg513lSUNxqsPYIqhUr5yYgmjytmVcxG6xU2u90NqWhiIm+7xA2DLHRvS3XF97R/bO5OAe6azeVU5EN3FEv8dCWKFoAji4RzojezdsCLRFzlZLabJhUVRUxOmnn05ubi6XXHIJv/rVrzjssMPaom0SSacgmScm3eOgPGgtZ9dXnRaqk/1iyXDxA263dBdZKS7cToU95eGEEIiGNK4fOm8ksz5Yw/IVKyn54hUwdNJ6DSF77MWEo0v+ZkyDlmqpyMpQhO7p1d6NujqehjwheRluqoIRbps0lJx0V4eqUEi6Nk6n05Y4zsvLY/v27QwbNozMzEx27NjRwa1rG5obO18XrZ270T3NTYpToyKoWyurVPcjMePCpamYAoIRI6rGVC3PGqtzA6Apluc/ZljEJE8t6VpRy0jRVAhHTAojQfuctnPEELy6dDupLpWQ7gAU0twOgpEwYcPEqakIYRWP2+ULIbCSuAMRkx0lARwqBKLt0BSqQzuj25yxtgE5aS5SnNZkPxgx0BSIxC27KIDbqdLD68EfMXjl22289cPOaGhP9YqMFTpqku7W2FpSRUVQJz/DXa+H+dWl2/nLF5vrjJufckw/Fm8oblaybvc0N6kujTS3gzSPg6KKICE9XqZXI9WlMq4RBm7MAVVSZSXjlweDCXK/EUMkrIjHO6x6Z3vYtk9QFdITjEvdNFFQ0IW1kj80v/VCa1sailjz81VR4zdWSFEAGSlOfIG6J/KqqjDzjGG23KwRp9ilqgrd0lzMPGNYo/qCtsrZaglNLt/33nvvsXv3bv70pz/x3XffccQRRzB8+HAeeughtm7d2gZNlEg6jphnZc3uctLcDvK8btLcDnaWBKIyr4q9bFsXsQ4zFkYQQ1UgN80FCuwpDyeEQMSUMr7dUkKZP0JVWKfMH+GbzSXMePVH/vnNNo4+KId0J1QtfQePatJjwDBGTL4coTlwORTUaMeel+HGoVoTAaemEtJNexCFujuexnhCdAE56S4mHJzLyAaUOySSujj88MP57rvvAJgwYQJ33XUXr7zyCjfddBMjRozo4Na1HTFPcmv8fmITnlK/lRcRT2zCNCgvvVETNNMULNtRSjBi1AoDF0RDhDSFAd3TSHdrpLq0uEm0sL2uMTRVTehHDGHlaijUTo4Gy1kTHzZVcw9rAmuwuaiKLfsqKa4IWV53iOaUWQ4cRYH8DA8H5aTRNycFl0MhEKlumyGsSuHxTYiYgrBuYghBUUWI/8/em8dHVtXp/+9zl9pSSSXpJJ1eoTeggW5AsFlEFjcEpkfBcUEHEBUd1FEZFWUGF+aLIMioPx12ARkURRBQUUBFoUFAFlmaZml6o7ekk3SSqqTWu5zfH+fem6qkklS27nR3Pa+X0qnUcm5V6pzP9jxPR18BUxe4Ul23BsHe2lofYXFzHNPQ0JH8/qU2HFcRyQMRrKI3rydjURvScD2n7sGfE6h9teC4/OLpzUG32NShsy9PZ18eDcnO/hz/86e1vLI9WXIu+UnHE+tGVugs/lupCensP6OG/RprmNsQZX5DjFhI5+DZQ033ykGR/JNkLaVmqAmBoQk0IcjZLlnL5pXtycAIsbhgpQklQDL4DFWdC4mUKrn77EmLJ+1s8Tv+8bBOeypP1lIJQdZyaE/lRx1FLH78lp4MW7ozZAu2+qVQ3SvXhUvue3nEz+G4xU384EOHc/SCGTTEwsQjJg2xMEcvmMH3x+BhMZnf+8nCuHzBGxoa+PSnP80jjzzCm2++ycc//nFuv/12Fi9ePNnrq6KK3YbBo0ARU0fTFA+iscYE1CGkqnSU/K8cJBLpHX4CiId1ujIWmbzN0lm1Qbu4WOPad34VnjqJ7Up6Mhbf/u0aPnD9E6ztzHHQe8+hZfFhLD31XKRuICWBNrntukQMDV1TlSPHdXEc6REZR954iish5VBVf6pisnD55Zcza9YsAL7zne/Q0NDABRdcQGdnJzfeeONuXt2egYkGTD6eWNfFObf8ncvuf5WC44uTqi6CqQkM3XfQhg+/dR6mrlEfC6EJNUrkuLJkzAlUsN+bGeCO+SNCRQ3Vyq9TDATrLioJ8f0XpATXVR2RmrDOATPjNNaoWXfHpWyipIjdQxeheUFitmCTzKrAUUowDVWgcaRkZ1+B/rwq+tTFQmQKNoaudvji98BfryMhb+NxQEoLPD7yjov0COwAGzr7eaWtn47+PL1Zi47+An159dj6aKjkXGqtC9Ofd7ju0fXKUXu493DQ30rOdgkbGoaukczZ1EbKm+6VQ1c6r+SNpRoBUt5M6r+mNxaXytl0pZX/yeCCVTxsMK8xRtTUSj4XTRMcMrtuSozi/I7/0lm1ZPI2Hf35IefwaI+/7P2HIoTwxsjUyqOmztyGGPMboxV9DsctbuL/PrGCWz7+Vn501hHc8vG38n+fWDGm652s7/1kYsyjUMWwLItnn32Wv//972zatImZM2eO6fGrVq3ie9/7Hs899xxtbW3ce++9JW6sg9uEPq666iq++tWvlv3dddddx3XXXRd0Tw455BC++c1vcuqppwb3Oemkk3j00UdLHveZz3ymSkSvogQjjQIloibbkzmviiUDc7rilr0uoLHGpKvfCnTPBZCImfzb2xcxMxFhW2+GOfUxVi6fhWGojXawxrULweyvD8uyeGNHH3nbZW7TPBa/+18BMFxngMgowLYlb3rdFRhQZEllLQx9eJ1tmDr1miqqGIyjjjoq+HdLSwsPPvjgblzNnouJcjfKSbhKVxVQHEWzQBPCE4DQWD63PtgjZtdH6OovkPWC92IYmkDzZub9DoXluOiitBshUEH3aNzwcrGan6j4I5+zEhE0oXm/k16hZuC+o0HXhGciN3CbJlQio2tqhMp2XLb1ZpmdiHDY3Hre6OjHEAPeF2VDGAFhQydjOViOS7RIqUpKpcZUsFX1fzTs6MuxIBwfeOpRyLqDORmXvf9Qbli1YUI8n950Ecm/zGiXJtT4U29aJZblRnfiYYNFLXGyBYdU1iLvSL71TwdzxhFzpiwgnugoYiIaImpo1NZHlZ/JINn1SknT41X8Gnwtk83ZmgjGlVj89a9/5Y477uDXv/41ruty5plncv/99/OOd7xjTM+TTqc57LDD+MQnPlGWnNfW1lby8wMPPMAnP/lJPvCBDwz7nHPnzuW73/0uS5YsQUrJbbfdxvve9z6ef/75wMgP4Pzzz+e///u/g59jsdiY1l7F3o8R1R+EIB7WSeWckvng4gOrPmYi0ZjXEOH0w+ZQE9KZUx9jRtzkpsc2lszG3vP81mADKNa4RiiFkeLnLXRuIvX0fXD8R9DqW+lI5amNGAgEEVMLiIw+Ea9cRbA7Y2G7LofNaxh245kq9Zoqqqhi6jDegKm4Q1si4aoLNM3FdhTPa059lLCu0Zku0Ju1StyhWxNhMgWHdq/oAioY97egkK5RkI6S2pZDEwSVeIx8faNJ3Uo8qdii58kV3MBN2x2GdF4M4T3H4BSkuS5MX84hbzsDM/FCcP4Ji6gJGdzzj61qXMob8yonJxrSNcxYiFwqRzJrYRpasK92pPL0562Kuzj9eQfHcdD1geRkOM7ccKpNnzlhIbURk+e39OK6LqmczXNvdrMjlS8peBXDdSWrtyV5fksvb7T3qcq9K5FlFI78pKMhprr8wxWsBIKoqZPM2hw2t25KkwofEwnquzMFbFcVD8utc1eTpiebszURjDmxmDNnDt3d3bz3ve/lxhtvZOXKlYTD4XG9+KmnnlrSSRiM1tbWkp9/85vfcPLJJ5dI3g7GypUrS37+zne+w3XXXcdTTz1VkljEYrEhz19FFcUYjhTV2ZcvMaQbDnnL5bB5tXzu5CVDTJ1GMrIp1rj255l9FDo3kXz8DqRj0ffa36g7+gPkLIds3iEWNhBC0FwbYcvONMXnp99J8SuCjgtSCm4++yhCoaGELx/TrRJSxd6JBQsWDNuhBtiwYcMuXM2ej/EETMUd2sESrprQMHTlD5EtOBS0gTHIZXMTJXuE5cgho0auowjautdOiBqCkKFx1H4NrHqja9jizETQ1Z+nJqxCHNsjxxqawCp6Bf9PrqzqUxm4EvZvigUKQJoQ9OVs5jXGeNvCGVz6uzUksxaGVtTFlgPPpwmoDWt0pm0OnlVLImqyoTNN0pUYAoRQ6kxCjJ5gDVynxczEwB4+eETVdRXZ/ccPv0HedmiKhwkbenDufPmuF2mpDfPmzgx9uQEStQZcev8aPnfSIs4/YVHw/E+s6+KKB17l9fb+4H0N3q9BCkfKQFBJsM6IqzhxbylYTUvS9CR0PyYDY04svv3tb/PBD36Q+vr6KVjO8NixYwe///3vue222yp+jOM43HXXXaTTaY499tiS3/385z/nZz/7Ga2traxcuZJvfOMb1a5FFSUoV1np7MvTnspV9Pj+gsPL2/tYsz0ZcCdGM7K59pF1/PPhsxFCyTkWN0uKk4rQzMU0rPhnXNSmviOVY2YiQsTQVVtW17HtUo8NTXha5UIghEumYPP7l9s54y1zRryOSishE9Vbr2LfxZe+9KWSny3L4vnnn+fBBx8cduy1islFcYd2sISrGsdUjtTtyRyIUuUbf49YvS3JNX9dxx9f2VH2NRypLOpaaiNkCg47Unmipo6U9qjjT2NFKmcHBqSGpq7JGhytl+kojPicWZvm2rDn4K2TtZxACvXpTd001Jj0Zq0S5aiSJEXCuq4MjZ7qT/G+2t1f4Dt/eCUQBJHSrciIsJgDN3hEVSkLrueZTd0UHBdDE9ipHM21EeJhg3jYZXN3pmRMzIcL9GYsrnzwdQDOP2FRICrS2ZdHoGR5pSuD63W8Spg/jqZ4G4KDZ9eVjMzuDQWr6qjw8BhzYnH++edPxTpGxW233UZtbW1FeuarV6/m2GOPJZfLEY/Huffeezn44IOD33/0ox9lv/32Y/bs2bz00kt87Wtf4/XXX+eee+4Z9jnz+Tz5fD74OZVKTeyCqpj2GFJZiRp09FWWVPhIZQc25mMWNrFuRx9RU6c/b5fMZAohCBmCpzZ089SGnUG1yicVDk4qEsd9CFeYwaGVs5WUYjSkUxPSmVkXZnN3BkNX8o9+FcxvU2tCaYdv681U/F6MVAkZqzlSFVUUYzgTvGuuuYZnn312F69m78BYE/2SCqyp01wbYVtPFstxS7ufniSm68J/3fcy5799IfMaY2zpzvCHl7bz5IbuEdclpcTwCrztqRwz6yJYjsuW7gwVTCmNCZu7s8ysC9PrJU1D1hL83+hQ41EOuYJLNKSXBI/JbIFL7nuZ/rxNU03I84YY+nht0FRR8b766NpOLM/DQ3WJFDF41HUJ9VkPrvg/tWFn4BXhuG4go5u1XLb1ZD1OjEoQ/LdGeP8ni362Xck1j6zn3GP259pH1tGdLiCE4v8JIVSmKNzg/TU0wcy6MFJC1nKIhw1OOaSVx9Z1lfwdTqfRnfFgb+m8TAWELKd3thsghBhC3i7GQQcdxLvf/W5+/OMfj/pchUKBzZs3k0wmufvuu/nJT37Co48+WpJcFOMvf/kL73znO1m3bh2LFi0qe59vf/vbXHrppUNuTyaT1NXtexnpvgQ/aF69LVmibFIJTI+ImIiZnH/8An748BvBiJNf0WmujQCwpTuN7aqgXxMDBMZySYXQzZLXmZWIkLUcwobGv79jCVFT56K7X0TzSGWDYbsuriu5+oOHj9qxGA3DjXf1eJtrJSobVUxfpFIpEonEbtnrNmzYwOGHHz7lhZxrrrmG733ve7S3t3PYYYfx4x//mBUrVoz6uN353oyE8ST6ris599anvQqs8ljoy1klAb8AYmFl8ialZFtvNuB2pQsOSFlRchCPGOzXGGNHUiUWmqZea3N3pqIq/WgwhAqW62OmknUd4b7+2I4mRuZvaN595zRECRl6EDz6BOhX21JBJ9pxHdZ3ZgKH8rCh0ZqIYGgaYUOwLZljTn2Uy89YxrI5Smb4xS29nHvL3+nL2Z6/x+h8EoCZcRNXaJia+ozPf/sCOvsK/OjhN9iZztMQNWhLFYIik5QSy5Wex4TqavtnTfE0oi9G4vtxfPGdB/B/T22iN2Ohe+pPxbAdF8tVMsKJqEnU1JkRV2NAO/sLe23BqeS75nVe9rZrhLHtdXtEYvHYY49xwgkn8MILL4zLjO9d73oXixYt4oYbbij7+3Q6TTwe58EHH+SUU04pe59yHYt58+ZNuwOliqmB60q++duX+dlTmwOOQiUIG8qB1HYkNWGddN5B10D3Wgi2q+aONQE5r1plCBDagJle799+QaFtbZBUaPpAp0JVwQQLZtQQ8Yycls6q5eazj2LFFQ97876geaMAAoErXQq2JBEzefY/31WWnDeW90UFI6mS8S5QlUl/Pbedt2KfrNzsDdidwfNVV13FtddeO6UeSXfeeSfnnHMO119/PUcffTQ//OEPueuuu3j99ddpaWkZ8bHTMbEYS6I/uKsxUHl3qA1r9GQsej2pVV3AzESExliIdMFhW0/Wc+RW5nfK+6GyNcbDOl8/dSnX/nUdNWGDiKlaGG29WbrSEyO7Gp48t10klTsS/G1J14a6ifsjPVKiJGZdlzovaPaDx5qwwaduexZTF8RCBpGQRq7g8mZ3Ogi+XSnZr7Em8MbIWTauVB4NS2fVccKSJh5d28XTG3cGEr+V4KwV8/joiv2Cz++J9SrITXmu38XXZ+payXpsV4In8OHKgW6FDz8yNDWVpJ1xxBz+/EoH6YIdGBwWQyIpWC6xsMG/nbiQ+liIm1atJ11w9rqC0+DvzdLWWl5t79sjOy+VYix73YTkZncVbr75Zo488shxO3y7rluSFAzGCy+8ABDoqJdDOBweN0m9ij0fmiY4cn4jv/j75opHcv1DCc+NM513PFdRcFDjAKYmsByXQtFZYksoPqETR3+A9GuPU7P07ei6GRhHad5JEDV1IiENwYDU4K/+sbV03td1S4jbuib43EmLhlX8qLQ9PZo7d6WSe1Xs2zjiiCOGJqXt7XR2dnLttddO6Wt///vf5/zzz+e8884D4Prrr+f3v/89t9xyC1//+ten9LUnG5XwuHwX5Kc27Czb1fjY0fO5+fGNbNyZLXluR0K24EANgceOoSvvioIjA8WlSsLi+qjJR46ax0Nr2ktm1JtrzYoSC2MYSVpN8z0iBkaKgv+WIWobRe7YrjtAOjc9LwqVVCgX72hIY0FTHV965xJmxMMcMruOpzbs5L/uXc3OdD4o8oQNnZqwHhDgESBd6M9bdKctXM9NGpRC1Itbkjy5fic1YZ3m2jDbekcft9UFfOSt8/jOmcuD225atZ7vPfR64PrtJxb+fwu2S9hU50TwTfPWNhyKRT/2a6zBNAQU/BGyAdVB/33SNOXl8PYlzVz9x9dJF5xR/w4rDcCnC4dvpG7giQc07/L1TEfs1sSiv7+fdevWBT9v3LiRF154gcbGRubPnw+oLOmuu+7if/7nf8o+xzvf+U7OOOMMPv/5zwNw8cUXc+qppzJ//nz6+vq44447eOSRR3jooYcAWL9+PXfccQennXYaM2bM4KWXXuLCCy/khBNOYPny5WVfo4oqAFYun8Wl96+peBzK0AWOM0BsKz5wfUlEqXmHz6DT2En3otfUAyCMEPFDlZRzPKLTn3c8CUeBLgTNtSrhzRYcCo5DKmfzo4ffwJWSphqT7owVGFLZrqoWfvGdS0qUPnyMdYSiEnfuXSm5V8Weife9730liYWmaTQ3N3PSSSdx0EEHTdnrFgoFnnvuOS6++OKS137Xu97Fk08+OWWv6yOXGz6I1DSNUCg0pvv6iX6dKXHtod+5WtPlje093PH0Zn7y2AYlLRuCOlNQcBzWbN7Jcxt2kM77wg8CYQyMXXanMlgFZcKl/AlU4Q4pEJpAioGQQjrWsO53hRy82t4XzKhv7+4nEdXJFRxkmXULY+B9kI6SYxWDHLNBEY7zRmggIHaVx4IcHH96j3N0E4RQ4z6OTVPMpCdjYVkSQxOei7iSS62PRrnolAM5bnETlmXx6Kvb+NZv1tCbKYDjIDTAEWSsAtmCel4JSMdBOjY9fTa243qEZxWIhzCwHUeZnzqSkAbCscpyK3RNEAqZmLrBbee9leVz6+jvz/D71W1s7Ulz0+ObsAoOIUOAK0BqCKGpNbgO0nXI2WAamjJrddUbISUgdKSmKwUr6SC9ESnpvaeJqMnHV8zmyTe280w6h+VoIMFxHXAHREKEgMUzasnncryxrZtENARCnU2WbaFJl0hIU3+H27r5x4YODvUKToZhYBjq78d1XQqFgb+DJ9d3cdNjG9jQkVbnjWmweFaCC05cxDELG0vuOxjFzyulHLHIPNp9n1zfxbd+s0Z1A+MRGmJhCo7LK9tTfP1Xz3Hp+w7h2EVDz0ld1zFNs6I1jOd7P577TiUqSix++9vfVvyE//zP/1zxfZ999llOPvnk4Of/+I//AODcc8/lpz/9KQC//OUvkVJy1llnlX2O9evX09U1YJve0dHBOeecQ1tbG4lEguXLl/PQQw/x7ne/G4BQKMSf//xnfvjDH5JOp5k3bx4f+MAHuOSSSypedxV7LoarelRSDTEMjdMPbeXnT28Z9XU0MdTUDgYqaP7t5RxffU5F7MDjqDn4pJLf9eWc4Emiph4kFZu6MuRt5bjpSMhZNnMbYtRGTGbWuSSzNgXbJWM5HDa3jk8eP1SyuRIp3MHJxXSU3Ktiz8O3v/3t3fK6XV1dOI4zxNx15syZvPbaa0PuP9kiHh/84AeH/d1RRx3Ft771reDnf/3Xfx02IDn00EO54oorgkT/zV9/DztXXphBJGbxy8QXg67GS7+4knxfD6CCnv68HdzXqGum8T2fDX7u/stNdKY6AUUu9rliUoIWSzDj1AESfs8jP8Xu2T7k9XVN0B+N0/3RFZx4QDOXn7GMT3/hy7y4ca0iig/aE4Vu0nzGfwY/J5+8i0L7G8OSm2d+8FtKVtaR9Dx9H/mtr5R9HwCa338xmhEiYhp0PPtbOt980XusUmSSnqtyPGzwX7ffHux/N954E1fceAf9eZuwoZEpOCXjRE3v/QJ6TT22K0m98Cey654qceKWqDMiaejE3/FpzEQLOdvltSceIvnyI0PWGTF1TF1j/vs/RzrUQl/B4d+/eyN33P5/2E6pz5ESA4H6t5+D0bw/QkBm4z/of/4P3mcmPU6Jcicv2JKG4z+C27QYCWTfXE3fs78peb765ho+9sIN9KQLiAWn4DYfCEB++2uknrq7ZK3P1kf50l0RXtueYv4J/4I761DytkN221p6/vYLNE+oxHHhC4/UMaNGnQ3/9m//xumnnw7AmjVr+M//VJ95T7rAq+0pHFcG41ytR72XVzmW/7x3NRccEeNn/99lw37GZ511Fh/96EcB2LJlC5/73OeGve8ZZ5zBJz7xCQA6Ozv55Cc/GfxOSnhhS4/3metYBx/D/m8/g4im0xSy+fut/83Zd+ocPq9hiDHiO9/5zkD5Lp/Pj/i9f9vb3lbSKZ3sPWJXoKLEYjhC9WAIIXAcZ/Q7ejjppJMYjeLx6U9/mk9/+tPD/n7w7O3NN9884vPNmzdviOt2FfsGhqvGn7CkiVVvdI1apXdd5WIdMTXyljtsy38kEqDfVi5uUvjteEeWErWtnduQroMoCtgNDU9BSmO/GVEyBaXwodrrA6/jurC9N8ecBnUoNnibd9Zy2NiVGTKaNJYRiuKEqyq5V8VkQNd12trahnAadu7cSUtLy5jOlanEFVdcUVbEY7rAT/TdYcZbXCnRUWpM5cYXy833l2moAgNBd9jjV1TK1vRHZ+qjJqu3JrFcydELGllXSLC5O8OOEeS8i1dbnFQIoUjJAphVFwGh9r9KEAvptCbCdGsqUfFHRXUgbBjMro8ypz7K0QtnBI9pS+bIFBxMXQPU+FPOcxwXksBl3H/jdCGwXTfoYgiU+7Yf5KvqvxzWG6lgK8+MgqPIwY+83sG9z2/DclyVSMiBIpaKqQS6rkaeij8XXVOnjyYE+zfVMKc+Sm+mQG1rHdsMg76cXfK6pq6x/4wY82fUAFAfCyFrw7SNcMa1pXLEIwZSSrr688QsZUzor8eVkpzXEVIjZ2qNm7rSPLq2k8ZYCNd7cilh0840jisJGwPnoGlotNaFaU/luePpzQNjZ1OIvrxV9JmXQgh1LZmCQ1/eoi5ilnmGfQfThry9p2E6kvaqGB7DVeN3pPJkCjY1ntLJSASznz31Jv/v/ldw3IFDVAiIhw0SUZNkxqJ30MZcKaKmRnL7hlHVn0xNEA0pc6N42CCddyjYDrquKkD+xm16P0dMnf2bYsFUretKOvrzXP3Bw3j74iZWb0vywuZetiWz3POPrdTHTKLm0HpD1nLI5G1uOPuoIVyJgffWKSu5tyeT9KrYNXudpmm0t7cPSSy2b9/OokWLyGazwzxyYigUCsRiMe6+++6SAtq5555Lb28vv/nNb0ruP9kiHpM95uCLKazZvJOZdaEhif6OVIGZiQidaSdQY3KsAn4EvLU7SzI3MOophDcK5Y1SStsK7qtrMLc+Rjxi0N1foC2VLxmbGmkUakFTDXObEmzoVMUcXdosaIp51em+gTt6y9f0UBA4x02XDx05j7uf24rtSlriIXb05clZqptrmhFm10fY0pPFtgrDrgHUBMPcxhi60MgX8iTTBfZrivL5dyxhRizMwUUd7XU78/RkLRpjIXb09HPRXS9QGzWRUvFLHFfSlc6Tt13QlMDGvMYYcRPae7LszOTRhFLQaopHiId1sgWHLSkr4IvouNh2+TPE0AQ10TDL5jawZnuK3nQOU3PRhIbtugFZ3UckEkKiYTuuSsxdh0TE4NC5Cc5/+8KSkR1dN3htR5rOvhwvbu5GujZz6mOcvqzUefvlrUk+/8sXSOZdpXglHZAq6fFlb21Xsmx2HZt2ZugrSMIhA01owThWIB4SNXnia+/gmTe7uemxDWzsymGjYeqChU0xPnncPGrDJp+/4x/EwnpA8AcQmo6mG2Qth3S2wI8/vDwYqRryvhkGmqazZnuKnek8cV0Gn2u5+w43CrXqjU4uvns1zbUhNE0Ea/DvaxfydPYXuOIDyzhhSSnXYm8YhdrryNtVVDERFFfjW+IhUjmHlGNh6gLLtoP5Vp/YNlClz3Hlg6/x/iPmsKkrzW9f2EbedgnpAk0XgbNopuDSUKMxpyEGvRksRypjIE1jZzqPI4ev+vmoJKkAlTTURU2yBZvGmjA96T5VBZMqOamLmHT25wHhkRgHdNdhYDRpS3eG913zOGt39GM5A+6p/TmLWfUx4uHSrWEkrsTeYHZUxe7Bj370I0AFsD/5yU+Ix+PB7xzHYdWqVVPKsQiFQhx55JE8/PDDQWLhui4PP/xwwNsrxmSLeEQikUm974C2fobOrEN9zBhI9LMWdfEoHztuIdf+dV0wvqibA8FGJCJJ2SrgGqwSBASJQ9jQEEBvQRCKGIQjGnq21NCt3P7ld2uTBehvTxUVeUxe7czRl7NJxGOkBhVoivfOk5bOZm1XnlA4zPy6CDnLxRYOobCpvCZcVSlvqgmxo2/4XdfUBTNqQnT2Fcjbjpd/CNZ2FejMSE5ZrsbjynW6oyGdPluQ6lPr9KXDW+prMTSNdMHGclx+9JEjWDYnweptSf7r3tVs7ckypz6C5kmA1xgSM+2obgYghVbCJymGC+QcJaGbylmYphFIiRuuiyNKr9WVQqk36QIpdWKRELd96mgOm1tfNqhWBaME71g6c8jvfKTdPnKOIuwbuoYmSsdfNSTSdtmcctCMEKZ0sF0wNIkQilnvupJQGMyQwX0vdwZcn4ZYOCjsvbYjzaV/eIMPv3UejmYSjYTLrjmsayQRpF1t2O/HeD2WhBAlzzmroY5wJIyjGZimPuS+tmYSDgtmNdQNu5bxENAne4/YFRhXYpFOp3n00UfZvHnzENLMF77whUlZWBVVTBZ8QiNS8vqO/iGSiJpQ7qXFAXi64JDK2nT1J3lpW7Kk6OW3rkEdKI7r0pHKMas+gq5pgGRWIooQ0Je3yXot8uFQiU+FD1cqPXVN01i5vJWbH8+RiJqYujLbA0jlLLKWG4xYZQo2tuuiC0EyZzErEeFHD6+lq7+g3FM1gYvEdpTk7ZbujKq0FSUXxVyJcpvjnm52VMXuwQ9+8ANAVfGuv/56dH3gwA6FQuy///5cf/31U7qG//iP/+Dcc8/lqKOOYsWKFQH/zleJ2tMwWqJ/zMIZQ9SYfMyIG3T0q2qqP7JTruAvkOiaRsFx6CkqnoR0MaJcqqkLXAl521UVe897J2LqJCIGyYyF40pm1obp6s+Xla/962ud2K6kKa68Nmyvgyy8wromIFNwiJg6M2pC9KQLlJsMcyXs8ByklS+Duq3guPz44TdY2KTGfwZ3unuzBTZ2pYO92DRUupS1XLb35phdH8FyJEtn1QUeFcvmJPjIivn8+C9vsC2ZoykeIqzr5B0Xvx+gMbpvhW27/PnVDsX/cCRCSHQhlLu4dEs4e64rsVGdDF0TfOldSzhifsPILzAKGmMh9T6hfPEGwx9Jcly1rtmJKDu9Lo7/u6ipMaMmTLpg84unN484fvvQmh0T4vCNhzc4HCY69rsvmciOObF4/vnnOe2008hkMqTTaRobG+nq6iIWi9HS0lJNLKqYdujOFEhmLNJW+Tltf5NWVSPlir2lOxNs0hrKpdqH5bV7YaCSli44tCVzLGmpZUcyG7jXzqwL8+bOzIiJhdO3s6Kkwn+9HX154mGduQ01xEI6Ie9g9lHsmOtKgpllidKb78vZ9GQsBGpWVSDQpMTFxUURyjv7ctSEawJDpWKH2XNvfXrYzbEqKVvFWLBx40YATj75ZO655x4aGiYW+IwHH/7wh+ns7OSb3/wm7e3tHH744Tz44INDCN17EkZL9Id3DLaJh5XyHJRPKjShFO1sxyFkasyIh/nqew/kmr+sZ0NnP7Zrlw2Qw4Ziedsu2AWHTEG9RlsyR3M8TDxseF1Wl4aYxtyGKMmsRTJrl+yf2YKDC7Qns4QMzeMNqDW57gDXwC+cmIbiFJi6huNICo6LpnmqfF6n1i3KYASQLthc+8h6QJYEvlJKkllLeQJJkMKX7/YkcB2Xbb1ZZicigetycUCZK7hkLYcthSwRU6cmpLOktY4NnX3kLLU2fw1+wuMiA98koSnOXN4uKGVB1Q5A964PBpILV6r/S8RMPnfSorIqgGPFIbPrmD+jhpe29nrJxQAZXHrmiCFdD4pcIUNj/xk1qqvkuhiaKoDlbBcK0JHKjyhVviOZZWYiytae7JiD+fHyBofDRJy2JzPB2RMwZmesCy+8kJUrV9LT00M0GuWpp57izTff5Mgjj+Tqq6+eijVWUcWEUBcxyFilknjKLG4AEvVlkEg6UrmSyo+/UQy+/+CzM1dwOPXQVhbPrKUnYwXkxmGUWANEFx5J4riPBOZ3I0GgiHzpgkNTTYhFLfHgtXwosrY5cLgLdbBGDB1dCDZ3Z3Bc1cr2uRdCCIyihWYLDpm8Q9ZyaE+pROaEJU1cct/LvNqWoiZs0FIbpiZsBJvjE+u6qKKK8eCvf/3rbkkqfHz+85/nzTffJJ/P8/e//52jjz56t61lsqBpgmVzE5x4QDPL5iZKAh6/q7F0Vi2ZvE1Hf55M3mbprFpuPPsoPrZiHkaZAEkTYGhKwtSWkCm4rO/o55q/rOeQWbVkCs6wlIa8LckXVWj84NlxJe2pHP15C0NTpqHbk1m29uToHZRUBA9EiV1s683SnsoFxOfB95VAwZbkLdUZWNAUI2KqBGO4dUrU/rd6W5LX2vuoj5rkLJe+nEVvxiJnORiaRsjQgoTFJ30LodSWzj9BFVr8gNLfM+c2RJnfGCVq6oR09Tm848AmWhMxoqbA0BSPLmRomIbwjFLVukxddVUSEQOP86w+B8fFv3J/C4+GdC581xKu/uDhPPuf75qUpALU39RX3nMAIUPDsiWW41CwXfK2S8FRn0HBUd4VB7Wqc9BfT23EDCYCejMWrXVqbGckqXJbwimHtBIP67SnlMyx68qSc2m4YH4sHkuVYqTvzXDJweAEJ2LqaJogYuq01oXpzztc9+j6gLC+N2DMHYsXXniBG264AU3T0HWdfD7PwoULueqqqzj33HM588wzp2KdVVQxbmzoTFMUYw9gEPGh4LhoBZe8PXD6aQIv+B7d+Mk0NB5f18VnTljIJfe9zObuLFmrfPXO2rkVPd6IHo4hgfBsJd8XMXUKlsNwGjhCKIWRsKFx4+MbgtcqraA4dKdVta41EQn4HhFTdSs2d2cCmchi6JrAlALLlbjAznSBmpDO3IYo7zl4Jr9f3U5fzvLGvCZW/amiimJ84AMfYMWKFXzta18ruf2qq67imWee4a677tpNK9t7MVJX47jFTZx55Fw+dtPfydkuulC+PFIqKdbiLU0CGzr6eK09Rdgj+mYtZ9SxHj9BEF7XoMMbSwLVKRlOd8+XdVVJg0slgmESpXglNEFzbYQt3ZlhSd3KIwjSeZuQLjx/oAEemhLJkIHK0cy6MIamCNSaEPTlbOY1xoatmEdDBmHTpiOV5+7ntg50P/ALXhJcsKUsKRgVHEnE1IiFDZprI7R7nWjX4/rheW7oAs566zwOm9+gRpcmeT8+fkkzX373AXzvoddLxt6KP7vtySwrD5vN1p7ssNX9j6yYX8L1GQx/zOn4xU0cNjcxZg7fVHksjXXsd1ebyE4HI8ExJxamaQbEo5aWFjZv3szSpUtJJBJs2TK6vn8VVexqtCWzwUEUaImXYVNnCo6nADJwm+bLBFYA25G8sj1FIhrisvcfyufu+McQpQ4Y4FTotTNoOOFsRCgW/G5OfQRHQnsyR7bM6FbY0GlNRNA1wfqOfhLR0JB5aqRKhmbXh2msKSWa+jrgjpTYjouuacHsq0BVpHQpqY0YvO/w2by4NcmOZJabHttAKmsRNnTSBaeEf1F12K5ioli1alVZL4tTTz11WHPUKkaHbbv87qU2tvVmmFMfY+XyUpUfv6tRDv15xVNwXOkFJrIkqRjYQgW1UZO2ZI6wobOwKcYGz1dHE6AJDUcOlVItdqYWcoBfEDE1CiPIeQNDEpvh7qt5+5ojoeAJWcTDBjUho0T9qhgDjtVqzZpAdXcF6jpQ47Cg1m9omleJV5wRU1cz/8MFlJ19eXakBlSB/M6QP5ql1lv+imxHki44gX9RR18OV6rbNaHeu0TU5LcvbOeef2xDEzB/Rg1fec8BHL9k8lyhP3n8Qn7zwnZea08hvXHZYMlSdSSue3Q9nz1xIY+t2zlmrs/gMSdNE2Pm8E2lx9JI35vBqDTB6ezLce8/+of9rlaC6cLjGHNiccQRR/DMM8+wZMkSTjzxRL75zW/S1dXF7bffzqGHHjoVa6yiiglhTn1MHTAeOU/KgQTD35dcqQ4SX8fb/1259no5GJraXFM5i539ebb2ZskW3MCQyJdrLCZqa+E4FI0+xUIaYUO1SVvqwmztzuLJjqv5VRfCpoZlu4TDGhnL4dG1HZx4QAu3nvtWXm3vozujiIX/+/Ab1EeHbpgRU3Uu0gWl1uEnTf5YAkJ1LuY2RHnk9Q7SBYeGWAjTdkhlLfKOw7aeLHMaoiXJRdVhu4qJoL+/v6wUommaEzah21dx06r1XPPIevqyFi5q1PPS+9dUPG/fGAsRNTUKtkbedoYQqf0fXSnp7FPfe8txSGaVWIRfxIABDsPges7g+FkT0BAN0WHngir+aBipM6ILxUtwbBX42q6LRHV1K4FHU/AKLwJdDBifWq6kJqQTCWnetZQGw4+t6xoSUDqOQ0dfqSSoQHjkcZe8LYOzR3hqf47nz6FENlD8t1ANzbVhYiGN7nSBo/Zv5NW2FNt7c2StvPe8at29W3v51P89y5fffQDnn7BoUiraa7an6E4X2H9GDRnLoSOVR6JI4ponvZvKWtz6xJt871+Wk4iGxsj1GZmzUAmmi8dSJQlO3nL4wp0vkM3b4/quwvTicYw5sbj88svp61M609/5znc455xzuOCCC1iyZAm33HLLpC+wiiomipXLZ3Hp/WtIZixCnoLHgKGOpGBL6qMmt573VpIZix/8eS1rtqfKumIPB8eV6JpqQ/59Uzf3/GMrluMq4iAatpRk2jeWVX/SBLzn4Jm8tDUZbD6mpqFpqmPiuDLQOe/NqDlfUAfHzY9v5I6/bw6qEice0ExjLETI0MpuZMLTUU8XSg/WoOonIRE2EEKQLjhFpEVVpfGraf7h5m/WVYftKiaCZcuWceedd/LNb36z5PZf/vKXHHzwwbtpVXsublq1nisffN3jUgkMr6iSzFhc+eDrAKMGLIfMrmPxzFqe29RTVp2pGD7pWEoC+epyhmXFTyPK3BY1NLoz5dWgxgPbBd3LXiRqjDRXGOr5MBL8kSvT61oYunL1BoiFDKQLOccZEgwPDij78zbbe7NDEiHp6W9pQsPQVMGnpSZEXTSE5bp0pPKBV5EmFbk9Z7lETI1UzmFeY4xnNnWTzA6V6JVSJSR5y+V//rQWV8Lj60Y3gx0NQRXeUGOwMCAEAiqhkwLSeYcbVm3gtvNWlE0QKpUqH08lfiJk68nEaAlOW282OI/NcX5XJ5uoPlGMObE46qijgn+3tLTw4IMPTuqCqqhislBcmTnjiDnc/uSbFGyJoQ+4Y/tSfJ87eVEgxRcyND7/i3/QnS7fKi9G8eFou4p49+jrHeQtF11T1SghBG7nm6T+9osgqaj3kop5jTG+875DeduSJs699elg84mYGmFDI5N3ykol+q9pGqKEQH35Gcs4ZuGMYTcy13VJ5WxPxURQsEs7MroGjTUhuvpK1ToiXjclZzmBckvOUvK8VYftKiaKb3zjG5x55pmsX7+ed7zjHQA8/PDD/OIXv6jyK8YI23a55pH1OK4kZKiAFfDGkpQ52TWPrOe84xYMGbUYXM0+/+0LeGZTd8WvrTgIaseyvWJLuQRD4EnPQkmQn7YqGzsdy3psqa49ZGgkcxYhXQtcuseSv/iKU0JAxBDYric13p8vGwwXB5TxsMv23myQkBTDLpKNHXirlFdGRGpYNS4dKRfLdj3+hyBdsOnJuJi6YGtPdkhSUQy/6JWzXK5+6HWipiAeCVEbMdAE46po+0lTX84mbytn7eLV++9TXdQYdUR2NM7CRCrxU+2xVEn3Z+QEpxCMPIfH+F0txq7mcYyGqkFeFXslylU45jVG6ezLky0ocrSAslJ8xy1u4lPHL+Cqh9aO+jqDj4mQIejsK9BUG8J2JTnLodD9JjtX/Qxci+isxdQf92Ei4QhLZsa5+zPHBhvGZ05YyFfvfokt3RnqoiaNUTOQfRwOO/sKNMfDtNaFS6oSw21kXX15XAmtdVEaakyyBYdsQflsxEI6QkBPWmnJN9YMbGQCQXNtmG09WRxP/sRyXLDYpdWfKvZOrFy5kvvuu4/LL7+cu+++m2g0yvLly/nzn//MiSeeuLuXt0fhdy+10Ze1MPSBQMWHJjQM3aUva/G7l9o44y1zgt+V2zNb6iKEPPW4vDV8kaMYXUUFGduVgWxqY8ykOzPwO9eV2LtICMfQBBe+6wAeX9fFa219SgVQUHFnRAjBzEQEQxPKlE5IMnmHr55yEI3xUNmg0g8oL77nJbb0ZAJ1p8GQKGUnzdBKREb68zadfTnytosrpSJpe23ldN5G0wSW5ZIaIakInt97bcuVWHlJfyGHrikRkKb4gDJRpRXtQ2bXsbC5hhc29+I4EmH4nBk1Emy7Uhm2hg0604UhI7LlAvJyAe9kVOKnymNpLF2U4RKcxpow3f0FT/Gr8u/qYEwVUX28GHNisWDBgiEZUTE2bNgwoQVVUcVEMVyFoydj0RgzOf3Y/akJ6SMSpGYlYoGkn/B4EsMdDMWwpRoLCOt6EIjboTgiFCWS2I+G4z6ELQziYZ2LTjkweO0n1nVxw6oNFGyHjOXQnx/5sPDhSEhmbBpqQiVVieE2srkNUbb0ZKmPmggEsZBBLDSwDbiuxJWFwDSweJQqHjaY0xClPZmjYDskcxYxU686bFcxKTj99NM5/fTTd/cy9nhs683gAsYwx7QmlC/Ptt5McNtwe+aGzjTpvM3cxiiWLWlL5iqq8itHBQU1kqNUlMLeiKaUBEmFBsQjBum8PWkjUD4EqtgTD5sct6iJ89++sMQFO2JotPflR30eKSWGJqiNmEgpaU/lWTqrlvcdPnvEAPW4xU28c+lMbvnbplGeX+29jquSoEzBpidTwHYHvDaKr0mi7jeWka7Br4ckMPVrqg2NqaL91IadJLMWGS/ZLNgSzeNYuKiRs+baCAU/gC4akR1LQD5ZlfixkK0rwXi6KOUSnEde38H3/9zHcH9C5b6r5TCVRPXxYMyJxZe+9KWSny3L4vnnn+fBBx/kq1/96mStq4oqxoVKKhwvb0ty89lH8fuX27l+1fqyCUZ9jakUorwDRSJw3ZGVSgAcR5KyLLahFJ7mNETpNJrRTv4EIhxDagYhTePf37mkZH7U36Qaa8LMrI3Ql7fpSOVwhiE9FsPyMp7BVYlyG5krJRf87LkRN6CoqdNSFylrSlQT0qkJ6xzYWssX37WEpppw1WG7iiqmEebUxwIX53JfS1+udU69UqMbac9sqjHpy1m09eZpqQ0hxLAqrcEeJYCZiQiulKSyNgXHxXEVwdvUBQ0xk3jYpD2ZDZKOdF6Rw/2tZrjXGA2aUL4IYc84LxbSqY0YdKUtujOFUhfsh98gazkYglE7Jz6BO2sN5VKM+DhX8vvVbaOuW6LkZA1N8KEj53DPC9uHSLkWiS7Rl7NpbIxSQU407Os5UgX9tpQkMxbRkF5RRbv4vJqViNCWVMpULup6I6bGrESUmpAeJGD+iOxYA/KprMSPl8Q+kS7K4ARnXUf/mL6rw2G6ENV9jDmx+OIXv1j29muuuYZnn312wguqooqJoJIKx4tbejnyO38mU1AKDAK45L7VfOit8/jG6QejaYKmmjB1EYNUzsbyZlQrgU/47tj8Bp0bC8w7YDn7z4jRGzMp2A7ZgsvyuQk+umI+MPwmVR8LkbMcOvsHNszhkgvX0ztP5iwcx6W7v4DrSUQO3shcV1a0AZX3x/BJbwYXnXJgtUNRxaTBcRx+8IMf8Ktf/YrNmzdTKJQGCt3dlc/57+soFqvQhFsyYuFKRVxOxExWLp8FlO6Z/h5gecmAP/9dcFzaUuWjWIEi6/rBuaEJakIG0ZBO1LTY2pNFQwXmc+ujGLrG9t4sBUeioUi/EgLlJqWAhJL99lTqynETyqEuYmC5koyljPr68jY70xaxkEZjLFTqgm0rF+xKx7F6MxbRMh3akQLUF7f2lkjLjoSakMaX3nUAxyxs4qFXOijYhRKitzbovejoKzAjHqI7Xdn6B8NPBjQgZzlETG3Uina58ypkaGztyXpcEdWt0ARDDOzGE5BXWomvj5qs3pqsOEmYiCzrZPIZxvpdHQ7ThajuY9I4FqeeeioXX3wxt95662Q9ZRVVjBkjVTiklOxM50l5krKG1693gXTB4da/beKR1zv4zvsVAfrg2Qle3JLEcV1lnuf5PxTD0JRhUvGtgaSsdMGIsrNlfjBKpWmCVM7iqQ07OW5x04ibVCw0sJH6lcBy6M0U6MvbFGwXXRN876HXuOf5rWU3yUo3oKkmvVVRRTEuvfRSfvKTn/DlL3+ZSy65hP/6r/9i06ZN3HfffUOUoqoYGYah8bmTFnHlg697YhXuULGKkxYFHVp/z0xmlVT24Bhewxtn8sunRfBlUP19UQBhU0mwSinp6s8HIhP+Phk2tcDTwt/XlGO1JweO2lPVFi4Cj51K4v903sZFYGjqcS6K5yaRPLG+i188vTmoljfEQiRzBbb1jD7eFTE1Pnn8Ak48oGUIsXikAPWBl9srWLXCt1cewgffOp9H13biShkkEsJ/D4SXbHmrLTgOYUML3rdKUfxeFidsOcslmR258l/uvIqHTeY2CDr78uQsm6zlkMxaLJ1VV3JWjCcgr6QSPysR5nsPvcaGznRFScJEZVkns4sy1u/qSJhOZ/akJRZ33303jY2Nk/V0VVRRgkrblsNVOPrzNjtSWTKFAaKET2gr3mg3dWX4+j0v8d0zlwcBeF9OcRgKtsvOvnyJK7Y9iHdhdW0i+bcBSVmjoTUwUwobGjVhnS3dWS6+5yWuOHO5ItMNs0mZuj6kBV4OlguWq9xxZ9dHCenaqLOelWxAU0V6q6KKwfj5z3/OTTfdxOmnn863v/1tzjrrLBYtWsTy5ct56qmn+MIXvrC7l7hHwRej8H0sRhKraIyFyNs2qVx5oQgXFfSHDR3LKXXU9uM8U9eCwkZzbRiBIGs55G03MIATQmJoGrmC6ob4e5srJbrQMHTl0eON/3vJgSBnqeeImBp9w4hZ+Hw4ywVDk4HUquvJrYYNjeseXY8uYFYiGgSohqaVFIwGJzBebkPM1DnxgJaSCvRwAeor21N8+a4XOefY/djaPfJsfDGe2tjNQbMSJMKG6ia4YBjCM/kbeA8DSKX41FLkwl0JhjtHhIBL7nt5xMB6uKA6HjaoCetk8g470wX+/eQlnH3sfiVnxXgC8tEKYYamHNvbkrmKkoTJIINPNp9hLN/V0TBdzuxxGeQNzhrb29vp7Ozk2muvndTFVVEFjK1tWa7C0Z+3FYl6GPa1HPTvbs819LbzVgQB+CvbU+xMj1yBKDa/8yVliw3w8rZLwXbRNCUXeMUDr3LZ+5cNu0lFQhoRU7m5VlKxCxkatREDgRh1k6x0A5ps0lsVVZRDe3s7y5YtAyAej5NMJgH4p3/6J77xjW/szqXtsTj/hEWcd9yCEZ23AQ5siZcUXMrBlbCwqYa87ZIp2KQLDi21YXb253GBiC7IOWoks8brtNquImkjVLc24nUy+nN2kDhYrlIQEkKNRen6ACFZ15TstkQVZZprI0RzBTpThWAv1ATURU2OXtDIX17twJWe54+XuIS9eX/bUXKvs+ujJfGL4fkF+X55pi4C3x5lqOriuMq9ung+fbgA1bZUh6QnU+D7f1obvBeV4KE1O3jk9Q5sV9LvGaUVPIlZQ9fQxdBTwNA0mmvVGbMjVb7zYupgOyMkFKiOzH4zYuxIFUYMrEcKqgVq9LYmpPOW/RqGPH68AflwhbCDWmtJZgu0JXMVJwmTMcY0FXyGSr+rlWA6nNljTize9773lbyRmqbR3NzMSSedxEEHHTSpi6uiirG2LQdXOBJRQ5GgKyBe+whpokRdacX+jRx9xZ9HfMzgpCIxKKnwodr8EinglbY+XtraO+wmhVSKJhKNkCaU9GzRyID/X+XaKpS8bUF5S1SySU6HDaiKKgDmzp1LW1sb8+fPZ9GiRfzxj3/kLW95C8888wzhcHh3L2+PhWFoI8pUAvz+5XbcCtjSyZxFQyxE2NCw3Dz/ddpSZsTDdKXz9KYt2pIZbn9qs6oe14QC12010qEFnQxD04JOhy5UMuF4SYimCaKmRkjXufA9B3Dk/AaS2QI3rNrA+o5+pBS01oWpjZocNree4xY10VQT4iu/flH5ZugD7HJfaQlUkiAhWJMP3y/IcVUnxnZVIK55Zqe2o5KTr7zngJJAuVyA6hewHKlGWKSU1IQNekeRgwXVGWmIGrT35RVXAYo6OirBMHQRGN45HocOIXFdSTxiYDsherKW4td5b4MLWI56nwePuPmjZroQtCaiaEIb9cyoJKg+qDWOKyWPru0sKVhNJCAfSYhkLEnCZIwxTRWfoZLv6p6CMScW3/72t6dgGVVUMRTjbVsWVzhebUuRtZxALSQ/eHapDDSh9L79zeXFbb3sHMEsz051lnXULgf/sJBSbaa/fGYLF596UBmitENXf4GIqXPmW+by9IadvNre580jC2KmUmfa2V9QlSwB0lVVQlDVoF2tXV1FFePFGWecwcMPP8zRRx/Nv//7v/Ov//qv3HzzzWzevJkLL7xwdy9vr8a23oziQWiqODGa+pxfWZ4RD9OXs7jl8Y1BN9mVEkdKetJ5hFAFDylgdn2EeFiFG5GQhi4gZ6sAGkcihMA0BA3REAXH5eDZdZxzzMAozXGLmsp2V11Xcu6tT9Oftz0/iIGRJgBcSWdfzpPXZkgCJTxZ1K09GaTXDfeTHJ8P8uV3H8DxS5pLHjc4QJVSvY6vtIRQXQJT1zA1NaI1EppqvaTAKyZ5VkHYzsDnYTuSkC4wdTVSO7Muws7+AknXxtQEs+ojOFJxZUA5hPsdHMejx2h+UoJKssKGkkX3P5vRzozRgmpdg2TW4oKfPVd2umAiAfngQtijazvHnCRM1hjTdOIzDMZ41a4mE2NOLHRdp62tjZaWlpLbd+7cSUtLC44zsqFXFVVUiom0Lf0Kx+1Pvsn3/7yWGTUhoqbGK5450kjoy9s0RE26+ws8uraT//7tmhHvr9fOIDz3ENxc/4hJBQyQFSWqitSRypOIhko2qc6CowiHUiULD73cTktthNqISU1IR9NEoGHuV+LwWveGNrDJ7mrt6iqqGC+++93vBv/+8Ic/zH777ccTTzzBkiVLWLly5W5c2d6PQJ52lJ3RdUsry8lsgUvue7mMX1ABU9c459j9qY0Y3PTYBvrzDoauEdY1erMWeXsgAdC9QNyyXXb05WiuDQ8JMP2Ktx8wrdmeCn5+ZXuKfNG4qP8oJamqvBoMzaY2apIpOCSicoiEdtQ00MIQNXVyloMmBPMaY3zlPUOTChgaoOYsN+CTCKECeiE8lUAh0IQclmCtil46PbaF4XWf0VSS1loXZmemQMH2CdtqbGxmXYSvvfcgEtEQ3ZkC9VGT7z30Gm3JHPMbY3T1F8jbalpfF2otcxtifP7kxXz3gdcIGRqxkEEkpJU4ZldyZgwXVM9KhCviO0xWQD6eJGEyx5imC5+hGBNRu5pMjDmxkMO0TPP5PKFQNYCpYvIwGW3LuqiJLlS1zd/sR+v6521JZ3+B/3f/GmxHkhrFrE4IjdqjVoLrjJhU+PBf3vAYh92ZAice0MwxC2dwx9Ob+fHDbyCQNMXDhA2dguOypSdDtmDTn7d8Gh+g5BkdVOUv6h0UsHu0q6uoYrJwzDHHcMwxx+zuZewTOPXgmfynrpEdpZvbn7eQKUk8bHD+2xdw9R/X0p0u0BwPEzZVgKq6yRHaU3meWN/FbeetYGFTzUAg6UhSOeUK3lgTIp13yNsO0vWVoQQttWGOWTgjeF3Xldzx9GZ+8fRmOjzpVj9gOnZhI6mchZSqO2A57oDSFAOjp2FD51NvX8DP/765bLW8scbksvcfGgTqowWJgwNUn0+iCj0Sx5VETF15IEm1XtuR1McMLEc5bWctF1MDF6HWLQfI8MLrQPsiUP6EV0tdmHjEoC2ZD4jWJx7QzOqtSTZ0pmmIhYiYOvGIQa7gYrtuiVP4kpm1LJ1dx6ttfTSapUlFJWeGXw23XMlX3nMgAL1Zy0tsXq+I7zBZAfl4koTJHmOaTuPEE1W7mkxUnFj86Ec/AlSl+Cc/+QnxeDz4neM4rFq1qsqxqGJSMZG2ZXHm3pe36clYFXMsQFW6+nI2Ypj9pdC5idzm1dS+5XSE0BBCo2KzCw91UXPI+h9a044jJXMbYiWbc23EoDtdCDodug5INbrga5EnoibShZwzNhOnKqrYHXjqqacqTh4ymQwbN27kkEMOmeJV7Vu4adV6rnlkPblRkgoh1Jz/ga0xTl/Wyvf/9Aart/YCyjSueKSmuJv8mxe20xgPBUHoC5t7+fFf36A+ahINGchaOSQA3tlfCLrQT6zr4ooHXuWVtj5cz08obOjUx0K82tbHq20pHFdxGlTnQ8N2BkaZfJx55FzOP2ERh8xOTEq1fHCAGjE1BMp0TroqQWquDaMLT/bW4480xCJEQzrZgsOb3ekgCTJ1Leg+C/zilzIYdDwenURJu0ZNnUidXhKsDy7CCQTRkI4/Fuu6kqRr05u1xh1Yj1QN14RgQ2fl0wUTDcht2+V3L7XRWhfh1bYU23uzNMbDFV3LVI0x7c4RpMlQu5pMVJxY/OAHPwBUJnj99dej6wOBXigUYv/99+f666+f/BVWsc9iaWstLXURNnb20xQPEw3rCAQSSTbv0NWfZ0FznKWttSWPG5y5m4bgzZ3ZMb22qasvazkhqWKitlE7g9gBx4352iKGqmQtaokHFZXhRr98PXjNO3hChh5UyHRdIKQkaupIKenoz0+bWc8qqhgJZ599NgsXLuRTn/oUp512GjU1NUPu88orr/Czn/2MW2+9lSuvvLKaWEwiblq1nisffN0LzIdKZ4Ma02mIhYiHDZI5i/cc3MLP/76Z7nQBhFBeQAhylsO2nixzGqLEwwaW49LZn+f/3b8GXdOCIPS4RTMQqNl+9cjyAXB3psAT67q4+J6X2N6bww3kaQU526WzL8eMeIjejK3ciV2JFFKZsxlaQNx2pSI5r1igpPAnc3ylOEBdt6MPhOqORE2dljrFKZGoYD9TcIiFdCKmCvwjIa3k9kTUoDereWNb6twxdbXP655ZoFLIkvTlLAxNoz5mBMH6WIpwy+YmxhxYj1YN//Bb502ZQ/Zg+MlwX9YKDG6VeIlL2DQqOv8me4xpd48gTaZp32Sg4sRi48aNAJx88sncc889NDQ0TNmiqti34be+f/n0ZjZ3Z+jP2/TlbcKGHrhhq/lR2NKd5rzbngm+wLbtctVDr9OdLlAbMTwHWVXxcYYbci0DXWhIIYfMTQ1Wf4oueuuYr08XykQqHjZKKirDjX7587u6LnBdaKkNBYeOoanDJpO3+eopB9EYD02LWc8qqhgNr7zyCtdddx2XXHIJH/3oRznggAOYPXs2kUiEnp4eXnvtNfr7+znjjDP44x//GMjRVjFx2LbLNY+sx3ElIUMNDjnKfS2o9AtUcUfTNLKWQ8zU+eMrHfTnbZrjYbI9GUBxAoSuyMWdfXlAsq0ni+upItVFzCAIXdfRjytlRU7KV/9Rjdb4PkASAic4B2hP5oOOsivVuKuha8Fwj4vqEtRFDJpqBpTFJnN8xQ9QV29Lcs8/tvG7F7cF5nauK8k7Ss1JdVQ0crYbVNWLb887khk1YbYnsxRs1YGpjRhK4txVnBDHlWzuzgQjUyFdeX90Zwq8fXHTmMaCxhJYV1INf2jNjkn1dhgOxcmwoQsMMWAmly64nLashY8dvV9F599k/R1MhxGkyTTtmwyMmWPx17/+dSrWUUUVAKWtb6kqUCFdaZnnLEd5OgiIeq33kDFgBvexo+fz+9XtvLS1F1dCKmerQ6YCXkUxDIG3eZaW8MpJylbCqRiMRNTkkDmJIdWM4apOwfwu6kAxdX1IlS+Vs2mMhzjxgKFEwyqqmI4wTZMvfOELfOELX+DZZ5/l8ccf58033ySbzXLYYYdx4YUXcvLJJ1eNV6cAv3upjb6s4jpoQhUn/JGdQLkOSGZt6mMmvRmLuQ1RdiSzgeRs2NACnoAQAl2DvOXQ1pvDcaVXiTcRQgRBaFtSKSf1ZAolQSqUBsAAz23qpjBYI7UIvheG6yknORKk43pqVBAxNHRN4+DZiXHzzCoZb3lqw06ufWQ9r7f3Ka8ixyXTnSEaMqgJ6SyfW8/bF8/gDy/vYPPONDnPm2J2fYwzj5jN39bvVJVuV1IXMdTok1DngPSkawckZzWEps6znOWA7bKlOzMsdyBnO+zsLxA2NE45pLVk3ZUG1pVUw3cks8xMRNnakx0XKbqS93lwMqwJFURrAjThUrAlD65p57L3HbrPjSBNtmnfRDHmxOIDH/gAK1as4Gtf+1rJ7VdddRXPPPMMd91116Qtrop9C0+s6+Lie1ezvTcLUmJq6vAoOC54BLiCIwnrGguaY8HG0lqnsaUnw//8aa1SN/HOIv+AHBO5Ak/v23FLRgMmI6nQBPzrMfvxwSPnld04hyOj+brvjitLCNo+qupPVezpOOqoozjqqKN29zL2GWzrzeCiiiigRpKKna99ZAo2OdslHtY55ZBWbnl8IyFdC2Rat/VksVzpjUQpqVnbVtXklkGJgxCChpoQPek8pq6NOOPf2ZcjM5pGKypo9f18wOMyINE8R+3GGnPcPLNKxlueWNfFhb96QfHfpCwicKvk5rMnL2b/GTFuWLWBDZ399HnmgABv7Ojj+lUbuODERVx0ykFBUL20tZZX2/t47I1OrntkXeA2LhjoyviO4JqAB19u46Mr5g/hDnQWHLIFJ+BuXPvXdTy0pn3M4zkVVcMlnHJIK3c+U54cP17uRvE6ByfDxdCEhqG79GUtfvdS26T7QQyX+EyXEaSpMO2bCMZs67dq1SpOO+20IbefeuqprFq1alIWVcW+Bz/zT2Ys77AQ2K5qcbqe0U/BUYeI7UpyxYeOgIItKdiukvcrun08kFDyPK6VJ/nkXRPuVMxvjPHtlYcE5LXB8KtO8bAi5mUtB9eV+ErmEmiKh8oqeRRzNaqooooqRkIgMVu0XepCYBoaxVuTK2HprFouP2MZxy9uCqqiAPGwwZyGKFFTG3C8Ro2dzk5EA2+EYoR1DU1TUrRLZ9WSydt09OfJ5O3gdY5b3MRfX+us6Dpsl6CbWwzLcbFcl48dPX9cYyj+eMurbSlqwgYttWFqwkbQHX9iXReuK7nigVfp7Mt7xHIN0+uSSM9P4ubHN/Bf967mH2/2kCpKKkDt570Zi6sefI0n13dy4gHNLJubwDA0+nIWv3p2S8nnU2yWZzkuulCmgxs606zZngLUiNNt563gsycvJmJqxEI68xqjzK2PDll/pSiuhpeDX9g63ktsRvpcx/M++/CT4eFyRJ+DuK03U/G1VYIn1nVx7q1P85nbn+Urv3qRz9z+LOfe+jRPrOuqKOmydsEI0nCxQ9ZyaE/ld7mQy5g7Fv39/WVlZU3TJJVKTcqiqthzMFlKCH7mHwvpnnxgeaMmVyqTo229WWZ5h1eu4GJ5/im+a6lvQjccgm5GBdDMMHUrziC74VkSR39gXEkFqNGspzbsHPGgG06x4qDWWjr68iV68BN1+qyiiir2TaxcPotL719DMmMhPAqs8Crgpi4o2GqU6dbz3sphc+sDM7rBVdF42KAmVEO24NDZX6A1EaYvaxEyygdaxUHoZ05YOOzZkbNGd6v24fMNEGA5kqZ4iHhIkc1XvdHFJ49fOKa9sdLxlpips3ZHv1J1MgakW4VQPxdsl007M9SFDbLWQNcBSs8eR8JVD61laWuCtx/YXPL6TfEQ2R4lPDJY6Wp2fYSakMGOvhzPbe4p6Xg8tKYdx5XMbYhOeDxnLNVwTROTyt0oXmdxMlxu2f4Y35z62KjXVClG40986u0Lp80I0nQy7RtzYrFs2TLuvPNOvvnNb5bc/stf/pKDDz540hZWxfTHZCoh+Jl/PKyXbKDDJQAF22VrT4YZNSHl7uq3wit4rUqTCuk6CG+zCLcuJty6uIJHDYXmvaDjuBVt6MMR657asHNabBpVVFHFng1NExy9oJGH1uzweAylO6KhCb70riUcMb+h5DHDSZUmczaNNSbf/KeDuWHVhoqD0MHjIb6MaJvnVzEaBqRaRUCarg2bREM6QoPX2vr4v6fe5Mj5DRUXvSodb3lgTbsaTdJESRdZrUt43XUlQevK8klFcN2u5MK7XuBHHzmC2ogZvL70pGaF99rqbJRIKTE0jZ5sgVTW5pq/rANUUthSF2FLd4bGmskZzxmr98NkcjeK11mcDGvCLRmHcqWL7UgSMZOVy2eN+tqVoJLE58GX21jYHOe19ukxgjRdTPvGnFh84xvf4Mwzz2T9+vW84x3vAODhhx/mF7/4RZVfsQ9hspUQ/Har5Q6kBiMlAFKq6tSOlJJhHYHjNwSGBqON7xY6N9H33P0k3vYRjNqRr2M40z1V/VObnyslddGBjbLYRbbcl7/c5jxdNo0qqqhiz0WxQEY5aAI+fJTyfRiMSqqimhDj8kkokRGtcD/3g+5iU7pISKM/b9ORypG1HH7wx7XUhPVhi16Du+5d6XxFCjvpgtdVGWX7tYtGiEa6rEzB4bpH1/PJty0IXl94vh05y8HQCIpotoS+nEVnfx5dEyRiBmFdmalu6EyTzlvEIwYRc2gVfTwKQeOphvtJ4rbeDHPqY6xcPgujqJM1ViUjw9D43EmLuPLB1ynYEkN3A36N7SiS++dOWlTyGhNBJYnPhs40nz15MVt7MpNiuDcZmA6mfWNOLFauXMl9993H5Zdfzt133000GmX58uX8+c9/5sQTT5yKNVaxmzF4413aWjvpSgh+u/XFLcngtpE2YVn03zGoyAKVJRU+UTvz2t+oe+v7Rry/P+NbvAxNEIwD2I468GojBp39BR5f18VVD70WdHpAOaqetWI+H10xf8T3bDpsGlVUsSvQ29tLfX397l7GXoXAGyKZAykJe346PqesscZEStjck8V1Zdm9aLQCx3iC0HIyogW7/Disj5qQTsF2h5jSpfPKU8NxXTQhmBEPoWuibNGrXNe9pS6CK91Rx1sOm1vPnc9swXYkaC5aUefCdgfEP3J2kVzuCLAcl1e2p+jJWCXjNc21Ybb1ZL3gmYBztzOtujpz6qNETRXKRTSd5niI/rxFRypPbcQY0k0Z73jOWApbNzy6nv/9yzrSBTsgtF96/xo+d9KiIGEdj5KR/1g/AXVQZ28iZpY892RgpMRHSonrStIFB9uVXPb+Q7lh1YbqNIGHMScWAKeffjqnn376kNtffvllDj300Akvqorpg+E23slstcJAu/UzP3t2rCJOY77/SBis/lT7lqFCBeWgeV0LP2cxNGXS5LgyOPAKjsR1Xf7vyU1YjkvY0MkULPK2Mvv71m/XcOczm7n41KX75GZUxb6LK6+8kv33358Pf/jDAHzoQx/i17/+Na2trfzhD3/gsMMO280r3PMRCGRkLQClLiSEUhfSJLYjyVmS1kR41P17tALHWILQ4WREIybkbWdI4UgT0FIbRgBd6YLqVBga9TUhXCnpSOWxHRehERCYhRBDil5Pbdg5pOuedxw2daWVGpblsv+MGJo2EFj64y2zEmHue36b2vOlEhYRjkqKJKqYBL55W2UdddeV9GYKtCUzJZwGnyTf2ZcnZ9k4Lhi6SmJm1kWojZRy/qIhnbChk7cdsnmHWBGJfqLjOZUUtv7rnpe44+ktpeeyVET1Kx98HcBzQR+bkpFf4DygtY5bP/5WNnSmaUtmy3ZDJgPDJT79eZvOvhw5y8WVkmv+so6DZtXymRMWkoiGqtMEjEMVajD6+vq48cYbWbFiRXXz38swnGLDhs40vZnCsCoRIV2QtRweXdvB6q1J3EEng+tKVm9N8ujazpLfu1KSr0BiEJQztv+dnayv7kQkZR1Zyu+wHbXpREydOQ1RakI6PekCjmfkFA8bdPbllfGdpimTKil5rb2Pi+95aUyqHVVUsafj+uuvZ968eQD86U9/4k9/+hMPPPAAp556Kl/96ld38+r2DgwIZBhDlJQEyqwtbzu4LpOiZOMHob7a0XBB1kgyomFDx1C8bN66XwP/8a4DeO3S9/LE19/Jjee8lf9494HUx0wsVyUUW7uzShHHu6bm2oGOenHRa/W2ZEnXPWLqZCyH9mSe/ryF5ahq9Os7+tiZzpco7OgadPTleX1HHzPrwvjxrESN5/pJhaHBzEGSu8PB0AS6l5T88ZUOPnPCwhKFn5ip05oIE4+YtNSF+eiK+SSiIeqjQ88nIQQttcoQsKt/1yoErVrbwS+e2VLCkSzu5tuu5JpH1mPb7piUjAYrM33u5//gvhe28Zb5DZzxljmTnlTAwBRFj6dUCSqp2Naj/sakVC7riZhSsbrkvpfpy1mj/r3vCxj3p7Fq1SrOOeccZs2axdVXX8073vEOnnrqqclcWxW7EYOJSxFTR9MEEVO1WiXQkcozuFndn7fZ2JUhlbX4yWMbS6TZYHjptsff6OTqP64tlYsdAY47MAI1GR2LyfCpaK2LMCsRDmTv6mMm8xuj6JqgPZUnZKguRkjX2JHK40rpHabC0+FWX8dk1ua6R9cPSciqqGJvRXt7e5BY3H///XzoQx/iPe95DxdddBHPPPPMlLzmpk2b+OQnP8mCBQuIRqMsWrSIb33rWxQKu8addlfDH+2ImHrgbVAMnyuWs5xd6oszmoyorinFqhMPbOYL71pCKKQHScthcxMBjw2P1DwSfPnP57f0lszP+wFjznI82ViB7iUEO1J5tvZmyeRtDmqN01IbxnElrXURGmvCzGusoSakURzbRgzBvMYamuIhDH30AFNDJSSGprG1O01txCwj3eqwbE6CH3zocP7lyHkjSsCahkZDzGRBc7xi6deJwnUll/3+1QEfKT+rEKVJbMrzmoCBsbmRJGrHIkk7mRic+GQKirfjuMpXS9c0WuoiRE2D1row/Xmnem57GNMoVHt7Oz/96U+5+eabSaVSfOhDHyKfz3PfffdVFaH2MoxEXBqu1dqft9nancF2VSY/OxHBcmWJM/bP/765DOE7xZfufIF03q7YIXsyv7tSStKvPDJhnwohJE3xCGFDZ1tPlp60RTrvEDI05tZH6c/b7EjlFDkRtfFqUqAXdV6kVO/vZJnqTJYccBVVTCUaGhrYsmUL8+bN48EHH+Syyy4D1HfT8aSkJxuvvfYarutyww03sHjxYl5++WXOP/980uk0V1999ZS85u6EP9qhCYa4ZoMvQCHJWCqA3VVKNuOVEfWLX44rOWBmnLwlVfDXNyDo0dmXoyZUE1yjP7cvPPGPkK5cxzv7Bgo9AsU7cYVkTn2UZM5mTn2Uy89YBsAFP3uu5FyMhw1qmuLkLJfudJ6ejBVIoWcLjhrx0gVCCCzHLXt2Fbz8wHZdujMu/3nvav7rtKXcdt6Ksvt3OelfH/4Y0cGzE9x67lt5tb1vl+z/a7anaOvNlf+lACEHZOCLvSZGGpvb3c7WxXyhV9tSZC1HubqbBs214cCrZTwj4Hvz2VxxYrFy5UpWrVrF6aefzg9/+EPe+973ous6119//VSur4rdhJGIS36rdUtPhq7+PM2aIKQL2pM5bFfxMGYmIui6hq4rZ+y2ZI5rHlmPoYmSDcK2JNmCQ6bgTCpXYiwQQpA49sOkX11F/NB3jNunoidtMSMeJmcpoz4J2J77aTJjETZEMNPsusql1bJdMDR0odrgQkDU1OnL2fzjzZ4JbTqTKQdcRRVTiTPPPJOPfvSjLFmyhJ07d3LqqacC8Pzzz7N48fhknkfDe9/7Xt773vcGPy9cuJDXX3+d6667bo9NLEYKVopn2pviYbb35kpcs21HkbXro+N3qx4Pxisj6he/oqZOOu9gaBqNNSFSOdvrPEDedslZLtGQXjK3f/j8+qDiL23F5dCLyNf+XmzqOk1xNcaqCTHsuSiEIBrSqZcherMWedsljkoUAslYocbNXM9ryX8dH4YuvARL+TSNpK5YqQSsYWi7TOyjO1OoaC5ZiKFJ4nDcjengbO0nPrc/+Sbf//NaZtSEiIX1IaT4saht7e1nc8WJxQMPPMAXvvAFLrjgApYsWTKVa6piGmA0xQa/1TqvsYaOVI6dlkPBdoiaOjMTkRLXVX/TbevNMrt+wLDHbz+7Uqld2JXRKyYNTrYPPVoLgBaKUnvYKRN6Pst1aevNsjNtBbeZ3nVJlDpISNdUK5WB2VPLcZGeDnskpKQFUzmLH//1DQRiXJvOZMsBV1HFVOIHP/gB+++/P1u2bOGqq64iHo8D0NbWxmc/+9ldto5kMkljY+Owv8/n8+TzAx4L08kUdrRgpTgY7c87NNWGSGZUEOxIJTJxUGvtLhePGK+M6OPrOunsz3vjT2pcKmzoxMOGUotyXPC6BFiUBNzL5iSCJKsmpEZU/XxGSul13TUipvqdHzCOdC5KJAXHRdcEqbxNQ42JoWlFY2fKz0L3EjZd4HmIKF6ipglPQdBgTn2EHanCiNX46WSIBipmiId00nkbVxKoQfnwk6iakFGx18RYJWmnCpomeMt+DdSE9JIEtBiVqm3tC2dzxYnF448/zs0338yRRx7J0qVLOfvss/nIRz4ylWurYjeiEsWG4lbro2s7+MljG5ntdSoGQxciGP8BhrSfnbEYUUwCCp2bSP7tF9Qc+g5ii4+elOd0XeguSioEeBc8cG2246J71xtI5kqwvBmwguXQlncwdFU5DBv6mDed3d0+rqKKscI0Tb7yla8Muf3CCy/cZWtYt24dP/7xj0fsVlxxxRVceumlu2xNlaLSYGVwMBoN6URDOq11ET5Sgdz1VGGsMqJPrOvi/558E8dViYeuiYAfUrBdGmtCJLMWBdshmbOImfqQgNtPsnqzFiBxVR6C7Up0MUD8ztk2SNjYlaZ+nsnC5hpea+8vOReLfTOEEGTyNmt39NMcDxPSNXKe87budVW604XA38I3v7OdAQVBTWgVVeOnk7fRIbPrWDyzllTOIu3Ndg0ebRbA505eVPF41ngkaacKY1WxKod95WwWcjS20yCk02nuvPNObrnlFp5++mkcx+H73/8+n/jEJ6itrZ2qdU47pFIpEokEyWSSurpdM4u6qzFwWDllW63FQe7qrUk+c/uz1ITLm/L0ZApBx6I+FiJbcNi0sz9wE62UtF0M0/viOVJVNHIVtjyGELWP/2hFyh0jYTgzP0MT2K4s+X2T164vJt4JQNMUKR1gZl2YltpI8HspJe2pPEtn1XLbeStG3HRG+yyylkMmb3PD2UdVPTGqGBVTtdf99re/rfi+//zP/1zxfb/+9a9z5ZVXjnifV199lYMOOij4edu2bZx44omcdNJJ/OQnPxn2ceU6FvPmzdut54DrSs699WlebUuVBCsw/L4xXee7RzNVg4HrfWV7kpzlkrM93oQQSG+kK2xoREM6cxtifPFdS2iqCZe9xifWdXHtI+t5ZlM3Bc9FO2xoNNeqrntfzmJbbxaBoC5iEDI0ZsRDdPTlcVwl0GE5rueboYpksxNRbNeloy+PKyFiqLNJyeRGqI+a9GYt2lNZHFcp6Oi6IGzoJXP7rivp6M9z9QcP48QDmnfVRzAh+DFDZ1+OrFXKJ9EEnHxgMwVHVjwCNPC33UdrXbiiv+1dcX2VxETlsCefzWM5B8acWBTj9ddf5+abb+b222+nt7eXd7/73WM6LPZk7AuJBQxqr3ut1nIbwWgbQFsyhyNlwLHo7M+zI5Uv95IVI2xoCFDtZzG68R2UJhXh1sXUHTs+ovZYUZxYzKwN05+3S3glmlAGT46XhMTCBvs3xUparpVuOo+u7eQrv3qRltpw2c12Tzywqth9mKq9rtgfYCQIIcZE4O7s7GTnzp0j3mfhwoWEQqrKuX37dk466SSOOeYYfvrTn1a8Lpge58CeHKyMB8XXa7tSBfXe2SJQhSZftenqDx5WUYf3jqc38+OH3yBvu8yIh4gYOr1Zi7ZkFoBZiQj10RAFx6UnY6FryktjZ3+Bzv48jidY0lIXKUoMXLb15pjbEOXDb53HQ2t2sKFz4BxtqY2wcWeampBOLGQQCWnj2u+nG/yYYd2OPvoLDkiYVR/hzCPm8MtntgzpqvWMEpRPNJifqusbLSYqhz35bB7LXjcugzwfBx54IFdddRVXXHEFv/vd77jlllsm8nRVTENU2modjUxWGzH46Ip53PrEm2zoTJO3J6704rguLmoWt5KGx+BOxWQnFcXJw2ByXvHyJCoZMnXVzQgbGi21EQqOS0cqF+jJ5wqKdOij0nnS6dQ+rqKK4eC6U0Oqam5uprm5skN527ZtnHzyyRx55JHceuutY0oqpgumyxz6rkLx9UZM4ZnH5cjbbuDPoWuCs4/dv6KAU9ME/3rMfixsqgkCxlTWJpWz0DXBnPpoYEJXPLKSiIb4+HEL+M7vX6EmbJCImiUFNU3TaKoN050ucPi8Bs5663x+91IbW3sySAlL59RyzV/Ws7UnQ6OpPrtswcF2XXQhSOYsls6q22XqXJOFcjHD0tZazrvtmXGNAE03LslExs/2lbN5QomFD13Xef/738/73//+yXi6KqYZKnHbhJE3gBOWNLHqjS7ylqPMZSZhXWMhe0+GT8XgcSf/GHeBRMQkETPY2pNVxDWGmgP5zxHSVWUCoRy6W4ukCTVNqUZJVymKwMDmU+mmMxmzoFVUsbdj27ZtnHTSSey3335cffXVdHZ2Br9rbW3djSsbG/aWYKXS8azB1xsPG9SEajw1PqXI5zgux48x4CwOGP/xZg8//usb1EdNoqHSMMlXI9rQ2U9f3kbXNOoiZtlxWj+pe3xdF1c99BqvbE+Rylm4rlLgipoaBUeysSuNK8FyHKR3foQMjROWNE2LEbWxYnDMsHprckLqTruDSzLS32Px9Y1lrHBfOZsnJbGoogof5TaAZLbAJfe9TH/epiZskMrZ+AoZ4/GjEChpPmsMhG+re1uQVNQf9yFCoTCO6zIWzrh/V10oR9WQoZHO2+xMF5gRD1ETNijYkvZUruT+g9GeKiAlRIxSBa2IqSl9+YKD8JKO4LXHsOlUKkW4Jx5YVey9SKfTPProo2zevHmISd0XvvCFSX+9P/3pT6xbt45169Yxd+7ckt9NYEJ4l2NvCFbGIr9Z7np95UEptWDu3r/esQR+fsDYnSkgULyHcvATBiEZNalzXZf/e3ITmYJNOq8cmzVNqQBmLRcNQdpRe74ySwVTV4apP//7Zg6ZnRhTVX7w9R7YEuf3L7ePyFuZCCp5fyejq1ZpgXMyUOnf41hlY/eVs7maWFQx6RiczZ9769NBC7Q/bwNe0CygYJc3DBoJEnDG+KCaA9+GHksQnn0gummWEKUrgf81N3TB3IYo8bCpDu2shaFpntu2VFwJVBdjMDRgRm2IguWStV0MXVBTNOokhKApHmZzd8bzu5C4rhzXpjPd2sdVVDESnn/+eU477TQymQzpdJrGxka6urqIxWK0tLRMSWLx8Y9/nI9//OOT/ry7Gnt6sDJW+c2xXO94/QIq7QIdPr9+xKSuJ13A8fyKbK+KZRqaZ8Kn5Gn9/n1Y15iZiGBqSuYWGLNK0ODrzdvKI8qVSoVQAy69f01Zpa3xoNL3tzEWwtAIxssM7xoHGxdOh65apX+P45WNHXw293qBiK/MdszCGbv6kicde95AaRV7FAYb3JTqeqtZ2ErOOw3VKTBUPlJRMmJ1b8O1BgjikXmHInQTx4W8NbZuhVqrUvWImQZZy1GHWtTkwNY4nf15NnT005bMlU0qwobSKc8WXOY2Rr0WuEtbUkkUOo5LT6ZAd9qiPmZy4Mw4mbxDR3+eTN5m6azaMZPUjlvcxG3nreCGs4/i6g8exg1nH8Vt562oJhVVTDtceOGFrFy5kp6eHqLRKE899RRvvvkmRx555B5rVrcr4QcrS2fVksnbE9o3diUGy29GTB1NE0RMnda6MP15h+seXa9GR4vgX+9BrXF6MwW29mbpzRQ4qDU+JPB7tS1FTdigpTZMTdgIAr8n1nUNuy6/K9KTsYZ0r/wu0KKWOMvmJLjgxEXEwzrtqTxZy8F1ZXA+hDzz02hIDzwufIJ2YJgn1bnmSImpKTUrvwtTPCI0GgZfr9AglbOxXTUdYAh1BiUzFlc++Do3rVo/jk9s+Ncb6f1NZgtkbZdtvVm29mR5szvNpp1p+vN2yfu5u7tqlf492rY7rr9bH/7Z/NmTFzOzLoJAsCOV59q/ruPcW58e8W9zT0C1Y1HFlMBvjz66toNMwaE+6pHfisZ9fC5COeiCYNbU1MD2/q1rGhJ31G6Dz6kwGmZRf/zHEIaqhPich/EMOoQNnZxl0+GRO2bWhTlrxXwyeYurHlo7rGSuoQnlJqupClLekjTXRuhJF5jXEGVDV5p0QbXIdU1Qp5vUx8J8ZMV+zGuMTWiedFe2j6uoYrx44YUXuOGGG9A0DV3XyefzLFy4kKuuuopzzz2XM888c3cvcdpjOnkaVIqJOyv7gbr0/jsgpzsRv4CxdEVG6g4ft2gGtzy+SRXTikz4AsiBq1Cy66W8ukqJ94OvVyLZ2VequujLsmsCCrbkmkfWc95xC8Y1FjWW9/epDTu55L6X1QiYUJ0aIQRZy2FrT4aoadBYs2vd3odDpX+Pv3upbcKO4E9t2MlPHtuwVxrlVROLKiYdxe3RrOXQl7PYZLsBnyAeNunPD68K1RAzqQkZtKeyyjnVlYHRTqECxnYxUVvooRL7z/FOTivnbIewqVMT1unP2+xI5rj2r+vIWA4hXXhqTkPXp9rQUh0uHim7JqSkEnsylle1UZKzSulE57X2Prb2ZLj8jGXVxKCKvR6maQaKTC0tLWzevJmlS5eSSCTYsmXLbl7dnoM9rZAw2ux9SBN0WQ6Pru0ACBKl4cZQXmtXQdmn3r5wwoHfWMZJh0vq1mxPcfuTbwYu1IPdqP0ZW3U+iBJeHZSOCI3EZRgcEPemraAj73u0Su9/mtAwdJe+rMXvXmrjjLfMqfDTGkClAfjqbckgAZnXECNdcOjsyytVSKmSHU2Dy95/aMVB9FR6sFTKBdnWm5kQZ2RvN8qrJhZVTCoGb/j1MZOc5ZK1HLb1ZJjdEKU/bytOQpF6Egz8O2e51IZBSjFmLsVkqD8NB8eFnnSBvpzFfo0xwoZOKmeRyqq50aaaMJ39qkokBAG53N/Q/dsNTaM3a9GXs0jnLQRgGqralrddOvvyzK6PBO3UPXVzqaKKSnHEEUfwzDPPsGTJEk488US++c1v0tXVxe23386hhx66u5dXxRRhJC5Df96mPZmjYDvc/PhG7vj7Zha1xPnMCQu5YdWGEYOyXz69eVIkeMfSBSqX1A0QzVOEdI287SJ0Ao6F4ypenuNCLKQRCZUX7EhmC5x769PDchkGB8RWmZa+xDuHhCpiOcC23syQ+00mGfv5Lb0lCUg8bFAT1skVlIKX46r3IBGtjFsxXs5MpaiUWzOnPjYhJbaJd+qmN6ociyomDeXmE3VNozURwdCUilNbb45swVazpkKNCdXHTEKG+nJJ8OZTlaHeWDCVSYUPic/vUPOqumfK5EpJKmcRNkRAktPEwGP8QyRs6IQNQUdfDqUsKzB0DU1oaEJg6EotpKu/QH3MqHi+tooq9mRcfvnlzJo1C4DvfOc7NDQ0cMEFF9DZ2cmNN964m1dXxVRhOC5Df95mW0+GnOUQMnRmJSLB/P5X736JV7anRgzKfGW+wqAAWyLJFhx6MgWQBCO6I8FPGE48oJllcxNjKvL4I1XxsIGhq8dZtgqqLVdxLiKGrgjNuiBnuSUcjXhY54QlTVxy38sjchmKA2JQqlKDIRjolnhq58ypj5Xc54l1XZx769N85vZn+cqvXuQztz9bduZ/8OsNhh9YC8mQBESgOCe1EZO6iIlVocfKRDgzlaJSbs3K5bMqut9wnJFKErNK35fpiGpiUcWkYbgsPB42mNsYI2LqWI6nAiUhFtJpiodJ5x0cV8n2+Y8qjJFZPVJSYXgHweDjwBznX7/jSrrTebr68/Tn7OC5C45LIhZCFwJbgl70Htieo3YiarItmcOV6t/FHRv1PCIwyHNd9ujNpYoqKsVRRx3FySefDKhRqAcffJBUKsVzzz3HYYcdtptXV8VUYSDwHiA/O45LezKH5Sg37dZEBF3TAmJsOu+QylmYevkAP+wFay114ZLArz9vs6krw6adSmQjmbX43kOvTSlR1nUltRGTD791Hgua4tRFDCU16yq+QV3E4Mj9G/jaew9k+dz6IcT7y95/KKve6BqVJLy0tbYk0E3EDPy3J5gMEOp/rlQKVbVRk9MPbWX11iSPru3kZ0+9ycUVBu6VBuCHz6+vKAEZTQ1qvCT/saLc3+PgRO+CExdhGFpF9xsuCa00MZsOKlnjQXUUqopJgetKntvcQzqv9LgLtoOp60RCSlqvJqTTmgjTnlSVpBk1IRIxkzd3ZnGlxNAVCU8IF9dVJO+ReBiDoYWiYJiEmvYrSSo0oTojg7/eg43rxorujAVYAzdI0ISqQBQ7wfqvZXrcCSklc+qjbO3OkoiGSOXsocmFx8XIWc4evblUUUUVez6mcqYdhnIZuiyHgu2ooLHI5wdUR6IuapDOW/TlbOrL7I15xyWka5y1Yj4/eWwD7ak8YUOjI5XD9YJgUxc014Z4rb1/yoiy5cZ25s+o4T0Hz2RWIkp9jUlTTTh4Pz95/MKyHI1KRmZebe8bQjafURumIzVA4NaFGi22HSUScvqhrXzy9mdZ39FPwXa9s0idTxFTjfcMN/NfKbl92ZzEpHis7MrRoUq5NRORdN8bvGdGQjWxqGLC8DfQl7YmSeYskjkVcOsaRE2DeNigP2+Rs9RMpa5BWypHznLJWcq5dGDmVG36OavypALASMyk4aTz0GOJkvEnrSiDKE4kJGNz7q4ErlRVsZm1EWbWRdjZXyBsaHzuHYs5bG49vVlLkfCk5IKfPYcmUApZloupEWwu6uyTZCyHZXMSe+zmUkUVlWLBggVlnYt9bNiwYReupgofUz3T7qOYy/Do2g5ufnwjs7xOxWDUhQ12aIJU1iIRNYcNyj66Yj4Lm2q49pH1PLOpG1uqDkjY0GiuVQmLlHJKiLLDkcu39mS585nNnH/CIhrjpUlROY6GPzJjaoJswcF23RIPiGKuyIkHNJcEulJCXcQIfCwcqQz9EjHVqfjb+p3B+iKm8mSSUrK9N8ecBhEkdMMF7pUG1pPhsTIZBntjQaXcmvEqse3p3jOjoZpYVDEh+BtoT6ZA2jO/8+G4kM7bAVmbImUMR0JXWm0CAhc0DduVA+1blWqM2FUodG4CINS8PwBG7dCDznYlM2pCmLrGjlRuQl2KwRDe/xV3glNZlVSFdI1lcxNlD2DXlSxsruHlbSliIYO8VcDyDgxQFSVNE9RHp4cEXxVVTDW+9KUvlfxsWRbPP/88Dz74IF/96ld3z6L2cYzXAGy8KA6s7/i7Il+XiyMLrqQuYhAy9IqkYGvCBp+87RlCukYsZJQYs00FUXYkxZ94WHk5/L/7X6EuYo6aqKlClMumnRks1w1UpfzkSNdESVe7XKA72Hnb71QUr6/PKwYauupqdPblqQnp5CzFB9GE4kgODtwrCawnw6y1UlL1ZHb3K1VYG68S295sYltNLKoYN4o3UOUqKgjpAstxgwDe/68/+qiBIiu7Esu70XJBxyVq6tRFTDr78yrBGMEd2+dUIAT1J52HWd867Dq70wVa68ITSio0MdSUTxZfoAfLkbxlfj3//o4Dhq1cPLVhJ8msRV/exs3JYAzKdlxc1PjWQa21XHzq0j16c6miikrxxS9+sezt11xzDc8+++wuXk0Vu1MOs5IxkYNnJwJ1qNGCst6shUDQEAuVXetkV7uHG9vpz9ts783huhIpJLURNxFOcQAAVgVJREFUA10TIyZqyWyBdMEhb7mYhkAXwhM4cdnWkyFiGhw2b6CrPdzYWrGk7OqtySHr841rQaBrSkBlfWca20tmQKJrGlu6h6pIVRJYT9RjZW8dHdoTvWcqQTWxqGJccF3Jb17YzpptSUxdI2876JpSNkJoKkgeFHT7Pg1CCDRdoGky4CGEdI39GpXOteM5hQ6HwURto3bGiGuVQIdnFmR4I0eWMxDQV5Jw1IQN+nL2qPeTwJ9f7eCt+zeW3WyLq4CtdRF6MwXytoPtqvdnv8YYn3r7Qj66Yv4ev7lUUcVEceqpp3LxxRdz66237u6l7FPYnXKYlY6JHLe4ieMWNY0alO3qane5sR0pJZ19SulQdQWUkmCNaQybqLmu5IZVGwgbGo4jcV3fYE8ikBQcQNic//YFgbdHJWNr5dYXGNdaLhpKoCQvHaUuJSS2o9Z706r1LGyqGXPBqxKezkj32ZtHh/Y075lKUE0sqhgz/A3sle0perIWmlAbpRBK6UIXAs1QyYXtqi6FX4kvPqSE8JWTVIKRzNlqAx1DUlGppKyuaeCqGVvXbzVUmFkICNSfKoErKetqWq4K2FBjkiu4WI5DMmcztyFWTSqqqMLD3XffTWNj4+5exj6HXT3TPhiVjolUEpTtimp3cVDc3V8YksjkLJe87Q4oFAoZmOENl6j5yV1LbQS7Ro0nZS27pItvO5Lv/+kNXm/v4+d/3zxkbO2V7Sm+fNeLnHPsfhy/uJlDZteVTbSEEDTXRtjWkwkUGf212q46P8frrVRJwlPJfcYyOjTVggNVjIxqYlHFmPDEui4uvnc1yYyFoQs0QHiRueoCSM/bwU8iZCDBNPh7LSVoGiQiIXqzFl19eXIjMKon4lMhhHK+LvHGqHA2aiwjVBrqmsq5mparAvqa3lF0TENnQ+eea4pTRRXjxRFHHDEk4Gtvb6ezs5Nrr712N65s38TumGkfjOHGRFxXcu8/trGtN8OsRJRFTTUk8/awAeRUV7sHB8WGBlnbJV1QbtNCiIGRIqEESiKmXmKGVy5RK07uwibkLIOs5aAJdcZqQiUWGzv7+Z8/rSWka8xvjAXfI9uS5Czl2fH9P63l9iffDAwGyyVa8bDBjJowbamc582kzvaoOUB2N3RtTJ2qSng6QMVcnkpGhwZ/HqCkh89aMb9atNtFqCYWVVQM15Vc8cCrbO/NetrVIvCk8KGIXmrD9F1FfTMev0MgpcRFYtvqFz6J2x6hVWH1tk/I/M43sXOL8paREgYBhAyBlGpdrgRDgD1KlmHoGkJILEcOcTXd3VXAKqqYrnj/+99f8rOmaTQ3N3PSSSdx0EEH7Z5F7cOYLjPtgzsSN61azzWPrKcva+FbHQmhPJESEXNYIvRo1e5jFs5g9dbkmCvcwwXO6VSeTMFhS0+G5tqIGhEGT+pVo7k2zIBrU/lEzU/uerMWvZkCmYIzcGa5qlKnaYJ4xKAvmUMrej5lMJjFkSoJkd5/X23r45L7XuZjR89nS3dmSKKVLjhoQEsiQsTQShSoYGxnVCU8nWsfWQeIMXF5RupSFX8eYUMnU7DI2w5d/Xm+9ds13PnM5ip3cRegmlhUUTHueHozr7T1gZReAK02db8qAGq/88nbSg5PKB6FAMeRSKH4BMEjKmwHGHXNmDMXguOMy1E7N1pGMAi6JsBTpvLhSjA1EZDOB8P0nLh9M7zBrqbToQpYRRXTEd/61rd29xKqKMJ0nGm/adV6rnzwdVWwUgJ6gOp8p/MOEUMfkQg9XLX7qQ07OffWp8csqTtc4BwWGs3xEG1J5cmUzttYjlJWkgJm15d6cwyXqB0yu44Z8RBrtqdADhyVfjfBdVQ3wdRVSmE5LjnLJWJqAZ/D1JSJk+2oM621Lkx7Ks+qN7q47P2HDiG/L2yuYUt3htqwEXhZFGMsZ1QlPJ3X2vsCYv1EuTzFn0c8bCiivFSJnK4ptcXX2vu4+J6XuOLM5XslaXq6oJpYVFERXFfyy6c340pJSBdBBcbQVPBdrAQVVJKkRAvpnLCwkc3dWTZ2pbHG6R0hNJ3EMR8E6Y45qRgPbFfieAlEkEYItTkL4RHnitcH6LoIXE0TMZOVy2eV3Ge6VAGrqGI6IJVKVXzfurrqd2JXYzrJYdq2yzWPrMdxJaZe6kHkWxX1Zi0OmhlnWzLHd/7wKpefsYxlcxIlweLgavdEJHXLBc79eTswR3UlSEsyqz7CGUfMIR42uPaR9fSkCziuUoUqOLKyRG0ER1d1Jikeo+265CwCPocQAleqMWCl/DQQrCeiIW47b0VJcL20tZbzbntmUs6oSjr0qig5OV18//Ooj5m0J/MlxrsgMHSJKyXJrM0VD7xKIhpiQ+fU+rPsq6gmFlVUhDXbU7Snch7ZunSzEULxCnxSWWPMRNcglXPI5G0eXdtFTUjH0DRsV7UrKskvCp2bKLStpWbZuxFCIDQdGFpFqQSGNnZDvOJ9vC6skbPBchXpTtfcEhKdLihxNf3cSYtKiNswPauAVVSxu1BfXz+iKV4xHGdshplVTA6mixzm715qoy+reH1CCKRUm6//5yOk2n/XdaZxXJdX2yw+edszLJ1VN2ywOFFJ3cGBc/H4kaEJNCGxJexI5vjpE5toqQ1TsB0ylqO8nTRBXcTk4Nnl17hme4qd/QVmJSJ0pwtki6pymlfk8seHTV1XyoxFfA4hQKIKZMWcjpAm6LIcHl3bATDk85ysM6qiDr0X+E9GF9//PFwXT6VSlIybCQZ4na+09VEbNmiuDU+5P8u+iPJp4i7CqlWrWLlyJbNnz0YIwX333Vfyeykl3/zmN5k1axbRaJR3vetdvPHGGyM+53XXXcfy5cupq6ujrq6OY489lgceeKDkPu3t7Zx99tm0trZSU1PDW97yFn79619P9uXtVejOFEAqYx7blZ5LtqTgKLULP8jWANPQSGYdbFepRLkS+vIOBU+CVlSwKflE7czaJ8lteG7Y++mjPJUu1CZcvMGYuiCka5ha8a0jw5GC2fURoqamKkCIEjK6I9VBlYiZfO29B3L+CYvKPo9fBVw6q5ZM3qajP08mb7N0Vm11Q6tin8Jf//pX/vKXv/CXv/yFW265hZaWFi666CLuvfde7r33Xi666CJmzpzJLbfcsruXuk/Dr/KfeEAzy+YmxpVUuK5k9dYkj67tZPXWJO5I0n9lsK034ykLquBwuEf7I0eaUHu8Hyw+sa5ryH3HIqlbDsWBc7GcrKn5HX3VSTB1jY5UnlfbUtTHTJY0x5ldHyVqGoQMjc+csLDsvu8HyvXREAubaoiaOprwzi9D87gTyv8oZKjberNWMIrrSM9sVYiA09Gft9m4M0Nf1uLmxzfymduf5dxbny55fybrjPI79D0Zy+NkDsDvfhzUWsuBrbUj3mdRS7yiDon/eeQsJ0isSp7P+/9swVFndVSNe2maIGLqtNaFA9Wrsf59VlGK3dqxSKfTHHbYYXziE5/gzDPPHPL7q666ih/96EfcdtttLFiwgG984xuccsopvPLKK0QikbLPOXfuXL773e+yZMkSpJTcdtttvO997+P555/nkEMOAeCcc86ht7eX3/72tzQ1NXHHHXfwoQ99iGeffZYjjjhiSq95OqISaTb/SyuETt52KdjusF2HjlReSclqwjPOK4Uzypd2sPpTZP/Dhr2vhKDq4Uo36EroQhAxNRJRZbgHA91kP52w3eGdvTUBYUOnIWbS4bW2dSGYWRshY6nqaczUkbh0p23+6bDZHDm/gZXLZw3pVAzGdKkCVlHF7sSJJ54Y/Pu///u/+f73v89ZZ50V3PbP//zPLFu2jBtvvJFzzz13dyyxiklApf4KI2FOfUzJlku/UFSaXPj/1r3xH6VmpBM1obO/wFUPvc7d+zeW7M0TFdMoHm1NRIyS8SPpjQcD7EwXkKiO+fbePK2JCPWxEImoSXsqzw2rNnDcoqZhz9xUzkLXBA0xk65+F0eqDo0KxCXJnBrj+tjR81n1RhfrdvQpTqOr3oOWOsXpUB2VDJajOhizEhEsR45bfWk0VNKh/+xJiwEmpUPifx6rtyUBiZQiSC6klNiu+qx9R3dTL+2QTLU/y74EIQenibsJQgjuvffeQB1ESsns2bP58pe/zFe+8hUAkskkM2fO5Kc//Skf+chHKn7uxsZGvve97/HJT34SgHg8znXXXcfZZ58d3GfGjBlceeWVfOpTn6roOVOpFIlEgmQyuUfP/1a66T/+Rief/8XzpLLWiBUjHyOMhI6IsUrKJiIGzbURIqZGtuCwsSuNBBpiJvVR9bjtqZxKhLwFhXQRKD0NXqvyuZCEDZ1FzTUgYGNnmkzBIWSoboVfDQnpGrqmcdi8BLedt6KaGFSxV2JX7HWxWIwXX3yRJUuWlNy+du1aDj/8cDKZoY6/0wF7yzkwVRiOw9DjBY2VVsBt2+Woy/9MMmMFHIty+3fYENiuKjbpAgq+L5KULJtbz0WnHBi83uqtST5z+7PUDENUzlpqlPeGs48aVYWoO22RLtiovEVged15XxXRh+ZxHeY0RImHjRFfo/jMFahAXffOGMdVgbIuBLPro/zTsln8x7sPQNMEa7aneHxdF//35CYsx6U+FiKkCTbuzJCzHAxNMLcxFhDIpZS0p/IsnVU7JedYSYzh8XRG9LEY5j6VvtbF965me28W11UcCxDBe9UQM+nozxMzdRY01zB4ZsF1JR39ea7+4GGceEDzZL4NezzGstdNW47Fxo0baW9v513veldwWyKR4Oijj+bJJ5+sKLFwHIe77rqLdDrNscceG9x+3HHHceedd3L66adTX1/Pr371K3K5HCeddNKwz5XP58nn88HPYyEeTldUSlx7Yl0Xl9z3suJTUBk/YlckFaC0tyOmRs5y6S/Y+Oq3vVmLnowFMGTNtiODnwdvof7Mas5y6M4UmFETJmLqpAsOeVvNhOrKa49MwUHXXE5YMrTaVEUVVVSOefPmcdNNN3HVVVeV3P6Tn/yEefPm7aZVVTERTJTDUAzD0PjcSYu48sHXsZxBqlDefXShEg6B2uMtGOA6OLCxs7/kXJsMMQ1/bOiqB1/npW29WLbnmYTHg/DJ0/51aALHG5uqCdUM2xXxz1zXVZw916v/Wl5LXtcESDXutLk7ww2r1nPHM5v53EmLOP+ERSybm+CwuYkgWO+yHAq2o0Z+EqWqVCNV6ifDaK6S7sdkdfGPW9zEFWcs44oHXuWVtj4KjkQXEDE0EjGTTN5BE4L6WGhIUgFVZcbJwrRNLNrb2wGYOXNmye0zZ84MfjccVq9ezbHHHksulyMej3Pvvfdy8MEHB7//1a9+xYc//GFmzJiBYRjEYjHuvfdeFi9ePOxzXnHFFVx66aUTuKLphUo3/RX7Nwb3a4iFSOcdNeQ62evJZ0g+ceeYfSpcKdm0M03WcktGrIqrRMWrDc6OIg30wZNZfgWsI5UnFLSiPRULV3ou40o73dAFq97o4pPHL6xoE6w6glZRxVD84Ac/4AMf+AAPPPAARx99NABPP/00b7zxRpX/todiLByGSsZOfN6a72MxMNo68JxhQ8ORykfIDFSRFGG3KR4mmbNLkpnJIirXhLWB0V+vo6976onCG7nVhOo6CKlUm3KWyoIGB7LFZ/P8xhjpghMoTSmzPYnj+KRtEXRFkhmLKx98PXivioP1R9d2cPPjG5mViKBrQ0e/yiU4kzHC5qMSh/RK7lMJjlvcxG8+dzx3PL2ZXz69mfZUTv1CwqFz6khmLdqSeU94pqrMOBWYtonFRHDggQfywgsvkEwmufvuuzn33HN59NFHg+TiG9/4Br29vfz5z3+mqamJ++67jw996EM89thjLFu2rOxzXnzxxfzHf/xH8HMqldqjK2mVbvq/e6mtRMINPAWkSc4ttHCM2recTm7zahLH/EvFkrI7+hSfwxmljaILmNsQIZlzaIyF6E4XiIZ0utMFCrarql2DKmCuK9nak0MCrXURGmpC5Aoutusq46CQ6pSMdjj6ycTj6zp5aM0OdiSzQbu+KnFXRRVw2mmnsXbtWq677jpee+01AFauXMm//du/7dH77L6MqTAEPf+ERZx33AJ+91Jb4Ly9YEaMb/52DVt7sjTGTLb0Zku4Dr4qUjSsIzRRsl+PV1J3YE8fGDlqqQ3T2ZfHdlQiYTsSUTRhZWiaVyVX47SWZ0g3OJAdfDbHwwY1oRpylkvBcdjSnUWiRnr9JEEToAmXgi255pH1nHfcAgxDKwnW7/j75oBfMBiDK/UTkeGdDtA0wb8esx8fXTG/rG9JVZlxajFtE4vW1lYAduzYwaxZA34AO3bs4PDDDx/xsaFQKOg+HHnkkTzzzDP8f//f/8cNN9zA+vXr+d///V9efvnlgMx92GGH8dhjj3HNNddw/fXXl33OcDhMOByehCubHqh009/Wq8hejqvUFJxJ7lYUVw0i8w4lPPeQiiQo/WqVKwekzZRWtwgM+wTqZ7+kZeoGTXGDdM4iHjFo680GCVI5/zx/c4maGvVR1TqNhkolb0c7HP2qzyvbU/RmFIkvYuhK5s7Q9piNuooqphrz5s3j8ssv393LqGKSMFWGoIahccZb5pTc9p+nLeU/711NV9ryuA2KW+G4papI5fbrsY7h+Hv6uh19dHmeFFFTpzZiMqchRnsyG0jD2o4kbGpq/FZKRbr2SlfJrEV9zBwSyJY7m4VQZ08uXeS+PWiURxMahu7Sl7X43UttJe/RWMa+JnOEbXdiuOmA6eTPsrdi2iYWCxYsoLW1lYcffjhIJFKpFH//+9+54IILxvRcrusG/AifBKgNagfquo7rjtO9bQ/ESJu+lJJkzsJxlHOo47ps3pmf9C5FoXMT/S8+ROK4j6DHVFWlUl17H03xELom6OovYOoC9REOLFTzJGVtVyp9b5RKiDOCIhSoDkdzPEzGsjE0bVyHY3HVJ+M56hm6IO+4tCVzzGmIBk6oe8JGXUUVk4mXXnqJQw89FE3TeOmll0a87/Lly3fRqqqYLOxKQ9CA6/DQ66ze2ovtqPGniKmKOD6nYLj9utIxnOI9PWrqIBXfIW+7bOvJMqchysKmGjZ0ZcjbDgKYUx/FldDZlydn2TiukqA9dE4dnz1p8ZBAdqSz2SpqzZc7KjUBDkqed/D1VTr2tXprclJH2HYHRhvjqiozTi12a2LR39/PunXrgp83btzICy+8QGNjI/Pnz+dLX/oSl112GUuWLAnkZmfPnh0oRwG8853v5IwzzuDzn/88oEaWTj31VObPn09fXx933HEHjzzyCA899BAABx10EIsXL+Yzn/kMV199NTNmzOC+++7jT3/6E/fff/8uvf7dieE2/f68TUcqR9ZSBjM3rlpHf2HyE65ionbmtceofcs/jenxflJQFzHRhKA7XQjUmvxuhicGAkLdXnBcOlK5gOA3IoQigCciOq31Mbb2ZMd0OBZXfRIRk2TWwtA1pbGuSSzXI/DNqNkjNuoqqphsHH744bS3t9PS0sLhhx/uGZ8NTfeFEFWDvD0Qu9oQ9LjFTdy9fyP/csOTbOzspykeVuNP3m4/0WRmcCW/L28HHXNdEziupLMvz/5NMVoTkUDaNVtwaIiFaE2E6epXPJB/f8cSPrpiftlrHykhMz3jJkH5xMKVeMlMrOz7U0mlfipG2HYlKh3jmixORxVDsVsTi2effZaTTz45+NnnMJx77rn89Kc/5aKLLiKdTvPpT3+a3t5ejj/+eB588MESD4v169fT1TVg7tLR0cE555xDW1sbiUSC5cuX89BDD/Hud78bANM0+cMf/sDXv/51Vq5cSX9/P4sXL+a2227jtNNO20VXvvtRbtO3bJftyWzgHl0T1unN2JP+2oPVn+KHnTKu51GKHxAJaYQNXUnp6Uq7eiA+kdguREyN3nRBEa8BfRgnbn+v1oQgbzu01tfylfccwCX3vTymw7F4TtZyPCdUb58WQmBoAwS+sDG9N+oqqpgKbNy4kebm5uDfVex9OGbhDD719oUlJNqQrk3Z2IlhaFx0yoH8572rSeZshCYmLZkp3tPTBYeOVB5HSuUr4UX0WcshV3CJhw2aasN09akgvaM/j6kJls1JjHrdIyVkWcsJyNqDyceudLEdZdK6cvmsss9dSaV+qkbYdgX2ljGuPR3TxsdiT8Peol8+3LxoPGLQkcqPSzZ2JIxHUnY4hHQ1dzqvQSlnbOvJerJ8MkgaNNT4USJqsjNdCKqimiifWPjQUBWhr5xyIBectHjMOtuPru3kK796kZbaMHnb5c3udOAICwOGPXMbohi6NqpeehVV7C7sLXvdSMjn8xx99NG8+OKLPP/886Py+HzsC+/NeDF4HAWgpS7MWSvmD1utrxSjqetNli9CMfw9PRbWaevN4bjKq2LwGdlaF6YprkZcD2qN89VTDqI3a4153Ga4a5jfEOXOZ7fieD4NfqLhFwS/9t4DAwWt8cB1Jefe+rTXMQkP6dJPpefFRDEZ3iRVlMde4WNRxa6BX8H4zQvbuez3rxAL6dRFDTZ0ZqZ1UgFqnjSdd9jSk6G5NsKs+ggdqTx52wk0xH3Sm+vNwsYjBr1pqyxZuxi6LqiLmBy/WFVUxzqTWVL1KeqoCF05f0tU4qILUZW4q2Kfx2233UZTUxOnn346ABdddBE33ngjBx98ML/4xS/Yb7/9pvT1L7roImbPns2LL744pa+zr2C4cZQdqTw/eWwDC5tqxh3gVyKDOhUz9P6e3pHK40qJaWi4ruI9FB8nPRkL25XEwwafPWkxy+YkgnWs2Z6qeB0jXcP+TTWB7K6D6rQnYmbgYzER7OoRtsnEnj7GtbegmlhUgaYJGuMhNKGC6bzlUhhNv3WMkFLS/+IfJy2pAJidiNKVthACMnkby5U0xExa6mo55ZBWjls0A1Bcie7+Av/v/jUkM1ZFCZPjSmbXR0qC/bHMZJbOyYZprg2zrUeNmWlC4khJSNfpzVrURoxpu1FXUcWuwOWXX851110HwJNPPsn//u//8sMf/pD777+fCy+8kHvuuWfKXvuBBx7gj3/8I7/+9a954IEHpux19hVM5TjKWGRQJ3uG/pDZdbTURWhP5ZScLcKTbtWwHTcwXbUcl7kNMS465UAAzr316UnxgijGYNndOfUxVi6fhWGUD6jHikr5GNPNl2lPHuPam1BNLKoASr+QtuuOzzp7BAghSLztLDKvPUZ8+bsnnFRoQDSs06JrpHMWXz3lIBrjoWE3N9t2ufT+NbgSTI9fMdwlTsa+WK7qU9xRAYiFNA6eXVeVuKtin8eWLVsCifD77ruPf/mXf+HTn/40b3vb2zjppJOm7HV37NjB+eefz3333UcsNpTwWsXYMdnGeD529/y8pglOOaSVl7b24kiJ8By1hQAEGEIFrAXX5YvvWgIwIS+I0Toz5WR3JxOjdX0m00BvsrArlciqGB6Tk95WscfD/0L2ZCx0IdC0CpSTKoCbH5C906O11B5x2oSTCgChCfKWJKxr2BIa4yFOPKCZZXMTZQ+VNW0ppKsOB9+JtRx0z1G7NRFhZ79qXY8XftVn6axaMp7kbEPMZPncer56ykH89Lyjue28FdWkoop9HvF4nJ07dwLwxz/+MRDbiEQiZLPZKXlNKSUf//jH+bd/+zeOOuqoih6Tz+dJpVIl/6uiFJWMo1jjGEcZS8LiupLVW5M8uraT1VuTuO7kVMqOX9xEQ8wkrOu4Hk/OlZJYSGdeY4y6mEnM1GmMhUqSoIipo2mCiKnTWhemP+9w3aPrh12X35l5tS1FTdigpTZMTdgIkpIn1nWVfdxkw+/6DD5bp8v6yq33ghMXEQ/rtKfyZC0H15VkLYf2VH5aj3HtTah2LKoASivsvVkLQ9NwXIeJUPsLnZtI/u2X1B5xGpH9Jk+H3tDAlZJ0wUaij9rafGJdF5f/4VX68hbSJ9sNui7du6mlLsKMmhBSQkd/fsKzmFW97CqqGB3vfve7+dSnPsURRxzB2rVrA4W+NWvWsP/++4/pub7+9a9z5ZVXjnifV199lT/+8Y/09fVx8cUXV/zcV1xxBZdeeumY1rOvYarGUSqdn398XRdXPfTalFTSD5ldx8GzE7yyPcWsaARHSgxNI2KqNfnEZmDcXZvd3ZkZDdN9fVUDvN2PamJRRYDiL+Qr25OBwY8Axsq4KCZq57a8THj+sjGb3w0HX82pI5UDAfvPqGFpa23Z+/qVla7+/EBSUQRdKLMi5eItqQkZCCHI2c6kzWJW9bKrqGJkXHPNNVxyySVs2bKFX//618yYofhRzz33HGedddaYnuvLX/4yH//4x0e8z8KFC/nLX/7Ck08+STgcLvndUUcdxcc+9jFuu+22IY+7+OKLA1l0UEop8+bNG9P69nZM1ThKJQmL67r835ObsBx3XONHo6G4AJfM2QGxOWeXEpt7s9a4ScRTNUo2WZju64PdW9CbbryT3YFqYlFFCYq/kI+v6+KhNe3sSOXo6s8HkoGjYYj607EfnLSkohiO54K3sSvN+6/9Gx9ZMZ95jbHgywxw3aPr6ckUyBWckqTCN9FzJGiui4sgaqrKU3UWs4oqdi3q6+v53//93yG3j6c70NzcHPhjjIQf/ehHXHbZZcHP27dv55RTTuHOO+/k6KOPLvuYcDg8JBGpohRTpSo0WsLSky7gSEWenspKeiUV8dVbk+Pu2kx3ZaPpvj4fu6OgNx15J7sD1cSiiiHwv5DL5ib4zAkLWbM9xZ3PbuFnT7056mMnW1J2xHV6cq2OVBWCb/7mZWojJjUhnUUtcU45pJX1Hf0UbGXJbWpK69t35fZhuWDqMKMmPKTytK9VGqqoYnfhscce44YbbmDDhg3cddddzJkzh9tvv50FCxZw/PHHT/rrzZ8/v+TneDwOwKJFi5g7d+6kv96+hKkYRxktYQkZGgXb3SWV9NEq4hPp2kx3ZaPpvr7dhbEolu3tqCYWVYwIP8mwXZefP/XmiGJRuzKpMDWBrisituuZUggJtuMSC4d4ta2PtTv6SOdtLMdB1zQ0oRwkbNcdMhYVMw0yloPpuNVZzCqq2MX49a9/zdlnn83HPvYx/vGPf5DP5wFIJpNcfvnl/OEPf9jNK9w3MJljHFMxjjJSwnLcohnc8vimSa2kj/R+jFQRn0jXZrorG0339e0OTHfeya5GNbGooiKs3pYcVYG2sGP9LkkqgODLaRf5beiaqqIgBa11Ybb2ZslbLq4Lhj5wH014nApXIqWkJqzzxXcvUYmHhMPn17NsTpUTUUUVuwqXXXYZ119/Peeccw6//OUvg9vf9ra3lYwrTSX2339/5ETUKvZwTMUYx1SMowyXsKzZnuL2J98k7zhgC2zXVcTqkIZAjLmSPtH3Y7xdm+luUDfd1zcRjDex3hN4J7sS1cSiilHxxLourvnLulHvV3PIO9Bj9UT2Wz6pSYXPhyj+WYDqOsii2zRwXbBdFyF0muIh0nk7SCJ0b4MQQoCUuEDI0NE1jd++sJ2OVG6fnousoordhddff50TTjhhyO2JRILe3t5dv6B9DHvaGEe5hOWQ2XXMiId4rb3PSxAFQkDYUGdBf96puJI+We/HeLs200XZ6P9v787Do6jS/YF/q3qpdDo7SUhCQkgIhB0HnEEYWRRGwJ8YxRFmYCDMOCjIHREGFVzY7iBeUHEZL5sC4mUEF8BtlEGRIIo4OEQSxEiAEJaEPWunt6r390fTTTrpJJ10J73k/TxPHkh1VfWpk+5z6q2zNXSj7S/p8yZPAslAGXfSVjiwYI2yN/GZrDLUogBrnXm3LWWlUIfHQlDZZlPSpQ/06vuLsLUyWBVyBBeiaAsOlFrbhOvRhyAA6uuLVEgqFUK1ahjMVtvAc0GBCAEEwKoQVIItIDFYZJy9ZgiICpWxYJSQkIDCwsJ6U8vu378f6enpvklUOxEs3Ti+PXkFFytNkBXbwnWq63OI15itKL5qRXy45NaTdG/nR0tbbXw9VXntG22zVQEEICEiBL/7VWdM+lVnn6fPmzwNJHnciTNeIK8dc2cRIXsTX2yYBFWd8sJ8qQhlX25A+YF3QLK1ddIIwFIrgAAAUgCFFNTeqrq+8J2kViFEa/tYm2QFeq0KU25JhaQRYZUJFoWgKLYnC5JaBQUESS22aBEjxph3TJ8+HbNnz8bBgwchCALOnz+PLVu2YN68eZg5c6avkxfUmtONw1/ZgwFZIXSOCYVOqwIRri+GKkAlCogLl3BLeocmz+VP+dHQAnWtrfYCeIIA1FhklBksOFpSgUUfHkXWa/vxTeFln6XPm+oGki25D6i9wHDd7pT2cSdd48PazbgTbrFop9xt9rM38V2uMsNUa7rZ2gO1bf2RvH/zrb0eyRABMhEUAkI0IiwywSyTbYXw6y0Vtq5OIuLCJQgQnAaRPf3/euH2HvF4/l8/o/hKNRQAOrWIjpE6nLlqQIye+0Uy5kvz58+HoigYOXIkDAYDhg0bBkmSMG/ePPzlL3/xdfKCWjB046gdDIRoVAiT1DBaFMc4CwLhSpXZrbI8GPLDE7VvtMMkNc6XGa8vBChABdvMij+VVmLBjjwsD4IWfW+MjwjmcSctwYFFO9ScZr+YUC2qTRYYLDcGSbd09idRsD1BckV1/TWq9bsg2PrIEgGKTBAFICNOj4m/7Ixt/z6D0gojzFYF1WYZogDEhUsI1ahQY5FxrdoMrVrEkK62ptohXWOxfWasU7PtlSoTHnvvSLutQBjzF4Ig4KmnnsJjjz2GwsJCVFVVoVevXggLC0NNTQ10Op2vkxi0gqEbR91gQBAE6LQqALbrURRChdHqVlkeDPnhCfuNdpROg9IKW1ChEYXrN90C1CqCrCgor7EERBe5pjQnkGxscHcwjjtpKQ4s2pm6zX4AHE92IkPUKKtTWHSL1XslqABs4xlcEa+vfi0TwSITwiUVCAJMVhmk2MZN6LRqROo0uFptwU0p0Zg8KNXxBT9z1YDP8ktx8lIVLlaZoCgKZALMVgUb9hfhrQOnXbbGeLKIEWPM+7RaLXr16gUAMJlMePHFF7FixQqUlpb6OGXBKximD/VmMBAM+eEJ+422QoDJqkDtCCpsbP8VEKpRBUWLvrufnTNXDcje+F2jvTyCadyJJ3iMRTtTu9mv2iyj6Eo1Tl+txtlrNSi+ZoDBLOPH8+WO/qPr9p9yHOvpOhWuWisE2AZbC4Lg6JsYodOgS2woUmP0SI7WITVGjy6xoYjSaWC5/uSgdt/OP9ySis1/+hXWTrkZf/p1GrRqFdSigBi9FvHhEvSS2tEa803hZcd7c79IxnzLZDJhwYIFuPnmmzFkyBDs3LkTALBx40akpaVh1apVmDNnjm8TGeTs3TjCJBVKK0yoschQFEKNRUZphSkgunF4sywPhvzwhP1G22iRQVT/gSBdnyQlRKNy1MeBzJ3PTocwLdbvO4FjJRXQS+pG7yuCYdyJpziwaGfsTyPMVgXnrtWgxqJAFASoRQGiIMAsy7hmsGB/4WUoCiH3bJnjWEFQAYLgdlAhCs6FkrrO6G97S4Vt4LUC2TbxBEI0tnnHdVoVwkM0CNGKqDHLuFBp6/p0udJUbyCVKAronRSBb05chkVW3BqE1d4rEMZ8beHChVi9ejW6dOmCoqIi3H///XjwwQexatUqvPjiiygqKsITTzzh62QGPXs3jp6J4TCYrLhYZYLBZEXPxPCAmBnP22V5oOeHJ+w32gazbOuKXOs1AkFWCJJaBVFEULTou/PZAYBqs8yTvLiJu0K1MzGhWqhF4FKlqU7fSdtNvUoQYCXCe9+fwdeFl5B7ptxxrCY2BVEj/gh1eAe3Wiqut5hCJQBalQrdO4ahf0oU3vr2tG22DgEQBIJVIVivj6GIjwhBeY0VIRoVTBZClcmCawYLTNYb3bEWbD+CTd+cwoKxPZ0K+JYMwuJ+kYz5zrvvvovNmzfj7rvvRn5+Pvr16wer1Yoffvih3neYta5A78bhrbLc3o/eohDm3ZEJACirsQRcfnhidO8EFJRUoIps60LZHgoKkBWCKAiIDdOizGANmi5hjX12RvdOwP9+WciL3zUDBxbtTO+kCHSM1OFCZRnUKue+kwRbv0qNSkDRFQOuVJkQWn0W16oATVQCgBv/uoMICJVUiAsPgUoUcLHShN8OTEFSlA5/31OIarMVstU2aaytpUIFs1VGpdGKawazY7rA2tQiIF8v+Oe8k4tVE25yVBgtnc0j0CtUxgLV2bNnMXCgbe2bPn36QJIkzJkzh4MKH2mNlbLbkqdleWOzJQZyvrir9vWbZNt6IFYCFCtBJdpaKqJCbYsNBluLfkOfna8KL7frWcJaggOLdkYUBYzu3RF5Z8sgywRBRY6Zl+xPIwQQFCKoy8/hzJ63YJQF6IdmQx0R1+z3ig2TECapoSiEcoWwv/AyvjlxGWGSClZFgdGiQCUAHSMkRIdKKDOYcUW2NHxOQYSoAixWBVerzfjfvTcGmnsygC/QK1TGApEsy9Bqb3wf1Wo1wsLCfJgiFuhaWpYH2urj3lb3+qNDtTDJMkrKjbBYFei0amhVIogoaFv0XX122vssYS3BgUU7dGtGHF7/6hQMZhlWRXHMvBSiUSFCp8bFCiOsl0+j+OA2CIoVcSndoYuNQ3kzAnLV9b6Zl6tMCJPUMMkKFEXB5gNFsMgKonQaVBitsD/suFxlgdGi4Kqh4aACsDXLagURapUIWVFQUFrpaIL0ZDaPxqaRY4y1DiLCtGnTIEkSAMBoNGLGjBnQ6/VO+23fvt0XyWPtRGuvPu7v9UtD168T1UjroEdJuREpMaF4dGQ3dAiT/C79ram9zxLWEhxYtEO9kyLQKykCx0oqEBkSAqtiGzitUgkwWWQYLhSh6pu3oVMRIlO6I+M3U2AmFTQGIy5XN73CtkoAtGoVFCKYrApqzDLKaiyQCY6B1UaLArOsQK0SIQi2qWGvGpQmz03X17qwt7KYZcXRBCmKAh4alo7H3juC4qs1iNCpESGpYVao0UVq3F0skDHmXdnZ2U6//+EPf/BRSpi/8MVNuDcWSWtIINQvTV1/tF6LixVGdAiT2l3LPi9+13wcWLRDtb8ol6rMsMgKrLICBYDx4imU7/8HNJAR2aUnEodPQnG5GTUWGXLT9/0AAPn6gC/7gniXqszQSyqYrYqj4LIqimPaOqDhhfPqIlxf6Bu2Y7Uq0dEE+U3hZazddxJmq4IaixXVJgsuiAIiQtTolRTpsiBv783fjPnSxo0bfZ0E5kd8dRPeWqttB0r90t5XG28KT/LSPBxYBDizWcaafSdx+mo1UmP0mDEsHVpt/X6AdQ3JiMXkQZ3xwu6fYbYqEABYrp1D5ddvA4oFQscMRA6egJJKK8xuRhT2QskWqJCjm1N6nB6je3fEhv1Fjn1sa1fYAoXmTtOmQIFitbWwZCbYmiBrF+Axei06RkioNFpRUWOBVq3CQ8PS6335W7v5mzHGmHt8eRPeGv3oA6l+4XEETeNJXtzHgUUAe2r7EWw7dBbWWjfmr+w5jok3J2PZ+H6NHqsohH3HLyNMUiMyUgOZCEJkF5w5mQYriRB+cS8uGxQ0dcsv4MY814IA2+BvQYRVVhCiVaFbfDjee2gwjpVW4q0Dpx0FV4hGhKQWUWNRbjRBuMkq2/6NlNR4eERXAHBZgEeFahGp06C0woS1+05iSNdYp0KgNZu/GWOMucfXN+Gt0Y8+kOoXHkfgHp7kxT28QF6Aemr7EWz57oxTUAEAVoWw5bszeGr7kUaPr13ohUpqhIdoEKYPRfcx09D7zmmIjdQ3GVQAgFoUHIvgyQqBiBzT1oZJajw+OhNqtVhvdUtBEGzT0AqCW+9Tl0oEtGqx3rU0VYDX5k7zbzCsLMoYY/6spWW4t7TGYqmBVL/wYrHMmziwCEBms4xth846fheEGz922w6dhdksN3gOe6FnuliE8//Z49iu0kgQ1RqEaJruTgXYWitqBxdWhaAothW1/3J7N0fTtauCK1SjQmy4Fqo6hVVDRVeMXoukyBB0jdOjR0I4ZMXWUnG52tSiArx2868r3PzLGGOtzx9uwr292nag1S/tebVx5l3cFSoArdl30tFSYQ8m6vYmsiqENftO4pFR3VyeIyZUC8ulIhTvfQuQraCQcEid+0EAoNOqUG1sevYn+/uoRCBUKyIhQgerQiivsaBPpwhM+lVnp30bGgA1KC0GYZIa//rxAhSCyxaMmFANYkK1sCoKBAhOT7HKqi0t6h/Kzb+MMeZ7/tLH35v96AOxfuFxBMwbOLAIQKevVjv93tAQhX+fvtrgOehqMa59/Q/UGE3QxqfjalgaUG50vN68YkRAbFgIBFFAtdGKqFANHh6R4bIwaqzgemr7Ebz97zMuZ4i6VmNBudEKAbZgSlKr0CFMC4tCiA7VtKgA52nkGGPM9/zpJtxb/egDtX7hcQTMU9wVKgClxtxYPKqxcc95Z8vxTeHletvz8/OxdOkSRGkBVVw69LdMAFQap32aM+4hVCPCYJHdbja1F1zDu8ehb3IkRFGAohCKr9UgJlSLTlEh6BghIT5ccnSTIoJtNXCVAFEQYLTIOHetBopC6BAmtbh/KDf/MsaYbwVrH3+uX1h7xC0WAWjGsHS8sud4vYHbdalFod5MGvn5+Vi8eDGMRhOoQxqie42DItwIKuwtAu7MACsA6Bgh4YkxPRETpvWo2dQxeE+vdYzvUBQFV6pMN3YiW4AhCgIgEsxWgkyEngnhUKvFZs8zbV+IyaIQ5t2RCQAoq7Fw8y9jjLWxYF0rgLsXsfaGA4sApNWqMPHmZGz57kyD+8SEahCl1zpNZ3ft2jUsWbIEJpMJyd164XzkcIhmQC3YZt6wL1hndXPdilCtCt06hiPrpiSPC0lXg/dMVnKaz9ax5oUIWBVArRKgEoBjpZXomxzZrAK8sYWYuBmYMcbaXrDehHP3ItaecGARoJaN74fzZTX48uf6XZ1iQjXoFB0KRSGn1TKjo6Pxxz/+Ed999x1u/e10HHjvKADr9bUnBECwtRLIbrRWhGpExIVLXmuedjV4zz5QWyPaBokTAAUAiKDTiOigl2CwyE4zhbhTgAfKaqiMMdbe8E04a4i9l0EwBZ3BiAOLADb3jh746cIhmCwyFNim5IsLlxwD3+wzaUTrbnR1uvPOOzF27Fjkn6uARi0AZltLgP2r6aqtQi0KtjUqam1LjgnF4nG9vXYD7mrwnn117us9n6BVqxAfIUEjigjRiDBaFWhkJWhXQ2WMMca8JZBvzBvrZcAPAv0LD94OYL2TIpARHwZRFJEcpUN8rRtl+0waHSwX8NYry1BRcWNhIUEQ0DspAj0Swm1dnxQFdH0UuKvB4LJCEARAoxKgub5mxV39k9z6MisKIe9sOXJ+voS8s+W2rkwuuBq8p1XZgguLlSAKAhIiQxARooFOa2vRKDNY0DU+rNVWQ2WMMcaCwTeFl5G98Ts89NYhzHvnBzz01iFkb/zO5QQv/sbey+BYSQX0khrx4RL0ktrRyyAQrqE94cAigDU1k4ZwrRhV37yNn376Cdu2bat37MMjMhCj14IIsMgKZFIgN3DjrxBglW2raosCkBIV2mT6mluQ1Z1B41K1GaFaEZJGRKikgur67FHtZTVUxhhjzFOBfGNet5dBiEYFURQQolEhIUJClUnG6pwTDT60ZG2Pu0IFuIZm0khULqLq6A6EaYABAwYgOzvb5bGrJtyE5Z8eQ0FpFSxWxeU0s/auUgTboOkonQbj+iU2mq6WjmNwNXivvMaMtftOemWmEH9ZiIkxxhhrbYHe/bc5vQx4bI5/4MAiCNS9Gb9SXIgtq7c7goqnnnoKWq3rG+UhGbH4YNatyDtXjnX7TuDT/FKXU83W3nTvgE5Qqxtu7PK0IHM1eG9I19h2uxoqY6z1fPLJJ1i6dCmOHDmCkJAQDB8+HDt37vR1shjziqZvzNX4qaQSm789jYGdo/1u3IU7vQzKuZeBX+HAIkjYb8bz8/Px6poXYDabmgwqnI7tFInTVwwgAJJagKzA5ToZeq0KIzLjGz1fazxhaO+roTLGvO/999/H9OnT8eyzz+L222+H1WpFfn6+r5PFmNc0dmNeZbLiYoURNRYZq/71M/SSyu8GRHMvg8DDgUUQURQFr732Gkwm94MKu6PnK1BaYYRKEAAI0KgEqEQFCtkHdBOIgFCtGlE6DfLOljfYeuDvTxiCdSEmxpj7rFYrZs+ejZUrV+KBBx5wbO/Vq5cPU8WYdzV0Y15lsuLctRrIigJRENAhTAuVKPjdtOvcyyDwcGARRERRxMKFC/HOO+9g5syZbgcVgC0YAAGS+vo0riIgCiLs8YJCCsxWgl5SYeWun3DyUnWDU77FhGqhFoEKowUq0TazU4hGrDcNri+fMATrQkyMMff85z//wblz5yCKIn7xi1+gtLQUN910E1auXIk+ffq4PMZkMsFkMjl+rz3bHmP+yNWNOYFwqdIEWVEAAQjRiAjVqiAIgt+Nu+BeBoGHZ4UKAtXV1Y7/JyYmYvbs2c0KKgBbMKBVi4gK1UAlCLAoBIUIRLZ/rbJtytkKowU/lVY2OrNEeY0ZNVYF58pqcPZaDU5frUbRlWpUmayOJwzNnSa2Ndi7Vw3vHoe+yZFcMDHWjpw8eRIAsHjxYjz99NP4+OOPER0djREjRuDq1asuj1m+fDkiIyMdPykpKW2ZZBag3J12vTW4mj3SYJJhtFgBACpBRFz4jbGQ/jjtet0ZIy9WmWAwWdEzMdxvWlbYDdxiEeDy8/OxbNkyzJ07F7/85S9bfJ7aTzWSokJwucoEk1UB0fUF6kQBWrUIAWh0QLZChKd35oPItvYEEUEQBNRYZJy9ZoBOo0aMXsNPGBhjrWL+/Pn4n//5n0b3OXbsGBTFthzoU089hfvuuw8AsHHjRiQnJ+Pdd9/FQw89VO+4BQsWYO7cuY7fKyoqOLhgjfKHhd3qdv+tNstQCNBpVIiPCEGY5Hwr6Ovuyq5wL4PAwYFFAMvPz8fixYthMpmwa9cu3HzzzfUGS7urdnNjlUlGx4gQEAE1Fhk1Zhk6jW262Bi91OCA7MILlXj+Xz+jymRFSnQoqs0yLlWaYLLKAAEyEUQR+Ns9ffgJA2OsVfz1r3/FtGnTGt0nPT0dJSUlAJzHVEiShPT0dBQXF7s8TpIkSJLktbSy4NbSaddbQ+0b8/+cvoZXvzyOKJ0GOm3920B/6K7sircmcWGtiwOLAFU7qBgwYAAef/zxFgcVdnWfaliuD2rumxyJIV1jsWH/qUYHZF+2Kjhz1YAYvW02qDBJDb2kgtGswKrYFt+TFUKkzlZYKQrx0wfGmFfFxcUhLi6uyf0GDhwISZJQUFCAW2+9FQBgsVhQVFSE1NTU1k4mC3L+uH6E/ca8d1IEPv/pAo6VVCJEo+IB0cyrOLAIQHWDiubM/lSbqxv7hpobj56vwFsHihqd8k0EoJDzbFACBOi0KgAqKArhYpUJVw1mv2geZoy1XxEREZgxYwYWLVqElJQUpKamYuXKlQCA+++/38epY4HOnxd24wHRrDVxYBFgvBVUNHVjX7egc2fKt84d9LhYYWxyvukzVw14/auTftE8zBhrv1auXAm1Wo0pU6agpqYGgwYNwp49exAdHe3rpLEAx9Ous/aKA4sA89VXX3klqGhuv093nnDMu6M71u472Wjw0SMhDJ/ll/pV8zBjrH3SaDR4/vnn8fzzz/s6KSzIBMLCbjwgmrUGDiwCzEMPPYSkpCSMHTu2xd2fWtrv050nHKIgNBp8jOmTiP/9stAvm4cZY4wxbwiUhd14QDTzNg4sAsDp06eRnJwMlUoFURSRlZXV4nN52u+zqSccTQUfFoX8unmYMcYY8xSPY2DtFQcWfs4+puKWW27BnDlzoFLVb1JtDm/0+2zqCUdjwUfe2XK/bx5mjDHGPMXjGFh7xIGFH6s9ULuyshKyLHscWLRVv8+Ggo9AaR5mjDHGPMXjGFh74/qxNfM5b83+VJf9xv6awQIicnrNfmPfNT6s1W7s7c3DYZIKpRUm1FhkKAqhxiKjtMLEzcOMMcaCiv1B2/DuceibHMn1GwtqHFj4odYKKgD/uLG3Nw/3TAyHwWTFxSoTDCYreiaG81SzjDHGGGMBirtC+ZnWDCrs/KHfJzcPM8YYCzauFp7leo21JxxY+BmTyQRFUVotqLDzhxt7nuaOMcZYsGhq4VnG2gOB6na0Z26pqKhAZGQkysvLERHh3fEIBQUFSEtLa7WggjHG3NWaZV2g47xhdg0tPHvt+tSy3M2XBbLmlHU8xsIPHD16FOfOnXP8npmZyUEFY4wxFgDqLjwbolFBFAWEaFRIiJBQZZKxOucEFIWf47Lgx4GFj+Xn52PRokV48skncfHiRV8nhzHGGGPN0JyFZxkLdn4fWKxevRr9+vVDREQEIiIiMHjwYHz66aduHbt161YIgoB77rnHaTsRYeHChUhMTIROp8OoUaNw/PjxVkh942oP1O7SpQuioqLaPA3uUBRC3tly5Px8CXlny/mpC2OMMXadOwvPWppYeJaxYOH3g7eTk5Px3HPPoVu3biAivPnmm8jKysLhw4fRu3fvBo8rKirCvHnzMHTo0HqvrVixAq+88grefPNNpKWl4ZlnnsHo0aPx448/IiQkpDUvx6EtZn/yBh6MxhhjjDWsrRaeZSwQ+H2Lxbhx43DnnXeiW7du6N69O5YtW4awsDB8++23DR4jyzImT56MJUuWID093ek1IsJLL72Ep59+GllZWejXrx82b96M8+fPY+fOna18NTaBFFQ8uSMPx0oqoJfUiA+XoJfUOFZSiSd35OGbwsu+TiJjjDHmU75eeJYxf+L3gUVtsixj69atqK6uxuDBgxvcb+nSpYiPj8cDDzxQ77VTp06htLQUo0aNcmyLjIzEoEGDcODAgVZJd20FBQUBEVTwYDTGGGOsaf6w8Cxj/sLvu0IBQF5eHgYPHgyj0YiwsDDs2LEDvXr1crnv/v378cYbbyA3N9fl66WlpQCAjh07Om3v2LGj4zVXTCYTTCaT4/eKipYNwurUqROSk5MRGRnpt0EF0LzBaLwWBWOMsfbMHxaeZcwfBERgkZmZidzcXJSXl+O9995DdnY2cnJy6gUXlZWVmDJlCtavX4/YWO9+iZcvX44lS5Z4fJ6wsDAsW7YMGo3Gb4MKwL3BaOU8GI0xxhgD4B8LzzLmawERWGi1WmRkZAAABg4ciH//+994+eWXsXbtWqf9Tpw4gaKiIowbN86xTVEUAIBarUZBQQESEhIAABcuXEBiYqJjvwsXLuCmm25qMA0LFizA3LlzHb9XVFQgJSWlRdej1+tbdFxb4sFojDHGWPOIosCt+KxdC4jAoi5FUZy6Jdn16NEDeXl5TtuefvppVFZW4uWXX0ZKSgo0Gg0SEhLwxRdfOAKJiooKHDx4EDNnzmzwPSVJgiRJXr0Of2YfjHaspBIJEaJTdyj7YLSeieE8GI0xxhhjjAEIgMBiwYIFGDt2LDp37ozKykr84x//wN69e7Fr1y4AwNSpU9GpUycsX74cISEh6NOnj9Px9rUham9/9NFH8be//Q3dunVzTDeblJRUb72L9sw+GO3JHXkorTAhKlQDSSXCJCsoM1h4MBpjjDHGGHPi94HFxYsXMXXqVJSUlCAyMhL9+vXDrl278Jvf/AYAUFxcDFFs3uRWjz/+OKqrq/Hggw+irKwMt956Kz777LM2W8MiUPBgNMYYY4wx5i6B6k66zNxSUVGByMhIlJeXIyIiuLsDKQrxYDTG2qn2VNY1F+cNY6w9aE5Z5/ctFsz3eDAaY4wxxhhrSkAtkMcYY4wxxhjzT9xi0UL2HmQtXSiPMcYCgb2M416z9XE9wBhrD5pTD3Bg0UKVlZUA0OK1LBhjLJBUVlYiMpK7RNbG9QBjrD1xpx7gwdstpCgKzp8/j/DwcKc1HppiX1jvzJkzPNjPBc6fhnHeNI7zp2Ge5A0RobKyEklJSc2egS/YNVUP8GeyZTjfWobzrfk4z9zTnHqAWyxaSBRFJCcnt/j4iIgI/hA3gvOnYZw3jeP8aVhL84ZbKlxztx7gz2TLcL61DOdb83GeNc3deoAfPzHGGGOMMcY8xoEFY4wxxhhjzGMcWLQxSZKwaNEiSJLk66T4Jc6fhnHeNI7zp2GcN77B+d4ynG8tw/nWfJxn3seDtxljjDHGGGMe4xYLxhhjjDHGmMc4sGCMMcYYY4x5jAMLxhhjjDHGmMc4sPDA6tWr0a9fP8f8x4MHD8ann37q1rFbt26FIAi45557nLYTERYuXIjExETodDqMGjUKx48fb4XUe9e+ffswbtw4JCUlQRAE7Ny50+n1llyXO/lbWlqKKVOmICEhAXq9HgMGDMD777/v7cvzWFP5IwiCy5+VK1c2eE538mfEiBH1zjljxozWuMQWW758OX75y18iPDwc8fHxuOeee1BQUOByXyLC2LFjXeZhXYsXL0aPHj2g1+sRHR2NUaNG4eDBg47Xi4qK8MADDyAtLQ06nQ5du3bFokWLYDabvXl5Hmvq77xu3TqMGDECEREREAQBZWVlHp8TAIxGI2bNmoUOHTogLCwM9913Hy5cuODtywtKixcvrve969Gjh6+T5Xdao94Idk3l2bRp0+p99saMGeObxPoRd+oZLvO8gwMLDyQnJ+O5557D999/j0OHDuH2229HVlYWjh492uhxRUVFmDdvHoYOHVrvtRUrVuCVV17BmjVrcPDgQej1eowePRpGo7G1LsMrqqur0b9/f7z22msuX2/JdbmTv1OnTkVBQQE+/PBD5OXlYfz48ZgwYQIOHz7s9Wv0RFP5U1JS4vSzYcMGCIKA++67r8Fzuvv5mz59utO5V6xY4dVr81ROTg5mzZqFb7/9Frt374bFYsEdd9yB6urqevu+9NJLbq903717d/z9739HXl4e9u/fjy5duuCOO+7ApUuXAAA//fQTFEXB2rVrcfToUaxatQpr1qzBk08+6dXr81RTf2eDwYAxY8Y0K93ufHbmzJmDjz76CO+++y5ycnJw/vx5jB8/3uvXF6x69+7t9L3bv3+/r5Pkd1qj3gh2TeUZAIwZM8bps/f222+3YQr9kzv1DJd5XkLMq6Kjo+n1119v8HWr1UpDhgyh119/nbKzsykrK8vxmqIolJCQQCtXrnRsKysrI0mS6O23327NZHsVANqxY4fjd29eV9381ev1tHnzZqd9YmJiaP369S1LfBuomz+uZGVl0e23397sc9fNn+HDh9Ps2bObfR5funjxIgGgnJwcp+2HDx+mTp06UUlJiVt5WFd5eTkBoM8//7zBfVasWEFpaWktSXabclXOfPnllwSArl275vE5y8rKSKPR0Lvvvut4/dixYwSADhw40OJ0txeLFi2i/v37+zoZAaU1641g5aocrHtfwVyrW89wmec93GLhJbIsY+vWraiursbgwYMb3G/p0qWIj4/HAw88UO+1U6dOobS0FKNGjXJsi4yMxKBBg3DgwIFWSXdb8MZ1NZS/Q4YMwbZt23D16lUoioKtW7fCaDRixIgR3r6MNnPhwgV88sknLj8jDWns87dlyxbExsaiT58+WLBgAQwGg7eT7FXl5eUAgJiYGMc2g8GASZMm4bXXXkNCQkKzz2k2m7Fu3TpERkaif//+jb537ff1N+6WM56e8/vvv4fFYnH6zvbo0QOdO3cO6LKoLR0/fhxJSUlIT0/H5MmTUVxc7OskBZRgrQ/bwt69exEfH4/MzEzMnDkTV65c8XWS/E7deobLPO9R+zoBgS4vLw+DBw+G0WhEWFgYduzYgV69erncd//+/XjjjTeQm5vr8vXS0lIAQMeOHZ22d+zY0fFaIPLkuprK33feeQcTJ05Ehw4doFarERoaih07diAjI8P7F9JG3nzzTYSHh7vVBNtU/kyaNAmpqalISkrCkSNH8MQTT6CgoADbt29vzUtoMUVR8Oijj+LXv/41+vTp49g+Z84cDBkyBFlZWc0638cff4zf/e53MBgMSExMxO7duxEbG+ty38LCQrz66qt4/vnnPbqG1tCccsYb5ywtLYVWq0VUVJTTMYFeFrWVQYMGYdOmTcjMzERJSQmWLFmCoUOHIj8/H+Hh4b5OXkAI1vqwtY0ZMwbjx49HWloaTpw4gSeffBJjx47FgQMHoFKpfJ08v+CqnuEyz3s4sPBQZmYmcnNzUV5ejvfeew/Z2dnIycmpV+lXVlZiypQpWL9+fYM3Nqy+pvL3mWeeQVlZGT7//HPExsZi586dmDBhAr766iv07dvXx6lvmQ0bNmDy5MkICQlpct+m8ufBBx907Nu3b18kJiZi5MiROHHiBLp27dpq19BSs2bNQn5+vlN/9A8//BB79uxp0biZ2267Dbm5ubh8+TLWr1+PCRMm4ODBg4iPj3fa79y5cxgzZgzuv/9+TJ8+3ePr8DZ3yxlfn5PZjB071vH/fv36YdCgQUhNTcU777zTrJZIxprrd7/7neP/ffv2Rb9+/dC1a1fs3bsXI0eO9GHK/IereoZ5ka/7YgWbkSNH0oMPPlhv++HDhwkAqVQqx48gCCQIAqlUKiosLKQTJ04QADp8+LDTscOGDaNHHnmkja7Ac6jT79Ob11U7fwsLCwkA5efn19vnoYcealHa20Ld/Klt3759BIByc3NbdO6GPn92VVVVBIA+++yzFp2/Nc2aNYuSk5Pp5MmTTttnz57t+J7YfwCQKIo0fPjwZr1HRkYGPfvss07bzp07R926daMpU6aQLMueXkabcPV39nSMRe1zfvHFFy7P1blzZ3rxxRdbdP727uabb6b58+f7Ohl+qzXrjWDVWF1SW2xsLK1Zs6b1ExQAGqpnuMzzHh5j4WWKosBkMtXb3qNHD+Tl5SE3N9fxc/fddzueqKakpCAtLQ0JCQn44osvHMdVVFTg4MGDXutP7QvevK7a+WsfKyCKzh9jlUoFRVE8TLVvvPHGGxg4cGCj4wAa09Dnz87eDS8xMbFF528NRIT/+q//wo4dO7Bnzx6kpaU5vT5//nwcOXLE6bsDAKtWrcLGjRub9V518+fcuXMYMWIEBg4ciI0bN9b7LPmrpv7Onp5z4MCB0Gg0Tt/ZgoICFBcXB3RZ5CtVVVU4ceKEX33v/F2w1odt7ezZs7hy5Uq7/+w1Vc9wmedFvo5sAtn8+fMpJyeHTp06RUeOHKH58+eTIAj0r3/9i4iIpkyZ0ugTKlezNzz33HMUFRVFH3zwAR05coSysrIoLS2NampqWvNSPFZZWUmHDx92tMy8+OKLdPjwYTp9+jQRuXddt99+O7366quO35vKX7PZTBkZGTR06FA6ePAgFRYW0vPPP0+CINAnn3zSthnQhKbyh8g2a1FoaCitXr3a5Tmamz+FhYW0dOlSOnToEJ06dYo++OADSk9Pp2HDhrXuxTbTzJkzKTIykvbu3UslJSWOH4PB0OAxcPGkLjMzk7Zv305EtpaZBQsW0IEDB6ioqIgOHTpEf/zjH0mSJEcL19mzZykjI4NGjhxJZ8+edXpvf9LU37mkpIQOHz5M69evJwC0b98+Onz4MF25csVxjuZ+doiIZsyYQZ07d6Y9e/bQoUOHaPDgwTR48OC2u/AA9te//pX27t1Lp06doq+//ppGjRpFsbGxdPHiRV8nza94o95obxrLs8rKSpo3bx4dOHCATp06RZ9//jkNGDCAunXrRkaj0ddJ9yl36hku87yDAwsP/OlPf6LU1FTSarUUFxdHI0eOdKqYhw8fTtnZ2Q0e7yqwUBSFnnnmGerYsSNJkkQjR46kgoKCVroC77F3w6j7Y79+d64rNTWVFi1a5Pi9qfwlIvr5559p/PjxFB8fT6GhodSvX79608/6g6byh4ho7dq1pNPpqKyszOU5mps/xcXFNGzYMIqJiSFJkigjI4Mee+wxKi8vb63LbBFX+QKANm7c2OgxdQOL2sfU1NTQvffeS0lJSaTVaikxMZHuvvtu+u677xz7b9y4scH39idN/Z0XLVrUZP615LtVU1NDDz/8MEVHR1NoaCjde++9fhd0+auJEydSYmIiabVa6tSpE02cOJEKCwt9nSy/4416o71pLM8MBgPdcccdFBcXRxqNhlJTU2n69OlUWlrq62T7nDv1DJd53iEQEXm5EYQxxhhjjDHWzgRGh2LGGGOMMcaYX+PAgjHGGGOMMeYxDiwYY4wxxhhjHuPAgjHGGGOMMeYxDiwYY4wxxhhjHuPAgjHGGGOMMeYxDiwYY4wxxhhjHuPAgjHGGGOMMeYxDiwYa6Fp06bhnnvucfw+YsQIPProo22ejr1790IQBJSVlbXaexQVFUEQBOTm5rbaezDGWKDheoAxZxxYsKAybdo0CIIAQRCg1WqRkZGBpUuXwmq1tvp7b9++Hf/93//t1r5tUQkwxlh7xPUAY76j9nUCGPO2MWPGYOPGjTCZTPjnP/+JWbNmQaPRYMGCBfX2NZvN0Gq1XnnfmJgYr5yHMcaYZ7geYMw3uMWCBR1JkpCQkIDU1FTMnDkTo0aNwocffgjgRrP1smXLkJSUhMzMTADAmTNnMGHCBERFRSEmJgZZWVkoKipynFOWZcydOxdRUVHo0KEDHn/8cRCR0/vWbQI3mUx44oknkJKSAkmSkJGRgTfeeANFRUW47bbbAADR0dEQBAHTpk0DACiKguXLlyMtLQ06nQ79+/fHe++95/Q+//znP9G9e3fodDrcdtttTul0ZdKkSZg4caLTNovFgtjYWGzevBkA8Nlnn+HWW291XN9dd92FEydONHjOTZs2ISoqymnbzp07IQiC07YPPvgAAwYMQEhICNLT07FkyRLHU0MiwuLFi9G5c2dIkoSkpCQ88sgjjV4LY4y5g+sBZ1wPsLbCgQULejqdDmaz2fH7F198gYKCAuzevRsff/wxLBYLRo8ejfDwcHz11Vf4+uuvERYWhjFjxjiOe+GFF7Bp0yZs2LAB+/fvx9WrV7Fjx45G33fq1Kl4++238corr+DYsWNYu3YtwsLCkJKSgvfffx8AUFBQgJKSErz88ssAgOXLl2Pz5s1Ys2YNjh49ijlz5uAPf/gDcnJyANgqvvHjx2PcuHHIzc3Fn//8Z8yfP7/RdEyePBkfffQRqqqqHNt27doFg8GAe++9FwBQXV2NuXPn4tChQ/jiiy8giiLuvfdeKIrSzNy+4auvvsLUqVMxe/Zs/Pjjj1i7di02bdqEZcuWAQDef/99rFq1CmvXrsXx48exc+dO9O3bt8XvxxhjDeF6gOsB1kaIsSCSnZ1NWVlZRESkKArt3r2bJEmiefPmOV7v2LEjmUwmxzFvvfUWZWZmkqIojm0mk4l0Oh3t2rWLiIgSExNpxYoVjtctFgslJyc73ouIaPjw4TR79mwiIiooKCAAtHv3bpfp/PLLLwkAXbt2zbHNaDRSaGgoffPNN077PvDAA/T73/+eiIgWLFhAvXr1cnr9iSeeqHeu2iwWC8XGxtLmzZsd237/+9/TxIkTXe5PRHTp0iUCQHl5eUREdOrUKQJAhw8fJiKijRs3UmRkpNMxO3bsoNpFysiRI+nZZ5912uett96ixMREIiJ64YUXqHv37mQ2mxtMB2OMNRfXA/VxPcDaCo+xYEHn448/RlhYGCwWCxRFwaRJk7B48WLH63379nXqT/vDDz+gsLAQ4eHhTucxGo04ceIEysvLUVJSgkGDBjleU6vVuPnmm+s1g9vl5uZCpVJh+PDhbqe7sLAQBoMBv/nNb5y2m81m/OIXvwAAHDt2zCkdADB48OBGz6tWqzFhwgRs2bIFU6ZMQXV1NT744ANs3brVsc/x48excOFCHDx4EJcvX3Y8oSouLkafPn3cvobafvjhB3z99deOJ1OArSuB0WiEwWDA/fffj5deegnp6ekYM2YM7rzzTowbNw5qNRdLjDHPcD3gjOsB1lb4L8eCzm233YbVq1dDq9UiKSmpXgGl1+udfq+qqsLAgQOxZcuWeueKi4trURp0Ol2zj7E3UX/yySfo1KmT02uSJLUoHXaTJ0/G8OHDcfHiRezevRs6nQ5jxoxxvD5u3DikpqZi/fr1SEpKgqIo6NOnj1PXgdpEUaxXmVoslnrXs2TJEowfP77e8SEhIUhJSUFBQQE+//xz7N69Gw8//DBWrlyJnJwcaDQaj66XMda+cT1QH9cDrC1wYMGCjl6vR0ZGhtv7DxgwANu2bUN8fDwiIiJc7pOYmIiDBw9i2LBhAACr1Yrvv/8eAwYMcLl/3759oSgKcnJyMGrUqHqv25+UybLs2NarVy9IkoTi4uIGn3D17NnTMQDR7ttvv23yGocMGYKUlBRs27YNn376Ke6//35HoX3lyhUUFBRg/fr1GDp0KABg//79jZ4vLi4OlZWVqK6udlTQdec2HzBgAAoKChr9W+h0OowbNw7jxo3DrFmz0KNHD+Tl5TWYr4wx5g6uB+rjeoC1BQ4sWLs3efJkrFy5EllZWVi6dCmSk5Nx+vRpbN++HY8//jiSk5Mxe/ZsPPfcc+jWrRt69OiBF198sdG5x7t06YLs7Gz86U9/wiuvvIL+/fvj9OnTuHjxIiZMmIDU1FQIgoCPP/4Yd955J3Q6HcLDwzFv3jzMmTMHiqLg1ltvRXl5Ob7++mtEREQgOzsbM2bMwAsvvIDHHnsMf/7zn/H9999j06ZNbl3npEmTsGbNGvz888/48ssvHdujo6PRoUMHrFu3DomJiSguLm5yIOCgQYMQGhqKJ598Eo888ggOHjxYLx0LFy7EXXfdhc6dO+O3v/0tRFHEDz/8gPz8fPztb3/Dpk2bIMuy41z/93//B51Oh9TUVLeuhzHGvIXrAa4HmJf4dogHY95Ve9Bec14vKSmhqVOnUmxsLEmSROnp6TR9+nQqLy8nItvAt9mzZ1NERARFRUXR3LlzaerUqQ0O2iMiqqmpoTlz5lBiYiJptVrKyMigDRs2OF5funQpJSQkkCAIlJ2dTUS2gYYvvfQSZWZmkkajobi4OBo9ejTl5OQ4jvvoo48oIyODJEmioUOH0oYNGxodtGf3448/EgBKTU11GqBIRLR7927q2bMnSZJE/fr1o7179xIA2rFjBxHVH7RHZBukl5GRQTqdju666y5at24d1S1SPvvsMxoyZAjpdDqKiIigX/3qV7Ru3TrH8YMGDaKIiAjS6/V0yy230Oeff97oNTDGWFO4HmgY1wOstQlEDYw6YowxxhhjjDE38ToWjDHGGGOMMY9xYMEYY4wxxhjzGAcWjDHGGGOMMY9xYMEYY4wxxhjzGAcWjDHGGGOMMY9xYMEYY4wxxhjzGAcWjDHGGGOMMY9xYMEYY4wxxhjzGAcWjDHGGGOMMY9xYMEYY4wxxhjzGAcWjDHGGGOMMY9xYMEYY4wxxhjz2P8HLMCBs3thCUQAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"En estos gráficos, se seleccionó aleatoriamente una muestra de 500 datos. En el gráfico izquierdo, se representa la comparación entre los valores reales y los predichos, mientras que en el gráfico derecho se muestran los residuos, que son las diferencias entre las predicciones y los valores reales.\n",
"\n",
"Se destaca que el valor absoluto máximo de los residuos es aproximadamente 6ºC. No obstante, es evidente que la mayoría de los datos se sitúa a una distancia inferior a 2ºC de la línea horizontal central en el gráfico de residuos."
],
"metadata": {
"id": "8ZgHnUbgkkic"
}
},
{
"cell_type": "markdown",
"source": [
"**ELIMINACIÓN RECURSIVA DE CARACTERÍSTICAS**"
],
"metadata": {
"id": "0_2p2HM1nHMv"
}
},
{
"cell_type": "markdown",
"source": [
"Adicionalmente, se utilizará la técnica **Recursive Feature Elimination (RFE)**, que trata de seleccionar la mejor combinación de variables que mejore la predicción."
],
"metadata": {
"id": "QraMO2kt3HZc"
}
},
{
"cell_type": "markdown",
"source": [
"**Sin escalar**"
],
"metadata": {
"id": "GKkZJZ1DxGEj"
}
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "4GfkGafswx04"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from sklearn.feature_selection import RFE\n",
"lm_rfe = LinearRegression()\n",
"\n",
"k=1\n",
"while k<=8:\n",
" rfe = RFE(lm_rfe, n_features_to_select=k, step=1)\n",
" rfe = rfe.fit(X_train, y_train)\n",
" print(\"R^2 para k=\", str(k),\":\", round(rfe.score(X_train, y_train),3))\n",
" k=k+1"
],
"metadata": {
"id": "DEr0OX-U3GiE",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4d62734b-5cfc-4bcc-93f6-f23879587296"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2 para k= 1 : 0.124\n",
"R^2 para k= 2 : 0.128\n",
"R^2 para k= 3 : 0.441\n",
"R^2 para k= 4 : 0.494\n",
"R^2 para k= 5 : 0.772\n",
"R^2 para k= 6 : 0.774\n",
"R^2 para k= 7 : 0.774\n",
"R^2 para k= 8 : 0.775\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que la diferencia entre k=5 y k=8 es menos de 0.01, por lo que se puede seleccionar una cantidad de variables igual a k=5 para hacer más sencillo el modelo."
],
"metadata": {
"id": "Ptd5XSLixloi"
}
},
{
"cell_type": "code",
"source": [
"lm_rfe = LinearRegression()\n",
"rfe = RFE(lm_rfe, n_features_to_select=5, step=1)\n",
"rfe = rfe.fit(X_train, y_train)\n",
"print(\"R^2:\", round(rfe.score(X_train, y_train),3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_SIOu3Q9yKXs",
"outputId": "cd9619de-7a78-4631-9dc8-eb4f273d809d"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.772\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"[col for col, b in zip(df.loc[:, df.columns != 'fecha'], rfe.support_) if b]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "obb0NSEAyQwk",
"outputId": "67d35863-c148-44ec-a420-55bbbfd2a3fa"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['HR', 'PP', 'PA', 'VV', 'TW']"
]
},
"metadata": {},
"execution_count": 30
}
]
},
{
"cell_type": "markdown",
"source": [
"El resultado anterior nos muestra que los atributos seleccionados serían:\n",
"HR (humedad relativa), PP (precipitaciones), PA (presión atmosférica), VV (velocidad del viento) y TW (temperatura del agua)."
],
"metadata": {
"id": "DaPV4HDuyTDk"
}
},
{
"cell_type": "markdown",
"source": [
"**Con escalado**"
],
"metadata": {
"id": "8WHoEMDrxIz2"
}
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X_scaled1, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "-heny633xMUt"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from sklearn.feature_selection import RFE\n",
"lm_rfe = LinearRegression()\n",
"\n",
"k=1\n",
"while k<=8:\n",
" rfe = RFE(lm_rfe, n_features_to_select=k, step=1)\n",
" rfe = rfe.fit(X_train, y_train)\n",
" print(\"R^2 para k=\", str(k),\":\", round(rfe.score(X_train, y_train),3))\n",
" k=k+1"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jpPi0ScNxPIy",
"outputId": "125366e7-1d2a-469e-c275-9674b3e3f118"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2 para k= 1 : 0.6\n",
"R^2 para k= 2 : 0.6\n",
"R^2 para k= 3 : 0.667\n",
"R^2 para k= 4 : 0.742\n",
"R^2 para k= 5 : 0.772\n",
"R^2 para k= 6 : 0.774\n",
"R^2 para k= 7 : 0.775\n",
"R^2 para k= 8 : 0.775\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Con el escalado MinMax se obtiene un buen rendimiento para k=4.\n",
"\n"
],
"metadata": {
"id": "I2ab5MGsylQp"
}
},
{
"cell_type": "code",
"source": [
"lm_rfe = LinearRegression()\n",
"rfe = RFE(lm_rfe, n_features_to_select=4, step=1)\n",
"rfe = rfe.fit(X_train, y_train)\n",
"print(\"R^2:\", round(rfe.score(X_train, y_train),3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3tjY0JPsyqjd",
"outputId": "e37a7b32-8f3a-4f2c-fcd0-1a786641f7aa"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.742\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"[col for col, b in zip(df.loc[:, df.columns != 'fecha'], rfe.support_) if b]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x0nyGvZlyvgU",
"outputId": "db5680d6-68c2-426f-9377-08d4171828cb"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['HR', 'PP', 'VV', 'TW']"
]
},
"metadata": {},
"execution_count": 34
}
]
},
{
"cell_type": "markdown",
"source": [
"Las variables a utilizar serían humedad relativa, presión atmosférica, velocidad del viento y temperatura del agua."
],
"metadata": {
"id": "y_u9gSSvy7f6"
}
},
{
"cell_type": "markdown",
"source": [
"Si bien los resultados no cambian significativamente con respecto a usar todas las variables, se simplifica el modelo al tener una menor cantidad de ellas."
],
"metadata": {
"id": "_a4IgdFsgB_O"
}
},
{
"cell_type": "markdown",
"source": [
"**REGRESIÓN POLINOMIAL**"
],
"metadata": {
"id": "lpqyoAy20j5-"
}
},
{
"cell_type": "markdown",
"source": [
"Se comenzará evaluando el coeficiente de determinación para distintos grados del polinomio, y se escogerá el que sea mayor."
],
"metadata": {
"id": "HJkFPaabjZ_r"
}
},
{
"cell_type": "markdown",
"source": [
"**Sin escalado**"
],
"metadata": {
"id": "EqAJrFeu0Ar0"
}
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "UjN0i7lI0F-z"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"degrees = [1, 2, 3, 4, 5]\n",
"\n",
"for i, degree in enumerate(degrees):\n",
" X_train_poly = PolynomialFeatures(degree=degree).fit_transform(X_train)\n",
" model = LinearRegression()\n",
" model.fit(X_train_poly, y_train)\n",
" X_test_poly = PolynomialFeatures(degree=degree).fit_transform(X_test)\n",
" y_test_pred = model.predict(X_test_poly)\n",
" print(\"Grado igual a\", degree, \", R^2 igual a\", r2_score(y_test, y_test_pred).round(3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "UyO0TN72NFMh",
"outputId": "b752e84d-04ad-499c-9dd2-252e4098a531"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Grado igual a 1 , R^2 igual a 0.769\n",
"Grado igual a 2 , R^2 igual a 0.806\n",
"Grado igual a 3 , R^2 igual a 0.801\n",
"Grado igual a 4 , R^2 igual a -13.199\n",
"Grado igual a 5 , R^2 igual a -20033.402\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Dado el resultado anterior, se escoge un polinomio de grado igual a 2, es decir cuadrático. A continuación se entrena el modelo y se evalúa."
],
"metadata": {
"id": "bWdJIpcljjU4"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import PolynomialFeatures\n",
"X_train_poly = PolynomialFeatures(degree=2).fit_transform(X_train)"
],
"metadata": {
"id": "AppOyr0afzj-"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"lm_poly = LinearRegression()\n",
"lm_poly.fit(X_train_poly, y_train)"
],
"metadata": {
"id": "ouhqCPaNGjTQ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"outputId": "71cbaa50-787f-4fa4-a2fb-51d2d5d5e286"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LinearRegression()"
],
"text/html": [
"
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()
"
]
},
"metadata": {},
"execution_count": 49
}
]
},
{
"cell_type": "markdown",
"source": [
"Evaluando el coeficiente de determinación en los datos de entrenamiento:"
],
"metadata": {
"id": "1vQHsEPcNhsD"
}
},
{
"cell_type": "code",
"source": [
"print(\"R^2:\", lm_poly.score(X_train_poly, y_train).round(3))"
],
"metadata": {
"id": "YxeJGxK3HAkj",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "eaf0d14c-aa44-427f-867a-61dbe8891f59"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.81\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Evaluando el coeficiente de determinación en los datos de validación:"
],
"metadata": {
"id": "YghK3TZjNmT0"
}
},
{
"cell_type": "code",
"source": [
"X_test_poly = PolynomialFeatures(degree=2).fit_transform(X_test)\n",
"y_pred_poly = lm_poly.predict(X_test_poly)\n",
"r2_score(y_test, y_pred_poly).round(3)"
],
"metadata": {
"id": "rNgNDKDCHIH4",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "94038c69-b8b7-4f24-866f-e5b4b38923e2"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.806"
]
},
"metadata": {},
"execution_count": 56
}
]
},
{
"cell_type": "code",
"source": [
"print(\"Error absoluto medio: %.2f\" % mean_absolute_error(y_test, y_pred_poly), \"ºC\")"
],
"metadata": {
"id": "p_0cJO_1044p",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "71f95fe3-af5d-4e49-93b3-4916f54fd3d3"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Error absoluto medio: 1.57 ºC\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"fig, axs = plt.subplots(ncols=2, figsize=(8, 4))\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred_poly,\n",
" kind=\"actual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[0],\n",
" random_state=0,\n",
")\n",
"axs[0].set_title(\"Actual vs. Predicted values Poly\")\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred_poly,\n",
" kind=\"residual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[1],\n",
" random_state=0,\n",
")\n",
"axs[1].set_title(\"Residuals vs. Predicted Values Poly\")\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"id": "paMTtvNBHrNC",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 407
},
"outputId": "1271a693-c14d-4d84-9c9a-bb5cfac24bc7"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUdf7/nzOzNb0TOoaiiGBDRVSKqOjZu6KnYPlyiienP/VE76ynnneeXlEB9eQ8Gyp2PcWKqNiwUaQl9BKSkGQ3yfaZz++PyS7ZZJPspm7C5/l4cGd2JzOf2cx+Pp93e70VIYRAIpFIJBKJRCKRSNqB2t0DkEgkEolEIpFIJD0faVhIJBKJRCKRSCSSdiMNC4lEIpFIJBKJRNJupGEhkUgkEolEIpFI2o00LCQSiUQikUgkEkm7kYaFRCKRSCQSiUQiaTfSsJBIJBKJRCKRSCTtRhoWEolEIpFIJBKJpN1Iw0IikUgkEolEIpG0G2lYSLoERVG46667unsYScldd92FoihRrw0ZMoTp06d3z4BiEGuMXcH06dMZMmRIl1+3O9iX7lXSPSTyPe6KOXvSpElMmjSpU6/Rm5FrR/P85z//QVEUNm/e3OXX7mqS7V6lYdEDefzxx1EUhaOOOqrN59i5cyd33XUXP/30U8cNrIeiKErkn6qq9OvXj5NOOoklS5Z099ASQv5Nu5YlS5ZEPTtWq5WioiIuu+wyNm7c2N3DkyQx4Y1A+J/FYqF///5Mnz6dHTt2dPfwJHEi1472EwwGycvL49hjj232GCEEAwcO5LDDDuvCkXUuveXZiYWluwcgSZznn3+eIUOG8O2331JcXMywYcMSPsfOnTu5++67GTJkCIccckjHD7KHceKJJ3LZZZchhGDTpk08/vjjHH/88bz77ruccsopXT6edevWoaqJ2f3yb9o9XH/99RxxxBEEg0F++OEHnnjiCd59911WrlxJv379unt4kiTmnnvuYb/99sPn8/H111/zn//8hy+++IJVq1bhcDg6/Hp/+MMfuPXWWzv8vPsycu1oH1arlfPPP5/58+ezZcsWBg8e3OSYpUuXsn37dm644YYuHVtnk2zPTkchIxY9jE2bNrFs2TIefvhh8vPzef7557t7SL2CESNGcOmll/LrX/+aO+64gw8//BAhBH//+9+b/R2fz4dhGJ0yHrvdjtVq7ZRzSzqW4447jksvvZQZM2bwr3/9i4ceeojKykqeeeaZ7h6aJMk55ZRTuPTSS7nqqqt46qmnuOmmmygpKeGtt97qlOtZLJZOMVj2ZeTa0X4uueQShBC8+OKLMd9/4YUXUFWViy66qItH1rm05dnpCUjDoofx/PPPk52dzamnnsp5553XrGFRXV3NDTfcwJAhQ7Db7QwYMIDLLruMiooKlixZwhFHHAHAjBkzIuG4//znP0DzOZqN82EDgQB33HEHhx9+OJmZmaSmpnLcccfx6aefJnxfu3fvxmKxcPfddzd5b926dSiKwqOPPgqYodO7776b4cOH43A4yM3N5dhjj+XDDz9M+LrNMXr0aPLy8ti0aROwN+1l4cKF/OEPf6B///6kpKTgdrsB+Oabbzj55JPJzMwkJSWFiRMn8uWXXzY57xdffMERRxyBw+Fg6NChzJ8/P+b1Y/0N2vM37YwxNua6664jLS0Nj8fT5L2LL76YwsJCdF0H4M033+TUU0+lX79+2O12hg4dyr333ht5vznCf4fG4eLNmzc3uV+AtWvXct5555GTk4PD4WDs2LFNNm0d/Twdf/zxAJFnB8z0xVGjRmG32+nXrx+zZs2iurq62XMIIRgyZAhnnnlmk/d8Ph+ZmZnMnDmzTeOTJC/HHXccACUlJVGvd9RzHCvf3e/3c8MNN5Cfn096ejpnnHEG27dvbzK25mqAYp1zwYIFHH/88RQUFGC32znwwAOZO3duXJ/Bv/71L0aNGkVKSgrZ2dmMHTuWF154odnj5doRTU9cO4455hiGDBkS8+8cDAZZtGgRkydPpl+/fqxYsYLp06dTVFSEw+GgsLCQK664gj179rR6nebqhpr7zH73u98xcOBA7HY7w4YN48EHH2xiEC5cuJDDDz+c9PR0MjIyGD16NP/4xz/iuu/GNH52AD755BOOO+44UlNTycrK4swzz2TNmjUtnufyyy8nLy+PYDDY5L2TTjqJ/fffv03jixeZCtXDeP755znnnHOw2WxcfPHFzJ07l++++y4yMQDU1tZy3HHHsWbNGq644goOO+wwKioqeOutt9i+fTsjR47knnvu4Y477uD//u//IovZ+PHjExqL2+3mqaee4uKLL+bqq6+mpqaGf//730ydOpVvv/02oZBqnz59mDhxIi+//DJ33nln1HsvvfQSmqZx/vnnA+ZC9sADD3DVVVdx5JFH4na7Wb58OT/88AMnnnhiQvfQHFVVVVRVVTVJM7v33nux2WzcdNNN+P1+bDYbn3zyCaeccgqHH344d955J6qqRhbWzz//nCOPPBKAlStXctJJJ5Gfn89dd91FKBTizjvvpE+fPq2Op71/064Y44UXXshjjz3Gu+++G/lbAXg8Ht5++22mT5+OpmmAmWOelpbGjTfeSFpaGp988gl33HEHbrebv/71r3H8hVpn9erVHHPMMfTv359bb72V1NRUXn75Zc466yxeffVVzj77bKDjn6fwpjA3Nzdy/rvvvpsTTjiBa665hnXr1kW+t19++WVM76KiKFx66aX85S9/obKykpycnMh7b7/9Nm63m0svvbQtH4skiQkXX2ZnZ0de6+zn+KqrruK5555j2rRpjB8/nk8++YRTTz21Xfcxd+5cRo0axRlnnIHFYuHtt9/m2muvxTAMZs2a1ezvPfnkk1x//fWcd955zJ49G5/Px4oVK/jmm2+YNm1azN+Ra0fL9IS1Q1EUpk2bxv3338/q1asZNWpU5L3333+fyspKLrnkEgA+/PBDNm7cyIwZMygsLGT16tU88cQTrF69mq+//rpDCsU9Hg8TJ05kx44dzJw5k0GDBrFs2TLmzJnDrl27IhGFDz/8kIsvvpgpU6bw4IMPArBmzRq+/PJLZs+enfB1Gz87H330EaeccgpFRUXcddddeL1e/vWvf3HMMcfwww8/NCv28etf/5r//ve/LF68mNNOOy3yemlpKZ988kmT70mHIyQ9huXLlwtAfPjhh0IIIQzDEAMGDBCzZ8+OOu6OO+4QgHjttdeanMMwDCGEEN99950AxIIFC5ocM3jwYHH55Zc3eX3ixIli4sSJkZ9DoZDw+/1Rx1RVVYk+ffqIK664Iup1QNx5550t3t/8+fMFIFauXBn1+oEHHiiOP/74yM8HH3ywOPXUU1s8VyIA4sorrxTl5eWirKxMfPPNN2LKlCkCEH/729+EEEJ8+umnAhBFRUXC4/FEftcwDDF8+HAxderUyGcrhBAej0fst99+4sQTT4y8dtZZZwmHwyG2bNkSee2XX34RmqaJxl/Fxn+D9vxNO2uMscbRv39/ce6550a9/vLLLwtALF26NOrajZk5c6ZISUkRPp8v8trll18uBg8eHPk5/Hf49NNPo35306ZNTe59ypQpYvTo0VHnMwxDjB8/XgwfPjzyWlufp/BYnn76aVFeXi527twp3n33XTFkyBChKIr47rvvRFlZmbDZbOKkk04Suq5HfvfRRx+N/G5z97pu3ToBiLlz50Zd94wzzhBDhgyJ+ltKehYLFiwQgPjoo49EeXm52LZtm1i0aJHIz88XdrtdbNu2LXJsRz7Hd955Z9T3+KeffhKAuPbaa6OOmzZtWpM5u/Hz2dw5hYj9/Z46daooKiqKeq3xmnLmmWeKUaNGtXgPsZBrx1564tohhBCrV68WgJgzZ07U6xdddJFwOBzC5XJFrt2YF198sckaE/6Obdq0KfJac/uQxp/ZvffeK1JTU8X69eujjrv11luFpmli69atQgghZs+eLTIyMkQoFGr1/hoTz7NzyCGHiIKCArFnz57I7/38889CVVVx2WWXNXuvuq6LAQMGiAsvvDDqmg8//LBQFEVs3Lgx4fEmgkyF6kE8//zz9OnTh8mTJwOmlX/hhReycOHCqBSSV199lYMPPjjiyWpIR8q+aZqGzWYDwDAMKisrCYVCjB07lh9++CHh851zzjlYLBZeeumlyGurVq3il19+4cILL4y8lpWVxerVq9mwYUP7b6Kef//73+Tn51NQUMBRRx3Fl19+yY033sjvfve7qOMuv/xynE5n5OeffvqJDRs2MG3aNPbs2UNFRQUVFRXU1dUxZcoUli5dimEY6LrO4sWLOeussxg0aFDk90eOHMnUqVNbHV97/qZdNUZFUTj//PP53//+R21tbeT1l156if79+0epfjT8DGtqaqioqOC4447D4/Gwdu3aVq/VGpWVlXzyySdccMEFkfNXVFSwZ88epk6dyoYNGyLqO+19nq644gry8/Pp168fp556KnV1dTzzzDOMHTuWjz76iEAgwO9+97uogsqrr76ajIwM3n333WbPO2LECI466qiodMfKykree+89Lrnkkm6RcJR0LCeccAL5+fkMHDiQ8847j9TUVN566y0GDBgAdP5z/L///Q8wBQga0njeS5SG32+Xy0VFRQUTJ05k48aNuFyuZn8vKyuL7du389133yV0Pbl2NE9PWDsADjzwQA499FAWLlwYea2uro633nqL0047jYyMDCD62fL5fFRUVDBu3DiANu07YvHKK69w3HHHkZ2dHbnniooKTjjhBHRdZ+nSpYD5PNXV1bU5la6lZ2fXrl389NNPTJ8+PSpiPWbMGE488cTIdzcWqqpyySWX8NZbb1FTUxN5/fnnn2f8+PHst99+bRpvvEjDooeg6zoLFy5k8uTJbNq0ieLiYoqLiznqqKPYvXs3H3/8ceTYkpISDjrooC4Z1zPPPMOYMWMi+ar5+fm8++67LS4ezZGXl8eUKVN4+eWXI6+99NJLWCwWzjnnnMhr99xzD9XV1YwYMYLRo0dz8803s2LFinbdx5lnnsmHH37IRx99xDfffENFRQV/+9vfmqhrNP5Chheoyy+/nPz8/Kh/Tz31FH6/H5fLRXl5OV6vl+HDhze5djz5ju35m3bVGMFMh/J6vZH879raWv73v/9x/vnnRy1iq1ev5uyzzyYzM5OMjAzy8/MjqT1teXYaU1xcjBCCP/7xj03uORwGLisrA9r/PIWL7j755BNWrFjBzp07+fWvfw3Ali1bgKafn81mo6ioKPJ+c1x22WV8+eWXkeNeeeUVgsFg5PySns1jjz3Ghx9+yKJFi/jVr35FRUUFdrs98n5nP8dbtmxBVVWGDh0a9Xp7c7C//PJLTjjhhEheeH5+PrfddhvQ8vf797//PWlpaRx55JEMHz6cWbNmxczlb4xcO5qnp6wdYBZxhwVqAN544w08Hk8kDQpMY3v27Nn06dMHp9NJfn5+5LPtiLUDzPt+//33m9zzCSecAOz9zl177bWMGDGCU045hQEDBnDFFVfw/vvvx32dlp6d5tYOMA22sIHXHJdddhler5fXX38dMOuNvv/++y5ZO2SNRQ/hk08+YdeuXSxcuDDKog/z/PPPc9JJJ3XItZrzYui6HsmRB3juueeYPn06Z511FjfffDMFBQVomsYDDzzQpPgwXi666CJmzJjBTz/9xCGHHMLLL7/MlClTyMvLixwzYcIESkpKePPNN/nggw946qmneOSRR5g3bx5XXXVVm647YMCAyKTREg29JUCkkOuvf/1rszUlaWlp+P3+No2rI+jKMY4bN44hQ4bw8ssvM23aNN5++228Xm+U17C6upqJEyeSkZHBPffcw9ChQ3E4HPzwww/8/ve/b1EtpaVnsyHhc9x0003NeszCeaztfZ5Gjx4d17PTFi666CJuuOEGnn/+eW677Taee+45xo4d2+nFd5Ku4cgjj2Ts2LEAnHXWWRx77LFMmzaNdevWkZaW1qXPcWvE+90rKSlhypQpHHDAATz88MMMHDgQm83G//73Px555JEWv98jR45k3bp1vPPOO7z//vu8+uqrPP7449xxxx0xi7MbIteOjqerx3jxxRdzyy238MILLzB+/HheeOEFsrOz+dWvfhU55oILLmDZsmXcfPPNHHLIIZHvycknn9xmpa1Y68eJJ57ILbfcEvP4ESNGAFBQUMBPP/3E4sWLee+993jvvfdYsGABl112WVyqgPE+O23hwAMP5PDDD+e5557jsssu47nnnsNms3HBBRd0yvUaIg2LHsLzzz9PQUEBjz32WJP3XnvtNV5//XXmzZuH0+lk6NChrFq1qsXztRQCzc7OjqlYs2XLFoqKiiI/L1q0iKKiIl577bWo87WnMOiss85i5syZkZD2+vXrmTNnTpPjcnJymDFjBjNmzKC2tpYJEyZw1113dcgCmghhT19GRkaLE0R+fj5OpzNmCH7dunVxXaetf9OuGmOYCy64gH/84x+43W5eeuklhgwZEglVg6mSsmfPHl577TUmTJgQeb2hEkZzhItaGz+fjT3/4efUarXGNXF31vMU1mRft25d1HcnEAiwadOmVseWk5PDqaeeyvPPP88ll1zCl19+2eOlCCWxCTtlJk+ezKOPPsqtt97a6c/x4MGDMQyDkpKSKGM11ve9pXWhIW+//TZ+v5+33norKi0mXrXA1NRULrzwQi688EICgQDnnHMO9913H3PmzGlRKleuHc1fp6esHf369WPy5Mm88sor/PGPf+TDDz9k+vTpkZTrqqoqPv74Y+6++27uuOOOyO/Fm9oW6xkOBALs2rUr6rWhQ4dSW1sb13fOZrNx+umnc/rpp2MYBtdeey3z58/nj3/8Y5t6jIVpuHY0Zu3ateTl5ZGamtriOS677DJuvPFGdu3axQsvvMCpp54aJQzRWchUqB6A1+vltdde47TTTuO8885r8u+6666jpqYmkn5y7rnn8vPPP0dCYA0xa4aIPJCxFoqhQ4fy9ddfEwgEIq+98847bNu2Leq4cPQifE4wZem++uqrNt9rVlYWU6dO5eWXX2bhwoXYbDbOOuusqGMay8qlpaUxbNiwKK+Jy+Vi7dq1HRYabY7DDz+coUOH8tBDD0XVFYQpLy8HzM9q6tSpvPHGG2zdujXy/po1a1i8eHGr12nP37SrxhjmwgsvxO/388wzz/D+++838ZDEem4CgQCPP/54q+cePHgwmqZFclzDNP7dgoICJk2axPz585ssGrD3niG+56mtnHDCCdhsNv75z39G3e+///1vXC5XXOo7v/71r/nll1+4+eab0TSt12m5S/YyadIkjjzySP7+97/j8/k6/TkON+H65z//GfV6LON16NChuFyuqNShXbt2NZmTYn2/XS4XCxYsaHYczd2DzWbjwAMPRAgRUzqzIXLtiE1PWjvATIcqKytj5syZBIPBqDSoWM8WxH5eYzF06NAma8cTTzzRJGJxwQUX8NVXX8Uce3V1NaFQCGj6PKmqypgxYwDavX707duXQw45hGeeeSbq77Jq1So++OCDqChOc1x88cUoisLs2bPZuHFjlykJyohFDyBcgHPGGWfEfH/cuHGRZnkXXnghN998M4sWLeL888/niiuu4PDDD6eyspK33nqLefPmcfDBBzN06FCysrKYN28e6enppKamctRRR7Hffvtx1VVXsWjRIk4++WQuuOACSkpKeO6555rk4Z522mm89tprnH322Zx66qls2rSJefPmceCBB8achOLlwgsv5NJLL+Xxxx9n6tSpZGVlRb1/4IEHMmnSJA4//HBycnJYvnw5ixYt4rrrrosc8/rrrzNjxgwWLFgQsydHR6GqKk899RSnnHIKo0aNYsaMGfTv358dO3bw6aefkpGRwdtvvw3A3Xffzfvvv89xxx3HtddeSygUimi2t5bn296/aVeMMcxhhx3GsGHDuP322/H7/VFpUGDKGGZnZ3P55Zdz/fXXoygKzz77bJPFIhaZmZmcf/75/Otf/0JRFIYOHco777wTyXltyGOPPcaxxx7L6NGjufrqqykqKmL37t189dVXbN++nZ9//hmI73lqK/n5+cyZM4e7776bk08+mTPOOIN169bx+OOPc8QRR8Q10Z966qnk5ubyyiuvcMopp1BQUNDucUmSl5tvvpnzzz+f//znP/zmN7/p1Of4kEMO4eKLL+bxxx/H5XIxfvx4Pv74Y4qLi5sce9FFF/H73/+es88+m+uvvx6Px8PcuXMZMWJEVNHsSSedFPHizpw5k9raWp588kkKCgpiGkcNOemkkygsLOSYY46hT58+rFmzhkcffZRTTz2V9PT0Vj87uXY0pSetHWAaQtdeey1vvvkmAwcOjIpqZ2RkMGHCBP7yl78QDAbp378/H3zwQVzRbjCllX/zm99w7rnncuKJJ/Lzzz+zePHiqHS58GcWLhqfPn06hx9+OHV1daxcuZJFixaxefNm8vLyuOqqq6isrOT4449nwIABbNmyhX/9618ccsghjBw5Mu57bo6//vWvnHLKKRx99NFceeWVEbnZzMzMmP04GpOfn8/JJ5/MK6+8QlZWVrtlpOOmUzWnJB3C6aefLhwOh6irq2v2mOnTpwur1SoqKiqEEELs2bNHXHfddaJ///7CZrOJAQMGiMsvvzzyvhBCvPnmm+LAAw8UFoulidTc3/72N9G/f39ht9vFMcccI5YvX95EGtAwDHH//feLwYMHC7vdLg499FDxzjvvxJQlJA652TBut1s4nU4BiOeee67J+3/605/EkUceKbKysoTT6RQHHHCAuO+++0QgEIgcE5ZfiyWn2xhAzJo1q8VjwpKBr7zySsz3f/zxR3HOOeeI3NxcYbfbxeDBg8UFF1wgPv7446jjPvvsM3H44YcLm80mioqKxLx582LKNcaS/G3v37Sjx9gSt99+uwDEsGHDYr7/5ZdfinHjxgmn0yn69esnbrnlFrF48eImUrKxnqXy8nJx7rnnipSUFJGdnS1mzpwpVq1aFfPvXVJSIi677DJRWFgorFar6N+/vzjttNPEokWLIsfE8zzForVnoiGPPvqoOOCAA4TVahV9+vQR11xzjaiqqoo6pjk5TyGEuPbaawUgXnjhhVavJUl+wvPTd9991+Q9XdfF0KFDxdChQyMylh31HMf6Hnu9XnH99deL3NxckZqaKk4//XSxbdu2mHP2Bx98IA466CBhs9nE/vvvL5577rmY53zrrbfEmDFjhMPhEEOGDBEPPvigePrpp5vIfzZeU+bPny8mTJgQmaOGDh0qbr755ojUaGvItaPnrx1CCHH++ecLQNxyyy1N3tu+fbs4++yzRVZWlsjMzBTnn3++2LlzZ5PnNZbcrK7r4ve//73Iy8sTKSkpYurUqaK4uDjmZ1ZTUyPmzJkjhg0bJmw2m8jLyxPjx48XDz30UOR5WbRokTjppJNEQUGBsNlsYtCgQWLmzJli165drd5jPM+OEEJ89NFH4phjjhFOp1NkZGSI008/Xfzyyy9Rx8S61zBhuff/+7//a/VaHYUiRBxuQolEIpF0GzfccAP//ve/KS0tJSUlpbuHI5FIJJIewJtvvslZZ53F0qVLI80POxtpWEgkEkkS4/P5GDhwIKeddlpceeoSiUQikYCZsr5mzRqKi4u7rPeRrLGQSCSSJKSsrIyPPvqIRYsWsWfPHmbPnt3dQ5JIJBJJD2DhwoWsWLGCd999l3/84x9d2lBVRiwkEokkCVmyZAmTJ0+moKCAP/7xjx1STC6RSCSS3o+iKKSlpXHhhRcyb948LJauiyNIw0IikUgkEolEIpG0G9nHQiKRSCQSiUQikbQbaVhIJBKJRCKRSCSSdiOLt9uIYRjs3LmT9PT0Li2KkUgkkq5ECEFNTQ39+vVDVaUvqiFyHZBIJPsCiawD0rBoIzt37mTgwIHdPQyJRCLpErZt28aAAQO6exhJhVwHJBLJvkQ864A0LNpIeno6YH7IGRkZ3TwaiUQi6RzcbjcDBw6MzHmSvch1QCKR7Asksg5Iw6KNhMPeGRkZckGRSCS9Hpnq0xS5Dkgkkn2JeNYBmTArkUgkEolEIpFI2o2MWEgkkn0OwxCs3umm0hMgJ8XGqH4ZqKr0yEskEolE0h66NWIxd+5cxowZEwkjH3300bz33nuR95944gkmTZpERkYGiqJQXV3d7nMC+Hw+Zs2aRW5uLmlpaZx77rns3r27o29PIpEkIcuKK7h8wbfMfHY5N738MzOfXc7lC75lWXFFdw9NIpFIJJIeTbcaFgMGDODPf/4z33//PcuXL+f444/nzDPPZPXq1QB4PB5OPvlkbrvttg47J8ANN9zA22+/zSuvvMJnn33Gzp07Oeecczr8/iQSSXKxrLiC215fyZpdblLtFgrS7aTaLazZVcNtr6+UxoVEIpFIJO1AEUKI7h5EQ3JycvjrX//KlVdeGXltyZIlTJ48maqqKrKystp1TpfLRX5+Pi+88ALnnXceAGvXrmXkyJF89dVXjBs3Lq5zut1uMjMzcblcsmhPIukBGIbg8gXfsmaXm8IMR1QRmhCCUrefkX3TeWbGkTItqgFyrmse+dlIJJJ9gUTmuqQp3tZ1nYULF1JXV8fRRx/daef8/vvvCQaDnHDCCZHjDjjgAAYNGsRXX33V7Ln8fj9utzvqn0Qi6Tms3ummpKyW7BRbE2ULRVHISrFSUlbL6p2977tdV1fX3UOQSCQSyT5AtxsWK1euJC0tDbvdzm9+8xtef/11DjzwwE47Z2lpKTabrUnko0+fPpSWljZ7zgceeIDMzMzIP9kUSSLpWVR6AgR1gU2LPe3ZNZWgIaj0BLp4ZJ3LqlWruPLKK1m2bFl3D0UikSQ5hiFYud3FZ+vLWbndhWEkVVKLpAfQ7apQ+++/Pz/99BMul4tFixZx+eWX89lnn7XLuOiMc86ZM4cbb7wx8nO4WYhEIukZ5KTYsGoKAd3AoWpN3vfrBlZVISfF1g2j6xxWrVrFXXfdhd/v56OPPuLoo4+W/SgkEklMlhVXMPezEkrKagnqAqumMLQgjWsmDmX8sLzuHp6kh9DtEQubzcawYcM4/PDDeeCBBzj44IP5xz/+0WnnLCwsJBAINFGY2r17N4WFhc2e0263R5SmZDMkiaTnMapfBkML0qjyBGlcWiaEoNoTZGhBGqP69Y7vdkOj4rDDDuPWW2+VRoVEIomJFLaQdBTdblg0xjAM/H5/p53z8MMPx2q18vHHH0feX7duHVu3bu2w2g6JRJJ8qKrCNROHkmbXKHX78QZ1DEPgDeqUuv2k2TWumTi0VxRuNzYqbr/9dmy23hOJkUgkHYdhCOZ+VkKtP0RhhgOHVUNVFRxWjcIMO7V+nbmflci0KElcdGsq1Jw5czjllFMYNGgQNTU1vPDCCyxZsoTFixcDZj1EaWkpxcXFgFk7kZ6ezqBBg8jJyQFgypQpnH322Vx33XVxnTMzM5Mrr7ySG2+8kZycHDIyMvjtb3/L0UcfHbcilEQi6ZmMH5bH/WePjoT7XYbAqiqM7Jvea8L9GzdulEaFRCKJm0SELUYPyOymUUp6Ct1qWJSVlXHZZZexa9cuMjMzGTNmDIsXL+bEE08EYN68edx9992R4ydMmADAggULmD59OgAlJSVUVFTEfU6ARx55BFVVOffcc/H7/UydOpXHH3+8C+5YIpF0N+OH5TGuKLfXdt4eNGgQhxxyCMFgUBoVEomkVeIRtnD1QmELSeeQdH0segpSv1wikSQroVAIwzA6xKiQc13zyM9G0htYud3FzGeXk2q34LA2FbbwBnU8/hDzfz1WRiz2UXpkHwuJRCKRtI1Vq1axYMGCSFG6xWKRkQqJRBIX+5qwhaRzkYaFRCKR9GDChdqvvfYa77//fncPRyKR9DD2JWELSecjDQuJRCLpoTRWf5oyZUp3D6nHsWPHDi699FJyc3NxOp2MHj2a5cuXd/ewJJIuJSxsMbJvOh5/iLJaPx5/iJF907n/7NG9QthC0jV0e4M8iUQikSSOlJRtP1VVVRxzzDFMnjyZ9957j/z8fDZs2EB2dnZ3D00iaRbDEJ0iPtHbhS0kXYM0LCQSiaSHIY2KjuHBBx9k4MCBLFiwIPLafvvt140jkkhaprO7Y6uqIgu0Je1CpkJJJBJJD6KmpoZ7771XGhUdwFtvvcXYsWM5//zzKSgo4NBDD+XJJ5/s7mFJJDGR3bElPQFpWEgkEkkPIj09nVmzZnHEEUdIo6KdbNy4kblz5zJ8+HAWL17MNddcw/XXX88zzzwT83i/34/b7Y76J5F0BbI7tqS9GIZg5XYXn60vZ+V2V6c9KzIVSiKRSHoAQohIV9wJEyZw3HHHNemSK0kMwzAYO3Ys999/PwCHHnooq1atYt68eVx++eVNjn/ggQeimrZKJF2F7I4taQ+dnULXEBmxkEgkkiRn1apV/O53v2PPnj2R16RR0X769u3LgQceGPXayJEj2bp1a8zj58yZg8vlivzbtm1bVwxTIomrO3ZQdseWxKCrU+ikYSGRSCRJTLhQe+PGjSxcuLC7h9OrOOaYY1i3bl3Ua+vXr2fw4MExj7fb7WRkZET9k0i6gpwUG1ZNIaAbMd/36wZWVSEnRaZGSvbSHSl00rCQSCSSJKWx+tPVV1/d3UPqVdxwww18/fXX3H///RQXF/PCCy/wxBNPMGvWrO4emkQSheyOLWkLiaTQdRTSsJBIJJIkRErKdj5HHHEEr7/+Oi+++CIHHXQQ9957L3//+9+55JJLuntoEkkUsju2pC10RwqdLN6WSCSSJEMaFV3Haaedxmmnndbdw5BIWiXcHTtchOsyBFZVYWTf9E4pwpX0fBqm0DlUrcn7nZFCJw0LiUQiSSKEEDz11FPSqJBIJE2Q3bGj6awu5L2FcArdml01FGaoUelQ4RS6kX3TOzSFThoWEolEkkQoisIdd9zBSy+9xJVXXimNColEEoXsjm3SlRKqPZVwCt1tr6+k1O0nK8WKXVPx6wbVnmCnpNAponEVkCQu3G43mZmZuFwuqQwikXQTvclbVVNTQ3p6encPowlyrmse+dlIJN1DWEK11h8iO8WGTVMJ6AZV9Zvl+88eLY2LBkQZYfUpdIkYYYnMdTJiIZFIeiS9yVu1atUq7rnnHq655homT57c3cORSCSSpKWxhGo4vcehahRmqJS6/cz9rIRxRbk91tHU0XRlCp1UhZJIJD2Orm7405mEC7W9Xi9Lly5tIiUpkUgkkr10h4RqbyCcQjdxRD6jB2R2mtElDQuJRNKj6I6GP51FY/WnOXPmyI7aEolE0gKyC3lyIw0LiUTSo+gt3iopKSuRSCSJI7uQJzfSsJBIJD2KsLfKqip4Azo1viDegB5JIeoJ3ippVEgkEknbkF3IkxtpWEgkkh5FTooNQxhs3uNhS2Ud26u8bKmsY/OeOmr9oR7hrfr++++lUSGRSCRtQHYhT26kKpREIulRuLwB6gI6/qCB1aKgKQoC8AYNdlR5cFgtHDwwM6m9VZdddhmFhYVMnjxZGhUSiUSSILILefIiDQuJRNJjMAzB/KUbsVtUdF1gGKCooCigKRDUBaqqM3NCUdJ5qzZu3MjAgQOxWq0oisLUqVO7e0gSiUTSY5FdyJMTaVhIJJIeQ7hwuyDdQShVUF7jxx/SEYZpXDisGik2jUxnckUBwjUVY8aMYc6cOVit1u4ekkQikfR4ZBfy5EMaFhKJpMfQUGbQYVVItWv4AgYhw8CiqtgsCuW1gaQq3G5YqK3ruuxTIZFIJJJeizQsJBJJj6GhzKBD1VBQcNo0QAPAG9STqnBbqj9JJBKJZF9CqkJJJJIeQ0+SGZRGhUQikUj2NaRhIZFIegw9RWZQGhUSiUSyF8MQrNzu4rP15azc7sIwZEpob0WmQkkkkh5FT5AZ1DQNRVGkUSGRSPZ5lhVXRObroC6wagpDC9KSZr6WdCyKkJWEbcLtdpOZmYnL5SIjo/vTLiSSfQ3DEEktM7hp0yb69+/f440KOdc1j/xsJPsaic67y4oruO31ldT6Q2Sn2LBpKgHdoMoTJM2ucf/Zo6Vx0QNIZK6TEQuJRNIjSTaZwVWrVpGSkkJRUREA++23XzePSCKRSDqORCMPhiGY+1kJtf4QhRkOFMU0QByqRmGGSqnbz9zPShhXlJtUTiFJ+5A1FhKJRNJOwjUVf/jDH9i+fXt3D0cikUg6lHDkYc0uN6l2CwXpdlLtFtbsquG211eyrLiiye+E+w5lp9giRkUYRVHISrFSUlbL6p3urroNSRcgDQuJRCJpBw0LtYcPH05BQUF3D0kikUg6jMaRB4dVQ1UVHFaNwgw7tX6duZ+VNCnIbth3KBZ2TSVoiKTqOyRpP9KwkEgkkjYi1Z8kEklvp62Rh4Z9h2Lh142k6juUjPRENS1ZYyGRSCRtQBoVEolkXyCeyIMrRuQh3Hdoza4aCjPUKKMk3HdoZN/0pOg7lIz0VDUtaVhIJBJJgmzYsEEaFR3Ipk2b+Pzzz9myZQsej4f8/HwOPfRQjj76aBwOR3cPTyLZp2kYeXCoWpP3m4s8hPsO3fb6SkrdfrJSrNg1Fb9uUF2vCpUMfYeSkebUtMI1LcmspiUNC4lEIkmQgQMHMnz4cGw2mzQq2sHzzz/PP/7xD5YvX06fPn3o168fTqeTyspKSkpKcDgcXHLJJfz+979n8ODB3T1ciWSfpD2Rh57QdyjZ6OlqWtKwkEgkkgRxOBzceeedqKoqjYo2cuihh2Kz2Zg+fTqvvvoqAwcOjHrf7/fz1VdfsXDhQsaOHcvjjz/O+eef302jlcRLsveXkSROeyMP44flMa4oVz4XcZJITUsySa6HkYaFRCKRxMGqVav45ZdfuOCCCwBkik47+fOf/8zUqVObfd9utzNp0iQmTZrEfffdx+bNm7tucJI20VNzwiWt097IQ7L1HUpm2lrTkixIw0IikUhaoWGhdn5+PpMnT+7uIfV4WjIqGpObm0tubm4njkbSXnpyTrgkPmTkoWtoa01LsiANC4lEImmBxupPxxxzTHcPqVfgdsffFCsjQ6rGJDM9PSdcEj8y8tD59HQ1LWlYSCQSSTNISdnOIysrq0n+cHPout7Jo5G0h56eEy6RJBM9XU1LGhYSiUQSA2lUdC6ffvpp5L83b97MrbfeyvTp0zn66KMB+Oqrr3jmmWd44IEHumuIkjjp6TnhEkmyMa4ol6uOK2Lht1spdfsAsGlqj1DTkoaFRCJJerpaaaaqqoq7775bGhWdyMSJEyP/fc899/Dwww9z8cUXR14744wzGD16NE888QSXX355dwxREieNc8KFEPiCBiHDwKKqCESLOeFSSUoi2UtjEQQFhYIMOxcfOYhpRw5K+u+GNCwkEklS0x1KM9nZ2cyYMYNvv/2W2267TRoVncxXX33FvHnzmrw+duxYrrrqqm4YkSQRGuaEp9kNKmr9+EMGQkA4M+qAwtg54VJJSiLZS3MiCLvdfp76fCNFealJ/72IHbeUSCSSJCA8ya7Z5SbVbqEg3U6q3RJRmllWXNGh1xNCRP77V7/6FXfeeac0KrqAgQMH8uSTTzZ5/amnnmrS30KSfIRzwjUVtlZ68AZ0FAVUxYxG6IagrMbP1xv3RP1eV3+/JZJkprEIgsOqoaoKDqtGYYadWr/O3M9KMAzR+sm6ERmxkEgkTeis1IREztvVSjOrVq3iv//9L3/84x9JT08HiLu4WNI+HnnkEc4991zee+89jjrqKAC+/fZbNmzYwKuvvtrNo5PEw7iiXArS7VTWBRBCYBhmtMJps5CXZotsisLfV6kkJeksempqXW8RQZCGhUQiiaKzUhMSPW9XTrINC7UXLlzI1Vdf3a7zSRLjV7/6FevXr2fu3LmsXbsWgNNPP53f/OY3XRqx+POf/8ycOXOYPXs2f//737vsur2B1Tvd7KkNMDg3BYQSqa9w2FQUFCyaGvV97S2bqI6gp26Ek5GenFrXW0QQpGEhkUgidFaTq7act6sm2cbqT7JQuHsYOHAg999/f7dd/7vvvmP+/PmMGTOm28bQkwl/X+2aVr8pjm7s1fj72ls2Ua3RmtHQkzfCyUZPb9LY0xvjhZE1FhKJBOi8/M62nrfhJBuLhpOsYQhWbnfx2fpyVm53xT1GKSmbPHz++edceumljB8/nh07dgDw7LPP8sUXX3T6tWtra7nkkkt48sknyc7O7vTr9UYS+b625fieyLLiCi5f8C0zn13OTS//zMxnl3P5gm8jtSOyxqTj6A31CWERhCpPMKreD/Y2xhtakJa0jfHCSMNCIpEAiaUedcV5451kXd5Ai4t3c0ijInl49dVXmTp1Kk6nkx9++AG/3w+Ay+XqkijGrFmzOPXUUznhhBNaPM7v9+N2u6P+SUwS3RT1lk1Uc7RmNHyxobzHb4STic5av7qSsAhCml2j1O3HG9QxDIE3qFPq9id9Y7ww0rCQSCRAfKkJwTakJrT1vPFMshOG5/GHN1Yl7PHTdZ3HHntMGhVJwp/+9CfmzZvHk08+idVqjbx+zDHH8MMPP3TqtRcuXMgPP/wQVyO+Bx54gMzMzMg/qVi1l0Q3Rb1lExWLeLznD32wnuLdNT16I5xMdNb61dWMH5bH/WePZmTfdDz+EGW1fjz+ECP7pid9KlcYWWMhkUiAzsvvbM95w5NsOAfZZZiNtkb2TWfmhCLmL93YJlUZTdO44447ePnll7nmmmukUdHNrFu3jgkTJjR5PTMzk+rq6k677rZt25g9ezYffvghDoej1ePnzJnDjTfeGPnZ7XZL46IBLX1fY9UMJHp8TyEe7/m2Sg+6IchJ7d01Jl1Fb6lPAPN7Ma4ot8cW9EvDQiKRANFNrgoz1KgFMZyaMLJv7CZXnXne5ibZtqjKeDweUlJSAOjbty+zZ89O6F4knUNhYSHFxcUMGTIk6vUvvviCoqKiTrvu999/T1lZGYcddljkNV3XWbp0KY8++ih+vx9N27tJsdvt2O32ThtPbyDRTVFP2EQlqtoUj/fcEAJVoVdshJOBzlq/ugtVVXqsGpo0LCQSCbA3NeG211dS6vaTlWLFrqn4dYNqT7DNqQkdcd5Yk2yiqjKrVq3ivvvu48Ybb+SII45I6B4kncvVV1/N7Nmzefrpp1EUhZ07d/LVV19x00038cc//rHTrjtlyhRWrlwZ9dqMGTM44IAD+P3vfx9lVEjiJ9FNUTJvotqi2hSP99xp1SjIcLC9yttpG+F9Sca2s9YvSeJIw0IikUTorNSEzjhvIqHvhoXaixcvZuzYsbL5XRJx6623YhgGU6ZMwePxMGHCBOx2OzfddBO//e1vO+266enpHHTQQVGvpaamkpub2+R1yb5HW+VL4/Wez5xQxB/eWNXhG2HDELzw7VZe/HYrZW5TCKE9MrahkMHbK3axo9pD/6wUTh/TF4slvhLdrjRuemtqXU9DEY3lGCRx4Xa7yczMxOVykZHRM0JrEkm8JEPn7XjOdfmCb+sXb3uTxbvU7Wdk33RuPiKFe+65WxZqt5GunOsCgQDFxcXU1tZy4IEHkpaW1qnXi8WkSZM45JBD4mqQJ9eB3sve+cUdVcMF0fPLMzOOjDmH7TVK9JhGQ9goiYqI1G+E29PHYllxBQ+8t4ZfdtVgGAJNBbtFIyvFhj9kRF07Hp5cWsJjS0qo8QYxMBV/0p1WZk0aytUThrY6lu7o0bEvRWq6ikTmOmlYtBG5oEj2JTp6ou6o87W2eF81ysIbT/9DGhXtoCvmuiuuuIJ//OMfpKenR71eV1fHb3/7W55++ulOuW57ketA72Xldhczn11Oqt2Cw9o0IuoN6nj8Ieb/emyzaVzxGg0dOR/OeW0FO10+DENg0RRAQTcEqqLQL8tBrV9v0SBqyJNLS3jw/XXo9edSFTAEhHSBpir8/uT9mzUumov2VDUyrCQ9g0TmOpkKJZFIWqSjvU4deb6WQt9T+wakUdFDeOaZZ/jzn//cxLDwer3897//TVrDQtJ7aa6GSwiBL2gQ1A08QZ2KOn+z54i3ML0jakzCErcubxAAi6ai1kdZFM00BipqAxRm2puIWsQiFDJ4bEkJuiGwWRRUxfwcVAVUxSAQEjy2pIQZ4/drkhbVWG43EcU+Sc9HGhYSiaRZ2ppj3FXng+YX7/nz50mjIslxu90IIRBCUFNTEyX5qus6//vf/ygoKOjGEUr2VWLVcNX6Q5TX+PCHDAwBCME/PtqAXVObnbe6qjA9rJKXYrNQ69dpWEKmoKCp4A/pGAZx9XN4e8UuarzB+khFtOGgKioWzaDGG+TtFbs4+7D+MceSiGJfT0GmWbVOtzbIe+CBBzjiiCNIT0+noKCAs846i3Xr1sU8VgjBKaecgqIovPHGGy2e96677uKAAw4gNTWV7OxsTjjhBL755pvI+5s3b+bKK69kv/32w+l0MnToUO68804CAakXLZGEiafJUyKdYTv6fA0JL94TR+QzekAmqqowc+ZMrrrqKmlUJDFZWVnk5OSgKAojRowgOzs78i8vL48rrriCWbNmdfcwJfsgjTuD1/pD7Kjy4g0a5qZdCGwWje1VnhabcXYV4QiLw6qhKNB4FlUUEAJ8QT0uGdsd1R6zpqKZPbNaf40d1Z5mx9LTm9U1ZllxBZcv+JaZzy7nppd/Zuazy7l8wbfd/rdPNro1YvHZZ58xa9YsjjjiCEKhELfddhsnnXQSv/zyC6mpqVHH/v3vf49bxWXEiBE8+uijFBUV4fV6eeSRRzjppJMoLi4mPz+ftWvXYhgG8+fPZ9iwYaxatYqrr76auro6Hnrooc64VYmkx9HRXqeu8GJt2bKFgQMHoqoqqqpy5plntuk8kq7h008/RQjB8ccfz6uvvkpOTk7kPZvNxuDBg+nXr183jlDSnXSnd7ihfOkulw9PQEcXBpqiYBigqSqFmQ5SbVqrqT3tUVWKl3CERVXAblHxBg2sKpG51qymFXiCOqP7Z7YqY9s/KwUVs6Yi1kduCFDqj2tuLL2pR0dnRNt7K91qWLz//vtRP//nP/+hoKCA77//PqoL608//cTf/vY3li9fTt++fVs977Rp06J+fvjhh/n3v//NihUrmDJlCieffDInn3xy5P2ioiLWrVvH3LlzpWEhkdSTaJ+I9p7Ppirs9of4z7JNHDssP+HFNywpO27cOH73uxtYU1orw9VJzsSJEwHYtGkTgwYNkhLAkgjdpSjUkHAN118Wr2Pl9moAhAIOq0Z+up00u7mFaskpEktV6e53VselqpQIDSVu89Ls7Kz2ETQE5hQqCOkCVVXIclrjkrE9fUxf7n5nNS5PEFUxotKhDGEQ0gWZKVZOH9N0T9bbmtXJmpHE6NZUqMa4XC6AKK+Vx+Nh2rRpPPbYYxQWFiZ8zkAgwBNPPEFmZiYHH3xwi9dueN3G+P1+3G531D+JpDfT0OsUi0S9Tg3PJ4SgzO1jW5WHMreP8hofa3fXUOML8eoPO7jplZ8Ye/9HPLm0JK5zN+xT8cuW3Vz2769kuLoH8cknn7Bo0aImr7/yyis888wz3TAiSXcS9g6v2eUm1W6hIN1Oqt0S8Q535Xd5/LA8fjdlOBlOK/2znQzOSWVIXkrEqIDmU3vCqkouTxBVVbBpCqqq4PIEefD9dXHPb/EQjrCk2TVq/Tp56TYcFhXdEAR0AYrCAYXpcXvWLRaVWZOGoqkKgZAgZBimQWGYhduaqjBr0tCYzp+GYyl1+/EGdQxD4A3qlLr9Pa5ZXSLRdkkSGRaGYfC73/2OY445Jqox0Q033MD48eMTTml45513SEtLw+Fw8Mgjj/Dhhx+Slxf7y1RcXMy//vUvZs6c2ez5HnjgATIzMyP/Bg4cmNB4JJKeRuMc44aEvU5DC9Li9jqFz7et0sOqnW521/ip9gTZXeOn1O2PhNZtGk0WX8MQrNzu4rP15azc7oqqw2hoVOQPOYDifieyvtzb7RsSSfw88MADMefngoIC7r///m4YkaS7SLQWq6W5oaPITbPjtGrYLRpOm4ZC9OYylpOlsaqSRVXNomdVxWYxJWAfW1JCKBTbcdMWwhGWkX3TQYDTppGVYmVU3wzuPmMUb846NqFoz9UThvL7k/cnM8WKYQiCusAwzEhFS1Kzjcfi8Ycoq/Xj8YcY2Td+4yZZ6K01I51F0qhCzZo1i1WrVvHFF19EXnvrrbf45JNP+PHHHxM+3+TJk/npp5+oqKjgySef5IILLuCbb75pojCyY8cOTj75ZM4//3yuvvrqZs83Z84cbrzxxsjPbrdbGheSXk3DHOOO6Awb9tj5WllItfqc3LCk4T8+3sCSdeVsqqhrkhKR4SuNGBWHHnooxf1PwlPuleHqHsbWrVvZb7/9mrw+ePBgtm7d2g0jknQXiXiHa3zBLkmXaktqT3tUlcLEW5vRuBZlweVHsKa0pkNSQa+eMJQZ4/drU41IvHK7yU5vrBnpTJLCsLjuuut45513WLp0KQMGDIi8/sknn1BSUkJWVlbU8eeeey7HHXccS5YsafacqampDBs2jGHDhjFu3DiGDx/Ov//9b+bMmRM5ZufOnUyePJnx48fzxBNPtDhGu92O3W5v0/1JJD2VlvpEJLp4BwI6n61vOWIgAN3Q0VQNVVHRVJ1av87P2130zXREFczNnvsWaatfJ80Khx12GGdefh3XvbSiV0oc9nYKCgpYsWIFQ4YMiXr9559/Jjc3t3sGJekW4q3t+qK4nJe+29YlxbRtcbKEVZUsLagq6cRWVYKmtRkKcPsbKzlicDZnHTogsrlvqRZl4oj8Drl/i0Vt1vhpja6S2+1MelvNSGfTrYaFEILf/va3vP766yxZsqSJx+rWW2/lqquuinpt9OjRPPLII5x++ukJXcswDPz+vY1sduzYweTJkzn88MNZsGABqpo0WWESSVLRUV6neUs3EoojTcEQoAECQbi8I8WqRrrfhiMQJTt87C6rYfppE7j99tv5arOrQ4vNJV3HxRdfzPXXX096enpEuOOzzz5j9uzZXHTRRd08OklXkuW0AlDlCZBis+CwqVGpR2Hv8OLVuzulmLY5JapEnSztUVVq3PEaQ6AL8AR0PttQwdINFdz9zmpOPaiQL0v2SKWiTqajo/e9nW41LGbNmsULL7zAm2++SXp6OqWlpQBkZmbidDopLCyMWbA9aNCgKCPkgAMO4IEHHuDss8+mrq6O++67jzPOOIO+fftSUVHBY489xo4dOzj//PMB06iYNGkSgwcP5qGHHqK8vDxyrrYUiEskyUZHyzR2hNdpS2Vd5L8jDh/RVG89bHuIBu/ZLNHhZ0VR6D98FHuc0zlr+qnYbDYZru7B3HvvvWzevJkpU6ZgsZjLkmEYXHbZZbLGYh9iWXEFjy8pxuUNEtQNNBUcVktEgSnsHR6Q7WS3y9vh0cnWlKgScbK0VVWpcW2GboDeaJIUQLUnyAvfbsNpVSnKT5Opn51MR0bvezvdaljMnTsXgEmTJkW9vmDBAqZPnx73edatWxdRlNI0jbVr1/LMM89QUVFBbm4uRxxxBJ9//jmjRo0C4MMPP6S4uJji4uKo1CugSZGqRNLTSAaZxlgMzklt+qJCE8sivAaGizBVBTJTzKmqZtcmrCnpODLzsGsqltwB1ITM42W4uudis9l46aWXuPfee/n5559xOp2MHj2awYMHd/fQJF1Ewz4B+ek2ymv86IbAGwixvVKnIMOBP2SQZteYOqqQp7/Y1KHRyXj7FMTrZAmrKj34/joCIYFFM1DN4AMhvXlVpYa1GYqiEDJi16Rpimlw+EKmyl7D+a4jUj9lh+mm9Jaakc6m21OhOuJ3Gr7mcDh47bXXWjzH9OnTEzJcJJKupq2TejI38fnNhCL++ckGQoZAiAZRi0YoAkKGEUmbykmxoSoq7p0bWf/e01jsTkaeeS2GIyMqAiHD1T2fESNGMGLEiO4ehqSLidUnwGbRKK/x4Q+Zc0FFrZ8jhuRw7aShpDusPPvVZgK6gV1R8QVNGVSLquKwqglHJzurT0FYNSlcK6Fj+lIyU6zN9rFoWJuht5A6Gn7HEODyhshOjb7X9qR+JqtzKhnoDTUjnU1SFG9LJJK9tHVST/YmPjabxoVjB/D8t9uAcCfYpuiAYggynVayU63U+HTcO0pY//4CjFAQZ9/9sDhSKYsRgZDh6p7DjTfeyL333ktqamqU4l4sHn744S4alaQ7iKUElWa3kGpLxRc0qAuECOoGN0/dn4MHZmEYgqEFafy8zYVuGPW9cUxnhU1T0VSVgwe23l26peuHaa/3P1FVpYa1GS35XsPRD4BgjF5DbU39TGbnlKRnIA0LiSSJaM+k3pmLY0dx3zljAHhp+faoQm6LqnDe4f05ar+8qMX3282VzJ77Five/w8WQmQN3J8Bky+hzGM0G4GQ4eqewY8//kgwGIz8d3PIbty9n+aUoBRFwWnTsFkUdrl8fL6hHFVRGNUvgwnD8/iqZE+kwFlTzY22J6CjqQYThufF/Z2PV4mqrcIPiagqNazNaGY4AFGdNKxa9H22NfUz2Z1Tkp6BNCwkkiShvZN6Zy+OHcV954zhztNGMW/pRrbsqcNh1Zg0Mp/CdGcTAyDDV0ra6tdJtRgoecPIOPoCfLrCyL4tR3BkuDr5+fTTT2P+t2TfoyXhhVp/iFKXj0BI56nPN/HMsi0UZNjxBXVSbRohQxDQDXTDjFik2DQsmsLSDRVceWxRXBvgZBJ+aFib0VIqVLBBkKLaEwRFIcNuIWCINqd+9gTnlCT5kYaFRJIktHdST6bFEVquE7HZNMYOyea7LZWUlNXywS+7IylfMycUkem08dOqX/jvv/5MqgWuOPN4zpr+W2pCyAiERNLLaE54odYfYnulh5AhsFlUAiGdWn+Qilo/AjPtqX+2A01R99ZY2Myai0Q2wB0h/NCRxc4NazNcnmAT5bzG+EIGu6q97FYVMhwWDuyX2abUz57inJIkN9KwkEiShPZO6smkitSwTsQb1FEVhYE5Ts49bACDclPZVunhyc83Utco5evnbS6u+u9yUm0WRMDHrmoL+bnZ/L8LZ2K12SAkF7TewjnnnBP3sa0Jckh6NrGEF2yaQqnLR8gwFZR0Q6ADmqqiIAjWRyq2V3oZkJNCusMaOV+iG+D2Cj8sK67gsU83sHqnm0DIlIkd1S+DWZOHt7keIVyb8ebPO7n33V/MqEQjFMxaC7tFJTvVRo03iM2iMXNCUZuum2zOKUnPRBoWEkmS0N5JvbtVkcIeuy+KK/jvV5vx+EMEdEFQ1zEM2FMX4KdtLlKsKiHDbIDXP8sZaXwXCgp8wRBBXaCgs19eJpmnXUWFR+eahStItZnduKVCSe8gM3OvJ1kIweuvv05mZiZjx44F4Pvvv6e6ujohA0TSc2ksvLAnqBMI6TisKgIIhgy0+ka2aoPKZUMIymv8pNq1SCO9tmyA2yr8sKy4glkv/EB1g8iCJwjLSir5ZdcPPDbtsDbPUxaLyog+6aRYNXLzrPhDgkDIwOULEAgJ7BbzswnoBg6LRlaOlVK3n/lLNzJ+aPw1JmG6wjklZWx7P9KwkEiShI6Y1LtLFSkcoSjeXUNFXYCQLhCY3jRNVRANgvmeoIGKmQ+9s9pH/2yFVJspLekt24zhLscy7AgCIQFWJz7dQ8gwUFEYkusgaAipUNILWLBgQeS/f//733PBBRcwb948NM00NHVd59prryUjQ/Yd2VdoKLzw2foynvp8E3arQpk7gAB03UAhWqpaUcAf0vEFDJw2LWquHFmYzs/bqvlxWzWKgEMGZTG6f2azG9lEhR8MQ3D7GyupihFNEECVJ8jtb6zk4xsntXnzHI5kZ6dYSLEreAM6Vd4ANkt4jRAIw5ToVhStXXUQne2ckjK2+wbSsJBIkoSOmtS7WhWpoZKV06pFdcwWArNvBeYGICyfaAB2zUxvKK/xo2bYce/cSPUXLyD0IIojnVDWoVTUmhsKq0UhaBgEdIHTJhVKehtPP/00X3zxRcSoALPZ6Y033sj48eP561//2o2jk3QlDYUXFny5mYoacw5o+A1vWNNsCFCEIKDrEBRU1AawW1SGFaRx1uNfsn53baTJnFVTGdEnjTmnjOwQ4Yeft1ezucIT+bmhwROe6zZXePh5ezWHDsqO65yNaRzJDhlGVB+g8H9b6qM5DdPA2hId6CznlJSx3XeQhoVEkkR01KTeVapIjZWsav2hyIIaaaotojcFkd8VZjTDF9TZuXE9lZ+/AHoQe+EwHH2HEjIE/pCOppoJDiEh6jcImlQo6WWEQiHWrl3L/vvvH/X62rVrMZrpPCzpObRlgzuyMB1diCgjIjKR1L+mKmDTFIK6oLIuSLC+n0UwaPDMss0YwjzGoikgIKQbrN7p5oaXf+KRCw5pMp8mOs73VpVGnCiNVZHDjhRRf1y8hoVhCFbucPHT1mqEAgcPyKQoP421pWYk26Kq5rnrPwjdEDisGg6baViE08C2VXq4fMG3bYoOdLRzSsrY7ltIw0IiSTJamtSTLT+1sZKVRVX3WhQRyyI2IV0AAn/5Zlz1kQpbn2FkHn0+DrsDi6qY3ji1qVcOpEJJb2LGjBlceeWVlJSUcOSRRwLwzTff8Oc//5kZM2Z08+gkidB4jnJ5A8xfujHhDe6a0hq0eqMgWJ9a2Xg+URSwWzQGZNtxe4MEVMhNtbHL5YsYJOb/K2iqgqoKgiGDyroAjy+J3si2JU3H69fj+kziPW5ZcQUPvLeG9btrI03vLGq98pUKpW4/mU4LNk3FFzTPqakq+el2FJRIGljfTDtPLi2hLqC3OTrQkc4pKWO7byENC4kkCYk1qXdVfmoixktjJSuHVcWmqXgN3TQGiE6LgminY6DeqMCoNyrGX4ChWkmzWyKeOcMQ6AKcVhWHda9hIRVKeg8PPfQQhYWF/O1vf2PXrl0A9O3bl5tvvpn/9//+XzePThIvjecoQwjqAiFsmkqfDEezG9xYc06lJ4CqqPTLdLK7xoevQeMGVTH/6QIcVg2nTaPaG2RAdgq+oNmJuyEh3UC1qCgoWDQV3TBYV1oT2ci2NU3nkEFZPPvNllY/l0MGZcX12d3w8k+U1/hRMJuGoph1JVv2eMh0WhmQ7WRPbQCLpkLIQFUgP91OilXDG9QjKbMAdQE9aaIDUsZ230IaFhJJD6Cr8lMTNV4a5/8qikKfTDtbKjyY8QiTSLoAppdRAYJ1rkikwlE4jKxjLkAoVgTg8gbJSbFiUU3PnFVTyE93gALegE5Q13H5QhzUL7NL5HMlnYuqqtxyyy3ccsstuN1uAFm03cNoPEdZNYVNFR78QQPDEIQMgcOqNNngGkLEjGhMHVWIVVOwWVSG5adR6QlQWRcgVJ/uBGYfi3MOH8CbP+6IeMNDhhGVPqVQn5JUH/UMpyj5Qzrfb62ios7PPz7a0KY0nTMP7sedb62i1r/XkRL2poSHkGbXOPPgfi1+doYheHxJCZV1ARTAWm8EAaiaIGgY1PpDZDgs/Oms0VR7g2yr9PD+qlI2ltdSVuuPpMxOHVXI458WJ1V0QMrY7ltIw0IiSXISzU9ta7pUW4yXWEpW6XYrBRl2drv9Ta5h6q4rGEJgTc0kfeRxWGt2st8Jl2Kz2QkZBrvdfgIhnV1uHyk2DYHApmkEQgZlbh/+kI5umFEdlzfA1xv3yKK/XkAoFGLJkiWUlJQwbdo0AHbu3ElGRgZpaWndPDpJS8Sao7wBnZBhYNUUdAHlNT5SbakoihLZ4P6y083Ni1YQ1I0mc87WSg+5aTZ2ufwUZtjJTbWTk2rDFzCiHAtH7pfDouXbI95wi6rSQI0WlL2GReS/AW9Q57FPignqBjU+s/9DXUAnzb53W9TaRtxiUZk9ZTh/fm8tuqBJupamwOwpw7FYYnvqw6ze6WZdaQ1CCCzaXqMiPAaLqqIbgnW7a1EVhYkj8gGYduSgJnP958UVSRcdSKYeS5LORxoWEkmSk0h+ao0v2KZ0qbYW18VSsgqGDNze0N4xYnoJVUzPtFVT8AZ1HFaNQceeTKpVQYl4sTRSrBo73T6uPHY/Jo4owOUN8OD7a/llVw2GEGiKQopNJSvFyi6XXyqK9AK2bNnCySefzNatW/H7/Zx44omkp6fz4IMP4vf7mTdvXncPUdICseaosHqRpikoAvwhA1/QlIQFs+ja7QvitGoMykmJOedkOCyk2tRIbYEQpkHgDehkOi1cO2ko6Q5rlDfcYVWxW1RCATMdKhxJMAuezRoLUwICMlMsBEOCGn+IQEhnR5WX/tnOKOOitY14pEv2pyW4fcFIZCTDYWXW5KGR91ui0hMgoEerPTUk/FJQjx5HrJTZZIwOdHePpWQm2eomOwJpWEgkSU68+alfFFfw0ndb25Qu1Z7iuoZKVr/sdEU03Z1WjYIMG4YBbm+QFLuFMwaG+OaT99gy4ARSU6wIIfCFFBxWEbluwBCkWDUmjihg9IBMDEOQ6bSSbtfIdNqwamathaKYxYpSUaTnM3v2bMaOHcvPP/9Mbm5u5PWzzz6bq6++uhtHJomHWHNUuEZKN0xXvgEEDQMn5ma3xheKfLebm3P21Aa4dvIwXvpuK+tKo2VjB+Y4gdje8IIMJ9sqPYQa5EQJIQiGBAamk6N/lhOn1QJCR1VAqY/2tqXZXrhL9tsrdrGj2kP/rBROH9O31UhFmJz6+TqcptXYuAjfhVVr3SBI1uhAR8rY9pbNeG/t6yENC4kkyYnHA2VRYPHq0jbL+bW3uG78sDyOHJLDefO/IqjXkp9mx9lgcc50Wtm0YS3zXn2RAelW9lRbce0/CVVR6pVdVPLTHaTatCYL3+qdbjaW15Gf7oh06Q4jFUV6B59//jnLli3DZoveNA0ZMoQdO3Z006gk8RJrjtKFWeugN9jcl7n9qIrZENPtDaKqCun22NuQ8JxT4wvh9oVIsWmk2Gw4rBqqAtuqvNzw8k/89vjhzJxQxB/eWBXxhqdYtfp0TB+6AShmPx1NU9CAgnQH6Q4rQCTC4Q0aaC002xvVL4NQyGjWeLBYVM4+rH+bPr9R/TLYvzCdbzaZNSQNayxEvcy2qigcUNi6QZDM0YGOkLHtLZvx3tzXQxoWEkmSE48HakC2kzK3r80Fe+0NnxuG4O0Vu9hWaaqXNDQqAGp2baJ86XP4fX70zBFkj5qIJ2RuOlTFTG/YXuXBabWQk2qNWvikokjvxzAMdL2pJOf27dtJT0/vhhFJEqHxHFUX0NlR5UMIEXWcL6izdU8dqXaNNLsVi6YQMAzQzc2zRVVx2MxNdUOHSZ0/xIBsJ4qiUOsPUer24w2EqBZw51urGJyTwuT989lQVsvG8rqIN/zoolxOGlVY30QPDASPf1pCltMaGZOimMIQO6q86MIAQX2zPaI24v/+YiOPLSmhxhuMRD3ufmc1sybFl+7UEqqqcO2koWwoq6G8xk8wZKBFVKFMqd2cNBvXThoW1ya8pejAzAlFpDusfLa+vFu8/e2Rse0tm/He3tdDGhYSSZITjwdq6qg+PP3F5jZvvtsTPg97kFbvcFHlDeLyQpUnSH66nTS7BffOjax/72kIBdEKikg58jzqQkqkuLK+nQU6glQ7/Omsg6IWh2TMGZZ0LCeddBJ///vfeeKJJwBzs1dbW8udd97Jr371q24enaQ1oucoH3V+Hd0wsGgKofr0IzBTenQBnoDBtROH8O6qnaytL1qGcPRSIy/NRq1fb+IwqfWH2FHljdRvAOgGbKzwsLFiC0NyU7h28jAG5qTE3DSv3O7Cqm1sMpek2S30z3ZS6vIRCOnU+EI4rSKSprN6p4sH31+HbggsmoKlvjjc5Qny4PvrAKKMi7Z2vH7kgkNi9rHYv7DlbuHNna9xdKCtPUWSgWTcjLc1Jau39/WQhoVE0gNoLT813WHl2a+2NFkwBQJfwMATCIEgylPXkLaGzxt6kFLtFmp8IVBMz+SOKi+Z/lK2f/QMRiiIo+8w1EPPISDM8cXqn6frBpnOaAMhWXOGJR3HQw89xMknn8yBBx6Iz+dj2rRpbNiwgby8PF588cXuHp4kDsJz1F8Wr2Pl9mpQFHQzAICqYHrghTknGYbgiS82IoTZOVoBNA0Q4A2E2FoZoiDdHuUwEZj1D43lZBuyeY+Hv324jv87rohjh+U3eb+luSTVppFi09i/MJ3fTRlObpqdUf0yMAzBtS/8gG6YG/FwKbWmmvcVCAkeW1LCjPH7YbGo7UrVGT8sjzdnHRvVefvQgVmM7p/Zps1yw+jAsuIK/vDGqh7r7U+2zXh7/s69PQqfsGHh9XoRQpCSkgKYah6vv/46Bx54ICeddFKHD1AikZi01pG78YJZ6w9RXuPHFwyhG2bB418Xr+XaScNiTnyJFtc19iABVHkCeIMGFtWUDy3+eCG2UJDMASOwHXEutUFzQWiuKXeNX2fp+rKohSGZc4YlHcPAgQP5+eefeemll/j555+pra3lyiuv5JJLLsHpdHb38CTE550dPyyP2brBDS/+iN2qUeUNYBhgVRVU1dxECQRBYeDyBlAVhYHZTvbUBfCHzChE+Jz56XbGD82LOExECHzBECLGxNFwPqmqC/K3D9bx7Fdbmmz0WptL0h0Wbpm6f9Rc9+ZPO3F7TUEKswO4iKhMWTQViwY13iBvr9hFnwx7u1N1VFXh4IFZHDwwK+G/UXMko7c/UZJpM97elKzeHoVP2LA488wzOeecc/jNb35DdXU1Rx11FFarlYqKCh5++GGuueaazhinRNJj6EzFiubyUxsvmHaLSpnbh1G/CpsN5mysLa1tceJLpLgulgcpnKscMgSqppFx9IWoW74l7YgzMRQVgqYMbTMORwCe/HwThw7KjhpfRyqKSJKLYDDIAQccwDvvvMMll1zCJZdc0t1D6nQCAZ15SzeypbKOwTmp/GZCETZb0w1GspCId3ZHlRdP0KDGr6PXzz9BQ2BBoKlKveqRqegmAKumMSQ3FV/QiNRZCAR7as0NYthhkmpTIz0oWkMIM0KyZlcNc15fydXHFUXSo8YV5SY0lywrqYhESPbGK8xUqGDIwKIqCGBbtYfXftyelJv3ZPP2t4Vk2Yx3hJHW26PwCRsWP/zwA4888ggAixYtok+fPvz444+8+uqr3HHHHdKwkOzTdKdiRXjz/fiSEr7bXElICCyqElFcSrNb4pJnjbe4LpYHKc1uoW+6xh6vgT9ooGX2IXvcuRzYL4PCdDuv/NC6wk9AN2KOryMURSTJh9Vqxefzdcu1H3jgAV577TXWrl2L0+lk/PjxPPjgg+y///6dds3bX1vBS8u3R0mh/vOTDVw4dgD3nTOm067bVhLxzi4rruDJzzea6U4NQguGgKBuIDANC4umEAyZ74cMA0XR6vtbmBtGwxC4fSGqvcGIw6TaG2w1WhFGYBoWaXaNHdVe7nn7FzIcFmwWNTIfPzPjyFbnEsMQ/Ly9Ovpi4f+sN3KC9QIUGCTt5j1Rb38yyrkmy2a8I4y03h6Fj09kuQEejyei0vHBBx9wzjnnoKoq48aNY8uWLR0+QImkpxBegNfscpNqt1CQbifVbokswMuKKzp9DOOH5XHz1P1Jd1jom+FgcE4qQ3JTIw2fGk98bcEwBCu3u9hcXodA4A/tVfNx79xIyasPkevfTZ9MB1lOK3849UCemXEk44flxzXhpNktzY4vbPRMHJHP6AFtyzuWJB+zZs3iwQcfJBQKtX5wB/LZZ58xa9Ysvv76az788EOCwSAnnXQSdXV1nXK9219bwfPfbosyKsCUQn3+223c/tqKTrluW2nsnXVYNVRVwWHVKMywU+vXmftZCYYhIsfW+UP0z3Ji0famPUL9Jlw304hyUm2RXg0Wtems0ND7HHaYDMhyRorAW0PB7JOxo9prjk0IMpzWqPn46417Wp1LVu90U+MNEn4ryrBpcHiqzcJB/TNa3bwH25mqEwoZvP7DDh79ZAOv/7CDUCi+T6Shtz8WDT/vZcUVXL7gW2Y+u5ybXv6Zmc8u5/IF33bJ+tUS4c14ml0zVcGCOoYh8AZ1St3+LtuMx2OkxfN3Dj/XI/um4/GHKKv14/GHGNk3PenrXVoj4YjFsGHDeOONNzj77LNZvHgxN9xwAwBlZWVkZPTMsI1E0l46M4e1Je30WFR7gygoZKfYYl6rPbmojSMyNb4QLm+Q/llOROU21r/3NEYoyO7Vy0g76nxG9c/kzEP6oaoKp4/py93vrKa6voFeLDRVIS/VRnldoMcWrkkS57vvvuPjjz/mgw8+YPTo0aSmpka9/9prr3XKdd9///2on//zn/9QUFDA999/z4QJEzr0WoGAzkvLt0d+bujsDG9YX1q+nTtPG5U0aVGJeGdhr8feYdUYkA1bK71RfSwUID/DTnaKlfIaPwB2S/R5m/M+1/iCpNpU6gLRm+NYqVG6gD11DTpUYxaJp9otCc3HlZ4AIQPy0u2Uuf3142t63KljCslPd7Q5VSeeCMGTS0vaLHcbr7ff5Q0kdYF3MqTEdmRKVm+NwidsWNxxxx1MmzaNG264geOPP56jjz4aMKMXhx56aIcPUCLpCXRWDmtbFpOOzkUNL3pfFFfw36824w3opNg00h0WbBaFXS4fxet+wfvNS1iETmq/4aQcflYTD5LFojJr0lD+/N5aU2KWpmkM+Wl2AvWLRU8tXJMkTlZWFueee253DwOXywVATk5Oh5973tKNkUhF487K4Y7LIUMwb+lGrj9heIdfvy0kmkLT8Ng0u5VBObC9yowamPdspkLtdgfITbUhgN01gRZTQSKRkIDOfnlpVNQG2O32tVhrodbLwYYxBGyt9NAnw0F+uj3u+Tg8l6baLagolNf4InNX+DppdguXHDUk5uY9rMoX1HVcvhAH9cuMGEt759VyFq/ezW6Xl5BBzPTZJ5eWJCR32+TziCP1ZuaEIuYv3ZiUNSIN6e7NeEenZLWnr0eykrBhcd5553Hssceya9cuDj744MjrU6ZM4eyzz+7QwUkkPYXOUKxo62LSkRNfOEJRvLuGstpAxPtY4wuhqqbmfGrdTsq+eBH0IPYBIyg47iKG98uO6UG6esJQhBD8ZfF6QoaIbA40VSE/zU5emo1St79HF65JEmfBggXdPQQMw+B3v/sdxxxzDAcddFDMY/x+P36/P/Kz2x1/OuGWyvjSq+I9ritI1EnR+Ng0u5UB2UpEnc4QgqBuMLJvBtdMNOeu1rzPjZ02+el2HDaVndU+AjFSgTRViYqShBFAqdus5clNtcU1H0fPpXZy06y4PCGCuoFVU/AGdQ6sNxZiCWhUewL4Qzq6YW4gXd4AX2/cE7nvX3a6qfYEEIDDopGfbsdmUc2i89dWcPWEofTLdPDPj4vRDYHNoqAq5hqjKqAqRhO52+aIR7I8WWtEGtOdm/HeXh/REbSpj0VhYSG1tbV8+OGHTJgwAafTyRFHHNHkYZRI9hU6OkoQChk8tqSkTYtJR018DYs2FaIXa0MIVBRcO0uo/vwFbIqOY8AI7rnrjxw1tE+LHqT/mziMkYWZ3PDKT3gCOml2C3mpNgKG6NJcWUnyUVZWxrp1ptG8//77U1BQ0GXXnjVrFqtWreKLL75o9pgHHniAu+++u03nH5yT2vpBCRzXFSTqpIh1bJrdQopNZUe1j/5ZTu4/e3RUX4bWvM+xnDbpdisjCix4gzp1/hBVngD+kEBTiGlUNKSsxodFBYtCq/OxqirMnFDEzYtWsLXSS4bTQobDQsAQ9fK01qi5Krx5f+C9NfyyqwZDCDRFIcWmkpViZZfLzw0v/wSY4/QEzPo0i2Z2Gt/l8tE/2xkpOr/3nV+wWVRq/KH66G70nKgqKhbNiMjdnn1Y/xbvpyVv/2fry5NGzjXZSYaUrGQmYcNiz549XHDBBXz66acoisKGDRsoKiriyiuvJDs7m7/97W+dMU6JJKnp6PDo2yt2UeMNYtH2GhVh4llM4p34msvtbVgz0ifDTkn5Xi9qOH1JNwT+Td9j6EG0vsPoO3Eaw/tmx+VJOm7/fP550aGR8ZXXBeTEvA/jdruZNWsWCxcuRNfNzZamaVx44YU89thjZGZ2rnfyuuuu45133mHp0qUMGDCg2ePmzJnDjTfeGDXugQMHxnWN30wo4p+fbDAjdSJ2jYVFVfjNhKI23UNH0XhOmDmhiD+8sSouJ0VLDo0sp5XbfzWySX+G1rzPzTltFEUhxWZBURRTgU81CBoGeisFzYaAHdU+MlOsuLwtb5KXFVcwf+lGAiEDbzBEnT/IblUhw2HhwH6ZMeeqcUW5ZDqtpNs1Mp02rJqKw2quCYZhsL6sFoCB2U5c3iAWTUVVFFRVEDQEu1xedN0sOBcIqC+CF5jytlhUtAYPj6qADuyo9rR4L5Hjm/m8k0XOtafQ3SlZyUzChsUNN9yA1Wpl69atjBw5MvL6hRdeyI033igNC8k+SUeHR3dUezAwvWoxrxfHYtLaxNeSNG7DsLg/KAg1VBNR6qUWBWQdeTaWjAKcw49CtVgTWnTkxCwJc/XVV/Pjjz/yzjvvROr2vvrqK2bPns3MmTNZuHBhp1xXCMFvf/tbXn/9dZYsWcJ+++3X4vF2ux273d6ma9lsGheOHcDz326rv3bTYy4cO6BbC7djzQkFGQ7GFeWwtrSW3S4vLkGzToDO8OTG47QZmJPCbpcXXxD8cSglmTUtgj+8sarZguSGEducVBt9MuzU+EK4vUFsFrMmIdbvrd7pZmN5HfnppopWQ/whUf93F3iDZkPAsN9IURQ0VeAPGigKaIpCyBDU+feq7pnKWgaqRUWpj14YwnT29M9KafW+W6I9zrFklKftCnpjfURHkLBh8cEHH7B48eImXp3hw4dLuVnJPk1HLqr9s1JQMReNWPNzvItJrInPMAQvfLuVf32yAX/QIC/dhl3TotQ/LjxiUCQsXhcwu92GCyKD7gosabnm6qxopB94HIGQoCDDnnBdhJyYJQDvvPMOixcv5thjj428NnXqVJ588klOPvnkTrvurFmzeOGFF3jzzTdJT0+ntLQUgMzMzE7p+B3uU9G4j4VFVbq9j0XjfhUB3aDM7afU7WPF9mqyU6wMzEll6qhCjh2W1+zmsaMdBvE4bW46aQTzl27kx63VcZ0zN9VOnwx7zIJkwxCs3OHivv+todoTpH+2IxI1znRasWkq5bUBHvpgPeP2y22SitpSvV3IMI0eUT9/h4v2I3v4+t4YikKkBk1TwWhgKwlhRostqoIhDEK6IDPFyulj+ibwqTalrc6x7uzdJElOEjYs6urqSElpupmprKxssydHIuktdNSiGpZmdXmCqIoRlQ7VnsVkWXEFjy8p5ttNVQR1A001F7D8dDtpDaQYF68uxaKazeosqmqOX4C/bBPVX7yAY79DSTv4ZAQCXReoqsLFRw5K6D73VS+XpCm5ubkx050yMzPJzs7utOvOnTsXgEmTJkW9vmDBAqZPn94p17zvnDHcedqopOq83Vguuy6gs6vah1HfZFM3BDU+nU3ltSz8dgsHt9JDpqMdBvE4bVRF4dZXf6bW33IvFBXok2GPWZAc3iSv2eWmsi6AqsCWPeb8CFBe48MfMjAErNxezXnzv+KWqftHpZZW1gYwhMDtC5KZYo1EFmBvzw5FAadNw27R8AV1FA0UlIiSVdiQUBWwaCogogzRoC4Acx3QVIVZk4a2WLjdkZ9zQxJpnijZd0jYsDjuuOP473//y7333gsQyRv8y1/+wuTJkzt8gBJJT6MjFtWwNOuD768jEBJoqh4JTbd1MQkvAtUec+GzWhQUFHxBnR1V3vqiQQtZKVbK3D76ZDrZXuWlT4YNu0XDtbME15cvIvQgek0lijBAmEbHAYXpTDtyUEJjkV4uSZg//OEP3HjjjTz77LMUFhYCUFpays0338wf//jHTruuiJWP1AXYbFrSSMpCtPISCpTX+E2BBkUhZJgbaV03MISBJ6jzwHtreHPWsXE7AjrCidCa02b8sDzuP2cMV/13Ob5g8+lQFk2NyMAGdB1vUGdPrT9qk2zTwqlAAm8gxNZKU8BCYH4mKgId2FReG9lAAxEFPbcvSJUnQGVdgIIMR6RBqd2iRGR3HVaV/HQ7O6q8hHSBqogmz6NFM1OerJrZ2ruhcaEbpnMpnj4WHfk5h+nM3k2Snk3ChsVf/vIXpkyZwvLlywkEAtxyyy2sXr2ayspKvvzyy84Yo0SyTzKqXyYDc5xsrvBgpg2bi0qaXWP2lOEJLSYNF4FMp41avxcVBUVRUDTTWCmv8ZNq1yLqH1NH9eGl77ax2x3A4tpO1ecvIEIB7H2GkXPsBWSmOTAMyHRamHPKyLgXD+nlkjRm7ty5FBcXM2jQIAYNMg3UrVu3YrfbKS8vZ/78+ZFjf/jhh+4aZq+lYfqOL2DgD+koipnPH91s2hR2+GVXDS98u5VLxw1ucq7GRoTLG2D+0o0d4kRozWmT6bSRk2KjLhCixheK6mUBZh20LgQbyz2mwVR/wN8/Wo8uRGSTXOkJYDSQw0ZE/geDva/7QwZVngAPvLcGtzdIXUA35zSLxk6XF09AZ1ulh/7ZTqyaSrUnSE6qWYe222327+ib5aDM7ccfMmspwimnVlWJKtI2U5/Mz09TFC49egi3nLR/h0QqGhOPc6yzejdJej4JGxYHHXQQ69ev59FHHyU9PZ3a2lrOOeccZs2aRd++7cvxk0gkJg0330X5KfiCBt6ATsAQ5KRYGdUvsYm64SIQzukV1Of5oqCp4A/p+AIGKOaiduywfA4ekMUDL3zAso+eQRUhrH2Hk3PMhaQ4HTgsWsIbhOa8XHZVJdNhoaLWz18Wr2PRkJxOWTAlyclZZ53V3UPYp2moCBQyzKJiU5VorwqcgrnhVIFASPDit1uZ1iD9MVy79eK3WyNdqg0hqPOH0FRz05/usKAqdJoTIWwgDchKQVGg2hukzO0nZBjYLCq6IQjqAr/QsagKKGDXNDZV1FEb0CNpYOVuf7MN+MKvqwoEDUHIH2JtaQ2pNo0B2SkoioLDqqGqCmVuH96gzs5qL/lp9khKEezt3xE0BNkpVgoy0pk6qpAab5D5n2/EEKYyVPjzDxkCi6qSm2YDAaeP6detc2Rn9G7qiQQCelKlNSYDbepjkZmZye23397RY5FIJMTefKfYgFQzdaMtIeaGi4CigN2i4g0aWFXTu6QoIAwI6jp1ASOi/vHLL6ux/fwaB/VNYb/9j+S6G27BarNR7Q22KaUhlper1h+ivMb02Om6YMW2ak76+1KuOHa/qI2LpPdy5513dvcQ9mkaKgJlOsxtQVggIryRVpTwz6Z6UZnbH1WbEOndYAi0+uaZft2sAwDwBn1oqoLdopKXZqfWr3dIqkzDCEllbQCrpuDXdRAKFlUhL91GRU2AkL63TkFVQRegKSp9Mh0YhsDt91DtCUScLlZNIaSLZg0MVVHQVIVgSGAgcNq0KM99mt1Cal4q1d4gHn+Im6cewJmH9Gu1f4dhCD4vLmdtqdkHI+wIclr3fm5tbSDakXVtvUWetj2fye2vrWgixPDPTzZ0uxBDd5OwYbF06dIW358wYUKbByOR7Au0NpF1Rog5ahGwauSnO9hR5SVoCCxqONdc4PKFyHLubfpUXV1NMBhg0vijuP3227HZ2rdINPZy1fpD7KjyRnnmBLCpoo4731rNS99tZc4pI2VqlETSiTRUBHL5gqgqYDQwKqgvPFZA1wV2i7mRrPQEWFZcwZzXVrDT5QNhNvQEsyt1VCpSvaHiDRrsrPaRl25rd6pM41otiwo1/hC7a3z1JdOm08SiKtCw7EKYG/X8dLP+wRvQ0RSz3kypNxhUxayqCOix6zVChkBvkC6lxmgQrCgKmQ4r/pBBTpotap5vLt1IVRXmnDKSOa+twOUN4bRpOK0aigIub6jNDUQ7uq6to3s3dQft+Uxuf21FRDq6ISFDRF7fV42LhA2LxuoZQNQDFW5uJJFImhLPRJZIiDleb0vjRSDNbqFftoPdLj8B3cw1tllUDuqXybWT9o7l2GOPJSMjgwMOOKDdRgVEGzh2VY0UiSoKUd5Bq2Yq0awtrWHO6yt5oD5lQipJSSSdQ0NFoBXbXQRCQaDeqNCUyHdUVRSyUmwIIchyWnnog3W4vOax4WZvAtGkT4cpo6pgrU8hcnmCOG1am1NlYtVqVXsD1Pl1BGFFJfPCgXolJwXIT7eT4bBGmtYBOKwqdouKJ6CjCIGlvimdpipoutkzqDENozkA3kAIUpsqY7bFcz9+WB4PnDMmslbU+EPt6gfS0XVt4Xl4/NA8istqKXX7yEqx1cvT6lTUBrBbVKaOKkxonF1Jez6TQEDnpeXbIz/Hanb50vLt3HnaqH0yLSphw6Kqqirq52AwyI8//sgf//hH7rvvvg4bmETS2/hiQzk3L1pBnT9EptNKVoqVoC6aTGTxhpi3VXq4fMG3cXlbGmuU2y0q1Z4AgZCOXt+jYmC2k99MLCI7WE5FBeTlmecYM6bjvC6NUy78IR21gWY7mGNRVbOwXDcMXN4gcz8rwRCiw4pAJRJJU8KKQCt3uJi98Ee2V3kQ9c0wDQQOq0Zemi2SjgNQUlZLis1CrV+PbLCEoEkKkah/XVUVLKpZ+Oy0aW1KlYmVLiqEwOU1oy3CqN/4i73XVOoHlOGw4Gy02VMUhcwUK96gHukTodWnRDWxIBrcT0PcPp2+hoGq7nUItcdz31HS5R2t3tTYOWYIA11AVV2AkCHw1X+GwoDHPy1m8erSpJuj2/uZzFu6MZL+1DhQFe5NEjIE85ZuTCr1t64i4cqfzMzMqH95eXmceOKJPPjgg9xyyy2dMUaJpMfzxYZyrnvxR3a7fdT5Q5S6fWyt9BIyBIUZe/ONDUNENt9VnmAT+cHwQpWbZuPJzzeyZpebVLuFgnQ7qXZLxEhZVlzRZAxhj2TfTDulbh+e+rB/qk2jb6aDam+IG+a9zbU33MJtt91GZWVlh38OYQMnza5RUeuvV14RkZQJ0ztqSiyGZRlTrBq/7HRz86IVCd2vRCJJHFVVOHhgFvefPZr+2SmkO60UpNsZmJ1CYaY5V4XTcaq9QYK6aXCEaxMgdlfxcEO4+iPQhaAww9GmVJlY6aK+oIE/ZPbdsVrMWrI+6Q4GZDsZnJPK4FwnmqpQWuPH7Q3gDegYwhTFcHuDePw6B/RJJ9VuIaQLgrqBbpipo2Z6V9P7URXzn92iIIAd1WaxtmEIvEGdUre/zalLsDddauKIfEa30jskkc8qcg+NUmtbI+zlbzgP56Ta0eqjVOFakEE5TgZkO5N2jo7nMyneXcObP+3ks/XlrNzuiiiIAWyprIvrOvEe19voMEmBPn36sG7duo46nUTSa1hWXMHNi1bg9gbRVAWrxUwXCPePqAvoUZN7w813qdvfZKFKtZlf27p6b4vDqqGo5mKealOp9gZ5fElJ1EQYZlxRLplOK+l2jUHZKQzJTWW/vFRyUu2k1u6g+P3/sGFXFYWFhaSlpXXK5xE2cPbLN88fTmFWAKtFjUgshosW7VYVty8Ydb+qaiqvNDbKJD2fL7/8Er/f393D2OcZPyyPB84ezej+Zh1AjT+Epz5SEY6uZjmtgJkGZFHVekUpESn0boqpdBROqbqojeIMsdJFw2pWew0YBYumkO6w4rRphAwzEuHxh9ha6WVjRS1rdtWwqaKOrVUe3L4gW6s8qIr5+4YATVXJS7VF+lAAWFQzVdOiKZHak8JMswfQgGwnHn+Islo/Hn8o6rOKB8MQrNzuirmZbSvhz8pschjEG9BpWJJu11SCcag3NfbyN56Ha3wh6vwh+mc7cdosST1Ht5ZuHAwZVNQF+NO7v3DTyz8z89nlXL7g24hxNDgnNa7rxHtcbyPhVKgVK1ZE/SyEYNeuXfz5z3/mkEMO6ahxSSS9gvBkXOcPmSoiihLxxjfsHzEoxxklzddSB9Spowp5/NPiiLeloaqSqNdb/25zZURnvrFqSklZLfnp5sIQxr1zI+vfX4CFEEreMM6a/tsOqalojvHD8lg0JIfz5n/Fht21ZkqUyl6jAnMhdFg1M9xuCDKdVqmXvg9wyimn8NNPP1FUVNTdQ9nnaSkdZ1lxBY8vKcblDRLUjUgKSFAYaFqj7yn1SkwGgNFqU83WaqlipYtaVHVv1KTeKRHudN1QJCI31UaNL4QvFC7KFlhVMFCo8+toqkJ+mh23L4Q/pLOt2kua3YJVUyI9JiJKTTYL+el2NNWM/N539mhURWlT6lJnNQ3dVumpb9jnJ1zMbrdo5KfbSbNb4q4BacnL7w+JyNrjDwqcDU6VjHN0S+nGtf4QO11edEOQYtPIcFib1F78ZkIR//xkg5nCK2LXWGiqQp9MO49+soH+WSmcPqbvPiOhnrBhccghh0TyGRsybtw4nn766Q4bmETSGwhPxpnO+vxd9nryGvaPqPGFmkzuzS3qnxdXRLwtDRdMTVVQVDAMCOgG//p4A95AiKUbKhrkwwrcviA2ixYxLNw7N7L+vacxQkGyBu5PxtEXUBPq/M/GYlG5Zer+9YoyptSsohmAWbitKgp5aTaq6gKoqkK6PfZ0ta/ope8rdFc3bElsGqoXhTf8XxRX8N+vNhPUDfLTbZTX+NHrvdGGIKraWVUgO8WK3aqBAE9QJ8tpbbapZjwb7FiKROECbG9QN1WfbBYcVhVPIMTOak9ko1iQbscT0NEUU8lJN+pTMRVT0Uo3oC6gMzQ/FW9Ap7zGR2GmA4uqsLPaS06KDQPTaHHYVBBQ6vYzsm86o/vvTVdKRGiivcXVzV1rWXEFTy4ticjWmmJee6Pl/bIcccvXtuTlDxmmkWbWFhhA9GY93jm6q8Q5mlO0EkJQ5vYR0s1nJTPFioLSpPbimRlHcuHYARH1p1hTlqrAba+txMBMDbr7ndUd3iU9WUnYsNi0aVPUz6qqkp+fj8Ph6LBBSSS9hfBknOW0UtWodwTUh9x1gdsbZMzArCaTeyxJwrC3xa/rEVUlMyy/95wWFeoCIf724XpSbRo5qXZsmlrvuQqw0+VFVRVE1faIUZE5cAQDJl+CT+867fGw+klYAz8QEmiqKWeZlWIWiabaLVg0haAh0GIIbPQUvXSJpCcT3vAX766hoi6AbgicVg2bRSUrxYrLGzI7ddd7rgsz7YBCRY2fKk8QCGLVVEb0SWtWQrq1DfafzjqITKeNSk+AqaMK2VrpodTtJyvFil1TyXBa8QRMq8ZuUdlUUYcvaApUgNl1u8obJKAbEQUrFMM0YFQFVVFBFWaz0KCBjsCvC4rLarFbNQIhg7qAl/x0O6k2C76gQbUn2KSOIpHog2EIHl9STLUnQKZzbwNTM42o9ULi5q41c0IR85dupC6g0z/Lyc5qX32TPdBUCOkGO6q99M9yxlUD0pKXPxwZahglakg8c3Ss+yjKT+Xkg/oyMCelQw2NxmIm4efH5QviDZpRq4IMR2RNNe8tOvISlpJt3MdCDRdv6+a6bKmPcrk8QR583ywX6O3GRcKGxeDBgztjHBJJryQ8GQcN0aR3hIK50Akg1W5pMrk3570Je1tW7nDhC4bQVDUyAQphNoFyWFVCuqnB3j/TGYlOZKZYqawL4AnolLl99E/LxpaWhT09m2En/poyj8EBhakYQvDZ+vI2TeaNxz2yMJ01pTXNeqHGD8vjzVnHNunaK4RgZN/0yALZk/XSJfEzf/58+vTp093DkDSg4YbfWR95UBXwBHTqAk3FWHUBu1x+LCoUpNtxWC34gjqe+kLpWLSm1LOtysN1L/6I06ISMsw6h9w0GxkOC3tqA7gMgUWB/fJSqfOHKKsxu2eHt7kWFYK62dhPCJo6KcICEoqpaLSnzk+1JxipRvAHdbNpniHY7fZT59dJtWlNJGATjT688O1Wvt1UhSEEtX5vpIFpuMdGS2lELV3r5kUrCIR0clLtOKwa/bMVymt8+EP1tSj1ablXHVcUV6pVS30r7Ja9Yht2a/RaEc8c3Zx08DebKvlqY6XZbNCmdagKYKx0Y1030FSFflnOqLqayH02irzcd84Y7jxtVKTz9sBsJ09/sYkav47NUm+oEi7yNwiEBI8tKWHG+P16dVpUXIbFP//5z7hPeP3117d5MBJJbyN6MrbTP9sZNbkbQpDhtPKX88ZETZYtebzGFeUydVQhK3e40A1QVRGRdwwZAq2+KVNZjc+UbG0Qp1UwPTHbKuvwBHUqbTYGTb0Ki81OmcdAU8HlDXLNc9+3Kc+3qRShqf5iph2ozZ5PVRUuHTeYaUcOimlMqYrSxLvk12N7CyU9m2nTpnX3ECQNaLzhr/WHMASRKEBLhAwoqwkwMMdCbpqdHCGa9cC3lMNfF9Cp8+sYQpCe5SQn1cx73+UyxSyunTyMGl+IxatL2e3yUlFrGg82i0q6w0K1J1DvgDHTRE35XNAaeKRFfWE5mPNyQ6MCzLSpkGEaKnaryoBsJ/fXF7c3TH9KRMZ0WXEF//pkA0HdwGpRUDHVpbxBgx1VXvpnO0mxajHTiFo1xCo9eII6fdLNbBJzc56KL2gQMgxURcHtCzIwJ6X1PyTNe/nD83BOqhmN2O0OJDRHx7oPs24wYP49hBldSbHb2tx3ozkapxtX1gb46+K1UeleAoEvYH5men2tY8PIi82mRSRlX/9hB3UBHYu216iIfH6KikUzqPEGeXvFLs4+rH9CY+1JPZziMiweeeSRuE6mKIo0LCSSBsSajAdlp+D2h3B7Q6TaNf563hiOHZ4f+Z2WvFA3vPwTBel29tQGCIYMBBAMifreD3u7yYr6nFo1Rmi6tnQTgd1lqP0PYk9tAEVRsPhC9M924Ano7HL52pTn23jcAd1cHHXDDAn3y3Ris6gtnq+5brQtFbMnm0a6RNKbaLzh11QlsgGPh5Ah2OXyMiw/rcVC3uZy+AWmwIUQZt2Vpiqm4lCDzfpL323FXa9K5LRqKChYNFMFyu0NYdVUszO3pmBRFVMlSRcIxSBYn8YSMsz6ACVy3Wh0w1S70jHrMKrqAqiKErdx1PjeR/XLYO5nJfiDpkPHFPUwY89W1WwiWF7jo0+GA6uqkOW0snK7K7KxNIRo8VoZTiu1/hA1/hBZ9RthRVHqe3hoeIM6Nk1NuHFfS/MwkPAc3fgzE8K8b10IrKqKwDQGEQqFGfaE+260RuMaotd+3B6JytQF9IgwilHfaynDacXljV0rsqPaY9bfNDMsVTHLj3ZUexIaY2cV9ncWcRkWjesqJBJJfBiGIN1h5cIjBrF4dSllbl9kwj14YGaTiaElL1Sa3WBrpYfKugCDc1PIclrZVFGHN2QAZqpVTv3k7PGHEIBVU3FY9y7UpVs2sPadf2PoQXImpDBo+IEIYdZj7HL5sFtUBmanJNwwqPG4UWCXyweAzWJ6+vbU+RmSm9rmxaGjGkZJJPsKHeHlbLLhj9H8rjX8QbNfRIrdgl1TqdYNvt9aFTWu5nL4fQGjXjXOHHdDR4miKGQ6LawrrSXFptE/y0GlJ4guBBZFqVeiEmiYik6mzC0R9aiwURFWe6q/vZiEG/wpmDUY3qDaJIrQmoxpw1Sa8IY6L90WaSynaHsNjHATwT21AQbmOPnr4nVsLN+7scxOtVHn18luxjBId5iSr5X1BlB4LQhv3jurcV+ic3Tjz2xvPxKlfh0SiLDRp2idqjDV0BG4rcpjdnEXwhy/YqoWGgb84Y1VMR1j/bNSUDGfpVi3HO7+3j8rvigRdHzX9K4g4RoLiUQSH429DBYV+mQ4OHhgFvvlp3HowCxG9c2IywslhKCi1l/fTVaAUNA0lcIsJzuqPAR1QVVdkCynlUDIwOULYrOoWBoscO6dJaz/39MYoQC2wmGk9x0SuY7Tr7FpT51Zq9Gkk2jrcoGNvU7egI4/ZBbBqYqCRRX4Q2ZY3KKZCi7Fu2sSXhyai2hIJJJoOsrL2XjDrwvRXDPqZhGYalApdgtV3gBub4jHPikGiCo2jpXDHzIMs/+BAk6rFuUogb1KRJqqsaXSgy9oYAgI1BsRmmLWReSn23F7Q/iCeyXvTBlcpb73hahPT23+PsL3Ha5RaOztb6nAGaKLmMMbartmSr/uqPIS0oUZvVD21sspQFmNv0kkeUe1l9pAiGpvgJxUe5NrubzmfXqDOlurPGiKgt2ikpliJRASHdK4L9H3YtH4M4v0I6kfVvi/wwZlZ6sAjh+Wx5/OOojrXvwRoz5KBuazl5/uINWmNesYO31MX+5+ZzUuTxBVMaLSoQxhENIFmSlWTh/TN66xdHTX9K6iTYbF9u3beeutt9i6dSuBQPQf9+GHH+6QgUkkPZnmitFW73KzcqebNLsFi2rmKWuKUu9RUshJtVEXaOqFCntxNM30mIQl/dLsFvpnp1Dq8hEImWlMTqvGgOwUDihM47P1Fexy+bC6t7Nx8X8IBfzY+gwj55gLyUrb6zXRhUBRFIK6ji9g1IfL99LaZN7Y6xRZHOrn1XBTrF1uLxH9KgW+KK6QhoJE0sF0pJezcdGuRVUb9KSIn7BzpNTlQ1Mhw6nhsFgi4/rDG6u45KhBbGuk9KTXp6BoikJ+uqNJ2o83aPbvcXnNKK2mgmKYBoDZc8JMYbJpKoNzneyo9pGTasPtCZKZYkHBbOynKQq7XF68QaPFqEWYNLuFkYXpLX5WLQlNrN7pjmyozXncubcfkWFezaoq5KTZcHmDTTaW/bMcrN9dS1mNnyynFbVBJKfGF2SXy4umKhRmOHB5g/jri+e9QZ398lK5+4xRSeHpjvV87e3ivrefkaO+MWxXqABmOm04LSrpWWa3dou6N9oDNOtos1hUZk0ayoPvryMQElg0IxINM41GhVmThsZduJ1Ial0yraMJGxYff/wxZ5xxBkVFRaxdu5aDDjqIzZs3I4TgsMMO64wxSiRJRWvpBfEUo/mDOp76zbamKvTPdmLTVLZXean1h6j27i2Gg6ZdZRumA6TZLeyXm8JOt48TRvZhQ1ktu13eSH+L2tJNlC15llAwgLXPMDLHXwCqlfIaP25vkPx0h7lZoH4CjKFD3tpk3tjrFFkcBBgIgno45cBsEqgLc8H471ebOXhAZlIscJKu5a233or72DPOOKMTR9K76GgvZ9M6MQtWVUU3ErMsSt17u6kLFHa7/eSnm43lMh0WymsDvLuylHvPOIgnvtgYlaef4bRiGJDayOEhhNlJO/zfVq1+82cRkRq0cIQhpBvsdps9NM4/fCBPf7EJh8VS/xloeAO6KWmtmvUWrVFV52f6f77j5IMK6Z/tpLouSHaKNaYMbqwi5sYb6jS7hVS7hi9gENR1XL4QQ3JSKavxxdxYqopKQbqDUrePHdU+8tLt9dfS2VHtBaB/lpN0hxW7VaXU5ceob6K6rdLLvM9KUBWl2+fexs9XptOCTVPxBU21MU1VyU+3o9C+FK5EqPQECBmQk2qN+R1pydEWlpJ9bEkJNd4gOua6nZliTbiPRSKpdclEwobFnDlzuOmmm7j77rtJT0/n1VdfpaCggEsuuYSTTz65M8YokSQN8aQXhL0MWU4rvqBBUDcoq/ERMgxsmoohzLQgVSHSkGlPbYAheSmmF6qslrIaH1kplkgoNbxR1w1hNn6yRU80AcNUXvqiuIKgbkS8lDWVZWxc8ixGKIiz73BSjjwPq82GpkSrj/TLcmDRVDN9qdECFs9k3niRdNhU7BazQNAI5zFT31m7Xs7RadUI6kZShnIlnc9ZZ50V13GKoqDrTSVNJbHpDC9n46Jdm0Vt0Lk6MUxBCQVv0GBbpQeLtrdJ3crt1fzto/XcdNKISL+KnBQbLm+AP7yxKuZm3WnT8ITnGYWI86bheQF8IYORfTO4ZuJQ0h1Wnv1qc1TKUth5oyqtJ3qpCjisFr7ZtIdlJRWEf0VVFTIcVvplOaJkcJsrYp46qpD1u2vYXu0lL82GXdNAgbqAQZbTytSD+vD0F5ub3Vhm1RdoD8h2UllnXgth1mn0zbST7rDWN1H1YdQbXgKBYQhW7XAnTY5+4+fLUm/dqQrkp9tJsZprSVepADaX0hZWiPIEQiDMzz8WV08Yyozx+/H2il3sqPa0ufN2Iql1yUTChsWaNWt48cUXzV+2WPB6vaSlpXHPPfdw5plncs0113T4ICWSZKC19IJ7zhzFntogXxSXU1UXpKrOT0iYnbDDeclGfettgbnIRzVkqk9Byk+3s9vtN71QaaYXSkQCw5CXZotq3COEoKougC4gqBtRXsqM3AIGjj6a7Tu2k3H0+dhtNvwhASqoKA3UR/xYVAVhMZsEKaqSkKRrLPWr3DQbO6o8kSVa00xjRtfNvNWCDAeaqiRlKFfS+RgJerwl8dFZXs6GRbtltT6uefZ7AvFozmJ6bDUFQg16RaiYc0/IMDteWxQI6bCpvDZSHDtxxF61vObUiMYPzWXeZxup9QXxx0hjUutrM2ZNHsZhg7Kp9gYxhKAoP421pXtTlvam4LR8TwqmjG14fgdAmPdnGAKXN0jIMA2DaycPi9ncraGDyhcw8AZ1tgW8OKxaVG8M0wDa0uLGMtWmcd/Zo1EVhUpPgE0VdTz68QaynLaIolbDJqrhKHKm00qtX08ax07jovBtlR7eX1XKxvJaymr9XaoCGCulzcw68OMLhtANUxjlr4vXcu2kYTHHY7GoCUvKxjOOMMncwylhwyI1NTVSV9G3b19KSkoYNWoUABUVFR07OokkSWgtvWBjeR1X/Gc5QpgesshmWjE9YHr9a0HdiKhFhP8/3JApnIKU7TTVPvpnOamq2+vxOqAwnbIaP7V+HYumRm38bRaVQMho4qVUFIX8sb+ibkgNqCqZKTYqagJRRYKqYuYp98lwcMUxQ1i6ocLsrhsyUIFBuancdNKIVifzxl6nYH10pdYXikqLclhN4ynNbjEX4iQM5UokPZXO9HKGC3Nf/6HWVFtSTcdJa+aFppi/iy7q882NqBqNsKNEVSEvzY7LF2qy4R1XlEuq3cJPW6sRChw6MIvR/TNZvdPNU5/HVq5U6v9pqsKbP+3kyaUbI0IaqXYLIcNge5WX3DQbds3M7/cGW46OhSPHoUY3bdRHScJdl+sCOotXl/LMjCOjNu2NHVTZKTb8IZ2K2gB2i9mTY9qRg1BVBcMwDaBVO11kOixYNbPWoHFaUMNeGjkpNnM90A1EiIiIRqSJav09WDWVrBQ1qRw7jQu/m+tr1BXjaOgos1tUyty+iMyyVVPIT7extrS2U6M+rfUOSdYeTgkbFuPGjeOLL75g5MiR/OpXv+L//b//x8qVK3nttdcYN25cZ4xRIul2WkovKHP78NQvRo2D6KZDb6+KiqBBY6lmVC/CXqj7G3ihwpPq1xv3NOu1C4fM3Ts3Urb6K4qOvxBVs5jRElVDCNOLGatIUFMVLjt6MFdPGMrIvhk89MF6tlV6MISgzO1j/tKNMfNxG9ebjCvKbdJw6C/vr8GiqXuL4Gx7O4UnayhX0vXU1dXx2WefxRQFkf2R4qcrvJxhvX6rUh+JFNQ3w4x9fEiA0uDNxllUgZDZPyLFbsFp11AaRTJjpaAW5ady8kF96ZfpIBAylaBsFtOU2KsqJAiEBLX+EBvLakhzWLGoCtXeALtrzJoPTVXwVOo4bRp2DZppDB7BEGDEuFGBaVBYVNOoy7HaonpWrN7ppqLOzz8+2hBxUBnCoLzGT0A3sGmmeMbi1aVMO3IQAF9v3IPLG6DGF8LlCaKpYLdoZKXY8IeMJhvLUMhg/e4arJrKLrePHKclSkQjrDTltJrFyEKQ1I6d7lQBDDvKHl9SwnebKwkJ82/bsCu6aKHhY0ePoyf1cErYsHj44Yepra0F4O6776a2tpaXXnqJ4cOHS0UoSa+lufSC3W4vZbV7J+VY62qsxTZcW6GopucurHrRnBcqTHMa4qt3unn2qy1Ubi9m84fPmDUVOX3of/gJaKoS1Zk7K8VCqj0lqpuobgiOHZbPsuIK/vDGKmr9IXJSW1aTiafeJLrhkL3HhHIlXcuPP/7Ir371KzweD3V1deTk5FBRUUFKSgoFBQXSsEiArvBy9s9KQRFg+lNaSx4yaemYsNNFUaDWF0JVzM15pSfQrMLeN5sq+WpjJU6rFunbYyrxhKPBpsxsuHi7LqBTG9AjNRcW1fT6m5tFDbtV5aB+2Xy8tqzNn4vpOBIo9YZN0BB8UVzOXxavpaSsFk9Ap8YXxGbR2Lynjlp/0+jI95srWb3TTY0vGLnvwgw71Z4g/pCBJ6jjc/s4sG86c04ZGZlrn1xaEikYDkfNa30hU1K3vndHyBBR6lq+kN4tjp2e0kV6/LA8Uu0WrnzmO2yaSorNEqUO1VXKTD2th1PChkVRUVHkv1NTU5k3b16HDkgiSUZipReU1/gpq4nP09MwkqEqkOWwUeUNEAiZ0YLcNBu+YPz1DA0nMMMQZg6tazsr/vc0dkUnc+D+9D14IrX+ELtdXvT6EG5ptZdqTzCSiiSEqRIzsm86IwvTmfHMd3GpyXy9cU9ccpY9NZQr6VpuuOEGTj/9dObNm0dmZiZff/01VquVSy+9lNmzZ3f38Hocne3lzEu1mbVirVgUifa7qKnvnq3WS3Bv3VPHB7/sblVhLxwAMdNNzStqqqkoFFavahJNNsy5N6ALclI1/CGDldtdUWMPE+seGp8v/LMhwKLWp34agv9+tSUiqGHVVGr8oRbTrTxBg799sAZdKFH3nZ1ii4iBuLxBMp1WxhXlAqZR8eD769CN+u7i4XSt+jS1gC6wauC0Rnvbu8Ox09O6SFd7gyiYn3+iClEdSU/q4ZSwYXHVVVdx6aWXMmnSpE4YjkTS/cTypjROLxBCUF7ji/ucmU4rKXaNqroggZBOwDDIcFgI1buWqj1BrJpZR9FcMVgswpP0yhUr2fzhMwSDAdTCoeQecxG1IdhR5YnkQofzcr2BENsrdQoyHFHh9DWlNXGpyazc4UpIzrInhnIlXctPP/3E/PnzUVUVTdPw+/0UFRXxl7/8hcsvv5xzzjmnu4eYVMTj8e1oL2f4muF0HqdVoy7Qcj1CIkZF5Drh9FEFHvu0GG9AJ9VuwRc0sFsUymt86EKYkrdir5R1Y3SziUXkZ0VVEA2ODUdwwZTCtapK0/GG6+BE03tpbFQ0tDS0+loNXQgCIZ2+mc76jte0bo0BS9fvoU+mg6wUU1kwZBiRNFInGlaLWde3eqebkYXpPLakBL2+CD6sJKhqoKmGKdYBWFWFTKcVp0WNKCyl2lSmjirk8+KKZqXTO9JLnmxdpOO5v56qzNSdJGxYlJeXc/LJJ5Ofn89FF13EpZdeysEHH9wZY5NIupyWvCkNPe/1dYhxY9NUclJsBEIG+xemM/uE4eyo8vLeyl2s311LQDfq6w6iJ7WWJr7wJF2+dQMVS5/HrhqkD9of+xHnUubRUTxmH4sUm0ZBhgOA8hof/pBByDCbVR0xJIdrJ5mb+8/Wl8elJvPT1uqE5Sx7WihX0rVYrXsbfBUUFLB161ZGjhxJZmYm27Zt6+bRJReJeHw7ysvZ8JqegI7bF8SiKWQ4LNT59UhEtKNQFbNZaHmtH92A2oCOgh9VUeo32aZstd7KJBx+u77covnGd0Lga1SNLTANisi03ODtxtGKyLH1WDUFm6YihE5O6t4UUIdVRVWVVsdtAJV1Adxec0MbrhmxW7SI/GrYS/72il3UeM2/R8NOz+a49o7UHzIodfkoq/GT4bDQL8sJwOOfFsd8jjo6stBVXaTjNYbivb9EapZ6SopXZ5OwYfHmm29SVVXFK6+8wgsvvMDDDz/MAQccwCWXXMK0adMYMmRIJwxTIul84vGmhD3vP26tSujcqmIWeaXZLdwydX8Anvp8Y5NrrS3dey0gMvF5gzqqojAwJ8VUaBqax9zPSnDXeXF98xroITIHjmD4SZeBqrGl0os/qNMvy0GWc68BkGpLxRc0qAuECOoGN0/dn4MHZgHxe2aEQpvkLHtSKFfStRx66KF89913DB8+nIkTJ3LHHXdQUVHBs88+y0EHHdTdw0sausPj2/Cakd40wqxnCIRCOKwqOXYrLm+IYH0viPZi1RT21AYIKxLr4cKI+k1yUBdYBJF6iXgQLQysufOIvZeMkJtqJaQLUuwaNb4Q3qCBYeytM7GqCocMzOKYYfk8/cWmqHlSURRsFpVgHH1Z/CGDkAIWTUWpT63yBXV2VHnJT7dHvOQrt1djAJZG+1ddmE0Cw+Sk2nBYNdzeIAIoq/GjGyLmc3TJUYN4/putHfqcdUUX6XiNhda+R38666CoPiozJxQ120clHPFvKKzSE1K8OpPEunXUk52dzf/93/+xZMkStmzZwvTp03n22WcZNmxYR49PIukSGntTHFYNVVVwWDUKM+xRet/PzDiS/ztuKKpiyijGgy7M1J/7zx7NuKLcVq/1wHtrmPP6SlZsr6bKE6TGF6TaE2DF9mqu+u9y7n33F0rKasnNSGXYiZeSUzSa4SddhmoxPb+pNpWgIajzmyHvcM8ARVFw2jRy6if36gYSKGHPTJUn2GQRDntmhhakcejArIgBEgsZGpYkyv3330/fvn0BuO+++8jOzuaaa66hvLycJ554optHlxzEO0cZiey2E7hmmt1CeY2fUKPvvS9oUOUJku6wYO0g76w3aEQKr8M0rnkIJnCfCjSRh23t+MZYVIVLjhzIvy4+jOxUG0EdCjMdDM5JoW+mg3S7hT7pdu48YxT/veIojh2WF3OetCoJbLuUcMDErDkxm/6ZDVeL8tMY1S/DLKSHiAiHIQQCQUiP7ukRVpMakO2kxheisi5Anwx7k+eoxhfisSUd/5zF018l2I5ahbCxsGaXm1S7hYJ0O6l2S8RYWFZstkNo7XtUWRfkuhd/ZOazy7np5Z+Z+exy5i/dyCVHDWJk33Q8/hBltX48/lBkTQfiuva+QpsMizDBYJDly5fzzTffsHnzZvr06ZPQ7y9dupTTTz+dfv36oSgKb7zxRtT7iqLE/PfXv/612XPOnTuXMWPGkJGRQUZGBkcffTTvvfde1DGTJk1qcs7f/OY3CY1d0rtIxJuiqgrXThpKhsPaqsfMpsJB/TJ46vKxPDPjSMYPy4tcy2nVqPWH8Ab0iK6KoihkOi2sK62lotaPx68T1A009f+zd95xdlX12v+uXU6fmkkyqYQUelUEjLwQREXgYsELNhBRUdFrAcUr14pXQbh2pYmIqKgIKnpVqlcISFcCIZSQhPRMMv2cOW239f6xzt5zzsyZmTMtM0n28/lA5rS91z5lrfUrz/NomIaGoQmKtscv/6EmxoiukWrdj3knvZusA3nLZVemQHtJqao7Z7O1J8+LbRnaS/KKUH3z7xOtU1GdtnQxcM3O226p2qIyM4fPa6gpAAmVnkLUimOOOYaTTz4ZUK1Qd999N+l0mn/+859hq20Jo5mjJvqcjQmTjj4rMFobGD84nqQrawXGd5MBvytpLEjFRtecIYQgEdFoSpjETY33HruQ5796Kt8464iAM6Y2mS6ZogPAUQsb+e47j+Lc4/dD00TVRI2UErtGY0iBMjG1/WBByqAa5El482GtaJpgRsostYiB5XpYjkexJL/rQxfQkFDvQdFRx5FSUrQr528/8ZTJ28RNXfFCkORLalYF26MxYYzpe1ZeEa+G8jXJ8ySrt/by4Np2Vm/tHTGIGU3QPdzvKGu55G2HdN5G10RFgHDr45v5yImLueG8Y/jW2Udyw3lqTa8lUThcIDbaa90TMOpWKIC///3v/OpXv+J3v/sdnudx1lln8ec//5nXv/71ozpONpvlyCOP5AMf+EBVct6OHTsqbt9111188IMf5B3veMeQx5w/fz7f/OY3WbZsGVJKbrnlFt761rfy9NNPB0Z+ABdeeCFf+9rXgtuJRGJUYw+xd2FgNkVKSU/exnY9TF2jPmpUtPc89kon8YhekfEfiLipMbs+xn+dfnDQbgTw8Lp22vuKpcVGVPTOKrWOklmeq8iEvmMqKM31YvsG2h77AzNOeBc9sUX05h3lSVHSkq82L7kS2tKKbN6SigypBlIr0TpUegoRYvdishy1azmn5/UbrSnFJi8wC/Phy70KodqBhiJVjwdjPWLWcmp6nj9j6Zpqt2pM6HgSDphdh2H0v++1cMaqKeJ5nqQ40MRjCOiaoDFhkC6otlVKPIuYqWPoGguaEzyyroMv/3ENUUPgWKXgJfhfP2bWxdCEEh3JWk6gqGW7LnEq2151IfAoSf+W3Kb99UUIxRc0dG3U37NauQq9eYvzb35iVC1FIwXdDXGDF3YoSXYpKJnJDuCjlARZPCkDU0VNExUckBtWbhhkeLh6a++YW7z2NIWsWjHqwGLevHl0dXXx5je/mR//+MeceeaZRKPRMZ38tNNO47TTThvy8dbW1orbf/zjHzn55JMrJG8H4swzz6y4/Y1vfIPrrruOxx57rCKwSCQSg44fYt9FeTYlk3VKpMH+2VkTkIoaNCci3LhyPd++b21g6lRtsTN1xYf44hkHD+rt/PmjmwKpQ99jwu+dndcUp2C7Sg/dlaq/tixPV9y1ka6HfoXn2GRe/Ac7GloRqD5ciVdhPOW/qnx8uzIFLMelPm4OufmvZdEMlZ5CTCT233//QYtyOTZs2LAbRzM9sTvVafzM7isdWUDNT77RmkQOCip8RA0NXdOwXBcNqG0LPTbUKmWr2oRqO6ak5PmACizaelUy5od/f5n7X9xZMbfVwhkbOE9mLRdPSmKGRtHxhhy/VpKL7czaFYkiDYiaGjFDpzFu8q17X6Kv6LB/S4qOPqukmFV5rNn1UWbWRUtBQoGC3V/N2JWx0DSNVLR/K+hKiQbkbZfeXBFPqrWqnOeB47GlK1fbm+qPvQbp8ROXtQQ+SqPhdgwXdPcVHXalC+Rtl+/cv1aZyBYcoqZFc7J/71qwVaVHE+oL4BvWwvABwlgD/ummkDWRGHVg8dWvfpWzzz6bxsbGSRjO0Ni5cyd/+ctfuOWWW2p+jeu63H777WSzWV772tdWPHbrrbfyy1/+ktbWVs4880y+9KUvhVWLfRh+NuVfm7oDCcXyjbknIV1wuPXxjdy5ajtF28M0BBqq59Xf0PtzuuNK1u/q45O/WcXHVyzhwhOXBOVay3GJmzoFx0V46kyaUMfZ3pPD1HUMTeB5kvK9VnHXRjpW/hLp2ERnL6Hu1W/Bk2oR8qQsuWiXQYCpa6rXVvZfR0tdlK+eeeiwk1ati+ZYlZ5C9YwQ5fj0pz9dcdu2bZ5++mnuvvtuLr300qkZ1DTD7nDUhsosquV4pAtOqRIqkVKUztf/fJXdVX/Pa4wjkWzuyk1qUAHUrMwnShFIrUGIMueTwe24qTbxz29P85nbn+F9r92PE5bOrHnOWr60hWMXNfO/z+7gn5u7+POzO0iYOjvShSEH5W/8B8ZvnoSurM3+LSZARaZ8Zl2UGSmT3pyqcHTlLBxXkooY9BUdtnUrPyO9LOIrOi5bunLMSEWoi5pEDUHecqmLmSVunsQ0ypNbEoR67+9+bgfvOXbhqObt4RJSHzlxMTes3DAm1aihgm513blAVjgZ1UmYOj15ix29BUxdoy6m3kunJDwgpSQeMYhFKgOFoQKEsQT8u0sha6ow6sDiwgsvnIxxjIhbbrmFurq6mvTMV69ezWtf+1oKhQKpVIo//OEPHHLIIcHj73nPe9hvv/2YO3cuzz77LP/5n//JSy+9xO9///shj1ksFikW+3vU0+mJ62MNMfXQNMGHT1jM+eueCO6rNuff/tRWpFQVCb1EwjN0HU+6FYucUWJ19+Zsrrr7JQCOX9wSLATdOYuc5eIGnrMKbpnSSsGVeKXKhh9UeI6NOXsJzSe8EwcDrWRSNbDtwJdXFEDE0EpmTSoAOvOIuROWCRmL0tPeWv4NMXYMZYJ3zTXX8NRTT+3m0UxP7A6zyYFZ1KaERtRUmzBPgu146Fr/jCVQpGYP1frpSkl7plhzhWA88Kc8QxPBxrEa4qZGzqqx/UivlII1NMGs+hhuKVPfnbP4zn1r+cWjm2qeswYGarmiS29OtdD6VZeRqi8Dg6P2TJGObHFQplwTGk1JtYGNRXS2duXYlSnieBJXeqrNySt9ZqW2WU9KdqWLdGqKI9OcjPCWo+by80c3AX5wIwPfD11otNRFAh+Nkeb/gUmk4xfPqJqQGo9qVLWgW0rJjt58RZDYni4SNZV4SXtfkW09eRY2C2KGjlPismilIK28UwCGrgiOJeDfHQpZU4kxcSymAj/96U9573vfSywWG/G5Bx54IKtWraK3t5c77riD888/nwcffDAILj784Q8Hzz388MOZM2cOp5xyCuvXr2fJkiVVj3nllVdy+eWXT8zFhJiW6MhawWYc+id8USqLelJtzAVULN4SOShzJhClfmQPy5Fc88B6Fs9KkS26dGUtCsP02daViIbKZVVSbN9A10O/QvpBxeveiVv66Rqa4mh4A4OLUsAhpcrACQGeEGhCMr9p6ipze3P5N8TE47TTTuOyyy7j5ptvnuqhTAtMZgviUFnU5mQUU9fY0p3H9foro+VBhS4EqajJ9p4CrqeCj5ih0Vfjhn48cIcJKkDNi+XE76GeHdEFJSpDcLslFUVKqa6r1BIkS//WMmdVC9SE6BfX0Etz90jVFCn9aor6L2+5rNmaHjZTbuoajYkIM1IR1u/qU8cpcTRSUYOOvmLQ0iZRm2D/M59VFyMVMXA8r8JHw3fuTpg6u/qKI/IsRpNEGg+HqFrQ3Vd0KNj9ruumriGEChAVxyJCX9GhN2+TFg6GgPq4iZSSZKTy/RyuIjiWgH8q+FK7E5Ml4DCheOihh3jppZf40Ic+VNPzI5EIS5cu5dWvfjVXXnklRx55JN///veHfP5xxx0HwLp164Z8zmWXXUZvb2/wX2jatPdhW08OKcDUVZY/omvBv7pWmb8oL1FXW9j8JIQKMCCds/nVY5uVssYI5L2C7TIjaQaTTvqFR/Acm8jsJcw+8V2gG0p9RajshiY0DE2jvHLrL0T+ODzp4biSmKmzqCUxJcoTUyGXGWLPxh133EFzc/Okn+eaa65h0aJFxGIxjjvuOJ544omRXzRFWL60hVsuOHaQOs14A/Lhsqh1MZNFMxI0xAz2b0lg6iWX6tJmc25jjL6ijVuKOmKmweyGeM0qTuNp9hgoSWtqosLTwZ+fy6ssPsqLO1FDI2Zqwf2uJ9mVKbClK4fjqWy1rinxV10TI85ZQ813yagRbLw8SemYIyNiqPVILzmEC8GI6nyHzK3n828+iPq4ybymOPs1J9lvRpy+ovKyiBrKV0MXgtn1MQ6YncL14J41bSQiGnMaYuzXnGR+6bWLZiRJRY2a+Dy1yr/6GI1qVDVUqnUpPgmUvhOl982X7PWkpGC71MdMPnHyMr519pH8+H2v4UfvPpqmRGRYVcSheInl5x4oRzvwtznea53u2CMqFjfddBOvfvWrxyw76HleRRvTQKxatQog0FGvhmg0OmaSeog9A/MaE2got1K9ROAqhz91Ky1xiSglNQauKf6G3vUkjtdPlHtgbXvQdzxc9sxyJa905oPyeMvys8m9+BDNR6wgEonQV3RpSUXozTsUbBehlwIYXUcva8nyl1PbLSN1S/j4rf+aktajvb38G2LsOProowe1ELS1tdHe3s611147qee+7bbbuOSSS7j++us57rjj+N73vsepp57KSy+9xKxZsyb13GPFZJhNjpRFjRk6EVPnS2ceyrbuPD/828sUHY8ZqUiJ1KvS/bqmMbMuSjyik4wa5Cwn4Hhpovp8OVGpBKOk5ONXb43SJlxDBmMYuC00NEEiovP2o+fxl9U7yFtK/UoXAlfKoM3KQ7lr+xXskeasoeY7Q9PQdYFWCgaSEYPeQqk1SgzmVfjwpMQQqt1MAPObErx6v6YRM+V1MZO4qRM1dGKmTt5yKTrKvVwTapOtaZCIGGhCozFhsitdYHZDnK3deVrrowjRn8Gvhc8zFg7BRHCIfN7fH1dt5yt/eo5s0UXXVUXNh5/sKzouiYjBq/ZrqvjsxloRHA3ncHfxpaYKUxpY9PX1VVQJXnnlFVatWkVzczMLFy4EFJfh9ttv59vf/nbVY5xyyim8/e1v5z/+4z8AVVk47bTTWLhwIZlMhl/96lc88MAD3HPPPQCsX7+eX/3qV5x++unMmDGDZ599losvvpgTTzyRI444YpKvOMR0xplHzOHyP6+hN2ejCQ+tzMjIb4MyNEHC1MlZLpZT0hYfcByJIm+7AwyepCeDRXSkhdTN9qAnGwFwhEH0kJOZUZ/gxANm8r/PbEfXBPVxA8txcVxFyBNCZb9cV50HoeQf/cV0RtJkdn18ylqP9vbyb4ix461vfWvF4qppGjNnzmTFihUcdNBBk3ru73znO1x44YVccMEFAFx//fX85S9/4ac//Smf//znJ/Xc0wm1klBbklFOPnAWi1uSg9SO4qbOrPpYoDI0sy7Ktm4Px/UQAmYkI6QLTiC5qqlMTsVmWinw6WStSkfrkaAJX6BClvgeihPiq+b5kq3llYuYoWHoOkfMr2d9exakqgxYrmTgW6CuQRA3dSSSTMFGEyqIqTZnDTXfxSKacjC3nJKPVtmDw1yskhNXleeGhMmZR8zBMLQRN8KeJys2sT5JWYhSG6+nKtkxUyNvuViuS952edMhs/jtU1vHxOcZSxJpojhEmiZoTqk2W9eUFBwPTZMDxiFxPZhVH60quT5WUZJaA/7dwZeaStQUWPzpT3+q+YBvectban7uU089FZgiAVxyySUAnH/++fzsZz8D4De/+Q1SSt797ndXPcb69evp6Ogvqe3atYv3ve997Nixg4aGBo444gjuuece3vjGNwKqTer+++/ne9/7HtlslgULFvCOd7yDL37xizWPO8Seh3ICWWNcqUD05O2KScMwND6+YglX3f0SliMxdC/IsDmuxNAE7zxmPv9Y34njFQP1qGoYSCb025ZEaUIbDlb7Rnof/hWJA5eTPGRFQLTb0p3jN09swXE90nlbjVkT6KXzqS4E1ce6oDFGV9YmXVTZwpghqItHBuly707lid0plxliz8JXv/rVKTmvZVn885//5LLLLgvu0zSNN7zhDTz66KOTfv5CoTDkY5qmEYlEJv25xaLy1FnSHGFRk8mLO/qYXe9vCAW6GQmyqAe0RFnSHKFQKPCq+SluePcRPL89zdNberj+wfU01ceIm2pb4Tk2cc2jNaXT1mth2R59eZeIELjSwdMi+F5x0rWD6MITkHbgwFkptvQUyBYdhNE/3vLnlqOlLkbM1IhE1b99RYeN7b1IT+I4g4OXpkQEdJ36uMmbDm7lqrvWkLfskvoVuAMsilzdDJyvN7Wn8TwPkOiaxvodXRy3sC54bjQaDea7gmURHTDdNccEW/M2jpTYZX1bnueC51atXLgCHM3A0HU+vmIJ4FEoWBWfQ1feojke4ZC59cRi0dLnLbjwdfvxxd8/w/bODDFTQzoWtujn4CUTBhs7cxQdF9dxkJ7LXc9s4ZyjWnl4fQcbdmXpLgUtB85p4OMnH8DypS24rottD/Zy2tGdplgo0hDVoOSTIT0Xz1V+IoYnKRYtdnSnWdaixmkYRtBSdO3fX2bdjp7gnAfMSnLh/1vMq+anKBQKGIaBYZS+Z56HZVUGdknNw5AO9SZYtoftaRgaICWeayv3eCF4x5GzsKz+bhb/uJomOGxefdDpUv4cH7quY5pqLyGlHLYrptpzXzU/xVdOX8aND22oeH8PmF3Hf5xyUJDwm6zf/WSipsDibW97W00HE0LgukNvtgZixYoVg3oDB+LDH/5wBdl6IDZu3Fhx+6abbhr2eAsWLODBBx+seYwh9nyUE8iyRZWN8Y2GkhG9oi3owhMVef+aB9aTydu4qMxWQ8Lk4yuW8METFnPr45v45l0vjmoMvhLUSPQBP6iQro3duQ3puWiGWTIzknh4pUxTv9a6r2JhaoLOrIXjSXoLDnVxk6zlKrMnj8AnIxU1pqT1aG8v/4YYO3RdZ8eOHYNajzo7O5k1a9ao1pXRoKOjA9d1mT17dsX9s2fP5sUXB//GJ1od8Oyzzx7ysWOOOYavfOUrwe1zzz13yM3LYYcdxpVXXhnc/uAHPzjk2JYtW8Z3vvOd4PbHPvYxdu3aBUB31mJTW5oNnlK+SzTNZtlZnw6yqIWHbuadf7l60DGlhN5egTj1k8TqlWPzC3+6nmz7VhzPC0i0qs8dYokUdaddgldqWep5+Fbs9k1qTihVgfsiBrbr4Qqdlrf9V3Cu3kdvx2p7edAYukp8rWM/fBUFx1OJlSfupLjteUAM2mt06RpnXHw1+89q5Bt3v0D7o3+ksGlV1fcMoOXMz0I8he1KMs/cS3bdk+qYQnDpnzR+2lofKDLddNNNHDp3JktmpXjoz7eTf7kySFXvifIGcd90EUa9+t7nXnyI3Asrh9wX7XfGRVzyjhO58MQl/P73vx9W1OCKK67g8MMPByCz/p949/+AXZ1ZskUHy1XVdk0ITF3Deu27iMxZhiagsGU1maf+xEoheEQXHNRaT1QXaCXy9Ue+9IVg0/voo49y1VVXDTp3umDzytZeOOls5h56LAC9W9ay9u6fAaqq5HqSb/yjgR+W5F4/+tGPcsYZZ7B8aQvJ7HY++dnLg3Omoybf+Uv/8S+44IJAIXT9+vVBUtqHlLB1Szd9RZc5rzoFfdkJFB0Pq2cXHfdeByhfqt8/38wfynJqb3/72/nABz4AQHt7Ox/84AeHfH9PP/10LrroInW96TTnnnvukM99/etfzxvO/gBdOYuk5vHVT38oqFRJCdGiHVzr4a8/ieVLTwheO1lzxGSipsDCq9GCPkSI6YZyVY6ooZG3nYDMl/MkqTIymd8WdOGJS7hg+f7877M72NaTY15jgjOPmMMTG7s4/+YneGFHuqJaYegCQyjJw2qVimTUoGeUQUVk9lIalp+D0HS1+JReHBD3UHKLugau69GdtUlGlWReRNeY0xCnr+go524hQFNVl/ZMkWRURyBGbD3yqzydfUW6czaNSZOWZHTMnhN7e/k3xNgx1EaqWCzutixbLdjb1QGbkhEObq1nY2eWnKWSMD4J9aKTlvDLV2JsqRKvCAEHt9aRierBb1vJYKsNNKhEjhBQdDz6ig6xUlChCdAQQaJB0zRMXajWJSAeGVzdHHR+VObdcSW7+ooYQrVZRQ0NM2rgeeAhSxKiEsuVxCM6yxc3892/bxrSD8OXLfUhPYlRqjDI0uNRU8P1YGNnlsZEJNgw+vPdE/do9Dgepi5KrVOV78nCpgR9pk66oO6r9lsQQmDqgi+dcTDvObG6cuVIaEpGkMD69j5cqVpoPSkpOi5xzyOmKSNBDdWqpWuCouOxqTPLUQuaKq5rKEgJmaKN5XhEDI1M0alQm/Jhu5JUVKcualY9jqYJ6mPVH6sFQsCiGUleaEtTtD32r48hJfQ4EXo0ReBeNiuFmOClxr9+XwGrLmrSk7O49fHN3F54CtuV6J7N1i3dLJqRpCmpvi/l1zqcUeieAiFHKhmEqIp0Ok1DQwO9vb3U14cZ1ukIz5NBIDC7Lsqmrhx5W7XbIAhUkhY0RtnYXaAuYvCe4xfysROXEBmwmD38cjuX3vEs2aJDxNDo7LMqenXNkrKG3wPrL1RNCZPu3OBS8UBUDSp0s9Qf3E9GjOgCT8KMVIRsUfUqe0orkCWz6ujsK9CcjAYkvU1dWTTRT9LzpGS/5iTxiB5sGm4475hBFQu/yvP89jTpgjJKUpO9wSFzG8ZF/K6QICyVf0Mfi+mLyZzrfvCDHwBw8cUX89///d+kUqngMdd1WblyJRs3buTpp5+e0PP6sCyLRCLBHXfcUVGZP//88+np6eGPf/xjxfOrVSwWLFgw5vdmOrVClcPzJM9vT9NdsGltrAuSCdWe60MIwT+3ZILfdl8uT7aU3JhZ2tR2lhIsAomnRQKhC006NMdNEiVuhuN6dOdtTCGIR3R2ZPuTm9VaoQwdkqbBsYubqU8kaUjo3P7P7RjSIWHq1Cd0NKEhpaRge+QsV23wZb/HhXQdBruMUgpyJEI3MXy+hOcQ0aElFSMVVXNpvujyo/e8isPmNxCNRoMN4soX27j+gbVs2JXFdiXpomq3mtcQJxnVsaSBKyW9eYuuviJ4/UkrTRPMTCrju51pi0PmN/HzDx4PwDObu2jP5ILWp4Eb/kgkglZyj3Ych4deauMrf1xDX9GhMWFiO5K2TAHL8UDTMQyDuKkxI2GSLO1zB14XgGma6LpaH8tboR5d3xG09diuxJMeORdiEZOZdTEiQpK3LHpzDqmozuVvPZTXLumf70dqb6r4vGt87qPrO/jJPzbxSmcB25MYAvZvjnDh/1tcce5qxx1te9MDz2+ruH5TFzSnTNozFh6C5roEEV2j6Lh0pXNV3wPYfb/70WI068CYAotsNsuDDz7I5s2bB32gn/zkJ0d7uD0SYWAx/bF6ay8f+cVTJKMGUlKxyQZVjrUcbxBfzudSfOMsReZ/+OV2/uPXTyteQ+m1fmXCJ2NrQi1ADHDi9h8fTvlkqKCC0nENTTnBCqF0z6UUzKyPkjT1YCy9BZsPLF/EzY9spC5mENF1oqZgU+fgYGp+qR2qLV3k4Dl13HLBsRWLkl/l6c5ZZIuuKpmXeB6aEMRNg+akOS7id+i8vedgMue6/fffH4BNmzYxf/78YMMCamO0aNEivva1rwWS4JOB4447jmOPPZYf/vCHgNqoLFy4kP/4j/8YkbwdrgOD8fDL7Xzr3rVsaO8jU3AGzX9aSWQiSJYYyrTN1EWQJfdJ24mIQd5yanLYHg4akIoZuJ4MfBl8cY2RVKn84Cema7Q2xpU6k6akaf3gwfNUpeRbZx/JSQfMHHQMf757alMX379/LXFTtYv15u1gPJTx75qSERIR5fjtn8NPBH3s5KXcs6ZtVAaj5Um2cpWmdN5iS1cehKruLG5JBsFILdflYyh/op3pIpbrkowo3sJUJJF2x1pT7fqLjsumrhyuJ1nYnAgcvqGkejfE+jtdMZq5btSqUE8//TSnn346uVyObDZLc3MzHR0dJBIJZs2atc8EFiGmP8pVObIlycPyKqPtDg4qQG3Ub31C+ZScccRcLr3jWdJ5O5Ag9JD4urH+wuRJX4Gp/4jlC9ZwC5eb6awaVIBagP0gRkpwSgtQW28BXRPETY36uIkuBH9evYN03g6I3VFDJxU1sRwL25MlzXbV2zqULne5TKBTWs1NQ0OUepRtT+J6HpmCMy7i92TIZYbY8/DKK68AcPLJJ/P73/+epqam3T6GSy65hPPPP59jjjmGY489NhD28FWi9nRM9MbKslyuX7mBTV1Z9mtO8tETFwcV3kfWdfDFO5+jr+j0e11QOf95EmRZpCAVj5a87aGXgg4ExHQdz/PGHVSAmq7ThRJxWFMzcy1zs/94XdQIPCSS5uBt00jCE5omyBRs7vjnVtIFh3TBCVpjDV2JcCjRKr8yrSlyeRmiuka75fLDv72MK+WoDEaHUmkydR1d70+WFR1JvOy0tQhqDCctu7A5zo7eAguaE3z6lGXMSI3cSjvR39fJXmuGun5f2FgAHX0WqZgRuHnv7fLqow4sLr74Ys4880yuv/56GhoaeOyxxzBNk3PPPZdPfepTkzHGECHGhHIVIqU73h8IuJ5blfNQHgz85sktbOzMKVUSKJnkCXQEpuZhDzBeKj9cqXgxogIUQHzxq9FiKSKzF1cEFaAqDEMtfK4nyVkuuZLuupQeUUOn6LoI+h1Gm5MRMgWbvK2e53pySF1ufwGKmzq9pWCqfDI0NLBcj6ZkZK+dFEPsfvz973+fsnO/853vpL29nS9/+cu0tbVx1FFHcffddw8idO+JeGRdB9c+sJ6X2jJYrkdE1ziwtY6PrRhbxvgLv3+W257aWsEl+8H/vcw7j5nPf7/t8GCDNbsuyoaObPCc8nl1YIXAlWVu3kIo7pjQmN0Qw/Mkm7pyox7ncBjIg6sFi2cqY7gX2/porVctVb15B9tV3Imc5XLovIYhhSf8jHZPzg4SUT5cV6IZyn/Df6A3b9NSF6HclrXousq3CMn8pkRN3hA+apW+dTwP0JFSkrdc2vssFs9McnBrHUNhJGnZpmSEXekCM1LREdeK0Th1TxcMdf2+rK+qwrkULK+CL7Q3y6uP2nl71apVfOYzn0HTNHRdp1gssmDBAq6++mr+67/+a+QDhAixm+CrEHXnbKKGIGpoSpZVymGJ1P7U4Ep4dmsvDXETTRNBW68rJe5QfcYoJ9qZdbFhU2F251a8Yv+CGZ17YBBUGKVfpb82DMzViLL7POn/J5nTEGd2QwxdKA13TQPX8+jN28RMjdn1MS554wHDOvX6C5AvdziYR6beu6KtiJ2dfUP3oIYIUSve8Y53VFWXufrqq4dVRZko/Md//AebNm2iWCzy+OOPT2rr1e7CI+s6uPi3q3j8lU66c0X6CjbduSKPv9LJxb9dVeF87HmS1Vt7eXBtO6u39lZ1kv7C75/l1ie2DNqY+xXei279Z7DBKtie6t0vofwVFQkYTfHGguSMVN4SvnqdqWulCsP43LmrIaLXdkRNwKmHzuFjK5aSiupsaM/yQluGrT15dmaKbO0p0JO3WdgUr5pZ9zPamYJNc9JEL7teP8iyXa9CJMd21UbUh5SSjj4LKaElFa26gS/PgA/EUE7PAqUoKEocPMeTpPM269uzvNKZJVu02dKV44JbnhzklO2jFn8iu4YN9GiduqcLhrp+P5lJaS11Bogg7c3y6qMOLEzTDHrwZs2axebNmwFoaGhgy5YtEzu6ECHGAV+VIxXV2ZmxSi1DVDpRD4CkcuHL2y51UYOooeN6qo3IdryqgYkmVG/s3MY4fUV70K7cN/O22jfSs/Ln9Dz0i4rgQhOUyu1KFWVGUpEbG+ImhqYWYX/dKl+YNNQCUXSUytW8pjhxU1OBkBBYjsuC5iTfPvtILlqxlMPnNwxZWvYXID+o8DwZSAPankfRUX939lmk8zbf+9vL03bCD7HnYOXKlZx++umD7j/ttNNYuXLlFIxoz4bnSa686wXaM0U8T3ktmKW5xfOUOtyVd72A50keWdfB+Tc/wUd+8RSf/e0zfOQXT3H+zU9U/K4ty+U3Tw6/vt/3/E4KloPleGzrzdfUwuR6UHDK20crZ+CYqREtZVrKEyoTASEUp2M4mJqgKWFywtIWli9t4XVLZpC3B1e7pYTbntrKjSvXDzrGmu1pnt/eS97y2NKdxym73vKAyi7j5bke5CwHz5PkbZe2dJGooQUO2tUw3Aa+PMnm02r9qoTnSWKmRl3MIFd02NKt/Cyihs785gTNyciwm/uhghYfY2mnipm68lwydVrro/QVXa57cH3VgHeqMdT1+99d11XfaaOMu+LLqy+Zldor5dVHHVgcffTRPPnkkwCcdNJJfPnLX+bWW2/l05/+NIcddtiEDzBEiPHAN9w5eE4dSIhHDHRNo8ZkFY4nWd/RRypqoAnVBuS3Uw2EJ0s68J05skVXkRTLniglFMuI2lo0hWaYmJqqpkQMDYEMZBa9kp67yoQITE09J2JoRHStRBYvBUNSYpe0/lNRg0UzkuzXnGR+Y5y6uMmn3rCsplKyvwDlbRddKNJ40fGwXC/gXAAlsp/Olq7ctM4mhdgz0NfXV1WxxDTNcXtF7ItYva2XtTv7AsU6TaiWRk2IEmcK1u7s49bHN9WUJb525foRAwVPQs522d6br6hWjAauhILtsa07T19RtefETLVNGZj0GS+kJJhDB0IA9TFDqQY2q1Ygx/H4y3NtgKp2RHS1cYyZGhFDtZhe88B6nAHX/vC6DrpzNkXXRRNK6nSoc5q6CKoYWctlV1+RXNFhflOcUw9txdQFvQVLtbZaboVC13Ab+PIkW1u6SGe2yCsdWTZ2ZtncrQQ+5jfGaUpGSEUN9p+RZMmsJPUxc8TNfbWgpf89rm0DPRqn7umGoa5fCEFLKhrIEiNkRaC4N8urjzqwuOKKK5gzZw4A3/jGN2hqauKiiy6ivb2dH//4xxM+wBAhxovlS1u45YJjueG8Y/jBu4/m9o++lts+fDy1/p6LjqSzr0DM7M8UVVvgBpK1HVciSoZQGoPVn1pPepcyvxOqOmC7qiLgSaXz3Zm1SwuMU8YP6Ve18vkXErUg78pY9BUVQVGUZBpNQyNh6rQkozVdq78A6drQGShQmvGzG2LMaYhN62xSiD0Dhx9+OLfddtug+3/zm99wyCGHTMGI9mys2tyD7XoVHCkfApWptxyPm/+xsaYs8bNbe2s6r+NJHFdilFVXRwN/LnM9j/ZMgXTeojtno2sQNSZmA+ZXPkRpwtZFf6IoFdWZkTQD5+6c5QStQN+5by2ZvI2hC5Wc0kQQsIG63t6czVf+tCYILjxPcs8aFYzoJUVC9d/gcUVKkuVCU+2w+89IcMHy/ZhVH2Nnb547n95GZ9Zia3eBzV05XunMsr49S6Zg17SB95Nscxqi7EwXyVkuIEmYOq31Mbb1FNjYmaMupmR/y783w23uBwYtedsd9Qa6I6vGYzneoIAJam+nmgoMd/19RZeZdVEOaq0jV+wPFA+eUzcuVcXpjlGTt4855pjg71mzZnH33XdP6IBChJgojKQu8e7XLAjUn6pBVRwEtiexPbBLqiJDIWhPKmtXclxJMqLTbO3ghSduIyI8EgsPZP6K9/DxNx7Md+5bSzpvD0vSzloupqaIdeVytwOlEi3XrXDXHqub9fGLZzCrLkpX1gKvOh/F0AXJiL7Xq1uE2D340pe+xFlnncX69et5/etfD8Df/vY3fv3rX3P77bdP8ej2PMhKYZrBKN3fkbWYXTe4Zx9UK8eabb38cdV2GmI1bhWEmjc9KdCFqrqOBZ5UKlFbu/NICbPrY2hItvUWg+GPNY3RP29KHA90TaMpZpApOmhCBL5DEV2jMRlBIHl6Sw//3NSliOUDzqxaa/vv+9UTm/nL6h28/VXz2G9Gkq3dOaKGhu1KNJRZnF7iNFSOqzQeodFSF2FLd55fPLYZ2/WIGlpgque/P0hJ3nPZ1JkjburMqo+OuIE/fvEMGuIR6qIGDXEDU9eJRZTqn6EJegs2PTmLpqQ5KCAdjmzsBy0+8bq35E80lEhIOR5Z18H373+ZTMEufQZK+nZmXYxUyddkuvMRRrr+4xfP2Kfk1UcdWIQIsSegFnWJb5x1BNt78/z9pcFtPFqp1UeWiNpSVi5k5UHHQPgZMf8RM72NdQ/8Al26NC86iNTx53DAvGbOPW4/Frck+eztz9CWLla83l/8NKEyeP55BpLGNdHv1KnG6rErXUBriNGbd8ZUblVu2xb7zUiAFGSKNu2ZIoam3HFlSbK2YCuVi71Z3SLE7sGZZ57JnXfeyRVXXMEdd9xBPB7niCOO4P777+ekk06a6uHtcTh6QSOGpuG6Hppe6XwspcR1ZUk+m4B06pvHZYo26ZLikSslX//L88xrjNV0XsclaF1yPYlGoMwdoJagQJZeD2qO6+grVm5zVWeJelyrTX2vHJpQPLK4qdGSUtWZY/ZrIms5bGjPkowYpEvznu+p4cNyIYIseXF4g8jsQkBP3ubmf2wsZdq9gCjuuBJd8+dsWTYegvHMrIsRNzVezih1vgVNcTZ15YJkUrX3quC4vOfYBSNmwNdsT7OhvY+ZddGKCjyAqauKSTUFIxh5c798acuoN9Dl/g8RQ8dyXIQmyJfa4eY1xUlG9DElyHYX/ASm7Uk++6YDAfX5D7z+fSnpNurAYv/99x/WcnzDhg3jGlCIEOPFUGY91bS+L3njQbyw40n6ig7ZoouuUSpx9/f1+q7VQqjHPE9i6AIpqy+RvqoSpWBEj9ehRxPEZ80idfw51CdjwWb/hGUzefur5nPdA/2kv/J2qvL1strZIoZGa0McgPZMkYLtkLddevM2B8+pH5NMn69yEdX1YFLsylqIUhlf+WnIQJpwumeTQuwZOOOMMzjjjDOmehh7BQ6f18CBranShqckt02piuopntj+MxKq/cT1cGxJe6ZA3nYrNumagEREZ3tvgTI11KrQStUK21EtWDNTUUxdKJM0xwvmMl9xbijopWQKqBZS33jUrhI9SFSG3zAktiPxgGREZ0YqQibvkLUcXK//nK6UxAyNpmSEmKlhOx7dWYtk1ODNh7Vy3QPrqYsZtGcsHK+6SAcorp0hqSoCUn5ttuuV2lxVcGfqypeo/LgCaE5GaIiZxEtV4J6chedJGuImRUfx3Pzj+rsvST9HxPUkf31uJx/6f8MnkYZTcPLJxsqV3CVOWevvGKvfw2EgYTtrqYq758nSd8CjrbdAIqJTFzOmJR9huATmvhRIDMSoA4tPf/rTFbdt2+bpp5/m7rvv5tJLL52ocYUIMSYMZ9bTWq+xozfPV/93Df925FwWNCY447BWls2uY/W2XnTNRde0oN1IluT3TF1geRJdKGm+joxVyqYNXlX8DJ0uBPVxg6zlImJNtJzyAWLxFMvmNg3a7Ccj+iCddx/li1RTwsTQBB1Zq9RmoHqlk1Edgfo3V3TpzFp84uRlnPfa/cY0EZerXMQ0PdA6L9guQi9VU4SS05uMBSdEiBDjg6YJLjvtYC7+7Sq6slaQ/QeVKGlORfjqWw7lhpUbeGZLLwXbKUlxVx5HotoeW+MxbFcZYw6liLffjATtGavklC1JF2wWzVBOztu6c1iur0Y0/Nj9oCJqaLieBz7pXFfKd/4xKrgS/lg1Rfauj5nUx03yRZec7aq2IdtlflOcxoRSOeroU9UITVOE6tue3EJf0VHqf7JsI+8ff8C4qwUVQbW5FMh4qBYi5Wkg0TWduY1R+ooO7elisIL05m0KtsvMuhjJiB6YnNZFDXK2i+f1V7HLIwvFuQNPwObO7IjtqAPn9oqxC0FDwqTgePQWHExDVaOLrkdPzh6x+j1aD4qBhG1f0bA9U6TouCDBclwObK3jc6ceOO34CKNJYE4mdoez+Ggx6sBiKBO8a665hqeeemrcAwoRYjwYTl2io08RATuzNt+9dy2agMv/bHLGYa1s7szRV3CwHU+pdghVXteFoCkeYadTwNQ1mhMRooZOe6YYEKXL4S8UuZ2vkHctjjnmNXz1LYeSLjg0JyIcOCvFX55r40f/9zLzGhOcecQc5jTEK4OK8pRUGRIRnZhp0J23FQEQKDpeULYWKJOlZETnVfs1jXly8VUuXtiRobVeQ5QCqm3deezSahozdSRDO3iHCDEauK7Ld7/7XX7729+yefNmLKuyra6rq2uKRrbnYvnSFr57zlFc+8A6XmzLBJu9g1rr+NiKpcGm50M/fwq71KLjDJhzBLCjt8C8xjgz66IYmsa8xhgv78qSt5URZzyiMbs+XuqHF2zr9nA9j4LtBeadMdMAHOxhuGQDK7JzGmJ09FlBQkMTGrpwg8DD32h7UpZajATvPGY+/1jfyZbuHJajlPL8NtaIofGa/WcwMxXlxbYMcVOnIW5SFzWwPcmWrhyZgqN4ImXHHzg+v21p4HX41eyBs2A8opMrqgx83nLozQm6886gtFTedtnanSNuGqSiBoauWm0NTRv85sj+oErSn9AaqR212tweHFJKLEdyyJw6GuIRNrTXxpXwPMmvntjMD//2MkXHpSUVJWroI26yq1VPUlGDZFSnYHlYrkum4PDpU2pTNNydGCmBOZxZYbVjjTUwmK6GghPGsTjttNO47LLLuPnmmyfqkCFCjBpDlXrbM0Xa0oXgtiZUVq83Z/ObJ7cokyDU5Gy5anGImhrNyQiW4ykpWA0yBRtT15ldHyXb7lRdJAP1J+nxYqqO78RNLjppCY9t6OC8nz5OJm/joRaDy/+8hrcdOSdYNwYuZuWIlKQNo4ZG3vYwtHLjHX3Cqge+ysV//WE1bekijQmThKkzsy7KrkwBT4Kha+QttyZyXogQI+Hyyy/nJz/5CZ/5zGf44he/yBe+8AU2btzInXfeyZe//OWpHt4ei5H63hviEZIRA4GL5faTg/39pieV/OumTkVANnSNS954IJs6c3zn/rXMSEZIlCqmQJB13pVWbVWdWYtkROfIBQ185MTF3Pf8Tm59fLPyxxkw1vK5tCFhUhczEUKwrTsfcBMMXeC5lZUVz5M0JEw+vmIJF564hBtXrufb963FcrxS+6aa0yzH45Z/bAwMy+Kmuh5NE2TzNjnbVWOQ4JaNSQwIZDQhmNsYY1emSNHx0ISS9PU8cJGDTEVTEYOmRIQdPXkKjkdH1g4eU0pQJTfwUquWpsE333E4Nz70Ci/syDC7TmXD855bIdihPkJF+I7oGnFDG7EdtdrcPrAqcdlpB9fMlfCd3Z/c2KXawzSBky4ExOuhNtmeJ+nqs/BKla2GRD9ZXKAUDbEhbkpmpGpTNNydKE9gAnTnrJILu0Zj3KxZ0GQ8gcF0qZhUw4QFFnfccQfNzc0TdbgQIcYEv9RbdFzAV1KCnWVBBahyu/RkQI7emS6yf0ucnCXpzlpYrodlexRtj7mNMXpzFpu7C2SLeWBoAuJASdmGmXN5YUeaj/7yn/QVnKC1wCj1K/fmbH7x2GaVnRqmVUBDPV9VD2KlxVb172pCkLfdmsrVtWIolYvj9p/Bmw9rZUFzYtqUXUPs+bj11lu58cYbOeOMM/jqV7/Ku9/9bpYsWcIRRxzBY489xic/+cmpHuIeC00TQ25uunIWmhDs35IgnXfYkS4gkLhe5fwmBEqVyPHY2pPnVfs1kYzog+RsJapltCFuYhoan379Ml69qDmYJxriEe57fmdAfO4tkcT9c2lC8QXqS2pAA9tjvBIh/LD5DSxf2kIyogeVX8NQ5n8rX+5Q9zfEcaXEcj129hb6W7hK/+Zsj02d2dJYhu7PGijaAapK0pQw6Su69BUdpFQcitJev+J6IrogaznYJedlIRSPRNc0HNfDK7XNRg291OIKTYloRQCQjChVqJIYVPC5KhUpRbxeMqsOT0oeXNs+7Nxcq4LTSBwBf2Pbk7NxPcWzE6KSeJ2KGoM22f5met3ODOmCTXfOoitrMau+XwVqurfY+gnMdN6mY0Cr4Y7eAi3JyIgVpPEEBhNZMZkMjDqwOProoweVz9ra2mhvb+faa6+d0MGFCDFaHDq3nhmpCC+2ZYBSn2sVNQ1VQu+/LQHLgZZUhGREJ2c5pAsujXGDDbv6yNqV+bVqxysODCqWn4OFjmU55Kz+17ueROgahibQhIflSDxXMiNpqkm6SjuCrovAuTMVNZjbGGNbTx5NCDIFB1OvTdpvNBiLykeIEGNBW1sbhx9+OACpVIre3l4A/u3f/o0vfelLUzm0vRp+IsZ2JY0Jk+6cRdZyBz3PdmVg+Hn3czt41zELBrXU9BWdQEDC9dRm9/4Xd3JAax1aqU3Ik5LmZISt3XnmNcZoqYtSsDwcz0MXSu7U8SQ5y6UhLoPe+2RUJ1906egrsv/MFL+98Hhe2tVHe6bAc9vSXPfgOuY3JVnUkijLJAuklIoTN0Tc4EnwarEIL8GVIKSkLV3g4Dn1vP91c/mfe17CciS+IXb50XRNsLk7V8HHUOIXlPgjag/VnbUxdIeIrqooXTmLkw6YyXuPW8g1D6wnk7cHBXpCqvfY1DUSEY3evMVFv/xnkPlePDM1ZBJovHN7+ca2IW7QV3TQSkGmqSkVw/ZMgWQkWaEaOGgzbehs782Ts1y2dOWY1xTH1LWakmRTyS1oTkQoOi7pkgR9+VldT7IzU6Q+ZgxZQRpvYDAaQ8GpIJGPOrB461vfWnEhmqYxc+ZMVqxYwUEHHTShgwsRYrR4bEMnuzJFtXlHTewDmRA+j0EM6JPNFh168laFAsf6jlxN560WVAjdpDfvDCqNe1Ipp2BoStFE97BdSdGVHNiaIp13g7Kqrkm2dKtqi0Q5dxZdj76iy9yGGBeeuGRSqwfDZTtDhJgozJ8/nx07drBw4UKWLFnCvffey6te9SqefPJJotHp1wqxt6Cy5z5KzNSqBhag5q3mmMmG9iwvtGUqMupRQ2NXuhB4M5i6YGZdhBfb+vivP6zmvcctZOXLHazf1UfWUln+tbuU7GlTPAIupc2kwXuPW8itj28e0Krj0pmziEV0jl7YyAd+/hTPbu0hU+hvR9VQfAbXlfSWCMquO7jlaiLgSdjWo6og5712P/7wr21kCnbFc5SKVhUyRgmyyt9+VWhLV45H1nVw6+ObMTTB3MY4QkCu6NCTt/EkRE2duqhOS12UXZkiO3oLQea7J2/z+CudPLqhk1REBWYDW2zGM7eXb2yl7CerC6E2toZW4v/ZHggwNUFj3ORb975UsZn2TRn91rntPXlmpqIjJsmmmltw4KxUyWCwhArFFfVPznI5cFaq6uvHGxgMp+4Fw3uO7A6MOrD46le/OgnDCBFi/PCzAK4nWdicCIh/AyGD/1UiXSJjK78Gn7swMpx0e9WgYqhz+W1UjushdC0g4umaYFfGpjFh0qCbQd/rrLooM+uidPZZpAtOzcZDIULsKXj729/O3/72N4477jg+8YlPcO6553LTTTexefNmLr744qke3l6Lyp77AplC9aDCz1fkbRchRJBRv+Lthwc99k5JYSmia8yqj2BqOobm0t5X5Nv3rQ3aYmKmrszY8jY700X6Co6Sza6P8a5jF/KeYxdy6NyGYOPYbrmqDUiCbXv8/NFNSDnYuNODICgSruIvSFHd4HM88NuRurIW37r3JWalVFLniAWNJCM6fUWHXz2+ib6iW+JN1HZcf3upCbhr9Q6EYFBGuyEeYXa9Mg5MxQxOOnAmT77SheN6zGmIV1SOvJLKV9FxSUQ1Vm/t5bLfP8uVZx0x7nWjfGMrNCpUA/3mOCmV3G62xMUDqm6mU1GDZEuSnrxNruhw6akH8daj5g6rPjXV3IK/PNeGV/bFqta+7HmSvzzXxttfNW/QY+MNDIZT94KpNxQcdWCh6zo7duxg1qxZFfd3dnYya9YsXLf6xBQixGSjPAsQM3VSMYOuPou23kKNWSuJqWmBCVytC5JeN4Po/EPxCn0VQUX/UavDkyqr46MuotOUjNDZZ9Xs3DkdpeZChBgtvvnNbwZ/v/Od72S//fbjkUceYdmyZZx55plTOLK9H37P/dX3vMSzfT3B/X6yQ/Eo1DxWdFwSkf4Wj+VLW1jX3sdjGzpL3j2SouOytSsfZFD8jXXClLT1Kq6ELO3OJcoTImJo7EwXufbv67hnTRsXnbSEm847hv+68znuWrMDXQhaGyLszFhQFlT41edqMrmUXK5H1LcdBQxN4Ja11rqeIk+/tLOPbT15rnj74dTFTP60ajsN8Yhqi0kXgvdguOG4UvEuZtZFWbuzD4msmtHuzCqH6t6Cw68f3xIQuU1dp6UuooIKqYI8x5UUHI9daQtNg6zlcOVdL/DHj58w5nWiGvHaVw30Sfb+O9SbV4myi05aQk/eHnIzLYSgIWZSdDyaU5Fh25+mA7dgW08OKcAscTT9wpSv1OV7sWzrqd7xMN7AYCR1r6nmp4w6sJBD/CqKxSKRSGiQFWJq4HmSf23qJmu5gRSqQJCIGIhq9q8DIFC+DEIIXCkVqa7WTJPQqDvmTPDcQUFFNVQ7rCZUNlDP23zs5KVV25sGlkSnuhwcIsRk4fjjj+f444+f6mHsM1i+tIVPuR6f/vXTFB0P21Wy275RKICUHq4Hs+qjwYblkXUdXPP3dbiexDREKUvdL6Nk+LqtQFfORhdKUU5o4Lpq3i7YHnUxmJWKBpnnj//qX1iOS7aMm7axSwlnaGXKGcFmjsHzatGR6vwTCLcUDJWfL1O0WTIzyc60xXUPrucDJ+yP7aqgIGs5gedGOfF6IAQQLynvJUydrT15kNSkbuhKlaRqSxewXZeio2SAnTJpX60k8uG4Hs/vyPCrJzZz7vH7jfr6hyNe+yT7co7NYfPqA2njpzd3Y7suO3rzJCIGDXEDTeu/vlqy7NOFWzCvMYGmTkpEE8FnK4T6LF0pEVIyrzFR9fXjDQxqUfeaSgn4mgOLH/zgB4D68H7yk5+QSvX3jrmuy8qVK0OORYgpgT/ZvbAjTaZgky3axEyDmXVRZEnhZCRIwPM8pFBl1ZFgtW+ksHk1da86AyE0hNBgiLJmLWiIm8xpiNOWLnLPmjZuueDYYSeF6VAODhFiPHjsscdqDh5yuRyvvPIKhx566CSPat9FSzJKMmqQilFynpYYmixr3VRZ8HcfuzColl734HqKtoeuqRaYge2jA6dSSUnKtiSt6iNTcJhdrzLPurDpyFXyFcrFNgZtzoemMQxrYjcW+EFC+UEc16Noy2BT25O1g2y05XiBjPhwaElFmd0QRaAU/iK6hkRWZLQ96dGe6Q8qBGqD6ZUFEN05O4i25IDnaUIZAVqO5NdPbOY9pc+xVtRCvG5tiNLRJ4gaGp94/bLgHDeuXM81f19PT161G3flbHb0wsy6mFqna8yyTxduwZlHzOHyP6+hN2ejGcpjxe9l86SH4yoJ5DOPmFP19RMRGNSq7jUVqDmw+O53vwuoaOr6669H1/vLN5FIhEWLFnH99ddP/AhD7NMYqtXHv//hdR38/NGN2K5HY9wkX+rHzVsOW7tcdF3UvJB4UgUX4Gd4qi9M5ZKyRt0MEgcsH9c1aqheVKCmjMt0KQeHCDEenHfeeSxevJgPfehDnH766SSTyUHPef755/nlL3/JzTffzFVXXbVPBxaT2fboOB5rd2YwdY3OnEVrQ4SurB0IWQihNkMHtdbxnmMXAv3Z45a6CI6nnK09WdmeNHDe9aRqH5KyUpXPcSUFyyNmanRkq2wKB1QpyjHU3K6XxqBplfP4RDRGBZKvot9LKBkx6PWUDO2SWanA0Xyk88VNLQgq/A32Qa11gOTFtr4go92bcyr4GkKoVjX//QT1nvrS5OXP60+IC3RNsitdHFVWv9qaMxTx+vB5DRUb2xtXruequ1/C9VQFyf8s3LIqixBaTZvp6cItMAyNj69YwlV3+4pgHqLUPu1LAH/spMUYw5TMJiIwmK7KjTUHFq+88goAJ598Mr///e9pamqatEGF2LtR6wI5VKvPCUtbuOu5NjZ3ZkkXHDwpiZs6dTGTWfXK48GVHq4nsas4oQ4FTaiJ3dBFMGEPXIYG+lTEl7xmVNde3pVlCCUjCyJQ0IgaI2dcpks5OESI8eD555/nuuuu44tf/CLvec97OOCAA5g7dy6xWIzu7m5efPFF+vr6ePvb3869994byNHui5jMtscbV64PJE1LPm1kCw7NSZNZdTHytkvecmmIG1x22sHBXO1nj6O6auHZ0tXfTz4crWGgZ4Q/gzmeR0/erfAEGA+Cjiyvv+fd74H3KyBKuan0vLLx+P5AjXGjwtBu4PP00sEMTQs2tTNSUT5y4uLA0dzQGOQL4kMT0JyMIj0ouP1eRB9bsQSgIqOtvJn6z23oGgKBoWvYTr8XiCgLwsqfp6r3kmhJF3c0Wf2h1pyRiNeO43HNA0pQJWKo1jpNq2w17sraLF/SzMdPHtlhezpxCy48UX1G1zywnnTODtZ1ASSjBg+t6+SweY3DXtNEBAbTUblx1ByLv//975MxjhD7CGpdIIdq9fnnxm4efrkDIHDKBiXT55vyzGuKs6M3T8HXCa9xbHZpphOerOhP9THI/K4KUbsWKD6HWhBATYiBg7bLiBmX6VIODhFiPDBNk09+8pN88pOf5KmnnuLhhx9m06ZN5PN5jjzySC6++GJOPvnkfd54dTLbHiuyySXjTp+Q3Jm1KdgeDXGTw+c3DJqjy7PHqajBrPooO3oKVT1+hpuD/fSNoWnk7cEtUOX962PhYUsIKimJiEF93CBmaLSlCxRsD0ODmfUxPE/SWTI7E0DU0KiPm3TnbVxPVQd8TyQNlRSSEmKGTtQU7ExbwaZ2zfZ04Gjum7T6UryaEAihOIALZyTIWy67+opVs9XlGe1CKdUvUE7femlTrQsBhoZVetzQNdzgbxGc2/WkCpYSEaSUg9YYx/H432d3sK0nV2E6CNDZVyRvuxj+NUe0fqfsYYjX//vsDjJ5u4KvowuBZmhIqbw8PAlnvWpBTd/h6cYtuPDEJRw0u56Lb19FznKpixnMSESwPVnz73M6BgbjxagDi3e84x0ce+yx/Od//mfF/VdffTVPPvkkt99++4QNLsTehVoXyPKy6+y6KEVHkrUcio5LvuQ+CmrS9M2NPEWSoD1TZGZdRPlEjBL+IlZNHnCiggqVefJUi0GJYO73HetC1JRxmS7l4BAhJgrHHHMMxxxzzFQPY9phMtseq2WTATQddE0ZdwJc895XceT8xkHHH5g9bk5G6MpayrugBJUxhyqq34MQMzUKTn+yRCvNiU5pM18eVOhCJZWqBRpa6cTlrVhCQGtDjP1nJHilI0ef5ZKI6EhUAJGIGER1DV3T2JVR/hSGrlGwPQ6ZU8/OdAHLkWgapPM2nqc+G63kMr4zbVVsassdzS1HKgPA0vvnb/AzBYcv/tshtCSjQ2aryzPa7ZkCn/rNKvqKjr9qlL3PKhhKRQ2++84jufKuF9nclUNKieOq64+ZOi2pCH1Fd9AaU1G1Kr2Hl/95DR9fsYRD5zbwvb+9TDpvk87baJogaqgqle+UPdSas60nh4eqzpdDoCTdKXFEdvTmR/x+lL8n04Vb4HmSHz+8AYDFLcng96nr7NNtyaMOLFauXFnVy+K0007j29/+9kSMKcReiNEskH7ZNWpobOrKBX2+TlmJXJT962e8PJQcYltvcUza5QMza74jrWcX6X309nEHFQCJiE5DIhJI82lC4kpJRNfpydvUxYwRMy7TqRwcIkSIycNktj1Wyyb70ErGnQXbZWNHjqMXDm59Hpg9bohXbicEShlIDqAvG5pqH1JO3Oo+KZXbdszQgnlYFyA0gawymUcNjXcdu5DXLZ7B5X95nrbegtqwa2BoShXQdftbYQWCtt4CMUPnbUfN4zWLm2lJRunNW9ywckPFBvW4/WcMcqx+bENnsJF1o5C33GCzLqUctKktdzSPR3SgMgGUt11MXdCSjI74ufVntBv45ClLK/r6/VYuJfMq+OQpS3nDIa0kIgaX/WE1vXmbhKmX+BDQk3MGZfWrVa08Cb05m2/e9SL1cRNNKK+KoqsUp8o7BJIRfcg1x1dP8tvOBsKvJA2lnjQUpgu3IGxLro5RBxZ9fX1VZWVN0ySdTk/IoELsfRjuBwgqW7VmWy9/XLWdxqRJtuiStxVZTZnVVS4uqkAhK8rjskQM9Dyv5vancgyUpfUNcDQzSv2xbye/4SkajnvHmIMKgVpQYhGDOY0xdqWLQd9sIqJxyNz6mjIu060cHCJEiMnBZLY9DpVN9qEJcBlaix8qs8cv7EhjOWqz68/xnpSlymx/K1O5DwSo7LgEOrMWyYjOopYEmzpz2B4whElpwfH4y+odvOHg2XzzrCO4+LZV7OorovtcglJQ4V+HV5KJfaUjyw0PbeChde1cdtrBnLBsJsuXtIy4QR24kW2MqzWgJ29Xfc1Ykj+1cA/L+/ozeRsXta40JEw+vmJJ8PjypS1cWZbVzxSrG6uWV63MEt8PlMChJpRkrxprirwtS/xF5VXhuh5tvQWSUZ1UtHpCrEI9SXgVAWwt6knDYTq0EIVtydUx6sDi8MMP57bbbuPLX/5yxf2/+c1vOOSQQyZsYCH2Lgz1A1QuoQWKtocjJV//y/MsaI6X9L/7TX6qwa2SBVHl77GR/wZKIzquiyi1GkVblxJtXTqm4/qYXR9l6awUG9qz2CX1kFn1dZx6aCsnLG0ZVcZlOpWDQ4QIMTmYzLbHicom+5vuXzy6ie/cv5YZyQiJiE7B9nA8tXncmSmoqrOUaEJVLYRQXfqWo5jNJyxr4cP/bzGHz2vgxoc2cPXdLw5qS1XcNIHteHRlLa59YD0//8CxfOKUZfz3n5/H9TxcRwav8zP6Fe2znuTFtkyFC3UtG9TRbGRHm/wZDTn/whOXcP7xi7h+5QY2dWXZrznJR09cTCRS+f2oJav/v8/uIJ1XvBbbrQwC/dYtCaTzLk3JSMmroqCMXYXAclwObK3jc6ceWHXNqaaeNLDK8vEVS4ZVT5rOCNuSq2PUgcWXvvQlzjrrLNavX8/rX/96AP72t7/x61//OuRXhBgS1X6AfUUnyIBoQhWLExGdjR25oELha3QPRQCs1vI0EZoiVvtGMv/8Mw2vexdGXQ2kMijTsa58TNcEjXETTQguPfUgNCEmpHw7XcrBIUKEmBxMZtvjRGaTNU3wqv2aSEZ05dQtRNACJKWkO2eRtVR11tQ1tJIRqVWmZnTvc2305ixlqLakhaaESVfODnwYlAO4un5D13A9j5faMqzZnuY9xy7k7ufaWLWlm6Lj4rr+dZSNsbRZ1oTAk5LevDPm/vdaqgu1Jn9GS84fHIR08uSmrqpByEjB0CPrOypczP0r8CQBfxH65dBTUYNkJEnBViaKvQWbT71heDWnWqsseyLCtuTqGHVgceaZZ3LnnXdyxRVXcMcddxCPxzniiCO4//77OemkkyZjjCH2EAw32Q78AQK0Zwq4sl+OL2bquJ4kW3SCY8oB/46EiQoqfKJ27sV/UP+at9b8WqO0cFmuh6FpzKqP0hg3kRJ29RXpyducdMDMCRilwnQoB4cIMRno6emhsbFxqocxpZjMtseJziYPtckSQlAfM4PAQiJxPFkhO2toau5+blua//rDat75mgXYrlJQ8qsb5fDbqizXU0RpTXDSAS08tqGzqvcQlNSYSikqKSEe0cfU/z6a6sJIyZ+huIdRodEQM2jvs7j6npe4Y1EzhqFNqEKY50me2dpT9qaW/SkH8g0HfwfUGldbNv7CE5dwwfL9h1Sd2lMRtiVXx6gDC4AzzjiDM844Y9D9zz33HIcddti4BxViz8NIk+3AH2DM1CjaaiHzW5AsV7K9tzD8iSYZA9Wf6l51ek2v8wCkugaBWpTnNcUD1YyC4+6TJdEQIWrBVVddxaJFi3jnO98JwDnnnMPvfvc7Wltb+etf/8qRRx45xSOcOkxm2+NEZpOH22RlLRcN1YrkegReFaotSiuZkUoa4iZ9RZd71uzENARYgZF0BXz52Yiu0ZyI4HmSlS93kIjoWI4XSLOWw+d7+Cp8cVMnU3RG1f8+lo39cMmfatzDoD3YUVKsz27p4fQfPsTbjprLvc/vGpVC2HDJvjXb02Tydn+7mCwz0hvQIlAf1weNzfFUa/P/3PMSH1sx8vfQMDTe/qp5Nb/XewrCtuTBGFNgUY5MJsOvf/1rfvKTn/DPf/4T161BVy7EXoXyybYxbuJJpRqxemtvRR9r+Q9wzbZe1W8rQde0oCwOI+ueTxb8oEJ4DuY41J8Gjn1fLomGCFELrr/+em699VYA7rvvPu677z7uuusufvvb33LppZdy7733TvEIpxaT2fY4kdnkoTZZs+oiSoyjzCUaVGuSMiP1AKlaZU2Ntp4c8xrj9OZtHM/D1PorIBJlsKZpggNb+30j1u/qY3Z9jIgu2NCRo+iUOYGjNs6ep/gXcVNDiKE9g6ptyIEJl/4dyD0sbw82NAHSwwZe3tnHt+5ZCyV1pqzlBkkrqK5ANFKyrytn4XjQUhdlV7oYvEcDkYzq7MrYRAyHjkwxCAoNIWhJRXmxbfx+Kns6wrbkSow5sFi5ciU/+clP+P3vf8/cuXM566yzuOaaayZybCH2AJSXclNRg7Z0IZCHFQKylsOVd73AHz9+Apomgh/g/9z7Ej95aAOeJ7HdShWnqQoq0v/4FTHdIzr3AFLH/TvWKH4evrKJRGXhpJTsShfQG2NVJf5ChAjRj7a2NhYsWADAn//8Z8455xze9KY3sWjRIo477rgpHt30wGS2PU5kNnngJmtLV44fP7gueNw3mgPVcuVJF9dTAUB7pqgCAQErDppNW7pAe6aI7XrouoAyVakZyQgfW9HvG2G7KogpOpL6uEFnnxeoQflwPLVhr4uadGSK7D8zxcGtdRXjH2pDfuqhrTUrG555xBxeaMuMuMks5x5GhRa0B5uawJPgW4IYusB1lTyv5fRLvZYHF+UKRLVUVvxzJ6MGGqJ07v6xaUJxKj735oO4+7kdPPFKN7arFKFiphH4WEgp91m/hnKEbcn9GFVg0dbWxs9+9jNuuukm0uk055xzDsVikTvvvDNUhNpHUe45sb2nEGRahFoDcFyP53dk+NUTmzn3+P0AeGxDJ399djvQvxmfKuglPfX8Cw8S1TyOPvpVdCw5nYxDhfTsSBj4VCEEedtlV8ZicUuSz77pgH02mxMixEhoampiy5YtLFiwgLvvvpuvf/3rgArQwyr4ngd/k+V5kvNvfoKc7TGvMa7WiDIJWUl/K6yuC4wSqdv1JA+ubedDJ+zPn57ZzkttfTilJ5q6xgGzU1x22sEVvhGe9NjYmcP2vEAd0G/z8WFoiqK8M6Nabrd0ZbnglieDLP5wG/K1bRkKjkfTgArHQGXDL//pOS7/8xp0ofxAhuNglPNSGmIGRccrjREcr7+C7ys0ea5SSvSkpD1TJBnVA0K7r0DUGDf51r0vDeZtaIq30dFX5Op7XuK3Fx5fxomJMiNl0ptzsF0PU1fr1yFzG3jPsQs5fF4DH7rlKUxdkIgYg5y391W/holGLaIAewJqDizOPPNMVq5cyRlnnMH3vvc93vzmN6PrOtdff/1kji/ENEdXzsJyPPK2G2RaAtIeKtNiOZJfP7GZ9xy7EFDl5KzlMq8xztbuPF61+utugitB1zUOO+P9pJ97kMyBK0jnvTEZ7PlQ8o2q5G/ZLlu7clz/4AY0IcLgIkSIKjjrrLN4z3vew7Jly+js7OS0004D4Omnn2bp0vHJPIeYOpRzCGKmzrwmwa50gZzlViSUDA1MTZnpSU/xH2zXY+XLHfzhotexensvd69uI2u7HL2gkbceOTdo1fI8yaot3aW2KeXBoAsVQDhSUip0oAklqSqEJFZyjo4YWpDF//rbDuOGlRvoKzrMro9StCVZy8HQNGbXR9jWXaBguxRdl7hmIJF09VnsyhSVC3epbJ0rKv8lUxfMbYhXnGNgu1A5L6W9zwrWDlf2B0SmoTbxmlB3uKWqS9FxKVge8Yhe0W4LDMHbUL5JnidZvbWHc258jDMOb2VLVy7gxDTEzYB4XBczgyp7T0mStikRqbrR3Vf9GiYSoxEFmO6oObC46667+OQnP8lFF13EsmXLJnNMIfYgNCciIAgyLYNLxAJdk+xKF1mzXRkoli80jQmHjr6pmYzcfAY9Xkfc0OgsSrQDTkYYOp4c/3h87qDlePR4Fo+/0snLuzJ895yjwl7MECEG4Lvf/S6LFi1iy5YtXH311aRSKQB27NjBxz72sSkeXYixYiCHIBU1SLYk6cpZ7OwtlPlNqCy860k0IZhVH0PXBOt39fGbp7Zwz5q2YMP1fy/s5M5V27joJEUsv/aB9TxepgbleuCWqhW+OEhEF8xvitPeZzEzFSUe0YO1yudHfOvetezszRM1dDZ15ik6btDSGzV06mMGOculo8+iMeaxvbeAVdY75Bdi3BKvw3UlHX1F9m9J0lofHbJdyOelXH3PS6ze2oPj9nMdBCWjVk25h+uaRENVdZRYiAs2FQpEPXm7Km/Dk0pURNPV+rShPcutj2/mvcctZOXLHcMSj0O/hsnFRKp9TQfUHFg8/PDD3HTTTbz61a/m4IMP5rzzzuNd73rXZI4txB6AQ+fW01ofozNroaabMh1n1EIRNdQjfjZj4EIzFYGF1b6R3n/8muRhr4el/T3cfcWJa7sQoJRNEDiuR3umyBfuXM28xrgyydvDsxIhQkwUTNPks5/97KD7L7744ikYTYiJQrUNqRCCGckorifZWSINuxI0JDFTD3r3PU/Sbrn88G8v40o5aMN18W9XAdBXcAKX7XJ4pax/RNeIRXR6Cw6z62PEzMqNsd/Ks6UrR9HxKNoWEtV+JDS1yS/YLkXbJWJoFG2XjTl72Ov2W3yzlktXzmJGMjpsu9DypS3csaiZf7/hUV7ckQ5UrSSKF+KXL+KmxuyGGDt7i1iOS6bgEDdlRSCwemtvP29D02jPFPGkxNCV3K5fFZmZitBbcFj5cgc3n/+aYTkhoV/D5GEoyeHxiAJMNWoOLI4//niOP/54vve973Hbbbfx05/+lEsuuQTP87jvvvtYsGABdXV1Ix8oxF4FTRO869iFfOVPa3BciaHLQGPczz41JiJIKYNsRvlC40sNjqf1aLQol5S1dqwjvuTYqmS88UItLgJdCExDw7I9XunI0dVnMas+tsdnJUKEGA/+9Kc/1fzct7zlLZM4khCThYNb65hVH+OV9j5aUlHiZZyAVMSgXRQxdY05DTEMTSMWUQmnvOWSsxxylgNSZ0FzomLDNTMpWbsriycJOAlQkkst82DQhVpvpJTYDkFCayCiuoYnJUXbxZMyaD/yjyl0sEstv6Ndq3b2FogaOglTH7ZdyDA0Dp1Tx6otPUMeq1hyKU9EdA5srePTpyxjRio6pGeU4m24gbmglMpDJG5qqmpTqgq90JYZlhsR+jVMHqpJDvvYU/kro1aFSiaTfOADH+ADH/gAL730EjfddBPf/OY3+fznP88b3/jGUS0WIfYOvOfYhdz25GZebMuUiHmKvB0zdVpSEfqKbkU2ozzzEYtoRA2dvL17CJoDfSoalp8zKUGFD9vxwCgFT6X7EhE9yJrtyVmJECHGg7e97W01PU8IERK490D4PeNburJkig6ZokPU0JlVH8XUNXryNhFDI2popKIGQoiAC1CwHVy1h8YSXoW86q5MgV3pYhA8DKpWCGXwBmpDXHQ8UlFD8f2GaeXRNdHP+xhonlHyeRiFnkcATyoz2Nn1sWHbhRzH4y+r20Y81raePPMa43zu1AOrJqLKg4COvhL/Qy8ZH3oSXQhm1qnMeK3cCM+T1MVM3vmahdyzpo1d6ULo1zBBGNguOBB7In9lXLaHBx54IFdffTVbt27l17/+9USNKcQeBk0TXHbawcxtjJOKmcyqi7KgKUFrQ5S+oluRzdA0wUdOXIypCzZ35YNsx+5A1aBiDD4VtcL343Bcr1IffISsRIgQ+wI8z6vpvzCo2PPg94y/sCNNc1KtBzFDp+goMYvurMUhc+v5zBsPoCkRoS1dpCtrsbUrR95ykFK1ImmA5Xls687TV3TY2p1jZ1lQMRDl86ws/c+VknmNcQ5qraM7ZyMHiIX4rTyz62MkTB1dE9ieVFK1Uv1re3LgtF0zdE1VGjr7LJbMSg3ZLvS/z+4gXVAtVoLBpoDl1/ih/7d42I28z9vYf6biKjmeMgiMm1qFTG0t3IhH1nVw/s1P8JFfPMVPH36Fnb15ZtXH+MDrFnHDecdwywXHjhhUKMJ4Lw+ubWf11t5Abni8mKzj7k6UtwtWw57IXxm3QR6Aruu87W1vqzkDFWLvw/KlLVxZZoyUKTpVsxmPrOvghpUbSkpSDtni8L2qE4WJDCpG27rlSQKpRAEkzMGB1J6YlQgRYk/Gxo0b+e///m/+7//+j7a2NubOncu5557LF77wBSKRPWcRn26o1jMeM3XqYgZ5y6W9z2JBc4Kbz3+Nav+Z28C1D6znyY1dOCW58qihUR8zae9TvhaulGzvyVF0aph4y57iekqe9d3HLWRxS3LYVp53H7uQa/++jjph0Ju3K/yY4qaGADJj5OA5niRqaMO2C23ryQ1IQJWSUwMu2dQFC5oTI56znLexoT3LzFSkgrReCzdiKFLx1u48tz25hSPnN45YYZ8staO9RUVpb+SvTEhgESIEjOw+WT5JNScjzK6Pkik4dPUVydpeoOLhjKXePALsrm3jDio0oeT23nLkHH7+2ObAgXQolD/qi4dEdNXbOhB7YlYiRIiJRDab5cEHH2Tz5s1YVmWA/clPfnLCz/fiiy/ieR433HADS5cu5bnnnuPCCy8km83yrW99a8LPt69gqJ5xIQSJqMEsTUnO+n39y5e2kIwafPCWJ4nomvJJMDUQkC44FGy3lPWvLZtT/ixdFxzUWsd7jl2IpomqruB+8uv4xTO4Z00bL+zIsF9zgqIjcTwPQ9OIGoJN3fkxvR+yRCD/xCnLht3wzmtMBPzEcvhvoX9/1NBrXicMQ+Nzpx7If/1hNb0FB6GJmrkRE0Eqniy1o71JRWlv5K+EgUWICcVQ7pNDTVKNiQiaEGS7VLZGCuV94bgTW9JMHvg69EQD0bkH1hxU+MZEUqoyeDJqcMjcer70b4cytzHONQ+sJ523R1W90KtMDntqViJEiInC008/zemnn04ulyObzdLc3ExHRweJRIJZs2ZNSmDx5je/mTe/+c3B7cWLF/PSSy9x3XXXhYHFODCWnvGevI1ADPJJmFkXZVt3Pqj41gpdQDyi05KKctlpBwfHHCn55W/wdmYsGhMmyYhB0fXYmbGYkTCRnkfWGnksugYagqakieVKDisZzQ2HM4+Yw+X/u4aevK0oHmU8j3L52UPn1o9qnfDbooYKqIbagI+XVDxZakd7o4rSWD+j6YowsAixW+BPUo0Jk4LtBZmgWETD1DWMkptoRFfGSBMBu2sbel0LmhkFILbgsFG9Xs1JkoihEzHUoudnDi48cQkXLN+fPz6zne//bW1JJ7ykO17lWAJF2nalZEdvgaZkJMhKdGctIobG8iVqwQt9LULsa7j44os588wzuf7662loaOCxxx7DNE3OPfdcPvWpT+22cfT29tLc3Dzk48VikWKxGNxOp0NO1ECMxfNgqNekogbzmuJs68lhDahY+DPkwLyOXnKfPmRufdVNWXnya6DT8fGLZwy7wbv/hZ389B8bR3wPIrpGUzKC5Uga4wYfWzFyxtkwND5+8hK+edeLuLKfI1KOxoTJx09eOur1YaSAqhrGSyquJTBZtzPDH1dtpzkVqdnTaW9UUYKxfUbTFWFgEWLSUD5pv9KRpa/o0Ju3sVyvwnioJRUhamjkLJeZKRPbg53pAoYmKgyIRgOfU2E0zaHxhPcijNpbjGKGpgyI6DdGqta7aRga73j1fPK2y1f+tAYhZRBU+MRtoGQcCM3JCDnLZUFzgl3pAj2uh+V4uJ6SAPzpwxv5xaOb9sg+0RAhxoNVq1Zxww03oGkauq5TLBZZvHgxV199Neeffz5nnXXWpI9h3bp1/PCHPxy2WnHllVdy+eWXT/pYpgMGbrpr3eT4PePPb0/TGDdxpVRJJFNtUKtVZ4frM09GdBKmgefa/RtuCCILUXZfzNC45t1HM6shPuJ4h+vRv+WCY6teu+1JbntqC3mrUnZWAKmYgeWoOd3UNZCMOuN84YnK9O/7f3u5wlNJAItaEnzjbWNv8Rmqm2AojMcUz/Mk/9rUTdZyiZk6EhnI9/qwHY+OrMXX//I8mhA1cyT2RhUlH6P9jKYrwsAixKRg4KRtuR7pgoMGSiO8zHhoe0+B+phBwfFIF13qokbJMXV8QYV0bYQeGaTCNBQEsH9LnLhpUnSUw2rU0PjYyUuDHt1qWNCcIBU1lIlSGUFEE2DoSmrWcVU7laYJPn3KMrb25LnxoQ10ZXMlBRQXx9BpTET2yD7RECHGA9M00TS1UZg1axabN2/m4IMPpqGhgS1btozqWJ///Oe56qqrhn3OCy+8wEEHHRTc3rZtG29+85s5++yzufDCC4d83WWXXcYll1wS3E6n0yxYsGBU49sTMB5irKYJTlzWwpMbu+jOWQih1J0MXVWnm5PmoJ7xkfrMGxMmC5rjrN+VJVeSJh/ERQAufuMBnHJoa03XN5Ye/eZEhIaYyZz6GAXHw3ZVENEYNxFCkLNU8uwTJy/jVfs1jSnjXF4Nf3pLD0lT582Ht9ZElJ5I1EIqPqg1hSclD65tDwKwxzZ0ct2D63lhR5pMwSZbtImZRmB8CMoNfHtvHteTJCI69TGzZo7EdHQBH2sQvrciDCxCTDgGTtqmLnilIwuoNiHPkxi6VmE81FuwObi1jsZEhPXtfYAIqgajwVjUn3RRcn4VkLM8NOERM3XmN8VpSxe5Z03bsP2xzYkIyYhOXUynrVe1SeilKoVyOu03DTQ1oYKKlevZ3luocOcuOsqde25jjL6iu8f1iYYIMVYcffTRPPnkkyxbtoyTTjqJL3/5y3R0dPCLX/yCww4bXQvjZz7zGd7//vcP+5zFixcHf2/fvp2TTz6Z5cuX8+Mf/3jY10WjUaLR6KjGs6dhvMTYR9Z1cOvjm4mWTOZsV2X3i46LRPLe46oHJyP1mQNc/NtVFJzBJnUCeM+xC/hI6XnDYTw9+pWb7eigzXZv3uHgOfWc99r9xjVv+9Xwd7x6/piPMV6MFOzpGvTmbS765T+D4HNGKsKuTBHXkzTGTfKWS8F2yVsO27o95jXFSUZ0dqULOK4KKhoSJgJRM0diuqko7S3qVBOJMLAIMaGoNmnnLRfHkxiaUnxSmuAemug3JPIkvOvYhSyakeBb966lr2CPWtpvrJKyfreVK6EtXUTXisRNnZl1sZr6NctL/1FDo+B4JR1ygUTilqQG87bLQa313P3cDnrzSmZXVTRKDq+6qmx09Fm0NkT3yD7RECHGgiuuuIJMJgPAN77xDd73vvdx0UUXsWzZMn7605+O6lgzZ85k5syZNT1327ZtnHzyybz61a/m5ptvDqom+yrGS4wtf/2CpgQIKFiKU6cLQW/BZuXLHXzwhMVVXz9cn/kj6zqAUtLGk0FwoQloqYtyxhFza7rG8fTo740KPsNhqGBvTkOUXZmi4guWgs+i65ZMciULmxPEIwaz6mNs687jSg/X89iVLtCUNMnbyg18Vn2sokWqFo7EdPoM9iZ1qolEGFiEmFBUm7QdT3EqDF0DIXFdZTrklXgWMVPH0DUyBZsv3vmcWtQa4kT6inTmavO5mEifCteDnOWyrTvPnIYY9gj9muUTne1KNOFheypw8jyJEAJDF6SiBm8+rJVr/76ORMSgr+hWdGkJRElW0cUrBWB7Yp9oiBCjxTHHHBP8PWvWLO6+++5JP+e2bdtYsWIF++23H9/61rdob28PHmttHbmdZm/EeImx1V6v5LVVy4rQxIgJk2p95n7A4nqSA2anKNplUrCmYGfaCgIegNXbenl6Sw9CwlELGzl8XkOw0Rxvj/7epuAzEgYGe41xk/+55yV29BYqgk+ckoIi0NFXJBU1AvJ9e6ZAwfbI2y5GXkPXhDLUjQ7egtbCkZgOn8HeqE41UQgDixATio5skZzlYuiCvOXglIjJSInngSEEaEpGMGpoGJqGRJK3XO5Zs7PiR5qKGTUHFlokDoZJpGW/iXHUliog2pUp0hg3RuzXLJ/ont/eS7rg4JXMmepj/QoltiexXUldzFDtUVQ6rAoB0lPck9DXIkSIycN9993HunXrWLduHfPnV7acDHRn3ldQy6a7x/X45+buqv3kk0WsLQ9YNKERj4AfrABBwPOrJzZz25ObeamtD8dTfDdT1zhgdorLTjuY5UtbhuzRl0gKlkfOckBCQ9TgmS09rNrcgxRw9IL+AGU6KPjszr7+8mBv9dZeNrQPDj7V+y3QdeU0XrA94hGdVNQgGUmSs1w6sxbvfM0C/vzM9iG/I7VyJKb6M9hb1akmAmFgEWLC8Mi6Dr5//8ukCzY9+SoBgSsxNJXBT0YM4hEdz/PY1lOkORlha1eWxtKP1O+VrBVGw2yaVlyAnmgYf1CB4oIYperB7Iba+jXLJ7qObJGerE1TwmRGKhpMeKu39mLqAk1Qao/yMDXK3FABJDnb5fB5DaGvRYh9Avvvv/+gxbkcGzZsmPBzvv/97x+Ri7GvYSRibHfeIp13uOb/1gEM6icfr5LQUJWGWgKWdsvlW/e+RDpvI1B+SEhwXI8129Nc/NtVfPecozh+8YxBPfp9RYf2TJGC7eB6SsnvvTc9huXKQETE0DQObO0PUHa3gk95ILGlK8fdz7WxoX339/UP9VkYmuJNovKIpUCjVKkSAk0TJCM6Zxw+hxd2pCeEIzGVKkp7szrVeBEGFiEmBH6vYXfWGtYwzvEgogsiuqAzW6Q9U8STYLuqTJq3PepiplKTsIbnWFjtGwGIzFwEgFE3sROq66r+3VMPnR1kQYbKEg28/6RlM0cknrWkomzvKWCX+CcgcVxV5WiMD1ZOCRFib8WnP/3pitu2bfP0009z9913c+mll07NoPZBDEeMzRRs2noL6JqgIWEQ1fVB/eTVNu0+hts0PrKugyvveiGoNEjU5n5hc4LL33JoDQGLIgm7nocQYGqlcwvQNInteHRlLa59QLWmlPfoRw2NXekCXqlKpWtKOCRr+QGF2sC6AwKU3dnyVE4QzhZd+iwHTcCsuhiz6iK7ta9/qM8iFtGIGjp5y0HTBEYZX6n8sz98XsO04UhUQ62VoOmoTjVdEAYWIcaN8l5Dv/w87POlZGtPnqzloglorY8RNTQ2d2XJ2+6IAQX0cyoQgsYVF2A2TnxPtKGrNqYTlioi6FDqDycua2Hlyx01qUKU8zH6ii4tdRF6czZFx8OVEk0IDmqtC7JiIULsCxjKBO+aa67hqaee2s2j2XcxFDG24Lhs68kDMK8xTtxUW4dq/eSj3TQ+sq6Di3+7ivaMUtSTJV8K25Wsb8/ygZ89yWffdMCwAUtHn4UnZcDlK39cIDB0DdfzeKktw5rt6aB19doH1vPkxi4cKTE0QUTXcD1JocyMz5OqhVfTBbbnByjrdlvvfDlBuDFuKuGPEkdxV6aA60lSUYPZ9ZEKrslkjW2o4FMgaElF2NzlAKq1zPNk1c9+OnAkqmE0Ck/TTZ1qOkHIfbWZdJxIp9M0NDTQ29tLff2+98Upx+qtvXzkF0+ha4LtvYVh/Sc0AXUxgxmpKF19FvOaYmhC8SzW7eqjYI8cmEwkUXs41EV1jlrYxC0XHMtjGzqrqj/syhTIFl0SEZ3Z9bHg/u7SRDpU9qh8ArNKTuOt9THedezCYT0zQoTY3ZjKuW7Dhg0cddRR09bhem9dByo2WJ5ESkmm4NCSitKcHJyBzdsuuaLDDecdw+HzGwa93tSqb9A8T/K+nz7O46904ZYpPQ101Y6ZGhe/4QB+/cRm+opuVenTvrxD0fVKhqSV86dEVS1SMZMfvPtoTjpAJYue2dLDB295koiukYgYSCnZ1JXD8WQF9y1iKPU+T6rWqMaEyc3vP5bD5zdMKtfB8yTn3/wEL+xI01ofo2B7bOrKIkuPeVK9V4YmiJo6DXETKWXwOUwW+oOdwZ+FUeJQdvZZw372/vVNF/+HoRSehlvLh3sfhlv/90SMZq4LKxYhxg2/19D15LBBhan5EzP05mxm1kXRhCqXZosudg0u27srqFBOqmagn15N/SGqaThl1x01VNaiFlWIqSaehQixJ+COO+6gubl5qoexz2Hg/LSxPcuP/r6Oxnj1uXZgP3mt89ua7WlebMuoKkV5UDHAVbvoeNz1XBtff9th3LByw6As96mHtvK9+9dSzHmDBDFAHVsIiOhaRWtKT95GIBQpXBNkCnYlcb/kPyRLB/WPa7vqWifbw2AgQdjxPDyPwOMpuE6hBD+Ktksiakx6X/9IFYda17bp4jQ9VoWn6Vp5mWqEgUWIcaM5EcGTku6RJrPSxKyXMj8+6Ukiac8UR1Ri2V1BBUBD3OR//v0Ili9tYfXW3qrqDwXLw3I9jFKfpa+CAbXrcU+HSTVEiKnG0UcfPaiVoK2tjfb2dq699topHNm+i/L5aSz95LXMb105C9uRQftTeVAxEJs7szTEI9xywbGDNq0Adz+3g8df6cLxvH6OBWp9cVwPTRMc2FrZmjLwugz/df5aVKoI+F9Nf4UydcGWrhw/eWjDpHoYDCQI66XkHP6YgvdNqTHZjkfBdocMACcSIwWPe9LaNh6FpzBJOBhhYBFi3Di4tQ63VIkozXVVYbsSXYP9W5LsyhSCydyX+BuO9G33tO22oEIAn3nTAZywTJXLh1J/8P05dE15X5SrYMC+rQoRIsRo8La3va3itqZpzJw5kxUrVnDQQQdNzaBCBJisfvLmRATTEFAcMPnLynVESkgXbB5e187h8xuqblo/tmIpL+9SXA3b9dBLqlCuJ5HAjGSEj62o5HcMvK6YqRE1NBzLDc6viZIMuFTeGZoQHDg7xd3PtU26h8GggK7sTZF+0EN/kOHfv7uwtyTHxqvwtLe8DxOFMLAIMW680JZBF4rs7HmSYTuaJJx++GweWtcZTOad2eKwQQWAUT8Tc/ZicN1JDSpA9fMunJEMbg+VrfPl9XyjP2OAa+++rAoRIsRo8JWvfGWqhxBiGEyW2/Ghc+s5qLWOxzZ0gVQBgJCDk1MClbz5+aObOHJ+Y9VKwPKlLXz3nKP61aXc6j4WI11XSypKoScftPVqQgmOuK4aX3MqwmmHz+Xav6+bdA+DgYGPK2VFpcKv8kgkjqcqGvGIXl3uPcSQCBWeJhZhYBFi3OjKWWhCY25DnI5skWyxuqqToUEiYvDX53byxkNms25XH5u7cqQLzojnEJpOw/Fng/QmNagA5RRbPoEMla2LRTQiukbOUuTtmFldXm9fVIUIEWIkjIaQvTcRo/dUTEY/uaYJPrZiKWt3Ps2ujMoGV8sxCQFxU8dyvGErAcuXtvDHj58wrPP2SNdle5LGuEHR8ZRanyfxXFnhY+EbnU62h8HAwCduamgCpFCBFoAmBFJC3NSoj5sgCTfAo0So8DSxCAOLEOOGH+2buiBuakMGFq4HOcvh2a09vNLehyclfUM8FxSnwtqxluThb0QIgdB0yluNRgOB8s9wRqqoAH0Fh1VbuoM+yeGydYYu0DWBrmkUHG9a6XGHCDGd0djYOKwpXjlcd2QJ6hCTj8noJ1++tIXvvfNovnDnal7pyA16XCtVg2fVx9A1MWIlQNMERy5o5MgFjaMaw8DrOri1jjU70lWdt32j092R4R4Y+AihOgMSpkZjUnE7DE0jagh2ZqxwAzwG1FKRO/XQVh5a11HTd346qV1NBaY0sFi5ciX/8z//wz//+U927NjBH/7wh4peWyklX/nKV7jxxhvp6enhda97Hddddx3Lli0b8pjXXXcd1113HRs3bgTg0EMP5ctf/jKnnXZa8Jy2tjYuvfRS7rvvPjKZDAceeCBf+MIXeMc73jFZl7pX49C59cxIRXixLTOsspNEGeQBpAvOkFwMqCRq68lm4kuOGdcYTV1D0wQRTUkjDgfblfz3n1/gnjVtfGzFUpYvbRkyW3fE/MYKH4tQFSJEiNrw97//Pfh748aNfP7zn+f9738/r33tawF49NFHueWWW7jyyiunaoghqmAy+smXL23hb5es4Kt/eo5fPr4Z6OcOxEydmXUxUlEDz5PjqgQMt+Grdl1DBSi7O8NdHvg8vK6dnz+6CcvxSESMYAO8M2OFyaxxYKg1fk5DFIBr/76uJuWvyVYK2xMwpYFFNpvlyCOP5AMf+ABnnXXWoMevvvpqfvCDH3DLLbew//7786UvfYlTTz2V559/nlgsVvWY8+fP55vf/CbLli1DSsktt9zCW9/6Vp5++mkOPfRQAN73vvfR09PDn/70J1paWvjVr37FOeecw1NPPcXRRx89qde8p6PaxPzYhk52ZYo4NcjF+qg1qIjMXkps0ZFjHq+GMkzSyyZaQwfHhRK3T/3n64HrQvEmPMlz29IV6h7DZes+eMLifTpDESLEaHHSSScFf3/ttXQi0AAASzdJREFUa1/jO9/5Du9+97uD+97ylrdw+OGH8+Mf/5jzzz9/KoYYYjdC0wRnH7OQ+57fGczZhqYI1f7GfTyVgInc8E0W52Skc5YHKves2cnO3jy9kjCZNUEYuMZv6cpx48r1ZC23JuWvobwwdpcr+nTBtDHIE0JUVCyklMydO5fPfOYzfPaznwWgt7eX2bNn87Of/Yx3vetdNR+7ubmZ//mf/+GDH/wgAKlUiuuuu47zzjsveM6MGTO46qqr+NCHPlTTMfdWY6ThUG1iXjwzybaePFu78zglctt4MNGSslFdTewevlqGDKom+7ck0IRgW08e25GYhkAgSuofknmNcbKWy8Fz6rjlgmPDQCHEPondMdclEgmeeeaZQdXotWvXctRRR5HLDW6RmQ7YF9eByUS/IVyG1vroYAnidHFM8/FYzM9qPW4tRoATgWrr76z6GKce2soJS1vCZFaNqLVNaaA54UjfxdE+f0/DXmGQ98orr9DW1sYb3vCG4L6GhgaOO+44Hn300ZoCC9d1uf3228lms0F5HWD58uXcdtttnHHGGTQ2NvLb3/6WQqHAihUrhjxWsVikWCwGt6erE+xkYaiJ+enNvWQtp1QZEDWZ3A2FiQwqmhImvXkba4hgRxNKQQMpcD2pKhX4uueqBG/qGo0JbULUPUKECDE0FixYwI033sjVV19dcf9PfvITFixYMEWjCrG7MRmVgLGan9WC3eVhMNT6u7U7z21PbubI+UOT00P0YzRVq9F6W4zHC2Nvw7QNLNra2gCYPXt2xf2zZ88OHhsKq1ev5rWvfS2FQoFUKsUf/vAHDjnkkODx3/72t7zzne9kxowZGIZBIpHgD3/4A0uXLh3ymFdeeSWXX375OK5oz8VQE3NUaCXvBrUZ17WxBxZeMUfvI7dNSFChCWVgFDE0CrZX/XwSdvQUaElFVBtUSdzDr1bETVWCl5KKnt59nZQVIsRk4Lvf/S7veMc7uOuuuzjuuOMAeOKJJ3j55Zf53e9+N8WjC7E7UYv61Gjm4cne8A3kZnieZPXW3glbIyYzMNqXMNo2pdF6W4zXC2NvwrQNLMaDAw88kFWrVtHb28sdd9zB+eefz4MPPhgEF1/60pfo6enh/vvvp6WlhTvvvJNzzjmHhx56iMMPP7zqMS+77DIuueSS4HY6nd5nMmlDTcwF28MtCyyKQ2zia4EWTVD3qjMobF5Nw/H/PuagQi85BuWKTtXxaEI5f9ueJG+79OYdQOJ5qkrheBJdCGbWqQm84LhBT+/DL7fzrXvXsrkzi1eS91s6O+xrDRFivDj99NNZu3Yt1113HS+++CIAZ555Jh/96Ef3mXk2RD+qVQIOnJXiL8+18bnbn2HV1l4yBRunBq7E7tzwTQZxN8yEjx9jCc5G620RemH0Y9oGFq2trQDs3LmTOXPmBPfv3LmTo446atjXRiKRoPrw6le/mieffJLvf//73HDDDaxfv54f/ehHPPfccwGZ+8gjj+Shhx7immuu4frrr696zGg0SjQanYAr2/Mw1MRsex5e2d59LLUKKWX/j3zBYUTnH1qzBGU1uCU2dp9VGVQoAzslDSsQIDxcVzKzLkrWcgJX8JipMaukQFKu7vHI+g6+e/9aLMdDCIEGWI7GM1t69ylSVogQk4UFCxZwxRVXTPUwQkwTlFcCbly5nvN++jjpnI0/s2sCZqaiJKPGsOTYgRs+iaRgeTiep0xNhZyQDd9YibsjVV+GWn+llBRsD9v1yNkuHdniwEOHKGEswdlolb9CL4x+TNvAYv/996e1tZW//e1vQSCRTqd5/PHHueiii0Z1LM/zAn6ETwLUBrgk67qO54094743ozkRQReSjj71Hpq6hq7BrozFeN4xq30jfc/cQ8Pyd6En1I95PEHFcJASHFcFMbpQi5IDFG2XhKmTdh1cT7mrelJVM/ye3hOWtvDd+9dStD1MQ6AhVIXGVYtTV5awFB0ixCjx7LPPcthhh6FpGs8+++ywzz3iiCN206hCTDfcuHI9V939Eo4nKZ9dPQk7M0WEELTWR4dsCSrf8KWiHh19FkXHDcQ8hBAc1Dq+Dd9Y25VqqXBUy4T3FR3aMwWKjodXkjX8/v0vE9W1MMFVBWOpWo2W7zPU8wuOS2efRdTQOPXQ1t1yvVON6u/ybkJfXx+rVq1i1apVgCJsr1q1is2bNyOE4NOf/jRf//rX+dOf/sTq1at53/vex9y5cyu8Lk455RR+9KMfBbcvu+wyVq5cycaNG1m9ejWXXXYZDzzwAO9973sBOOigg1i6dCkf+chHeOKJJ1i/fj3f/va3ue+++yqOG0LB8yS/+9dWdvVZ7MwU2ZkpsrUnz6au/Ih+EMPBJ2o7PW3kXnxoAkc8NCTguB4SiespUndXzmJWfYyFzQnl7Op6bO3K0Z1VRkNff9th3PVcG5bjYeoCXahMhCYEpiZwJdiux7qdGdZs37cI/SFCjAdHHXUUHR0dwd9HH300Rx111KD/QgnwfReO43HNA+txPYlZ1l0iBEGQ0V5KeJVnncvhb/h0DTZ35chbDgLQNJVwcj3JrkyRxzZ0jnmco8mI+/ArHC/sSJOMGsyqq6y+PLJO/Tb8wKg7ZyOlpK/osK07T972EAKQkoihs7U7V/G6EP0oD86qYag2JZ/vc/CcOnJFh119RXJFh4Pn1FWtQA18/taePFtKe6WC43Ht39dx/s1P7PWf0ZRWLJ566ilOPvnk4LbPYTj//PP52c9+xuc+9zmy2Swf/vCH6enp4YQTTuDuu++u8LBYv359sDgB7Nq1i/e9733s2LGDhoYGjjjiCO655x7e+MY3AmCaJn/961/5/Oc/z5lnnklfXx9Lly7llltu4fTTT99NV75n4JF1HUO6oY4HA9WfUkeeOqHHHwqlORjXU5KzAljYFEfXdWKmTl3MIG+5tPdZLGhOcPP5r+GFtgxbunKlhWjwgmFoKljJO94+QcoKEWKi8MorrzBz5szg7xAhyuF5kmsfWE86Z6NrgBRUaPwJEKX5vCdv0xAzh+RKHL94BrPqonRlSyIcJd+ieESnJRWlr+iOq+o82oz4aCscfiZ8R2+BnOXiSg9dCDwPdE2jtSFGMqIPel0oNqIwnjal0Sp/+c//1ROb+eH/vYwAWuoiRHV9n/G0mNLAYsWKFQxnoyGE4Gtf+xpf+9rXhnyO77Dt46abbhrxvMuWLQuVRkbAI+s6uOz3q9ncNblBxXh9Ksoh6Od5+IGA6/V/v/y/fOWq+phBzvYwXIhF1GSTiBrM0gS70gVeaMvQlbPwpESIkonegLlEoDwyNNgnSFkhQkwU9ttvv6p/hwjhtwit2tKDB0pcYxgWn+16w5Jj12xP09lnsV9zAhABv8I33zP0oWXFa9mcj5a4O9qefz8TfvU9L7F6aw8AMnAlj5KKqq1c+esyBXufd4D2MV4Z47G4zd+zpg3Xk8xviu9zSl5T2goVYnrCz6Z0ZS3l6UBl6XmsmOygwv99agJMQyOia+jDDDpTdNjanWdTV5aNHTn6ig6gskt2KbvUnIgQN3VMXS+1T1Uubh4SKSULZyT3CVJWiBCTgVtuuYW//OUvwe3Pfe5zNDY2snz5cjZt2jSFIwuxu1HeIpSI9G/Sy2fegflIQxP05GyWzEpVnYf9ikLU0IlHdOpiJvGI3i+dXjbnDxzL+Tc/wUd+8RSf/e0zfOQXT1VtZRnYrlQOPyNePrZaKhwDx7N8aQufPmUZ9XGTeU1x9mtOsqglEQQV5a97eF17TW1W+xJG29Y0HoylNW5vQhhYhBgE/0dhGmU/CDk21afg5VLS98y9Ex5UCCCiC1JRg/lNceKmXuJAMGiCF4Ch9QdIngStxJco2C7buvP0FZ2K7JK/YEQMZZ/nlMjdiqfhYTuSiKHx2TcdsFdmHkKE2B244ooriMfjADz66KP86Ec/4uqrr6alpYWLL754ikcXYndhYIvQzFRUGZlWgSytSZqAouMNm3UeTY+970Nx3QPr+Mztz/D89t4RN+d+RjwVVe1IedvFK0mat6WLg8Y21p7/GakocVMPAiQxIN3nv+6eNTuD9zBm6miaIGbqtNb3t3153nhW9D0Ty5e2cMsFx3LDecfwrbOP5IbzjuGWC46d8ArOWALHvQnTVhUqxNTB/1HETB2wgfEFFaCi9IbXvZvciw+ROuKNE1apkMD8pgSulGSLLs3JCLvSBWxHTdieVNGz0JR/haYJPOkFgZLtekRNDUMXOK5kV7pAPKJz8Jz6oOTtl1DBwnIktusGi1rU1PjMGw/ghGUzJ+R6QoTYF7Fly5ZAIvzOO+/k3//93/nwhz/M6173OlasWDG1gwux21At0zszFaUtXRjyNamowcFz6odt8am1x743b3H+zU+wflcf7X1FXE8SN3UcTxIzxbCtLLUY+412PAOrL7W8bn5TnJ29+d3qe7EncTnG0tY0WuzrnhZhYBFiEPwfRcLU0QfwFEYLr5hDiyYA0ON11B098QT5/7eshVMPbQ0m9ETUoGC7eFLJx2oCIrpOY9ykI1vE1JWjtuV6SBT5TxcCISBvuzTEzYrs0sAFI29raEKwoDnBZ98UBhUhQowXqVSKzs5OFi5cyL333hsIecRiMfL5/BSPLkStGO8GszzT6/tNxEyNGckIPTmLEj0OASRjBv92eCvvPW7RiOeppcf+xGUtfPHO5+grOsRNHSkluiYoOB7buvPMa4qTihqDNueHzq2vuGZf9GO492CsPf+1vO7UQ1v56cOv7DYH6MkwBZzOqOU7vq97WoSBRYhBKP9RtCQj7MyMzXjHat9I7z9+Q93RpxPbb/J06Dv7LGxP8tk3HQhAT95mc2eWnz78Chs7Ffncdl2688phW9Nlv6KTp6oaUiqNdF0TnPfaRVVl5EajDBEiRIja8cY3vpEPfehDHH300axduzZQ6FuzZg2LFi2a2sGFqAkTscH0k1o9eZvevB34TQgBsYhORNNwpOTCExbzsRVLMIzau7mHqyh85MTF3LByQ9A+pPh2ylBVl2B7kvZMgWQkiRAi2Jw/vK6Dq+95seo1n3TA8Amn0VQ4RvO6upjJLx7duFuy5WM1BdxTUet3fLxk8T0dQg4nyxRiSKTTaRoaGujt7aW+fu+LOvsnDBfbdenNO6N6fQVRu3UZDa9796SZ32kC6qImyajOklkpTlzWwq2Pb6YnZ9NXtNGEQAiB7ZbMhKhUkIoaGo0JE1PXcF2PH7/vNZNeKg0RYk/B7pjrenp6+OIXv8iWLVu46KKLePOb3wzAV77yFSKRCF/4whcm5bzjxd6+DtSKoTaY3aVNVK0bTM+TvPWah1mzPa04cboWKPI5pQrzoXPr+ePHTxhyUzZSRrna42u2p/nIL54iGTWImTp5y2VTVzbg4HlScev2a04Sj+jkbZfubJGIoWO73riveSwJq6Fe53mS829+opQtjw7Klrelixw8p45bLjh2XBvb/vOkKyRzJ/o80wVj+Y5XBCKlAHBPreaMZq4LKxYhqmJgViRnuTiuxNAEmgZFZ+h4dJD602vPnrSgIjin65KQGqu39vLkxi4iusaC5jibOiUF28XQVADiBxb+6DUBjifp6rNIRHWOmN+415YnQ4SYrmhsbKwwOvVx+eWXT8FoQowGY3WdHhH+U8s1xEdIg9aSUa7WYz+QbBuLaEQNnYLtIvR+DyTH85BSoztrBeao473msfb8D/W63ZUtH61k7p6MsX7H99VOh1AVKsSQKFdQuOSNB9CUNHGlHF1QMYGSskPBk5C3PXZlimQKNgXbo+h4CAQz66JoQhGz3SrD1jWBrqngouh4fOTExXv9jz5EiOmIhx56iHPPPZfly5ezbds2AH7xi1/w8MMPT/HIQgyHiZTW9P0m5jTEiJs6npQ4nqoWxE2d1oYYnX1W1WPV6mRdDQNVmgavHapV1vFUJt7UBVJCRNco2F6FDPl0kBPdHdKq+5Ly0Xi+434AeNIBMzl8fsM+sb8IKxYhhoX/o8gU7ID0PBSmIqgYOFYA11VBQlfOYkYyyrymOG29BRzb7X+uUBOCfz0xUycR0WiI750qDSFCTGf87ne/47zzzuO9730v//rXvygWFa+rt7eXK664gr/+9a9TPMIQQ2G0rtO1HGtWXZSmRISC7VWY2UkJu/qKg4413qpJNbJtKmowrynOrnSBvO0qIRPXY05DlEzBYVemSF/BRtMEUaPSqG6iCdJjwWRny/cl5aOJ/I7vCwgrFiFGhD9pF20PXVNmRNVg7Vw/ZUEF9HtS+OjKWkgpSUUNZtdH0YXA0NR/+zXFmVMfY0Yywuy6GIua42iaFk4MIUJMAb7+9a9z/fXXc+ONN2Ka/fPG6173Ov71r39N4chCjISxejKMdCwhxCAzu6GONVJGuSFu8MKONL94dBOrt/YO8nAYyodC19QYWutjXPLGA/n465eRLjj05Cw0IdD1wT5Io73mycRkZstHawq4J2Miv+P7AsLAIsSI8Cdt5YKqvCCqTU/JQ19P3av+reagQjA2N+9qbtr+scodwh3Xo2CricDQNIRQLtmGLtjVZ7EzU6Azq/7d2JXH87xwYggRYgrw0ksvceKJJw66v6GhgZ6ent0/oBA1YyI3mNWOJaUkb7mk8zYdmSKLZyYHHWu4jHJf0aGtt0BX1uI7968d0j176Paher519pF85MTF3LOmjWzRYV5jnJip4Xol41VdEbzbM0U86U34pto37XtwbXvVwGgqMFpTwD0Z+1IQNREIW6FCjAh/0q6LGcHG3VfqsHvaMOpaELrS944vfnXNx5WMMbDQBe4Anoehi1JrkwxI2o4HWcshamgglMSs60kcV2KjiOhCgIcieEskvfmwYhEixO5Ga2sr69atGyQt+/DDD7N48eKpGVSImjCRZOGBx4oYgt6cTdHxcKVEE4LevM1jGzoreAJDteX0FR22dedxPQ9NwIxkBF0TQ8qhDtc+tHprb1AV0TSNmXUxtnXnsb2SqImAgu2wradA4wAvpPFgOvtEjFUyd0/Dvi4fO1qEgUWIEdEYV9UHpa6kYbseuoDCLsWpMGcuouG15yD00X+dRpt3MQRIr1LhSSu5avtEP13TaIoZZIoOtuuxq6+IqQkOnJ1i7c7+ydkPjjxPtXdFDY0bVm5g+ZKWcIIIEWI34sILL+RTn/oUP/3pTxFCsH37dh599FE++9nP8qUvfWmqhxdiBIxngzlQNvX4xTO44u2Hc+VdL/D8jkypJQkSpk5jIsKO3uKgoKAaR0JK5T3hSlW1jpkGiaiOQAzLuxhKbWlgVcTnYLRnChQdT60lEuY1xvnC6QdPyKZ6T/CJ2FeUj/aVIGoiEAYWIYbFI+s6uPaBdfTmbWzXUxl+WUnUVgzoyS/NagLq4yYeqocvZ7tYjocuBI4nEQLipkZLKkpf0eU1i5q59NQD6cnbNCcieFLygZ89qaRzPQ/HVa+JmYp4p2tir5HHCxFiT8LnP/95PM/jlFNOIZfLceKJJxKNRvnsZz/LJz7xiakeXogaMJYN5lDZ+I+cuJiGeIS6qEFD3MDUdWIRDYEIPBLKg4JqGWXPk6oVVoKuacysi+I38Y5FDrVaVSQVNUhGkhRsj6ylEllXvP1wjlzQOO73c9JkfCcBY5XMnSiM1/G9VuwrQdR4EQYWIYZEebZkZl2E9kwRy5W7Xf3J1AUzU1EALj31IJpTEZoTEbpzRT53x7NkCi7xiEZd1EDTBL15h1RU52MrllRM8A+ubUcTgv1bEliO7FcbKS1YnidDZYcQIaYAQgi+8IUvcOmll7Ju3Tr6+vo45JBDSKVS5PN54vH4pJ6/WCxy3HHH8cwzz/D0009z1FFHTer59laMZoM5XDb+0juexXI8ZtZFiZmVikNDBQUDM8pZyw1kamfVxwLFJh+jVfKpVhXxxxMzNXrykoPn1HP4vInZYO9LPhHjwe5uFZvqIGpPQEje3kcxEhlsYLakORmltSE6aUHFwC+iXpqs5zbGOGB2CsuVLJmV4q1HzeWkA2aSKdjc+NAr2K7Ecl26sxZbe/L05Kwhtbr9jJPtykq1kVIWK1R2CBFiahGJRDjkkEM49thjMU2T73znO+y///6Tft7Pfe5zzJ07d9LPE0Jh4PoSM3U0TRAzdVrro2SLLumCjVlNqYOhPRLKvZcufuMBzEhGmdM4OKiA0c/3u5usvC/5RIwV4/EuCTF5CCsW+yBqifCrZUu6tqyftEqFrguEVHRuz5M0J01m1kWxXMnOtFUxaZdnupqTEWbXK13xdN4mYuh85MTFVTMVQ2WcoF/Z4eA5daGyQ4gQuwnFYpGvfvWr3HfffUQiET73uc/xtre9jZtvvpkvfOEL6LrOxRdfPKljuOuuu7j33nv53e9+x1133TWp5wqhMFI2vj5ukC3aZAoOjVU2/sMFBX5G+dC59fzthZ28sCNDrF6fkPl+d/bZ70s+EWPBntQqtq8hDCz2MdRKBquWLSm6gBCT0v7kl6zrYiadfRYS2NFbQBOCBc0JPvumAzh+8Qye2dLDN/76Aj05m3lNMTShxteYiNAQN2lLF4ckYIfKDiFCTC98+ctf5oYbbuANb3gDjzzyCGeffTYXXHABjz32GN/5znc4++yz0fXBm6qJws6dO7nwwgu58847SSQSk3aeEJUYKRtfHzXYqQnSeZuGuDmmoGCy5vvjF88gGTV4eksPQsJRCxs5fN7EOyqHibDhUS04lUgKljJVjJvaHtUqtrt4IrsDYWCxD2E0EX61bEly9n40rrgAo27GhHMqpIRERCdvuyyblcTUNTZ35XA9yc7ePFfd/SKggo2urIUmYFOnrHA7raXvNFR2CBFi+uD222/n5z//OW95y1t47rnnOOKII3Ach2eeeWZQJnuiIaXk/e9/Px/96Ec55phj2Lhx44ivKRaLgSs4QDqdnsQR7r0YKRtveZL6mEHE0McVFEz0fL87+/nDRNjwGBic9hUd2jNFio6r9GRQEvMPr2uf9oHFdJYUHgvCwGIfwmjIYH625F+rnmV2Uz3JmfNoSpj0NLZOytg8CbsyFkJAtugQN3Vm18eI6Bo9eZs129UC3pQwSw7bBG6n85riQXBRCyEvVHYIEWJ6YOvWrbz61cr75rDDDiMajXLxxRePK6j4/Oc/z1VXXTXsc1544QXuvfdeMpkMl112Wc3HvvLKK7n88svHPLYQCrVk4w+Z28BHTlzMDSs3jCsomKj5fiqkX8NE2NAoD04dW7KtO48nlVu60MD1wPUkP390E0fOb5y279WeICk8WoSBxT6EWshg/qZc0wSnzrG4+/u/ZAcah7z1Y9S3zEYX4I5RWbbce2IoSAm2K/Gki+16RE2N3ryt6NUCcparTPqEwNDAcZXbabKkT15r32mo7BAixNTDdV0ikf7fqmEYpFKpcR3zM5/5DO9///uHfc7ixYv5v//7Px599FGi0WjFY8cccwzvfe97ueWWWwa97rLLLuOSSy4JbqfTaRYsWDCu8e6LqDUbv3xpC8uXtIw7KBjvfD+V/fxhIqw6+oPTNPmSApihi0CS2JMQN3Usx5u2XIu9lScSBhb7EEZDBnvuuee486ff58CWGOnkfHJ6kkxPgVTUIFNw8EZ5bk2oakNn1q7p+a4n2diZozlhUnRcjFIwZLsepq5jlcaqa4Ki41KwPCX5N0Tf6d7UvxgixN4Cvx3J39wXCgU++tGPkkwmK573+9//vuZjzpw5k5kzZ474vB/84Ad8/etfD25v376dU089ldtuu43jjjuu6mui0eigQCTE2FBrNn46JIGmWvp1OrwH0w1+cPqZ25+hy7bQNQESPEpGuUIwqz42rf2ppvp7NVkIA4t9CLWSwWTXZr56+eV0pPtoWHAATUefxZZeG8f1MA2NQ+bWk85ZbO4p1H5yCZmiM+oxd+VsNAG6IUoefEoxpDtrY3sSTUhcF7qyRTwJDXFjUN/p3ta/GCLE3oLzzz+/4va555672869cOHCitt+pWTJkiXMnz9/t41jX4Sf6LE9yWffdCBAYGQ6HZM+o6n2h9h9WL60hfe9dhHfue8lkODIfqPcmXVKZng6+1Ptrd+rMLDYh1BL+fnUORaf+tzXeXlHN27zImKzT0G25dTrgaLj8tJOh7qYSUPMJBnVSUQMHM9jW3cex5NVPbglYDlj66HyZMncGxAC6qImiYjBjt48BVs90J23iegaC5orjbT2xv7FECH2Ftx8881TPYQQuxnDJXqma1Y2lH6dvjhhaQs/f+QVDF1D14QyvTX7E6fT+bPZW79XoUHeHgTLcvnB/S/zmd+u4gf3v4xluaM+hl9+PnhOHbmiw66+Irmio8rPRye46QdX8+zmDtymRSSPOxup9as/eajynOdJenIWrvQoOqoFqS5mMq85zsBEkyZA11RAUI7R5qMsR0nIRQ01aYDKegkgYggWzUiwoDnOjt5iYIwzkglTX9HlugfXDzIHDBEixL6HRYsWIaUMXbcnEXuqoZlf7e/O2UhZuV741f4ls1LTXvp1JGPcPRGHzq1n6ez/396dx0dRpP8D/3TPlcmdkEAmBzEYBDnCCmqE5VJQwv5koyig8IWwKgrLvkQQFXDlWhEXPNn1y6WAuK7gAai4wjeARHAxLmwCCWAkgXAm3LmTufr5/TGZMZOZyTUzmSPP21d8ke6enupKT9VUVz1VIajVSwhWyU2L3pqnn/Xyv42/3FeNcY+Fj3h52zFsPXwBhgYFwap9pzDhzngsG5vSqnM5Cgarq6vDX2SdII8OQ+jAcdCS7e1h6rYTYJQIWoPpg2zu/RDrmwsCTA2KsEAFwtUKCBBQozficnmdJTajLcUZERCqVkCSCKXlddAbCXJRQFx4oGVWqIBQmSXgKUgl98vxi4wx5mt8OVDVXVO/moeEXa/S4maNHuFBCkQFqdwyHMxfhwT78rS8vpz2pnDDwge8vO0YPv7pvM12g0SW7a1tXNgLBiu6oYNiwKMI0RntNirM9EaCTDQFWI/qHYPT16pRdKUK1TojJKrvnRAEVNQaUFlngEouIipYBbVShmqdsU0zS8VFqE3B31U6XKqog85gNPU8hAVYGhWAdYMh53yZX45fZIwxX+PrgaruWhPjxKUKVNTpIUkEURQQGiBHr9gwl37hbzwkWCEKqNQacPR8OZ7/7ChWPpqCwd2bn/DAW/nytLy+nHZHuGHh5XQ6I7YevmD5vWF5bO4523r4AhY92BtKZetXqM3Pz8eJEycwfvx4XKvWosoogkQBTU37RDDNES0IQFJ0MBaN6Y3jlyrw+ZHz+OjHsxAAyEUBQv2xtXoJl8rqEBIgQ1390CmdQYK+mdaF+fXBAXLsmz0McrmI45cqkPXLFXxw8Aw0YQGQibaNBnODQSD45fhFxhjzNd4QqOrs7ICuXhPjZo0O1VojiEyNCokIFXWmL/yuigFs3FNUrTOipLwWWoMEIqBKq8efPsnB3x+/w+cbF746La8vp90eblh4uTXfn7YMf7KJUxBMjQuDRFjz/Wk8O7K71f7mCtHc3GOYMXc+qqpr8fNNoNeAgaa4hRbcywRT4+GOhHCIooDesaH4665qyETBcg7TjNKAQgT0koSKOsLtMcEID1Th55JyXK/WNzkkigDIBGDWfcmWRpP5SdY/s89Zek4aMzcYftM1vEWzYPna+EXGGPM1ng5UddVQIFeuiWGof7imkIuW9Rf0EsEoSaisM7hkaFjDnqJqnWlRWSOZhhEL9aMHKmr1eOHzY3hzXD+ffEJu5svT8vpy2hvj4G0vd/ZGdZuO+3fhNWRs/AnPfHQYcz89imc+OoyMjT9ZguMWb/oWwyfNxLHiqzgvi8GmIiUWfpUPwNQb0RKx4Wr0jTN9EI5fqsDpq1XoHGLqRTAYCRIRTP/BNL80AY/dnYjNT9yN/5cSC0Ew3YAKmWA3mFsAMO7OeEwbeqvV9pYGPPWNM3UnB6tMcRe1eiMkiVCrN6K0Quuz4xcZY8zXeDJQ1ZuCxs1f9NUK03pMMtH8CM688Kup8aVWyixDw5xh7ilSiAKuVtbBSKZ/i4IAQRDq3x+o0Rp8ejITfwxM91XcY+HlEiODmj+o0XHNTbHaXXEDn6x5G5JBhwBNMqIGTwCJCtToWr7snSgA04Z0s3wpNxdenUOUUMpFXK3UQmswguqHTAUoZJDLRCREBgIAjl4oN51HFGAwmhof5qFPlvcQBfSJC7d971YEPPnj+EXGGPM1ngpUdVfQeFuHVZnrSrlMABEgNHq8K8A0EkEmCNBKktNDw8w9RZVaA7QGqb6nomHvvelvE6r27hiXpvhrYLqv4oaFl5s+tBtW7TtlWh+C7MdYyEUB04d2A9B8IXrm1EkcztwMyaCDWpOM6CGPQ5CZppQVYERLZrCVC8DtsaGYePevC0w17OYOVskRpJKhTmeaIlYuioBAqNEaERmoxPFLFbhcXguVXEStXqp/b9P/zIWqeduu/BJMvLurTYHtqMHQMyYEaX1ioK9/etE7NtTvxi8yxpgv8sSDHncEjTvzRdZcV5rrc5t6HagfokQuGRpm7ik6er7cznsRjBIhQCFDSIAcV6t0PjeZCa9V5X24YeHllEoZJtwZb5n9iez07k24M94Sg9BUIaqvrULJd/8w9VTEWDcqAECixn0G1gQAgUo5ooIVmD/6dqsv5vZW9VYrZQBkICKUVmgt8QwHCq/BIAHhaiVq9abVu8nyv1+FqeU4fbXaYYHfuMFw/kYNduWX4H+/K7Rb2PvaUxjGGPM37f2gx9VB485+kf21rqyAUiZCa5AgyGCJsTBIhAC5iFqdEb1iQ50eGmbuKXr+s6Oo0uphJFPsIpFpZkdREBAdooLO6JqGTHvy5SmM/RnHWPiAZWNTMOnuBMgbfTDkooBJdydYTTXbVCGqDAxBVP9RUMYkI/K3460bFZJktUaGo4/gbxLCsHxsik3BaS68WhLPYH5iIwimIVVig/cT6n9kIhCmVkLfTIFvDnhSiALeP3AaP5dWenwMLWOMMcfME35EBipxo0aH45cq3DYmvmFvuj2tCRp3xaKrv9aVcshlpppPX78ArF6S6heVFRESIHfZ0LBByVFY+WgKQtUKGCWC3iBBIlNPRVyEGkFKmU8uxtaa3ijWfrjHwkcsG5uCRQ/2xprvT+PsjWokRgZh+tBuNlPM2pt5g4gsH7rwHqnQavqZHlk00LjIlctMwV1Epu5SSTLFQYztH497unVC3oVym6dNLe3mNj+xybtQbgkcE+rfCwLBaCSoFXKIIlpU4PNTC8YY8x3tOSbeXm+6WWtnB3TVsKqGdWV7rGMBAIO7R+Pvj9+BFz4/hhqtAaFqBUIC5NAZyWcnM/GGKYyZLW5Y+BClUmYzpWxjjQvRypIzuPCfXej+QAbkAYGQiKCQiTBIBJkoQayPHGs8xMoyU0V98IMkmNad+PH0dezIveiwQmium9sc8Dbo1iiculyJap2pO1YuMxXMRsn0tCYqWImyGkOLCnxfX3iJMcY6ivYeE+/KoHFXfpFtWFe2x8rbgKlx8ea4fpZG3dUqnU9PZuLpKYyZfdyw8DMNC9Ezp37G1e//AcFowNnDexCUMgrBKjlG9eqCrYcvQGcgyGWmrteG0//JG0x/B/wa4EUEZJ4ohVwmNlkhOJqPufFTKokkKOvHkuoMBJlIUMllCA9UokprbHGBz08tGGPM+3mqd9lVQeOu/iLribUL/Gkyk5b0RvWMCYFEhKxfrvr0tfoSblj4oUHJUXiqtxwvb/0EBp1pStmwviPQvUEhektUEN7bX4TKWj2MsO6xaPj93Eim8Zjm3eW1BgQqZQgJIAQohBZXCI6eUt2o1kElFxEaoEC11jQlFRG1qsDnpxaMMeb9PNm77Iov1K4cVuVJ/rIYW3O9UXIRKK/VYcY/jvA0tO2IGxZ+KD8/Hzs2vIu+MUGI734XHn3yWXQJD7YqRKcNvRV/GJSEr4+V4GJZDeLCA3G5vA5vZBZYejJAgL5BEJopqEyA1iDh4s1axEWoEaySN1shNPWUShMWgNIKLeIj1HhhVE+U1epbXeD7S2HPGGP+zNO9y85+ofbUWhzMMUe9UZowFa5UalFSXsfT0LYzblj4mfz8fCxevBharRYDBvTHyy+/DKXS/pN6uVzEw/3jrLbJZMB7+4tQUauHuU0hCkCYWoHKOgNk9ctlG4yEq5VaBKlkECA0WSG05CnV6avVEAUBw26LbvU1c2HPGGPezx96l3nRVe/TuDcqXK3Ayt0/o6S8jid08QBuWPgRSZLw3nvvQavVon//phsVjph7Mv53fxHWHziNQKUMUSFKaPWEKq0BBECEAJkIaA1G1OkkqJUyS4Vwo0pnM5axPZ5ScWHPGGPtq7WrT/tL77I/xSn4i4a9UXkXynH6ajVP6OIh3LDwI6IoYuHChfj0008xY8aMVjcqzORyEf26hiNAIUNUsAqiICBAQZaVshVi/YqhEmCQJBCJuFpZB0EQsGLXSRgkWI1ljAxUQi4CFXV6yEQBclFEgOLXSsVVT6m4sGeMsfbRlilj/al32V/iFPyRp4fcdXS8QJ4fqK6utvxbo9Fg1qxZbW5UmDVeVEgQBESHBEAmCNBLplmiUD9b1PmbNajWmhbECw5Q2C5OV3QNtQYJF8tqceFmLc7eqEbx9WpTD0j9UypXLcxjLuyH3RaNvvFhPlFBMcaYLzFPxnGypKLVC5Kae5dv14SgRmvAlSotarSmqcV53DtzBVcuishaj3ssfFx+fj6WLVuGOXPm4K677nLZee11WQer5IiLUONKRR1q9UbIRAEGybT4XqBShq6RgTZjGc/dqMXbe36BSibWL7hnOr5Wb8SFmzVQK+SIDFL4zFMqxhjryFwxZSz3LjN38pchd76Keyx8mDlQu6qqCrt377Zai8JZ5i7rYJUMpRVa1OpNPRIyUUCAQoYuoQGYc/9teHFUT6jlIro0qGAa0hsl6AwSooJVSIgMhFpZ35Yl08J4ogi8+lAffkrFGGM+oDVTxjaFe5eZuzj6/lKrN/rsKuO+hHssfFTD2Z/69++PF1980e4Xe2c4CojuFRtqGUeb9ctVGCTYHctYp5dgMEoQYFoPI1glhxiqQo3OtF6FTAAkAsLU3B3JGGO+gMevM1/QHhO6tHbygo6CGxY+qHGjovHsT6682Zvrsm5q+kCDJEGCKdBbZ5BQXFUNrUECkWmbUiZCLhO5AmKMMR/hD1PGso7BnUPu2jJ5QUfBDQsf01yjwh03e1OzXzQ1llFWH1MhE0Vcq9LCSIBcFEwzSgGo0xsBg4TzN2ralC7GGGPtq6ONX+en0r7NHbN3mScvqNIaePE9OzjGwsccOHCgyUZFW2fqaKumxjKW1eqhkAkwkgQjmbohRUGAIJgaF4Bp8b1d+aWQJNfFhzDGGHOPjjR+/d+F15Cx8Sc889FhzP30KJ756DAyNv7klrqU+YbGkxcEKGQQ62NPY0JVqNIasTqrqEN/p+GGhY955pln8NRTT9kd/uSpm93R9IG9YkMxKTURgKmLwjRBLUEigsFo6snoHBKA01ebD/RjjDHmHTrClLGeeFDHvJ+rJi/wZzwUygecPXsW8fHxkMlkEEUR6enpNse05mZ3x6I+jsYyHii8hi/+exEGowSdUQJJpviKAIUM0SEqBCpkuFKl5TgLxhjzIf48ZawrptRl/oknL2geNyy8nDmm4p577sHs2bMhk9kGywHecbPbG8sYGahEkFKGQJUSIAEGSTKtvK0UIcC0ngUH+jHGmO/x19WnPf2gjnkvnrygeTwUyos1DNSurKyE0Wh0eKy3rjRpDvQrqzEgQCEiJEABtVIGAYLLV91mjDHGnNWSB3X6Dv5UuqMyf6e5WaO3WTuMv9OYcMPCSzU3+1Nj3nqzd6RAP8YYY77PWx/UMc/j7zTN44aFF2ptowLw7pu9IwT6McYY8w/e+qCOeQf+TtM0jrHwMm1pVJi1x0qTbeXPgX6MMcZ8j6M1KswP6hZsz0NphRbhgQqoZCK0RgllNXp+Ks34O00TuGHhZbRaLSRJanWjwsybb3Z/DfRjjDHmW5pbTNabH9Qx78DfaewTqHE/H2uRiooKhIWFoby8HKGhru0OLSgoQFJSUqsbFYwx5mruLOt8HeeNb3K0cvLN+t6IhsNZeOVtxlpX1nGPhRc4fvw4wsPDERcXBwDo0aOHh1PEGGOM+Z/WrlHBT6UZax0O3vaw/Px8LFq0CAsWLMCVK1c8nRzGGGPMb/HKyYy5l9c3LFavXo2UlBSEhoYiNDQUAwcOxLffftui127ZsgWCIOChhx6y2k5EWLhwITQaDdRqNUaOHIlTp065IfVNaxiofcsttyA8PLzd0+AsSSLkXShH1i9XkXehHJLEI+sYY77jm2++QWpqKtRqNSIiImzqC+ZfeI0KxtzL64dCxcfH4/XXX0f37t1BRPjwww+Rnp6OnJwc9O7d2+HriouLMXfuXAwZMsRm34oVK7Bq1Sp8+OGHSEpKwiuvvIJRo0bhxIkTCAgIcOflWDgz+5O3aC74jTHGvNkXX3yBadOm4bXXXsN9990Hg8GA/Px8TyeLuRGvnMyYe/lk8HZkZCRWrlyJJ5980u5+o9GIoUOH4oknnsCBAwdQVlaGHTt2ADD1VsTGxuL555/H3LlzAQDl5eXo0qULNm3ahMcee6xFaXAmaM9fGhUtDX5jjPkufw1QNhgMuOWWW7BkyRKHdUlz/DVv/JkkETI2/oSTJZWICVVZDYciIpRWaHG7JgQf/uFuDtJmrF5ryjqvHwrVkNFoxJYtW1BdXY2BAwc6PG7p0qXo3Lmz3crizJkzKC0txciRIy3bwsLCkJqaikOHDrkl3Q0VFBT4fKOicfBbgEIGURQQoJAhJlSFKq0Rq7OKeFgUY8xr/fe//8XFixchiiLuuOMOaDQajB49uskeC61Wi4qKCqsf5lu8eTFZxvyBTzQs8vLyEBwcDJVKhenTp2P79u3o1auX3WMPHjyIDz74AOvXr7e7v7S0FADQpUsXq+1dunSx7LPHVRVKXFwc4uPjfbZRAXDwG2PM950+fRoAsHjxYvz5z3/Gzp07ERERgeHDh+PGjRt2X7N8+XKEhYVZfhISEtozycxFeOVkxtzH62MsANP0q7m5uSgvL8fnn3+OjIwMZGVl2TQuKisrMXnyZKxfvx5RUa4tGJYvX44lS5Y4fZ7g4GAsW7YMCoXCJxsVQMuC38o5+I0x5gHz5s3DX//61yaPOXnyJCRJAgC8/PLLeOSRRwAAGzduRHx8PD777DM888wzNq+bP38+5syZY/m9oqKCGxc+ypsXk2XMl/lEw0KpVCI5ORkAMGDAAPznP//Bu+++i7Vr11odV1RUhOLiYowZM8ayzVx5yOVyFBQUICYmBgBw+fJlaDQay3GXL1/Gb37zG4dpcGWFEhQU1KbXeQsOfmOMeavnn38eU6dObfKYbt26oaSkBACsHlCpVCp069YN586ds/s6lUoFlUrlsrQyz+I1KhhzPZ9oWDQmSRK0Wq3N9p49eyIvL89q25///GdUVlbi3XffRUJCAhQKBWJiYrB3715LQ6KiogLZ2dmYMWOGw/fkCuVXvWNDcWvn4PrgN9Em+K2sRo/bNSHoHcvBjIyx9hUdHY3o6OhmjxswYABUKhUKCgowePBgAIBer0dxcTESExPdnUzGGPNLXt+wmD9/PkaPHo2uXbuisrIS//znP7F//37s3r0bADBlyhTExcVh+fLlCAgIQJ8+faxeb14bouH25557Dq+++iq6d+9umW42NjaW5y9vIXPw24LteSit0CI8UAGVTITWKKGsflYoDn5jjHmz0NBQTJ8+HYsWLUJCQgISExOxcuVKAMC4ceM8nDrGGPNNXt+wuHLlCqZMmYKSkhKEhYUhJSUFu3fvxv333w8AOHfuHESxdTHoL774Iqqrq/H000+jrKwMgwcPxq5du9ptDQt/YA5+M69jUS4RFKKA2zUhvI4FY8wnrFy5EnK5HJMnT0ZtbS1SU1Oxb98+REREeDppjDHmk3xyHQtvwPOXm0gScfAbY36MyzrHOG8YYx1Ba8o6r++xYN6Ng98YY4wxxhjgI+tYMMYYY4wxxrwb91i0kXkEGa+8yhjzZ+YyjkfN2uJ6gDHWEbSmHuCGRRtVVlYCAC+OxBjrECorKxEWxsMeG+J6gDHWkbSkHuDg7TaSJAmXLl1CSEiI1ToOzTEvrHf+/HkO9rOD88cxzpumcf445kzeEBEqKysRGxvb6hn4/F1b6wEzvmft43yxxXlii/PEPnfkS2vqAe6xaCNRFBEfH9/m14eGhvIHoQmcP45x3jSN88extuYN91TY52w9YMb3rH2cL7Y4T2xxntjn6nxpaT3Aj58YY4wxxhhjTuOGBWOMMcYYY8xp3LBoZyqVCosWLYJKpfJ0UrwS549jnDdN4/xxjPPGO/HfxT7OF1ucJ7Y4T+zzdL5w8DZjjDHGGGPMadxjwRhjjDHGGHMaNywYY4wxxhhjTuOGBWOMMcYYY8xp3LBwwurVq5GSkmKZK3jgwIH49ttvW/TaLVu2QBAEPPTQQ1bbiQgLFy6ERqOBWq3GyJEjcerUKTek3rW+//57jBkzBrGxsRAEATt27LDa35brakn+lpaWYvLkyYiJiUFQUBD69++PL774wtWX57Tm8kcQBLs/K1eudHjOluTP8OHDbc45ffp0d1ximy1fvhx33XUXQkJC0LlzZzz00EMoKCiweywRYfTo0XbzsLHFixejZ8+eCAoKQkREBEaOHIns7GzL/uLiYjz55JNISkqCWq3GrbfeikWLFkGn07ny8pzW3N953bp1GD58OEJDQyEIAsrKypw+JwDU1dVh5syZ6NSpE4KDg/HII4/g8uXLrr68Dmnx4sU2n8uePXt6Olntyh11hj9oLl+mTp1qc++kpaV5JrHtpCV1REcrr1qSJ56q/7lh4YT4+Hi8/vrrOHLkCA4fPoz77rsP6enpOH78eJOvKy4uxty5czFkyBCbfStWrMCqVauwZs0aZGdnIygoCKNGjUJdXZ27LsMlqqur0a9fP7z33nt297flulqSv1OmTEFBQQG++uor5OXlYezYsRg/fjxycnJcfo3OaC5/SkpKrH42bNgAQRDwyCOPODxnS++/adOmWZ17xYoVLr02Z2VlZWHmzJn48ccfkZmZCb1ejwceeADV1dU2x77zzjstXuH4tttuw9///nfk5eXh4MGDuOWWW/DAAw/g6tWrAICff/4ZkiRh7dq1OH78ON5++22sWbMGCxYscOn1Oau5v3NNTQ3S0tJale6W3DuzZ8/G119/jc8++wxZWVm4dOkSxo4d6/Lr66h69+5t9bk8ePCgp5PUrtxRZ/iD5vIFANLS0qzunU8++aQdU9j+WlJHdLTyqqX1pkfqf2IuFRERQe+//77D/QaDgQYNGkTvv/8+ZWRkUHp6umWfJEkUExNDK1eutGwrKysjlUpFn3zyiTuT7VIAaPv27ZbfXXldjfM3KCiINm/ebHVMZGQkrV+/vm2JbweN88ee9PR0uu+++1p97sb5M2zYMJo1a1arz+NJV65cIQCUlZVltT0nJ4fi4uKopKSkRXnYWHl5OQGgPXv2ODxmxYoVlJSU1JZktyt75cx3331HAOjmzZtOn7OsrIwUCgV99tlnlv0nT54kAHTo0KE2p5uZLFq0iPr16+fpZHgNd9YZvsxeOdf4e0NH1LiO4PLKfr3pqfqfeyxcxGg0YsuWLaiursbAgQMdHrd06VJ07twZTz75pM2+M2fOoLS0FCNHjrRsCwsLQ2pqKg4dOuSWdLcHV1yXo/wdNGgQtm7dihs3bkCSJGzZsgV1dXUYPny4qy+j3Vy+fBnffPON3XvEkabuv48//hhRUVHo06cP5s+fj5qaGlcn2aXKy8sBAJGRkZZtNTU1mDhxIt577z3ExMS0+pw6nQ7r1q1DWFgY+vXr1+R7N3xfb9PScsbZcx45cgR6vd7qM9uzZ0907drVp8sib3Lq1CnExsaiW7dumDRpEs6dO+fpJHkNf60LXWX//v3o3LkzevTogRkzZuD69eueTlK7alxHcHllv94EPFP/y93+Dn4uLy8PAwcORF1dHYKDg7F9+3b06tXL7rEHDx7EBx98gNzcXLv7S0tLAQBdunSx2t6lSxfLPl/kzHU1l7+ffvopJkyYgE6dOkEulyMwMBDbt29HcnKy6y+knXz44YcICQlpUTduc/kzceJEJCYmIjY2FseOHcNLL72EgoICbNu2zZ2X0GaSJOG5557Db3/7W/Tp08eyffbs2Rg0aBDS09Nbdb6dO3fiscceQ01NDTQaDTIzMxEVFWX32MLCQvztb3/DG2+84dQ1uENryhlXnLO0tBRKpRLh4eFWr/H1sshbpKamYtOmTejRowdKSkqwZMkSDBkyBPn5+QgJCfF08jzOX+tCV0hLS8PYsWORlJSEoqIiLFiwAKNHj8ahQ4cgk8k8nTy3s1dHdPTyylG96an6nxsWTurRowdyc3NRXl6Ozz//HBkZGcjKyrKp9CsrKzF58mSsX7/e4RcbZqu5/H3llVdQVlaGPXv2ICoqCjt27MD48eNx4MAB9O3b18Opb5sNGzZg0qRJCAgIaPbY5vLn6aefthzbt29faDQajBgxAkVFRbj11lvddg1tNXPmTOTn51uNN//qq6+wb9++NsXN3HvvvcjNzcW1a9ewfv16jB8/HtnZ2ejcubPVcRcvXkRaWhrGjRuHadOmOX0drtbScsbT52QtM3r0aMu/U1JSkJqaisTERHz66aet6qlkHc9jjz1m+Xffvn2RkpKCW2+9Ffv378eIESM8mLL2Ya+O6Ogc5YnH6v92H3zl50aMGEFPP/20zfacnBwCQDKZzPIjCAIJgkAymYwKCwupqKiIAFBOTo7Va4cOHUrPPvtsO12B89BoXKgrr6th/hYWFhIAys/PtznmmWeeaVPa20Pj/Gno+++/JwCUm5vbpnM7uv/MqqqqCADt2rWrTed3p5kzZ1J8fDydPn3aavusWbMsnxPzDwASRZGGDRvWqvdITk6m1157zWrbxYsXqXv37jR58mQyGo3OXka7sPd3djbGouE59+7da/dcXbt2pbfeeqtN52dNu/POO2nevHmeToZHuLPO8GVN1RUNRUVF0Zo1a9yfIA9zVEd05PLKUZ7Y0171P8dYuJgkSdBqtTbbe/bsiby8POTm5lp+fv/731ueqCYkJCApKQkxMTHYu3ev5XUVFRXIzs522XhqT3DldTXMX/NYQVG0vo1lMhkkSXIy1Z7xwQcfYMCAAU3GATTF0f1nZh6Gp9Fo2nR+dyAi/OlPf8L27duxb98+JCUlWe2fN28ejh07ZvXZAYC3334bGzdubNV7Nc6fixcvYvjw4RgwYAA2btxocy95q+b+zs6ec8CAAVAoFFaf2YKCApw7d86nyyJvVVVVhaKiIq/6XHqSv9aF7nDhwgVcv37dr++d5uqIjlheNZcn9rRb/e/WZoufmzdvHmVlZdGZM2fo2LFjNG/ePBIEgf7v//6PiIgmT57c5BMoe7M7vP766xQeHk5ffvklHTt2jNLT0ykpKYlqa2vdeSlOq6yspJycHEvPzFtvvUU5OTl09uxZImrZdd133330t7/9zfJ7c/mr0+koOTmZhgwZQtnZ2VRYWEhvvPEGCYJA33zzTftmQDOayx8i06xFgYGBtHr1arvnaG3+FBYW0tKlS+nw4cN05swZ+vLLL6lbt240dOhQ915sK82YMYPCwsJo//79VFJSYvmpqalx+BrYeZLXo0cP2rZtGxGZnszMnz+fDh06RMXFxXT48GH6wx/+QCqVytLDdeHCBUpOTqYRI0bQhQsXrN7bmzT3dy4pKaGcnBxav349AaDvv/+ecnJy6Pr165ZztPbeISKaPn06de3alfbt20eHDx+mgQMH0sCBA9vvwv3Y888/T/v376czZ87QDz/8QCNHjqSoqCi6cuWKp5PWblxRZ/ijpvKlsrKS5s6dS4cOHaIzZ87Qnj17qH///tS9e3eqq6vzdNLdpiV1REcrr5rLE0/W/9ywcMITTzxBiYmJpFQqKTo6mkaMGGFVMQ8bNowyMjIcvt5ew0KSJHrllVeoS5cupFKpaMSIEVRQUOCmK3Ad8zCMxj/m62/JdSUmJtKiRYssvzeXv0REv/zyC40dO5Y6d+5MgYGBlJKSYjP9rDdoLn+IiNauXUtqtZrKysrsnqO1+XPu3DkaOnQoRUZGkkqlouTkZHrhhReovLzcXZfZJvbyBQBt3Lixydc0blg0fE1tbS09/PDDFBsbS0qlkjQaDf3+97+nn376yXL8xo0bHb63N2nu77xo0aJm868tn63a2lr64x//SBERERQYGEgPP/yw1zW6fNWECRNIo9GQUqmkuLg4mjBhAhUWFno6We3KFXWGP2oqX2pqauiBBx6g6OhoUigUlJiYSNOmTaPS0lJPJ9utWlJHdLTyqrk88WT9L9QnkDHGGGOMMcbazDcGFDPGGGOMMca8GjcsGGOMMcYYY07jhgVjjDHGGGPMadywYIwxxhhjjDmNGxaMMcYYY4wxp3HDgjHGGGOMMeY0blgwxhhjjDHGnMYNC8YYY4wxxpjTuGHBWBtNnToVDz30kOX34cOH47nnnmv3dOzfvx+CIKCsrMxt71FcXAxBEJCbm+u292CMMV/D9QBj1rhhwfzK1KlTIQgCBEGAUqlEcnIyli5dCoPB4Pb33rZtG/7yl7+06Nj2qAQYY6wj4nqAMc+RezoBjLlaWloaNm7cCK1Wi3/961+YOXMmFAoF5s+fb3OsTqeDUql0yftGRka65DyMMcacw/UAY57BPRbM76hUKsTExCAxMREzZszAyJEj8dVXXwH4tdt62bJliI2NRY8ePQAA58+fx/jx4xEeHo7IyEikp6ejuLjYck6j0Yg5c+YgPDwcnTp1wosvvggisnrfxl3gWq0WL730EhISEqBSqZCcnIwPPvgAxcXFuPfeewEAEREREAQBU6dOBQBIkoTly5cjKSkJarUa/fr1w+eff271Pv/6179w2223Qa1W495777VKpz0TJ07EhAkTrLbp9XpERUVh8+bNAIBdu3Zh8ODBlut78MEHUVRU5PCcmzZtQnh4uNW2HTt2QBAEq21ffvkl+vfvj4CAAHTr1g1LliyxPDUkIixevBhdu3aFSqVCbGwsnn322SavhTHGWoLrAWtcD7D2wg0L5vfUajV0Op3l971796KgoACZmZnYuXMn9Ho9Ro0ahZCQEBw4cAA//PADgoODkZaWZnndm2++iU2bNmHDhg04ePAgbty4ge3btzf5vlOmTMEnn3yCVatW4eTJk1i7di2Cg4ORkJCAL774AgBQUFCAkpISvPvuuwCA5cuXY/PmzVizZg2OHz+O2bNn43/+53+QlZUFwFTxjR07FmPGjEFubi6eeuopzJs3r8l0TJo0CV9//TWqqqos23bv3o2amho8/PDDAIDq6mrMmTMHhw8fxt69eyGKIh5++GFIktTK3P7VgQMHMGXKFMyaNQsnTpzA2rVrsWnTJixbtgwA8MUXX+Dtt9/G2rVrcerUKezYsQN9+/Zt8/sxxpgjXA9wPcDaCTHmRzIyMig9PZ2IiCRJoszMTFKpVDR37lzL/i5dupBWq7W85qOPPqIePXqQJEmWbVqtltRqNe3evZuIiDQaDa1YscKyX6/XU3x8vOW9iIiGDRtGs2bNIiKigoICAkCZmZl20/ndd98RALp586ZlW11dHQUGBtK///1vq2OffPJJevzxx4mIaP78+dSrVy+r/S+99JLNuRrS6/UUFRVFmzdvtmx7/PHHacKECXaPJyK6evUqAaC8vDwiIjpz5gwBoJycHCIi2rhxI4WFhVm9Zvv27dSwSBkxYgS99tprVsd89NFHpNFoiIjozTffpNtuu410Op3DdDDGWGtxPWCL6wHWXjjGgvmdnTt3Ijg4GHq9HpIkYeLEiVi8eLFlf9++fa3G0x49ehSFhYUICQmxOk9dXR2KiopQXl6OkpISpKamWvbJ5XLceeedNt3gZrm5uZDJZBg2bFiL011YWIiamhrcf//9Vtt1Oh3uuOMOAMDJkyet0gEAAwcObPK8crkc48ePx8cff4zJkyejuroaX375JbZs2WI55tSpU1i4cCGys7Nx7do1yxOqc+fOoU+fPi2+hoaOHj2KH374wfJkCjANJairq0NNTQ3GjRuHd955B926dUNaWhp+97vfYcyYMZDLuVhijDmH6wFrXA+w9sJ/OeZ37r33XqxevRpKpRKxsbE2BVRQUJDV71VVVRgwYAA+/vhjm3NFR0e3KQ1qtbrVrzF3UX/zzTeIi4uz2qdSqdqUDrNJkyZh2LBhuHLlCjIzM6FWq5GWlmbZP2bMGCQmJmL9+vWIjY2FJEno06eP1dCBhkRRtKlM9Xq9zfUsWbIEY8eOtXl9QEAAEhISUFBQgD179iAzMxN//OMfsXLlSmRlZUGhUDh1vYyxjo3rAVtcD7D2wA0L5neCgoKQnJzc4uP79++PrVu3onPnzggNDbV7jEajQXZ2NoYOHQoAMBgMOHLkCPr372/3+L59+0KSJGRlZWHkyJE2+81PyoxGo2Vbr169oFKpcO7cOYdPuG6//XZLAKLZjz/+2Ow1Dho0CAkJCdi6dSu+/fZbjBs3zlJoX79+HQUFBVi/fj2GDBkCADh48GCT54uOjkZlZSWqq6stFXTjuc379++PgoKCJv8WarUaY8aMwZgxYzBz5kz07NkTeXl5DvOVMcZagusBW1wPsPbADQvW4U2aNAkrV65Eeno6li5divj4eJw9exbbtm3Diy++iPj4eMyaNQuvv/46unfvjp49e+Ktt95qcu7xW265BRkZGXjiiSewatUq9OvXD2fPnsWVK1cwfvx4JCYmQhAE7Ny5E7/73e+gVqsREhKCuXPnYvbs2ZAkCYMHD0Z5eTl++OEHhIaGIiMjA9OnT8ebb76JF154AU899RSOHDmCTZs2teg6J06ciDVr1uCXX37Bd999Z9keERGBTp06Yd26ddBoNDh37lyzgYCpqakIDAzEggUL8OyzzyI7O9smHQsXLsSDDz6Irl274tFHH4Uoijh69Cjy8/Px6quvYtOmTTAajZZz/eMf/4BarUZiYmKLrocxxlyF6wGuB5iLeDbEgzHXahi015r9JSUlNGXKFIqKiiKVSkXdunWjadOmUXl5ORGZAt9mzZpFoaGhFB4eTnPmzKEpU6Y4DNojIqqtraXZs2eTRqMhpVJJycnJtGHDBsv+pUuXUkxMDAmCQBkZGURkCjR85513qEePHqRQKCg6OppGjRpFWVlZltd9/fXXlJycTCqVioYMGUIbNmxoMmjP7MSJEwSAEhMTrQIUiYgyMzPp9ttvJ5VKRSkpKbR//34CQNu3byci26A9IlOQXnJyMqnVanrwwQdp3bp11LhI2bVrFw0aNIjUajWFhobS3XffTevWrbO8PjU1lUJDQykoKIjuuece2rNnT5PXwBhjzeF6wDGuB5i7CUQOoo4YY4wxxhhjrIV4HQvGGGOMMcaY07hhwRhjjDHGGHMaNywYY4wxxhhjTuOGBWOMMcYYY8xp3LBgjDHGGGOMOY0bFowxxhhjjDGnccOCMcYYY4wx5jRuWDDGGGOMMcacxg0LxhhjjDHGmNO4YcEYY4wxxhhzGjcsGGOMMcYYY07jhgVjjDHGGGPMaf8fPPqgK5w0XqAAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se puede observar que la regresión polinomial predice los datos de mejor manera que la regresión lineal, ya que el coeficiente de correlación para la regresión polinomial (0.81) es mayor que el obtenido en la regresión lineal (0.77).\n",
"Además, se evidencia lo mismo al obtenerse un error absoluto medio menor en el caso de la regresión polinomial (1,57°C) respecto a la regresión lineal (1,71°C).\n",
"El valor del coeficiente de determinación sugiere una buena capacidad de predicción del modelo."
],
"metadata": {
"id": "jlDIftiej0Tr"
}
},
{
"cell_type": "markdown",
"source": [
"**CROSS VALIDATION**"
],
"metadata": {
"id": "__E7jgHRlKWR"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación se utilizará el metodo de validación cruzada para varios métodos."
],
"metadata": {
"id": "rVLuiktulGhc"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.model_selection import cross_val_predict\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.linear_model import RidgeCV\n",
"from sklearn.linear_model import LassoCV\n",
"from sklearn.tree import DecisionTreeRegressor\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.ensemble import GradientBoostingRegressor\n",
"from sklearn.ensemble import ExtraTreesRegressor\n",
"from sklearn.ensemble import AdaBoostRegressor\n",
"from sklearn.svm import SVR"
],
"metadata": {
"id": "sAYNhCTJLqz9"
},
"execution_count": 73,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se escoge un k=10 para el cross validation."
],
"metadata": {
"id": "t6JQNdxRO8p8"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn import svm\n",
"from sklearn.svm import SVC\n",
"\n",
"# Se crea una lista con los modelos\n",
"models = [\n",
" LinearRegression(),\n",
" RidgeCV(),\n",
" LassoCV(),\n",
" DecisionTreeRegressor(),\n",
" RandomForestRegressor(),\n",
" GradientBoostingRegressor(),\n",
" SVR(),\n",
" AdaBoostRegressor(),\n",
" ExtraTreesRegressor()]\n",
"\n",
"# Se realiza una validación cruzada para cada modelo.\n",
"for model in models:\n",
" scores = cross_val_score(model, X, y, cv=10)\n",
" print(f\"Model: {model.__class__.__name__}, Mean score: {np.mean(scores).round(3)}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZPhxCbRm2wn5",
"outputId": "ba6e972d-0748-47a7-dee1-c9949e31b723"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model: LinearRegression, Mean score: 0.562\n",
"Model: RidgeCV, Mean score: 0.562\n",
"Model: LassoCV, Mean score: 0.55\n",
"Model: DecisionTreeRegressor, Mean score: 0.263\n",
"Model: RandomForestRegressor, Mean score: 0.584\n",
"Model: GradientBoostingRegressor, Mean score: 0.617\n",
"Model: SVR, Mean score: 0.197\n",
"Model: AdaBoostRegressor, Mean score: 0.552\n",
"Model: ExtraTreesRegressor, Mean score: 0.592\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"**Polynomial Regression**\n",
"\n",
"Se escoge el grado igual a 2, de acuerdo a lo discutido previamente en el documento."
],
"metadata": {
"id": "tCr6QM6NwxKk"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.preprocessing import PolynomialFeatures\n",
"poly_features = PolynomialFeatures(degree=2)\n",
"X_poly = poly_features.fit_transform(X)\n",
"poly = LinearRegression()\n",
"np.mean(cross_val_score(poly, X_poly, y, cv=10)).round(3)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hSCEO4yUxAgr",
"outputId": "80fbe843-f8ea-4b39-e2f5-a42bb91640bd"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.608"
]
},
"metadata": {},
"execution_count": 80
}
]
},
{
"cell_type": "markdown",
"source": [
"**K-Neighbors Regressor**"
],
"metadata": {
"id": "v3J7Q-b0xJ9d"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.neighbors import KNeighborsRegressor\n",
"cv_score=[]\n",
"for i in range(1,10):\n",
" knn = KNeighborsRegressor(n_neighbors= i)\n",
" cv_score.append(np.mean(cross_val_score(knn,X,y,cv=10)))\n",
"x = range(1,10)\n",
"plt.scatter(x,cv_score)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 447
},
"id": "2FtAn9AAxMtZ",
"outputId": "0726f814-03c0-4b6d-97e9-5f86d6c3df94"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
"metadata": {},
"execution_count": 78
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoK0lEQVR4nO3df1BU973/8deyKSzxwkZCYEFRAR25xChVhJBfba8oWC9XJ/1BMqYaTM1ca9J4aWo0iVJiWpLcOxmb0WjjrYk/puo/ibl2Wuy9e2vuOJdKIrVqba1arRpZ/JHAAhnwZvd8//DrJiugLlnYzy7Px8zOhMM5x/eZZLJP9/xYm2VZlgAAAAwWF+kBAAAAboRgAQAAxiNYAACA8QgWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGC8WyI9QDj4/X6dO3dOSUlJstlskR4HAADcBMuy1N7erszMTMXFXf8zlJgIlnPnzikrKyvSYwAAgH44c+aMRo4ced11YiJYkpKSJF054OTk5AhPAwAAbobX61VWVlbgffx6YiJYrp4GSk5OJlgAAIgyN3M5BxfdAgAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIwXEw+OAwAgEnx+S40nP9L59i6lJTlUlJ0iexzfaTcQCBYAAPqh/nCzancdUXNbV2BZhtOhmop8lU/IiOBk4WVKlBEsAACEqP5wsxZtbZJ1zXJPW5cWbW3Sukcmx0S0mBRlXMMCABgwPr+lhhOX9O6BD9Vw4pJ8/mvf4qOPz2+pdteRHrEiKbCsdteRqD/Wq1H2+ViRPouy+sPNgzoPn7AAAAaESX87D6fGkx/1eBP/PEtSc1uXGk9+pJLc2wdvsDC6UZTZdCXKpue7Bu30EJ+wAADCzrS/nYfT+fa+Y6U/65kolCgbLAQLACCsYv2USVqSI6zrmcjEKCNYAABhZeLfzsOpKDtFGU6H+joRYtOVU19F2SmDOVZYmRhlBAsAIKxM/Nt5ONnjbKqpyJekHtFy9eeaivyofh6LiVFGsAAAwsrEv52HW/mEDK17ZLJczuBjcDkdMXFLs4lRxl1CABBBpjyUK5yu/u3c09bV63UsNl15Y4/mUybSlWiZnu+KuX9/V12Nsmvv9HJF6E4vm2VZ0XnV0+d4vV45nU61tbUpOTk50uMAwE2J1dt+pc/uEpIUFC1X38pj4VOIoWIgozqU92+CBQAioK8npcbSG3osBxnCI5T3735dw7J27VqNGTNGDodDxcXFamxs7HPdt956SzabLejlcASf87MsSytXrlRGRoYSExNVWlqqY8eO9Wc0ADBerN/2e1X5hAztfeYftG3h3frpQwXatvBu7X3mH4gV9EvIwbJjxw5VV1erpqZGTU1NmjRpksrKynT+/Pk+t0lOTlZzc3Pg9be//S3o96+88opee+01rV+/Xvv27dOwYcNUVlamrq7ovIIcAK4n1m/7/Tx7nE0lubdrdsEIleTeHjPXd2DwhRwsr776qhYuXKiqqirl5+dr/fr1uvXWW7Vx48Y+t7HZbHK5XIFXenp64HeWZWn16tV6/vnnNXv2bE2cOFGbN2/WuXPntHPnzn4dFACYLNZv+wUGQkjBcvnyZe3fv1+lpaWf7SAuTqWlpWpoaOhzu46ODo0ePVpZWVmaPXu2/vjHPwZ+d/LkSXk8nqB9Op1OFRcX97nP7u5ueb3eoBcARIuhcNsvEG4hBcvFixfl8/mCPiGRpPT0dHk8nl63GT9+vDZu3Kh3331XW7duld/v1z333KOzZ89KUmC7UPZZV1cnp9MZeGVlZYVyGAAQUSY+lAsw3YA/OK6kpETz5s1TQUGBvvKVr+jtt9/WHXfcoZ/97Gf93ufy5cvV1tYWeJ05cyaMEwPAwDLxoVyA6UIKltTUVNntdrW0tAQtb2lpkcvluql9fOlLX9KXv/xlHT9+XJIC24Wyz4SEBCUnJwe9ACCaxPqTUoFwC+lJt/Hx8ZoyZYrcbrfmzJkjSfL7/XK73XriiSduah8+n0+HDh3S17/+dUlSdna2XC6X3G63CgoKJF25L3vfvn1atGhRKOMBQFSJ9SelAuEU8qP5q6urNX/+fBUWFqqoqEirV69WZ2enqqqqJEnz5s3TiBEjVFdXJ0l64YUXdPfdd2vs2LFqbW3Vv/7rv+pvf/ubvvvd70q6cgfRkiVL9OKLL2rcuHHKzs7WihUrlJmZGYgiAIhVV2/7BXB9IQdLZWWlLly4oJUrV8rj8aigoED19fWBi2ZPnz6tuLjPzjR9/PHHWrhwoTwej4YPH64pU6bof//3f5Wfnx9YZ+nSpers7NTjjz+u1tZW3Xfffaqvr+/xgDkAADA08Wh+AAAQEaG8f/NtzQCMFYvfZAygfwgWAEbii/MAfN6AP4cFAEJ19ZuMr/2+HU9blxZtbVL94eYITQYgUggWAEYZKt9kDCA0BAsAowylbzIGcPMIFgBG4ZuMAfSGYAFgFL7JGEBvCBYARuGbjAH0hmABYBS+yRhAbwgWAMbhm4wBXIsHxwEwEt9kDODzCBYAxuKbjAFcxSkhAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPF4cBwQxXx+iyfBAhgSCBYgStUfblbtriNqbusKLMtwOlRTkc937QCIOZwSAqJQ/eFmLdraFBQrkuRp69KirU2qP9wcockAYGAQLECU8fkt1e46IquX311dVrvriHz+3tYAgOhEsABRpvHkRz0+Wfk8S1JzW5caT340eEMBwAAjWIAoc76971jpz3oAEA0IFiDKpCU5wroeAEQDggWIMkXZKcpwOtTXzcs2XblbqCg7ZTDHAoABRbAAUcYeZ1NNRb4k9YiWqz/XVOTzPBYAMYVgAaJQ+YQMrXtkslzO4NM+LqdD6x6ZzHNYAMQcHhwHRKnyCRmanu/iSbcAhgSCBYhi9jibSnJvj/QYADDgOCUEAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIzXr2BZu3atxowZI4fDoeLiYjU2Nt7Udtu3b5fNZtOcOXOClj/66KOy2WxBr/Ly8v6MBgAAYlDIwbJjxw5VV1erpqZGTU1NmjRpksrKynT+/Pnrbnfq1Ck9/fTTuv/++3v9fXl5uZqbmwOvbdu2hToaAACIUSEHy6uvvqqFCxeqqqpK+fn5Wr9+vW699VZt3Lixz218Pp/mzp2r2tpa5eTk9LpOQkKCXC5X4DV8+PBQRwMAADEqpGC5fPmy9u/fr9LS0s92EBen0tJSNTQ09LndCy+8oLS0ND322GN9rrNnzx6lpaVp/PjxWrRokS5dutTnut3d3fJ6vUEvAAAQu0IKlosXL8rn8yk9PT1oeXp6ujweT6/b7N27Vz//+c+1YcOGPvdbXl6uzZs3y+126+WXX9Z7772nmTNnyufz9bp+XV2dnE5n4JWVlRXKYQAAgChzy0DuvL29Xd/5zne0YcMGpaam9rneQw89FPjnu+66SxMnTlRubq727NmjadOm9Vh/+fLlqq6uDvzs9XqJFgAAYlhIwZKamiq73a6Wlpag5S0tLXK5XD3WP3HihE6dOqWKiorAMr/ff+UPvuUWHT16VLm5uT22y8nJUWpqqo4fP95rsCQkJCghISGU0TFE+fyWGk9+pPPtXUpLcqgoO0X2OFukxwIAhCikYImPj9eUKVPkdrsDtyb7/X653W498cQTPdbPy8vToUOHgpY9//zzam9v109/+tM+PxU5e/asLl26pIyMjFDGA4LUH25W7a4jam7rCizLcDpUU5Gv8gn8twUA0STkU0LV1dWaP3++CgsLVVRUpNWrV6uzs1NVVVWSpHnz5mnEiBGqq6uTw+HQhAkTgra/7bbbJCmwvKOjQ7W1tfrGN74hl8ulEydOaOnSpRo7dqzKysq+4OFhqKo/3KxFW5tkXbPc09alRVubtO6RyUQLAESRkIOlsrJSFy5c0MqVK+XxeFRQUKD6+vrAhbinT59WXNzNX8trt9t18OBBbdq0Sa2trcrMzNSMGTO0atUqTvugX3x+S7W7jvSIFUmyJNkk1e46oun5Lk4PAUCUsFmW1dv/16OK1+uV0+lUW1ubkpOTIz0OIqzhxCU9vOF3N1xv28K7VZJ7+yBMBADoTSjv33yXEGLO+fauG68UwnoAgMgjWBBz0pIcYV0PABB5BAtiTlF2ijKcDvV1dYpNV+4WKspOGcyxAABfAMGCmGOPs6mmIl+SekTL1Z9rKvK54BYAogjBgphUPiFD6x6ZLJcz+LSPy+nglmYAiEID+mh+IJLKJ2Roer6LJ90CQAwgWBDT7HE2bl0GgBjAKSEAAGA8ggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxiNYAACA8QgWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxiNYAACA8QgWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxiNYAACA8QgWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxutXsKxdu1ZjxoyRw+FQcXGxGhsbb2q77du3y2azac6cOUHLLcvSypUrlZGRocTERJWWlurYsWP9GQ0AAMSgkINlx44dqq6uVk1NjZqamjRp0iSVlZXp/Pnz193u1KlTevrpp3X//ff3+N0rr7yi1157TevXr9e+ffs0bNgwlZWVqaurK9TxAABADAo5WF599VUtXLhQVVVVys/P1/r163Xrrbdq48aNfW7j8/k0d+5c1dbWKicnJ+h3lmVp9erVev755zV79mxNnDhRmzdv1rlz57Rz586QDwgAAMSekILl8uXL2r9/v0pLSz/bQVycSktL1dDQ0Od2L7zwgtLS0vTYY4/1+N3Jkyfl8XiC9ul0OlVcXNznPru7u+X1eoNeAAAgdoUULBcvXpTP51N6enrQ8vT0dHk8nl632bt3r37+859rw4YNvf7+6nah7LOurk5OpzPwysrKCuUwAABAlBnQu4Ta29v1ne98Rxs2bFBqamrY9rt8+XK1tbUFXmfOnAnbvgEAgHluCWXl1NRU2e12tbS0BC1vaWmRy+Xqsf6JEyd06tQpVVRUBJb5/f4rf/Att+jo0aOB7VpaWpSRkRG0z4KCgl7nSEhIUEJCQiijAwCAKBbSJyzx8fGaMmWK3G53YJnf75fb7VZJSUmP9fPy8nTo0CEdOHAg8Pqnf/onfe1rX9OBAweUlZWl7OxsuVyuoH16vV7t27ev130CAIChJ6RPWCSpurpa8+fPV2FhoYqKirR69Wp1dnaqqqpKkjRv3jyNGDFCdXV1cjgcmjBhQtD2t912myQFLV+yZIlefPFFjRs3TtnZ2VqxYoUyMzN7PK8FAAAMTSEHS2VlpS5cuKCVK1fK4/GooKBA9fX1gYtmT58+rbi40C6NWbp0qTo7O/X444+rtbVV9913n+rr6+VwOEIdDwAAxCCbZVlWpIf4orxer5xOp9ra2pScnBzpcQAAwE0I5f2b7xICAADGI1gAAIDxCBYAAGC8kC+6Rezw+S01nvxI59u7lJbkUFF2iuxxtkiPBQBADwTLEFV/uFm1u46oue2zb8TOcDpUU5Gv8gkZ19kSAIDBxymhIaj+cLMWbW0KihVJ8rR1adHWJtUfbo7QZAAA9I5gGWJ8fku1u46ot3vZry6r3XVEPn/U3+0OAIghBMsQ03jyox6frHyeJam5rUuNJz8avKEAALgBgmWIOd/ed6z0Zz0AAAYDwTLEpCXd3Ncd3Ox6AAAMBoJliCnKTlGG06G+bl626crdQkXZKYM5FgAA10WwDDH2OJtqKvIlqUe0XP25piKf57EAAIxCsAxB5RMytO6RyXI5g0/7uJwOrXtkMs9hAQAYhwfHDVHlEzI0Pd/Fk24BAFGBYBnC7HE2leTeHukxAAC4IU4JAQAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMF6/gmXt2rUaM2aMHA6HiouL1djY2Oe6b7/9tgoLC3Xbbbdp2LBhKigo0JYtW4LWefTRR2Wz2YJe5eXl/RkNAADEoFtC3WDHjh2qrq7W+vXrVVxcrNWrV6usrExHjx5VWlpaj/VTUlL03HPPKS8vT/Hx8frlL3+pqqoqpaWlqaysLLBeeXm53nzzzcDPCQkJ/TwkAAAQa2yWZVmhbFBcXKypU6dqzZo1kiS/36+srCw9+eSTWrZs2U3tY/LkyZo1a5ZWrVol6conLK2trdq5c2do0/9/Xq9XTqdTbW1tSk5O7tc+AADA4Arl/TukU0KXL1/W/v37VVpa+tkO4uJUWlqqhoaGG25vWZbcbreOHj2qBx54IOh3e/bsUVpamsaPH69Fixbp0qVLfe6nu7tbXq836AUAAGJXSKeELl68KJ/Pp/T09KDl6enp+vOf/9zndm1tbRoxYoS6u7tlt9v1+uuva/r06YHfl5eX68EHH1R2drZOnDihZ599VjNnzlRDQ4PsdnuP/dXV1am2tjaU0QEAQBQL+RqW/khKStKBAwfU0dEht9ut6upq5eTk6Ktf/aok6aGHHgqse9ddd2nixInKzc3Vnj17NG3atB77W758uaqrqwM/e71eZWVlDfhxAACAyAgpWFJTU2W329XS0hK0vKWlRS6Xq8/t4uLiNHbsWElSQUGB/vSnP6muri4QLNfKyclRamqqjh8/3muwJCQkcFEuAABDSEjXsMTHx2vKlClyu92BZX6/X263WyUlJTe9H7/fr+7u7j5/f/bsWV26dEkZGRmhjAcAAGJUyKeEqqurNX/+fBUWFqqoqEirV69WZ2enqqqqJEnz5s3TiBEjVFdXJ+nK9SaFhYXKzc1Vd3e3fvWrX2nLli1at26dJKmjo0O1tbX6xje+IZfLpRMnTmjp0qUaO3Zs0G3PAABg6Ao5WCorK3XhwgWtXLlSHo9HBQUFqq+vD1yIe/r0acXFffbBTWdnp773ve/p7NmzSkxMVF5enrZu3arKykpJkt1u18GDB7Vp0ya1trYqMzNTM2bM0KpVqzjtAwAAJPXjOSwm4jksAABEnwF7DgsAAEAkECwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADj9StY1q5dqzFjxsjhcKi4uFiNjY19rvv222+rsLBQt912m4YNG6aCggJt2bIlaB3LsrRy5UplZGQoMTFRpaWlOnbsWH9GAwAAMSjkYNmxY4eqq6tVU1OjpqYmTZo0SWVlZTp//nyv66ekpOi5555TQ0ODDh48qKqqKlVVVWn37t2BdV555RW99tprWr9+vfbt26dhw4aprKxMXV1d/T8yAAAQM2yWZVmhbFBcXKypU6dqzZo1kiS/36+srCw9+eSTWrZs2U3tY/LkyZo1a5ZWrVoly7KUmZmpH/zgB3r66aclSW1tbUpPT9dbb72lhx566Ib783q9cjqdamtrU3JyciiHAwAAIiSU9++QPmG5fPmy9u/fr9LS0s92EBen0tJSNTQ03HB7y7Lkdrt19OhRPfDAA5KkkydPyuPxBO3T6XSquLj4pvYJAABi3y2hrHzx4kX5fD6lp6cHLU9PT9ef//znPrdra2vTiBEj1N3dLbvdrtdff13Tp0+XJHk8nsA+rt3n1d9dq7u7W93d3YGfvV5vKIcBAACiTEjB0l9JSUk6cOCAOjo65Ha7VV1drZycHH31q1/t1/7q6upUW1sb3iEBAICxQjollJqaKrvdrpaWlqDlLS0tcrlcff8hcXEaO3asCgoK9IMf/EDf/OY3VVdXJ0mB7ULZ5/Lly9XW1hZ4nTlzJpTDAAAAUSakYImPj9eUKVPkdrsDy/x+v9xut0pKSm56P36/P3BKJzs7Wy6XK2ifXq9X+/bt63OfCQkJSk5ODnoBAIDYFfIpoerqas2fP1+FhYUqKirS6tWr1dnZqaqqKknSvHnzNGLEiMAnKHV1dSosLFRubq66u7v1q1/9Slu2bNG6deskSTabTUuWLNGLL76ocePGKTs7WytWrFBmZqbmzJkTviMFAABRK+Rgqays1IULF7Ry5Up5PB4VFBSovr4+cNHs6dOnFRf32Qc3nZ2d+t73vqezZ88qMTFReXl52rp1qyorKwPrLF26VJ2dnXr88cfV2tqq++67T/X19XI4HGE4RAAAEO1Cfg6LiXgOCwAA0WfAnsMCAAAQCQQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwHsECAACMR7AAAADjESwAAMB4BAsAADAewQIAAIxHsAAAAOMRLAAAwHgECwAAMB7BAgAAjEewAAAA4xEsAADAeAQLAAAwXr+CZe3atRozZowcDoeKi4vV2NjY57obNmzQ/fffr+HDh2v48OEqLS3tsf6jjz4qm80W9CovL+/PaAAAIAaFHCw7duxQdXW1ampq1NTUpEmTJqmsrEznz5/vdf09e/bo4Ycf1m9/+1s1NDQoKytLM2bM0Icffhi0Xnl5uZqbmwOvbdu29e+IAABAzLFZlmWFskFxcbGmTp2qNWvWSJL8fr+ysrL05JNPatmyZTfc3ufzafjw4VqzZo3mzZsn6conLK2trdq5c2foRyDJ6/XK6XSqra1NycnJ/doHAAAYXKG8f4f0Ccvly5e1f/9+lZaWfraDuDiVlpaqoaHhpvbxySef6P/+7/+UkpIStHzPnj1KS0vT+PHjtWjRIl26dKnPfXR3d8vr9Qa9AABA7AopWC5evCifz6f09PSg5enp6fJ4PDe1j2eeeUaZmZlB0VNeXq7NmzfL7Xbr5Zdf1nvvvaeZM2fK5/P1uo+6ujo5nc7AKysrK5TDAAAAUeaWwfzDXnrpJW3fvl179uyRw+EILH/ooYcC/3zXXXdp4sSJys3N1Z49ezRt2rQe+1m+fLmqq6sDP3u9XqIFAIAYFtInLKmpqbLb7WppaQla3tLSIpfLdd1t/+3f/k0vvfSSfvOb32jixInXXTcnJ0epqak6fvx4r79PSEhQcnJy0AsAAMSukIIlPj5eU6ZMkdvtDizz+/1yu90qKSnpc7tXXnlFq1atUn19vQoLC2/455w9e1aXLl1SRkZGKOMBAIAYFfJtzdXV1dqwYYM2bdqkP/3pT1q0aJE6OztVVVUlSZo3b56WL18eWP/ll1/WihUrtHHjRo0ZM0Yej0cej0cdHR2SpI6ODv3whz/U7373O506dUput1uzZ8/W2LFjVVZWFqbDBAAA0Szka1gqKyt14cIFrVy5Uh6PRwUFBaqvrw9ciHv69GnFxX3WQevWrdPly5f1zW9+M2g/NTU1+tGPfiS73a6DBw9q06ZNam1tVWZmpmbMmKFVq1YpISHhCx4eAACIBSE/h8VEPIcFAIDoM2DPYQEAAIgEggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxiNYAACA8QgWAABgvJAfzT+U+PyWGk9+pPPtXUpLcqgoO0X2OFukxwIAYMghWPpQf7hZtbuOqLmtK7Asw+lQTUW+yifwLdIAAAwmTgn1ov5wsxZtbQqKFUnytHVp0dYm1R9ujtBkAAAMTQTLNXx+S7W7jqi3b4S8uqx21xH5/FH/nZEAAEQNguUajSc/6vHJyudZkprbutR48qPBGwoAgCGOYLnG+fa+Y6U/6wEAgC+OYLlGWpIjrOsBAIAvjmC5RlF2ijKcDvV187JNV+4WKspOGcyxAAAY0giWa9jjbKqpyJekHtFy9eeainyexwIAwCAiWHpRPiFD6x6ZLJcz+LSPy+nQukcm8xwWAAAGGQ+O60P5hAxNz3fxpFsAAAxAsFyHPc6mktzbIz0GAABDHqeEAACA8QgWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPFi4km3lmVJkrxeb4QnAQAAN+vq+/bV9/HriYlgaW9vlyRlZWVFeBIAABCq9vZ2OZ3O665js24mawzn9/t17tw5JSUlyWYL75cTer1eZWVl6cyZM0pOTg7rvk0Q68cnxf4xcnzRL9aPkeOLfgN1jJZlqb29XZmZmYqLu/5VKjHxCUtcXJxGjhw5oH9GcnJyzP6HKMX+8Umxf4wcX/SL9WPk+KLfQBzjjT5ZuYqLbgEAgPEIFgAAYDyC5QYSEhJUU1OjhISESI8yIGL9+KTYP0aOL/rF+jFyfNHPhGOMiYtuAQBAbOMTFgAAYDyCBQAAGI9gAQAAxiNYAACA8QiWPvzP//yPKioqlJmZKZvNpp07d0Z6pLCqq6vT1KlTlZSUpLS0NM2ZM0dHjx6N9Fhhs27dOk2cODHwkKOSkhL9+te/jvRYA+all16SzWbTkiVLIj1K2PzoRz+SzWYLeuXl5UV6rLD68MMP9cgjj+j2229XYmKi7rrrLn3wwQeRHitsxowZ0+Pfoc1m0+LFiyM9Wlj4fD6tWLFC2dnZSkxMVG5urlatWnVT34sTLdrb27VkyRKNHj1aiYmJuueee/T+++9HZJaYeNLtQOjs7NSkSZO0YMECPfjgg5EeJ+zee+89LV68WFOnTtWnn36qZ599VjNmzNCRI0c0bNiwSI/3hY0cOVIvvfSSxo0bJ8uytGnTJs2ePVu///3vdeedd0Z6vLB6//339bOf/UwTJ06M9Chhd+edd+q//uu/Aj/fckvs/C/r448/1r333quvfe1r+vWvf6077rhDx44d0/DhwyM9Wti8//778vl8gZ8PHz6s6dOn61vf+lYEpwqfl19+WevWrdOmTZt055136oMPPlBVVZWcTqe+//3vR3q8sPjud7+rw4cPa8uWLcrMzNTWrVtVWlqqI0eOaMSIEYM7jIUbkmS98847kR5jQJ0/f96SZL333nuRHmXADB8+3Pr3f//3SI8RVu3t7da4ceOs//zP/7S+8pWvWE899VSkRwqbmpoaa9KkSZEeY8A888wz1n333RfpMQbVU089ZeXm5lp+vz/So4TFrFmzrAULFgQte/DBB625c+dGaKLw+uSTTyy73W798pe/DFo+efJk67nnnhv0eTglBElSW1ubJCklJSXCk4Sfz+fT9u3b1dnZqZKSkkiPE1aLFy/WrFmzVFpaGulRBsSxY8eUmZmpnJwczZ07V6dPn470SGHzH//xHyosLNS3vvUtpaWl6ctf/rI2bNgQ6bEGzOXLl7V161YtWLAg7F9SGyn33HOP3G63/vKXv0iS/vCHP2jv3r2aOXNmhCcLj08//VQ+n08OhyNoeWJiovbu3Tvo88TO56voN7/fryVLlujee+/VhAkTIj1O2Bw6dEglJSXq6urS3/3d3+mdd95Rfn5+pMcKm+3bt6upqSli55MHWnFxsd566y2NHz9ezc3Nqq2t1f3336/Dhw8rKSkp0uN9YX/961+1bt06VVdX69lnn9X777+v73//+4qPj9f8+fMjPV7Y7dy5U62trXr00UcjPUrYLFu2TF6vV3l5ebLb7fL5fPrxj3+suXPnRnq0sEhKSlJJSYlWrVqlv//7v1d6erq2bdumhoYGjR07dvAHGvTPdKKQYvyU0D//8z9bo0ePts6cORPpUcKqu7vbOnbsmPXBBx9Yy5Yts1JTU60//vGPkR4rLE6fPm2lpaVZf/jDHwLLYu2U0LU+/vhjKzk5OWZO633pS1+ySkpKgpY9+eST1t133x2hiQbWjBkzrH/8x3+M9BhhtW3bNmvkyJHWtm3brIMHD1qbN2+2UlJSrLfeeivSo4XN8ePHrQceeMCSZNntdmvq1KnW3Llzrby8vEGfhWC5CbEcLIsXL7ZGjhxp/fWvf430KANu2rRp1uOPPx7pMcLinXfeCfwP5OpLkmWz2Sy73W59+umnkR5xQBQWFlrLli2L9BhhMWrUKOuxxx4LWvb6669bmZmZEZpo4Jw6dcqKi4uzdu7cGelRwmrkyJHWmjVrgpatWrXKGj9+fIQmGjgdHR3WuXPnLMuyrG9/+9vW17/+9UGfgWtYhijLsvTEE0/onXfe0X//938rOzs70iMNOL/fr+7u7kiPERbTpk3ToUOHdODAgcCrsLBQc+fO1YEDB2S32yM9Yth1dHToxIkTysjIiPQoYXHvvff2eJTAX/7yF40ePTpCEw2cN998U2lpaZo1a1akRwmrTz75RHFxwW+jdrtdfr8/QhMNnGHDhikjI0Mff/yxdu/erdmzZw/6DFzD0oeOjg4dP3488PPJkyd14MABpaSkaNSoURGcLDwWL16sX/ziF3r33XeVlJQkj8cjSXI6nUpMTIzwdF/c8uXLNXPmTI0aNUrt7e36xS9+oT179mj37t2RHi0skpKSelxvNGzYMN1+++0xcx3S008/rYqKCo0ePVrnzp1TTU2N7Ha7Hn744UiPFhb/8i//onvuuUc/+clP9O1vf1uNjY1644039MYbb0R6tLDy+/168803NX/+/Ji6LV2SKioq9OMf/1ijRo3SnXfeqd///vd69dVXtWDBgkiPFja7d++WZVkaP368jh8/rh/+8IfKy8tTVVXV4A8z6J/pRInf/va3lqQer/nz50d6tLDo7dgkWW+++WakRwuLBQsWWKNHj7bi4+OtO+64w5o2bZr1m9/8JtJjDahYu4alsrLSysjIsOLj460RI0ZYlZWV1vHjxyM9Vljt2rXLmjBhgpWQkGDl5eVZb7zxRqRHCrvdu3dbkqyjR49GepSw83q91lNPPWWNGjXKcjgcVk5OjvXcc89Z3d3dkR4tbHbs2GHl5ORY8fHxlsvlshYvXmy1trZGZBabZcXQI/kAAEBM4hoWAABgPIIFAAAYj2ABAADGI1gAAIDxCBYAAGA8ggUAABiPYAEAAMYjWAAAgPEIFgAAYDyCBQAAGI9gAQAAxiNYAACA8f4fJQzu+0sWwY4AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Al evaluar diferentes modelos de regresión en función del score obtenido en el cross validation, se observa que el modelo GradientBoostingRegressor obtiene el mejor resultado igual a 0.617."
],
"metadata": {
"id": "t662zJc5zWJT"
}
},
{
"cell_type": "markdown",
"source": [
"**GradientBoostingRegressor + GridSearchCV**"
],
"metadata": {
"id": "o7DEOSdg6rrC"
}
},
{
"cell_type": "markdown",
"source": [
"Aunque la estrategia óptima sería aplicar GridSearch a todos los métodos antes de realizar la validación cruzada, en esta ocasión se optó por emplearlo únicamente en el algoritmo que mostró los mejores resultados. Esta elección se basa en la consideración del tiempo de cálculo, ya que aplicar GridSearch a todos los métodos es computacionalmente costoso."
],
"metadata": {
"id": "rbBKpyw6jcuI"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import GridSearchCV"
],
"metadata": {
"id": "LohYvQMZ637O"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se escogen algunos hiperparámetros a optimizar del método."
],
"metadata": {
"id": "9L1ESILOj23X"
}
},
{
"cell_type": "code",
"source": [
"model = GradientBoostingRegressor()\n",
"grid = dict()\n",
"grid['n_estimators'] = [50, 100, 500]\n",
"grid['learning_rate'] = [0.01, 0.1, 1.0]\n",
"grid['subsample'] = [0.5, 0.7, 1.0]\n",
"grid['max_depth'] = [3, 5, 7]"
],
"metadata": {
"id": "oDvQDxuO7iyn"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=10)\n",
"grid_result = grid_search.fit(X, y)"
],
"metadata": {
"id": "wjPHRu_-70WM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"grid_result.best_score_"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "eD-GuKC4D14U",
"outputId": "443d6ffa-c0e7-4093-d513-fc9423bad517"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.617930658523954"
]
},
"metadata": {},
"execution_count": 84
}
]
},
{
"cell_type": "markdown",
"source": [
"Los mejores parámetros son:"
],
"metadata": {
"id": "xzdHH2-2j69B"
}
},
{
"cell_type": "code",
"source": [
"grid_result.best_params_"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qiAuY5hz_xqF",
"outputId": "e936f8b2-0538-4ba6-8ddb-5b694c617fc1"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 100, 'subsample': 0.5}"
]
},
"metadata": {},
"execution_count": 85
}
]
},
{
"cell_type": "markdown",
"source": [
"Ahora se entrena el modelo con esta selección de parámetros."
],
"metadata": {
"id": "hS13ulWTj9Hz"
}
},
{
"cell_type": "code",
"source": [
"model = GradientBoostingRegressor(learning_rate= 0.1, max_depth= 3, n_estimators= 100, subsample= 0.5)"
],
"metadata": {
"id": "6VmTKcrBD55V"
},
"execution_count": 88,
"outputs": []
},
{
"cell_type": "code",
"source": [
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "t4QpssuPEL4_"
},
"execution_count": 89,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se aplica la eliminación de características recursivas."
],
"metadata": {
"id": "huuGjdR6kBqs"
}
},
{
"cell_type": "code",
"source": [
"model.fit(X_train,y_train)\n",
"print(\"R^2:\", round(model.score(X_train, y_train),3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "HMCH2A_rE278",
"outputId": "cda7a041-89f0-4553-d43a-3666c85ace5b"
},
"execution_count": 90,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.847\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"y_pred=model.predict(X_test)\n",
"print(\"R^2:\", r2_score(y_test, y_pred).round(3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qUyv43teFFAB",
"outputId": "3ff4245d-a7f4-403c-f4d6-4b7901522e68"
},
"execution_count": 92,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.818\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(\"Error absoluto medio: %.2f\" % mean_absolute_error(y_test, y_pred), \"ºC\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Mda3cE74X0nF",
"outputId": "25ef451c-ba80-400b-9b6a-0a3c7eb1dbce"
},
"execution_count": 93,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Error absoluto medio: 1.50 ºC\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import PredictionErrorDisplay\n",
"\n",
"fig, axs = plt.subplots(ncols=2, figsize=(8, 4))\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"actual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[0],\n",
" random_state=0,\n",
")\n",
"axs[0].set_title(\"Actual vs. Predicted values\")\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"residual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[1],\n",
" random_state=0,\n",
")\n",
"axs[1].set_title(\"Residuals vs. Predicted Values\")\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"id": "2Kq5GQvGFJqQ",
"outputId": "661566e5-77d1-422d-8912-60ebd142f32a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 407
}
},
"execution_count": 94,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wc1dW/nylb1WVJlnuRDdjGlGCMMWAbDJgSQocACcYBXgPmheAfEEpCDTiEUPImFAOJQxKIqQ4loYVmWgADxgXbuFfJlqyy0vaZub8/Zne1K616l+/z+ThBs7Mzd2Zn7r3nnnO+RxFCCCQSiUQikUgkEomkA6g93QCJRCKRSCQSiUTS95GGhUQikUgkEolEIukw0rCQSCQSiUQikUgkHUYaFhKJRCKRSCQSiaTDSMNCIpFIJBKJRCKRdBhpWEgkEolEIpFIJJIOIw0LiUQikUgkEolE0mGkYSGRSCQSiUQikUg6jDQsJBKJRCKRSCQSSYeRhoWkz6EoCnfccUdPN6NXcscdd6AoSsq2kSNHcskll/RMg9KQro3dwSWXXMLIkSO7/bwSSX+lLe9yd/TbM2bMYMaMGV16jv6MHD+a5i9/+QuKorBly5ZuP3dfQxoW+ziPPvooiqJwxBFHtPsYu3bt4o477mD58uWd17A+iqIoiX+qqjJ48GBOPPFEPvjgg55uWpuQv6lE0neIT3ri/3RdZ8iQIVxyySXs3Lmzp5snaSVy/Og40WiUgoICjj766Cb3EUIwbNgwfvCDH3Rjy/Yd9J5ugKRneeaZZxg5ciRffPEFGzZsYMyYMW0+xq5du7jzzjsZOXIkhxxySOc3so9xwgkncPHFFyOEYPPmzTz66KMcd9xx/Otf/+Lkk0/u9vasW7cOVW3bGoL8TSWSvsddd93FqFGjCIVC/Pe//+Uvf/kLH3/8MatWrcLtdnf6+X75y19y0003dfpx92Xk+NExHA4H5557LgsXLmTr1q2MGDGi0T5Lly5lx44dXHfddd3atn0F6bHYh9m8eTOffvopDz74IIWFhTzzzDM93aR+wX777cdPfvITfvrTn3LbbbfxzjvvIITg4YcfbvI7oVAIy7K6pD0ulwuHw9Elx5ZIJL2Hk08+mZ/85CdcdtllPPXUU1x//fVs3LiRV199tUvOp+t6lxgs+zJy/Og4F110EUII/vGPf6T9/Nlnn0VVVX784x93c8v2DaRhsQ/zzDPPkJeXx6mnnso555zTpGFRXV3Nddddx8iRI3G5XAwdOpSLL76YiooKPvjgAw4//HAA5syZk3Dj/uUvfwGajs9sGAsbiUS47bbbOOyww8jJySEjI4NjjjmG999/v83XtXv3bnRd584772z02bp161AUhT/+8Y+A7Ta98847GTt2LG63mwEDBnD00UfzzjvvtPm8TTFx4kQKCgrYvHkzAB988AGKorB48WJ++ctfMmTIELxeLz6fD4DPP/+ck046iZycHLxeL9OnT+eTTz5pdNyPP/6Yww8/HLfbTUlJCQsXLkx7/nS/QUd+065oY0OuvvpqMjMzCQQCjT674IILKC4uxjRNAF555RVOPfVUBg8ejMvloqSkhLvvvjvxeVPEf4eGYQZbtmxpdL0Aa9eu5ZxzziE/Px+3282kSZMaTdi643mSSFrLMcccA8DGjRtTtnfWs5wu3j0cDnPddddRWFhIVlYWP/rRj9ixY0ejtjWV85TumIsWLeK4446jqKgIl8vF+PHjeeyxx1p1D/7whz8wYcIEvF4veXl5TJo0iWeffbbJ/eX4kUpfHD+OOuooRo4cmfZ3jkajvPjiixx77LEMHjyYFStWcMkllzB69GjcbjfFxcX87Gc/Y+/evS2ep6m8oabu2c9//nOGDRuGy+VizJgx3HfffY0MwsWLF3PYYYeRlZVFdnY2EydO5Pe//32rrru3IEOh9mGeeeYZzjrrLJxOJxdccAGPPfYYX375ZaJTAKirq+OYY45hzZo1/OxnP+MHP/gBFRUVvPrqq+zYsYNx48Zx1113cdttt/E///M/iYFs6tSpbWqLz+fjqaee4oILLuDyyy+ntraWP/3pT8yaNYsvvviiTe7UgQMHMn36dJ5//nluv/32lM+ee+45NE3j3HPPBexBbMGCBVx22WVMnjwZn8/HsmXL+PrrrznhhBPadA1NUVVVRVVVVaMws7vvvhun08n1119POBzG6XTy3nvvcfLJJ3PYYYdx++23o6pqYlD96KOPmDx5MgArV67kxBNPpLCwkDvuuAPDMLj99tsZOHBgi+3p6G/aHW08//zzeeSRR/jXv/6V+K0AAoEAr732GpdccgmapgF2fHlmZibz588nMzOT9957j9tuuw2fz8f999/fil+oZVavXs1RRx3FkCFDuOmmm8jIyOD555/njDPO4KWXXuLMM88Euud5kkhaSzzRNC8vL7Gtq5/lyy67jL///e9ceOGFTJ06lffee49TTz21Q9fx2GOPMWHCBH70ox+h6zqvvfYaV111FZZlMW/evCa/9+STT3LNNddwzjnncO211xIKhVixYgWff/45F154YdrvyPGjefrC+KEoChdeeCH33nsvq1evZsKECYnP3nzzTSorK7nooosAeOedd9i0aRNz5syhuLiY1atX88QTT7B69Wr++9//dkqieCAQYPr06ezcuZO5c+cyfPhwPv30U26++WZKS0sT3qh33nmHCy64gJkzZ3LfffcBsGbNGj755BOuvfbaDrej2xCSfZJly5YJQLzzzjtCCCEsyxJDhw4V1157bcp+t912mwDEyy+/3OgYlmUJIYT48ssvBSAWLVrUaJ8RI0aI2bNnN9o+ffp0MX369MTfhmGIcDicsk9VVZUYOHCg+NnPfpayHRC33357s9e3cOFCAYiVK1embB8/frw47rjjEn8ffPDB4tRTT232WG0BEJdeeqkoLy8Xe/bsEZ9//rmYOXOmAMQDDzwghBDi/fffF4AYPXq0CAQCie9aliXGjh0rZs2albi3QggRCATEqFGjxAknnJDYdsYZZwi32y22bt2a2Pbdd98JTdNEw9e64W/Qkd+0q9qYrh1DhgwRZ599dsr2559/XgBi6dKlKeduyNy5c4XX6xWhUCixbfbs2WLEiBGJv+O/w/vvv5/y3c2bNze69pkzZ4qJEyemHM+yLDF16lQxduzYxLbOfp4kktawaNEiAYj//Oc/ory8XGzfvl28+OKLorCwULhcLrF9+/bEvp35LN9+++0p7/Ly5csFIK666qqU/S688MJG/XbD97GpYwqR/h2fNWuWGD16dMq2huPK6aefLiZMmNDsNaRDjh/19MXxQwghVq9eLQBx8803p2z/8Y9/LNxut6ipqUmcuyH/+Mc/Go0z8Xds8+bNiW1NzUUa3rO7775bZGRkiO+//z5lv5tuuklomia2bdsmhBDi2muvFdnZ2cIwjBavrzcjQ6H2UZ555hkGDhzIscceC9gW/vnnn8/ixYtTQkheeuklDj744MQqVjKdKfmmaRpOpxMAy7KorKzEMAwmTZrE119/3ebjnXXWWei6znPPPZfYtmrVKr777jvOP//8xLbc3FxWr17N+vXrO34RMf70pz9RWFhIUVERRxxxBJ988gnz58/n5z//ecp+s2fPxuPxJP5evnw569ev58ILL2Tv3r1UVFRQUVGB3+9n5syZLF26FMuyME2Tt956izPOOIPhw4cnvj9u3DhmzZrVYvs68pt2VxsVReHcc8/l3//+N3V1dYntzz33HEOGDElR/Ei+h7W1tVRUVHDMMccQCARYu3Zti+dqicrKSt577z3OO++8xPErKirYu3cvs2bNYv369Qnlna54niSS1nL88cdTWFjIsGHDOOecc8jIyODVV19l6NChQNc/y//+978BuOaaa1K2N+z72kryO15TU0NFRQXTp09n06ZN1NTUNPm93NxcduzYwZdfftmm88nxo2n6wvgBMH78eA499FAWL16c2Ob3+3n11Vf54Q9/SHZ2NpD6bIVCISoqKpgyZQpAu+Ye6XjhhRc45phjyMvLS1xzRUUFxx9/PKZpsnTpUsB+nvx+f58PnZWGxT6IaZosXryYY489ls2bN7NhwwY2bNjAEUccwe7du3n33XcT+27cuJEDDzywW9r19NNPc9BBByViVQsLC/nXv/7V7MDRFAUFBcycOZPnn38+se25555D13XOOuusxLa77rqL6upq9ttvPyZOnMgNN9zAihUrOnQdp59+Ou+88w7/+c9/+Pzzz6moqOCBBx5opKwxatSolL/jg9Ps2bMpLCxM+ffUU08RDoepqamhvLycYDDI2LFjG517//33b7F9HflNu6uNYIdDBYPBROx3XV0d//73vzn33HNTBrDVq1dz5plnkpOTQ3Z2NoWFhfzkJz8BaNez05ANGzYghOBXv/pVo2uOh0rs2bMH6JrnSSJpLY888gjvvPMOL774IqeccgoVFRW4XK7E5139LG/duhVVVSkpKUnZ3tp3vik++eQTjj/+eDIyMsjNzaWwsJBbbrkFaP4d/8UvfkFmZiaTJ09m7NixzJs3L20sf0Pk+NE0fWX8ADuJOy5SA/DPf/6TQCCQCIMC29i+9tprGThwIB6Ph8LCwsS97YzxA+zrfvPNNxtd8/HHHw/Uv3NXXXUV++23HyeffDJDhw7lZz/7GW+++WantKE7kTkW+yDvvfcepaWlLF68OMWaj/PMM89w4okndsq5mlrBME0zESMP8Pe//51LLrmEM844gxtuuIGioiI0TWPBggWNEg9by49//GPmzJnD8uXLOeSQQ3j++eeZOXMmBQUFiX2mTZvGxo0beeWVV3j77bd56qmneOihh3j88ce57LLL2nXeoUOHJjqM5kheKQESSVz3339/kzklmZmZhMPhdrWrM+jONk6ZMoWRI0fy/PPPc+GFF/Laa68RDAZTVgyrq6uZPn062dnZ3HXXXZSUlOB2u/n666/5xS9+0axSSnPPZjLxY1x//fVNrpbF45+74nmSSFrL5MmTmTRpEgBnnHEGRx99NBdeeCHr1q0jMzOzVz3LrX3/Nm7cyMyZMznggAN48MEHGTZsGE6nk3//+9889NBDzb7j48aNY926dbz++uu8+eabvPTSSzz66KPcdtttaZOzk5HjR+fT3W284IILuPHGG3n22WeZOnUqzz77LHl5eZxyyimJfc477zw+/fRTbrjhBg455JDEe3LSSSe1W2kr3RhywgkncOONN6bdf7/99gOgqKiI5cuX89Zbb/HGG2/wxhtvsGjRIi6++GKefvrpdrWlJ5CGxT7IM888Q1FREY888kijz15++WWWLFnC448/jsfjoaSkhFWrVjV7vObcn3l5eVRXVzfavnXrVkaPHp34+8UXX2T06NG8/PLLKcdrmDzXFs444wzmzp2bcGd///333HzzzY32y8/PZ86cOcyZM4e6ujqmTZvGHXfc0e0TwfgqX3Z2drMDS2FhIR6PJ637fd26da06T3t/0+5qY5zzzjuP3//+9/h8Pp577jlGjhyZcFODrZCyd+9eXn75ZaZNm5bYHldQaY54QmvD53Pr1q0pf8efU4fD0aoBv7c8T5J9m/jCzLHHHssf//hHbrrppi5/lkeMGIFlWWzcuDFlZTndO9/c2JDMa6+9Rjgc5tVXX00Ji2mtYmBGRgbnn38+559/PpFIhLPOOot77rmHm2++uVmpXDl+NH2evjJ+DB48mGOPPZYXXniBX/3qV7zzzjtccsklibDrqqoq3n33Xe68805uu+22xPdaG9qW7hmORCKUlpambCspKaGurq5V75zT6eS0007jtNNOw7IsrrrqKhYuXMivfvWrdtUZ6wlkKNQ+RjAY5OWXX+aHP/wh55xzTqN/V199NbW1tYnwk7PPPptvv/2WJUuWNDqWEAKwO25oPEED+4X673//SyQSSWx7/fXX2b59e8p+ce9F/JhgS9J99tln7b7W3NxcZs2axfPPP8/ixYtxOp2cccYZKfs0lJTLzMxkzJgxKSsmNTU1rF27ttPcok1x2GGHUVJSwu9+97uUvII45eXlgH2vZs2axT//+U+2bduW+HzNmjW89dZbLZ6nI79pd7Uxzvnnn084HObpp5/mzTff5Lzzzkv5PN1zE4lEePTRR1s89ogRI9A0LRHfGqfhd4uKipgxYwYLFy5sNGBA/TVD654niaS7mDFjBpMnT+bhhx8mFAp1+bMcL+D2f//3fynb09VgKCkpoaamJiV0qLS0tFG/lO4dr6mpYdGiRU22o6lrcDqdjB8/HiEE0Wi02e/K8SM9fWn8ADscas+ePcydO5doNJoSBpXu2YL0z2s6SkpKGo0fTzzxRCOPxXnnncdnn32Wtu3V1dUYhgE0fp5UVeWggw4C6FNjiPRY7GO8+uqr1NbW8qMf/Sjt51OmTEkUyzv//PO54YYbePHFFzn33HP52c9+xmGHHUZlZSWvvvoqjz/+OAcffDAlJSXk5uby+OOPk5WVRUZGBkcccQSjRo3isssu48UXX+Skk07ivPPOY+PGjfz9739vFIP7wx/+kJdffpkzzzyTU089lc2bN/P4448zfvz4tB1Qazn//PP5yU9+wqOPPsqsWbPIzc1N+Xz8+PHMmDGDww47jPz8fJYtW8aLL77I1VdfndhnyZIlzJkzh0WLFqWtydFZqKrKU089xcknn8yECROYM2cOQ4YMYefOnbz//vtkZ2fz2muvAXDnnXfy5ptvcswxx3DVVVdhGEZCr72lGN+O/qbd0cY4P/jBDxgzZgy33nor4XA4JQwKbAnDvLw8Zs+ezTXXXIOiKPztb39rNFCkIycnh3PPPZc//OEPKIpCSUkJr7/+eiLeNZlHHnmEo48+mokTJ3L55ZczevRodu/ezWeffcaOHTv49ttvgdY9TxJJd3LDDTdw7rnn8pe//IUrrriiS5/lQw45hAsuuIBHH32Umpoapk6dyrvvvsuGDRsa7fvjH/+YX/ziF5x55plcc801BAIBHnvsMfbbb7+UpNkTTzwxsYo7d+5c6urqePLJJykqKkprHCVz4oknUlxczFFHHcXAgQNZs2YNf/zjHzn11FPJyspq8d7J8aMxfWn8ANsQuuqqq3jllVcYNmxYimc7OzubadOm8dvf/pZoNMqQIUN4++23W+XxBlta+YorruDss8/mhBNO4Ntvv+Wtt95KCZeL37N40vgll1zCYYcdht/vZ+XKlbz44ots2bKFgoICLrvsMiorKznuuOMYOnQoW7du5Q9/+AOHHHII48aNa/U19zg9pEYl6SFOO+004Xa7hd/vb3KfSy65RDgcDlFRUSGEEGLv3r3i6quvFkOGDBFOp1MMHTpUzJ49O/G5EEK88sorYvz48ULX9UYycw888IAYMmSIcLlc4qijjhLLli1rJAtoWZa49957xYgRI4TL5RKHHnqoeP3119NKEtIKudk4Pp9PeDweAYi///3vjT7/9a9/LSZPnixyc3OFx+MRBxxwgLjnnntEJBJJ7BOXmUsnp9sQQMybN6/ZfeJygS+88ELaz7/55htx1llniQEDBgiXyyVGjBghzjvvPPHuu++m7Pfhhx+Kww47TDidTjF69Gjx+OOPp5VqTCf529HftLPb2By33nqrAMSYMWPSfv7JJ5+IKVOmCI/HIwYPHixuvPFG8dZbbzWSkk33LJWXl4uzzz5beL1ekZeXJ+bOnStWrVqV9vfeuHGjuPjii0VxcbFwOBxiyJAh4oc//KF48cUXE/u05nmSSDqbeB/15ZdfNvrMNE1RUlIiSkpKEjKWnfUsp3uXg8GguOaaa8SAAQNERkaGOO2008T27dvT9ttvv/22OPDAA4XT6RT777+/+Pvf/572mK+++qo46KCDhNvtFiNHjhT33Xef+POf/9xI/rPhuLJw4UIxbdq0RD9VUlIibrjhhoTUaEvI8aPvjx9CCHHuuecKQNx4442NPtuxY4c488wzRW5ursjJyRHnnnuu2LVrV6PnNZ3crGma4he/+IUoKCgQXq9XzJo1S2zYsCHtPautrRU333yzGDNmjHA6naKgoEBMnTpV/O53v0s8Ly+++KI48cQTRVFRkXA6nWL48OFi7ty5orS0tE3X29MoQrRiaU8ikUgkEolEIpFImkHmWEgkEolEIpFIJJIOIw0LiUQikUgkEolE0mGkYSGRSCQSiUQikUg6jDQsJBKJRCKRSCQSSYeRhoVEIpFIJBKJRCLpMNKwkEgkEolEIpFIJB1GFshrJ5ZlsWvXLrKysposXy+RSCR9HSEEtbW1DB48GFWVa1HJyHFAIpHsC7RlHJCGRTvZtWsXw4YN6+lmSCQSSbewfft2hg4d2tPN6FXIcUAikexLtGYckIZFO8nKygLsm5ydnd3DrZFIJJKuwefzMWzYsESfJ6lHjgMSiWRfoC3jgDQs2knc7Z2dnS0HFIlE0u+RoT6NkeOARCLZl2jNOCADZiUSiUQikUgkEkmHkR4LiUQiiWFZgtW7fFQGIuR7nUwYnI2qypV6iUQikUhaQ496LB577DEOOuighBv5yCOP5I033kh8/sQTTzBjxgyys7NRFIXq6uoOHxMgFAoxb948BgwYQGZmJmeffTa7d+/u7MuTSCR9iE83VDB70RfM/dsyrn/+W+b+bRmzF33BpxsqerppEolEIpH0CXrUsBg6dCi/+c1v+Oqrr1i2bBnHHXccp59+OqtXrwYgEAhw0kknccstt3TaMQGuu+46XnvtNV544QU+/PBDdu3axVlnndXp1yeRSPoGn26o4JYlK1lT6iPDpVOU5SLDpbOmtJZblqyUxoVEIpFIJK1AEUKInm5EMvn5+dx///1ceumliW0ffPABxx57LFVVVeTm5nbomDU1NRQWFvLss89yzjnnALB27VrGjRvHZ599xpQpU1p1TJ/PR05ODjU1NTJpTyLpw1iWYPaiL1hT6qM4252SnCaEoMwXZtygLJ6eM3mfDIuSfV3TyHsjkUj2BdrS1/Wa5G3TNFm8eDF+v58jjzyyy4751VdfEY1GOf744xP7HXDAAQwfPpzPPvusyWOFw2F8Pl/KP4lE0vdZvcvHxj115HmdjRQvFEUh1+tg4546Vu/qu++83+/v6SZIJBKJZB+gxw2LlStXkpmZicvl4oorrmDJkiWMHz++y45ZVlaG0+ls5PkYOHAgZWVlTR5zwYIF5OTkJP7JokgSSf+gMhAhagqcWvru0KWpRC1BZSDSzS3rHFatWsWll17Kp59+2tNNkUgkvRDLEqzcUcOH35ezckcNltWrAlkkfYweNyz2339/li9fzueff86VV17J7Nmz+e6773rdMW+++WZqamoS/7Zv396h40kkkt5BvteJQ1OImFbaz8OmhUNVyPc6u7llHWfVqlXccccd+P1+/vOf/9DLIl97BTt37uQnP/kJAwYMwOPxMHHiRJYtW9bTzZJIugUpWiHpbHpcbtbpdDJmzBgADjvsML788kt+//vfs3Dhwi45ZnFxMZFIhOrq6hSvxe7duykuLm7ymC6XC5fL1e42SSSS3smEwdmUFGWyprSW4my1UY5FdSDKuEFZTBjct2Lo40ZFOBzmBz/4ATfddJMscteAqqoqjjrqKI499ljeeOMNCgsLWb9+PXl5eT3dNImky4mLVtSFDfK8TpyaSsS0EqIV9545kaljCnq6mZI+Ro97LBpiWRbhcLjLjnnYYYfhcDh49913E5+vW7eObdu2dVpuh0Qi6TuoqsKV00vIdGmU+cIEoyaWJQhGTcp8YTJdGldOL+lTidsNjYpbb70Vp7PveVy6mvvuu49hw4axaNEiJk+ezKhRozjxxBMpKSnp6aZJJF2KZQke+3AjdWGD4mw3boeGqiq4HRrF2S7qwiaPfbhRhkVJ2kyPGhY333wzS5cuZcuWLaxcuZKbb76ZDz74gIsuugiw8yGWL1/Ohg0bADt3Yvny5VRWViaOMXPmTP74xz+2+pg5OTlceumlzJ8/n/fff5+vvvqKOXPmcOSRR7ZaEUoikfQvpo4p4N4zJzJuUBaBsMGeujCBsMG4QVl9btVu06ZN0qhoJa+++iqTJk3i3HPPpaioiEMPPZQnn3yyyf2liIekv7AviFZIeoYeDYXas2cPF198MaWlpeTk5HDQQQfx1ltvccIJJwDw+OOPc+eddyb2nzZtGgCLFi3ikksuAWDjxo1UVFS0+pgADz30EKqqcvbZZxMOh5k1axaPPvpoN1yxRCLprUwdU8CU0QP6fOXt4cOHc8ghhxCNRqVR0QKbNm3iscceY/78+dxyyy18+eWXXHPNNTidTmbPnt1o/wULFqSMSRJJX6U1ohU1fVi0QtJz9Lo6Fn0FqV8ukUh6K4ZhYFlWpxgV/bmvczqdTJo0KUUx65prruHLL79MKz8eDodTQnV9Ph/Dhg3rl/dG0r9ZuaOGuX9bRoZLx+3QGn0ejJoEwgYLfzqJiUNzeqCFkt5En6xjIZFIJJL2sWrVKhYtWpRQfdJ1XXoqWsGgQYMayZuPGzeObdu2pd3f5XKRnZ2d8k8i6YvERSuqAtFGanFx0YqSosw+J1oh6XmkYSGRSCR9mHii9ssvv8ybb77Z083pUxx11FGsW7cuZdv333/PiBEjeqhFEkn30B9FKyS9A2lYSCQSSR+lofrTzJkze7pJfYrrrruO//73v9x7771s2LCBZ599lieeeIJ58+b1dNMkki6nP4lWSHoPPV7HQiKRSCRtR0rKdpzDDz+cJUuWcPPNN3PXXXcxatQoHn744YSKoETS3+kvohWS3oM0LCQSiaSPIY2KzuOHP/whP/zhD3u6GRJJj6GqikzQlnQaMhRKIpFI+hC1tbXcfffd0qiQSCQSSa9DeiwkEomkD5GVlcW8efP44IMPuOmmm6RRIZFI+jWWJWSoVh9CGhYSiUTSBxBCJCrkTps2jWOOOaZRxVyJRCLpT3y6oYLHPtzIxj11RE2BQ1MoKcrkyuklMrm8lyJDoSQSiaSXs2rVKn7+85+zd+/exDZpVEgkkv7MpxsquGXJStaU+shw6RRluchw6awpreWWJSv5dENFTzdRkgZpWEgkEkkvJp6ovWnTJhYvXtzTzZFIJL0EyxKs3FHDh9+Xs3JHDZYlWv5SH8GyBI99uJG6sEFxthu3Q0NVFdwOjeJsF3Vhk8c+3Nivrrmr6a7nRYZCSSQSSS+lofrT5Zdf3tNNkkgkvYD+HiK0epePjXvqyPM6G3lnFUUh1+tg4546Vu/ySUWrVtCdz4v0WEgkEkkvRErKSiSSdOwLIUKVgQhRU+DU0k9TXZpK1BJUBiLd3LK+R3c/L9KwkEgkkl6GNCokEkk69pUQoXyvE4emEDGttJ+HTQuHqpDvlf1ic/TE8yINC4lEIulFCCF46qmnpFEhkUga0ZYQob7MhMHZlBRlUhWIIkTqpFcIQXUgSklRJhMGZ/dQC/sGPfG8SMNCIpFIehGKonDbbbdxyimnSKNCIpGksK+ECKmqwpXTS8h0aZT5wgSjJpYlCEZNynxhMl0aV04vkfUsWqAnnhdpWEgkkn2G3qyiUltbm/jv/Px8rrzySmlUSCSSFPalEKGpYwq498yJjBuURSBssKcuTCBsMG5QFveeObFfJKl3NT3xvEhVKIlEsk/Qm1VUVq1axV133cWVV17Jscce26NtkUgkvZd4iNCa0lqKs9WU8JZ4iNC4QVndHiLUVdWxp44pYMroAbLydjvpiedFGhYSiaTfE1fFqAsb5HmdODWViGklVDF6cvUrOVF76dKlzJgxQxa/k0gkaYmHCN2yZCVlvjC5XgcuTSVsWlQHoj0SItTVizaqqkhJ2XbSE8+LDIWSSCT9mt6sotJQ/enmm2+WRoVEImmW3hQitC9I3/Z1uvt5kR4LiUTSr+mthZakpKxE0rl0VThOb6QrQ4Raex8bLtrE+1e3qlGcrVLmC/PYhxuZMnpAv/0d+grdGVImDQuJRNIviQ+OH36/h0DEJNfjSLufS1Op6WYVFWlUSCSdS2/OoeoquiJEqC33sbcu2kjS010hZdKwkEgk/Y7kwTEYNakNRdliWAzMcZPpSu32ekJF5auvvpJGhUTSSfTmHKq+RFvvY2ukTLt70UbS80jDQiKR9CsaDo65XgehqEUwarKzKsCQPG/CuOgpFZWLL76Y4uJijj32WGlUSCQdQIbjdA7tuY/JUqZuVWt0zP4kfStpPTJ5WyKR9BvSJWprqkpxjhtdVYiagrKaEKZpdXuhpU2bNhGNRgE7TGDWrFnSqJBIOsi+Uom6q2nPfZTVsSXpkIaFRCLpNzQ1OGa6dIbme3E7NCKGyS5fqFtVVFatWsWNN97IggULEsaFRCLpOPtKJequpj33UVbHlqRDhkJJJJJ+Q3ODY6ZLZ1SBl9KaEJcePYrp+xV1i2pMcqK2aZqNVvYkEkn7keE4nUN772NcyjSe01ZjCRyqwrhBWf06cV7SNNKwkEgk/YaWBseIKfA4NKbvV9Qt6hhS/Uki6Vp6ayXqvkZH7qOsji1JRoZCSSSSfkNvivmVRoVE0vXIcJzOoaP3MS5lOn2/QiYOzZH3ex9GGhYSiaTf0FsmGdKokEi6j95UibovI++jpDOQoVASiaRf0RtifjVNQ1EUaVRIJN2EDMfpHOR9lHQURchMwnbh8/nIycmhpqaG7GwZuymR9Dbilbd7anDcvHkzQ4YM6fNGhezrmmZfvTc9/W5JJJLupS19nfRYSCSSfkk85re7WLVqFV6vl9GjRwMwatSobju3RNJdJFe1j5oCh6ZQUpQpFYB6OYZh8dqKUnZWBxiS6+W0gwah6zIaXtL5SMNCIpFIOkg8p8LpdPLb3/6WoUOH9nSTJJJOp2FVe6emEjEt1pTWcsuSlTIOv5fy5NKNPPLBRmqDUSzs5No7X1/NvBklXD6tpKebJ+lnSHNVIpFIOkByovbYsWMpKirq6SZJ2slvfvMbFEXh5z//eU83pdeRrqq9qiq4HRrF2S7qwiaPfbgRy5LR1b2JJ5du5L4311ETiKKqCk5NQVUVagJR7ntzHU8u3djTTZT0M6RhIZFIJO1Eqj/1H7788ksWLlzIQQcd1NNN6ZU0VdUeQFEUcr0ONu6pY/UuXw+1UNIQw7B45IONmJbAqSvoqoqqqOiqilNXMC3BIx9sxDCsnm6qpB8hDQuJRCJpB9Ko6D/U1dVx0UUX8eSTT5KXl9fTzemVNFfVHsClqUQtQWUg0s0tkzTFaytKqQ1G0TUFVUn93VRFRdcUaoNRXltR2kMtlPRHZI6FRCKRtJH169dLo6IT2bx5Mx999BFbt24lEAhQWFjIoYceypFHHonb7e7y88+bN49TTz2V448/nl//+tddfr6+SEtV7cOmhUNVyPfK96C3sLM6gAXoTQh2qQqYsf0kks5CGhYSiUTSRoYNG8bYsWNxOp3SqOgAzzzzDL///e9ZtmwZAwcOZPDgwXg8HiorK9m4cSNut5uLLrqIX/ziF4wYMaJL2rB48WK+/vprvvzyyxb3DYfDhMPhxN8+374T9hOvar+mtJbibDUlHCpe1X7coKxuqWrfV+lumd4huV5UwBK2EdGoPQKU2H4SSWchDQuJRCJpI263m9tvvx1VVaVR0U4OPfRQnE4nl1xyCS+99BLDhg1L+TwcDvPZZ5+xePFiJk2axKOPPsq5557bqW3Yvn071157Le+8806rPCMLFizgzjvv7NQ29BXiVe1vWbKSMl+YXK8Dl6YSNi2qA1EyXRpzp42W9S2aoCdkek87aBB3vr7aTtxWrJRwKEtYGKYgx+vgtIMGdcn5JfsmskBeO9lXCyNJJPsqq1at4rvvvuO8887r6aZ0K13V17311lvMmjWrVfvu3buXLVu2cNhhh3Xa+QH++c9/cuaZZ6Jp9aE9pmmiKAqqqhIOh1M+S+exGDZs2D41DqRMkGNV7UuKMpk2toCl6yv6fX2L9tSDaEqmtypmkLVFpretXo+4KpRpiViuhe2pMEyBpir84qT9peSspEXaMg5Iw6KdSMNCItl3SE7Unj9/Pscee2xPN6nb6M99XW1tLVu3bk3ZNmfOHA444AB+8YtfcOCBBzb7/f58b5qj4eS2Jhjhl/9c1SkT595MunoQWR5Hs/UgLEswe9EXrCn1UZztbhRCVuYLM25QFk/Pmdyid6e9Xo/kdgvs8KeW2i2RJCMrb0skEkkn0VD96aijjurpJvUL2pKf0FWT9qysrEbGQ0ZGBgMGDGjRqNiXSa5qH584x+tbxCfOblWjOFulzBfmsQ83MmX0gD4dFtVw5V+PrfzH60EAaSfpbZHpjd/TdHSkOOHl00qYM3WUrLwt6RakYSGRSCRNICVlu47c3NxGE62mME2zi1sjaS+dNXHuzTSsBxHPVVAVUBWLiGHXg5gzdVSjyXprZHprWpDpbVicsD3Gm66rnPmDIe25fImkTUjDQiKRSNIgjYqu5f3330/895YtW7jpppu45JJLOPLIIwH47LPPePrpp1mwYEG3tuuDDz7o1vP1dTpj4tzbabkehJWoB9Fw8t4ZMr37gvEm6T9Iw0IikfQ7OirrWFVVxZ133imNii5k+vTpif++6667ePDBB7ngggsS2370ox8xceJEnnjiCWbPnt0TTZS0gn2hvkV760FYlsASgvwMJzuqggzKdlIbtoiaFg5NJduttUqmd18w3iT9B2lYSCSSfkVnyDrm5eUxZ84cvvjiC2655RZpVHQxn332GY8//nij7ZMmTeKyyy7rgRZJWsu+UN+iPfUgkvshf8TEF4xSHYymfE8Bcr0Orpxe0uzCx75gvEnaR3fXRmkNMnNHIpH0G+IJjmtKfWS4dIqyXGS49ESC46cbKpr9frJI3imnnMLtt98ujYpuYNiwYTz55JONtj/11FON6ltIehfx+haZLo0yX5hg1MSyBMGoSZkvTKZLa3Hi3Ns57aBBZHkcGKbAElbKZ/F6EFme+noQDfshl66STn5TAL5glNW7apo9f9x4qwpEaSjkGTfeSooy+7TxJmkayxKs3FHDh9+Xs3JHDZZlPwOfbqhg9qIvmPu3ZVz//LfM/dsyZi/6osVxrquRHguJRNIkvW01pLn2dDTBcdWqVfz1r3/lV7/6FVlZWQCtTi6WdIyHHnqIs88+mzfeeIMjjjgCgC+++IL169fz0ksv9XDrJC0xdUwB9545MbFCXxOrbzFuUFa/qGOh6yrzZpRw35vriBgCXbMa1YOYN6MEXVcb9UNCCPbWhVOOpyjEwppEs4nfcVpTnLCvG29dQW8bv9pDUx74aWMLeObzbe1SCetqpGEhkUjS0hOVYjvSno4kOCYnai9evJjLL7+8Oy9tn+eUU07h+++/57HHHmPt2rUAnHbaaVxxxRXSY9FHmDqmgCmjB/T5iVxTxKVk4/UgTOxQphxvaj2Ihv1QdSCKGXMyKAq2myL2d0uJ38n0d+Ots+lt41d7aFpi2MeXWypxairD8729TuJZGhYSiaQRHdFM76n2RC3RrgTHhupPMlG4Zxg2bBj33ntvTzdD0gGS61v0R1pTD6JhonXUTA2dQgEh7H8oqYnfLa2w93fjrbPobeNXe2jOA5/jdlDpj6DS+HfvDSph0rCQSCQpdIZmele2BwVCEQvDsshx69SEojz24UauP3H/Nic4SknZ3sNHH33EwoUL2bRpEy+88AJDhgzhb3/7G6NGjeLoo4/u6eZJuoDeGqrSXLtaqgfRMNHa0XChI5boHXeqxhO//RGT2Yu+aHGFvS3GW2+9v11Jbxu/2ktzHnhTCBRsozUUtfA4U8e7nlYJk4aFRCJJobdppie3xx8xKa8NEzZMhLAHZ11V+W6XXcW5Leo00qjoPbz00kv89Kc/5aKLLuLrr78mHLZj0mtqarj33nv597//3cMtlHQ2vTVUpal2zZ02mhyPs8VJekOVrByPTmkNmHEvBbaXQlHqE78zXBr/+nYngajVaSvsveH+9oRh09vGr/bSnMSwrqr28wMYlgWkGhY9rRImDQuJRJJCb9NMj7cnYlqUVoewhJ0sqaj2QB0xTCKGyacbK1qd4GiaJo888og0KnoJv/71r3n88ce5+OKLWbx4cWL7UUcdxa9//esebJmkK4iHqtSGonidOg5NxRKC73b5ejRUpakQmhU7qrnsr8vIcGqoitrsJD1dovWATBd7ausTuDVFwbREIvG7MMtFbajzVth7QyhQTxk2vW38ai/NSQy7nSoOTSNsmGgNjKfeIPEs5WYlEkkKyR1aOrp7NSTenj2+MJYQseq3Cgr2/2uaggDeWr2bKaMHcO+ZExk3KItA2GBPXZhA2GDcoKyUwVTTNG677TaOP/54aVT0AtatW8e0adMabc/JyaG6urr7GyTpMuKhKpX+CKGoRZkvxM7qIGW+EKGoSaXfDm2MS2p2d7viITRuh4aqKhiWIBA2CUctghGLwkxnixLW8UTreD8kgGy3hq4qdk6FEFiWIMfr4KdHjiAc81S0tMLeketwOzSKs13Uhc0uv78dlf3uCL1t/GovzUkMI8CpKzh1lepgtNdJPEuPhUQiSaG3FbyaMDibomw3Zb4QumobFMntMS1w6Rq7a4Ks3uVrNsExEAjg9dpFrAYNGsS1117bLdcgaZ7i4mI2bNjAyJEjU7Z//PHHjB49umcaJekSVu/y8d2uGnsyJLDfacUWSgoZFqpi8d2umkahKl0dVpMuhEYgKK8NIwCHrhC1LCKmwONs2ZuQrh/avyiTf60qS0n8/mTTXl7/trTTVth7OhSop3Mcetv41V5akhjO8zq56IjhLF1f0etUwqRhIZFIUuhtmumqqjBrQjErdlTbSWuxxDUBGJZAUxSKslwEomZi8E2X4Lhq1Sruuece5s+fz+GHH94tbZe0jssvv5xrr72WP//5zyiKwq5du/jss8+4/vrr+dWvftXTzZN0IhX+ML6QgSUEDrV+4qcADhWiloUvZFDhrw8d6o6wmnQhNKGIZYebqPZyhiFEIqa9NZP0dP1Qw8Tvzq6q3dOhQD1t2PS28asjtEZi+NKjR/e6BH1pWEgkkkb0Ns30o8cU8NRHDoIRi6hlJRK3PQ6Vwiw3mqrgMK0mB9/kRO233nqLSZMmyeJ3vYibbroJy7KYOXMmgUCAadOm4XK5uP766/nf//3fnm7ePkF3JdpW+6NYlkBVlbQTT1VRsCxBtT8KdF++QLoJvhHva2L5XHGxiDidMUnv7BX2zjZU2kpPGzbQ+8avjtCSxHBvlHiWhoVEIklLb9JMnzA4m/GDc/hul49BHjemEOiqitthD15lvnCTg29D9acbb7xRGhW9DEVRuPXWW7nhhhvYsGEDdXV1jB8/nszMzJ5u2j5BZ3sEmjNS8rwOVNU2HoQqUkMbEQmjI8/rwDAsfvvWOir9EQozXbh0e+LdFWE16Sb4CfUdS2AKeyEj3udA50zSO3uFvadDgXrasInTm8avjtIbjYfmkMnbEomkSeId2vT9Cpk4NKfJTtmyBCt31PDh9+Ws3FHTKYmBycdcvcvH3GmjyXLr1IQMdE3FpauEDKvZZDUpKds3+NnPfkZtbS1Op5Px48czefJkMjMz8fv9/OxnP+vp5vVrWpNo25b3+9MNFcxe9AVz/7aM65//lrl/W8bsRV8kEnYHZLrIdjtQFAXDFFhC2AaFsFWSFEUh2+1gR3WQcxZ+xsod1fgjJtuqAmzZ66cubADtS2xujvgEP9OlUeYLE4yaOHXbuIiaAk2Bwqz6nIH4JL2kKLNVk/Tm7mHDZO+mRCfaex3dmdjbXNJxW+9ZR2nt+CXpXBTRKN1c0hp8Ph85OTnU1NSQnd27k4Akkq6kK+KfmzrmtLEFiWS1aMy93dS5pFHROXRHX6dpGqWlpRQVFaVsr6iooLi4GMMwuuS8HaWvjwOWJZi96AvWlPpSEm3BngSW+cIMynGR43Gwqdzf4vvdVNhSVWzl/d4zJzJl9ABmL/qCFTuqMWIy0vFZiKaCQ1MZOSCD2rBBlT+CP2ygawqgJHKqhuR5yHTpWJZgT12Y3517MNP3K2z2Olu7cp3S91i2B8UfMXBqGkXZrkbehNZM/FvbR6Zrp2WJZit9t+qcLfSVnU39c2Cm9cD0hcrXklTa0tfJUCiJRNJuuiL+ubljbq8M8OszDmxVoaqPPvpIGhW9HJ/PhxACIQS1tbW43e7EZ6Zp8u9//7uRsSHpPFpKtHXpKt+V1pLl0ijMcjf7frdFDSge+lMXNvAqGr5g1DYyDIiaJpsr/KBAtksnEDEhJi1tJ3cLymtDZDgzCBkmQgi2lPub7AuamtRffswo9tZFExP2Uw8sZl1sEn79ifsDUB2Mku91UhOMsHDppnbF67elj2wY8vLk0o088sFGaoNRLOwQkztfX828GSUtJu32ZChQf8pxkLSdHvVYLFiwgJdffpm1a9fi8XiYOnUq9913H/vvv3+jfYUQnHLKKbz55pssWbKEM844o8nj3nHHHSxevJjt27fjdDo57LDDuOeeezjiiCMA2LJlC3fffTfvvfceZWVlDB48mJ/85Cdtmnz09ZUqiaSjtGa1c9ygLJ6eM7nVg1lnHtOyLF577TVOPvlkaVR0gK7s61RVbTbfRVEU7rzzTm699dZOPW9n0dfHgQ+/L+f657+lKMvV6H0SCDaX+wlETYbnecn2OOo/S/MurtxRw9y/LSPDpeN2NI6tD0ZNAmGDhT+dxMShOXy6oYIFb6zhu9Jau+hlzJBxqArVIdtDpSkKVmyK4tBUNNX+2xKCgkwXFXVh1FjoVDovQFOT+l3VAYJRK3adtiKVqih4nRouXUt7rPYktzfVnwkEwbBJRV2YUYWZvDj3yEZeiCeXbuS+N9dhWvHaPWAJMEyBqsDwAV7CUatXVS1vSE9U3pZ0DX3GY/Hhhx8yb948Dj/8cAzD4JZbbuHEE0/ku+++IyMjI2Xfhx9+uNUJl/vttx9//OMfGT16NMFgkIceeogTTzyRDRs2UFhYyNq1a7Esi4ULFzJmzBhWrVrF5Zdfjt/v53e/+11XXKpE0u/oClnBjh5z69atDBs2DFVVUVWV008/vf0XKOly3n//fYQQHHfccbz00kvk5+cnPnM6nYwYMYLBgwf3YAv7N80l2iakVhUFRwOFn3TvYlvVgKaMHkCOx0GWSyPH48ShqRiWxY6qYOI7AntSHY2FTDmIFZizBGU1IRQFinLc5HocjbwAU0YPSOtBqfUb+CO2UaEAugpRCywh8IUMirK1lByTuEehPQm06fqzurBBeW2YsGHG8i6qOWfhZ9w4a/+EUWAYFo98sBHTEjh1BVWx76mqAMIiagm2VAQYXeAlz6t3e1Xt1tLXko4lnUOPGhZvvvlmyt9/+ctfKCoq4quvvkqpwrp8+XIeeOABli1bxqBBg1o87oUXXpjy94MPPsif/vQnVqxYwcyZMznppJM46aSTEp+PHj2adevW8dhjj0nDQiJpJZ0pK2gYFq+tKOXjDeXUhg1yk1ZHW3vMeE7FlClTmD9/PqDI1bJezvTp0wHYvHkzw4cPl2pd3UxzCkJR08S0wOtMVUKK0/BdbKsa0OpdPjaV+ynMsqtDCyHYsjeY8FCALfGqKgpOTSFqWrHkbmKF9WBonpcstwOBQBiQ4bQrET/6wUYyXHqjSb0lLMprQyntMhrEbOytDVOY6aQ429Vh1amGfWRd2GBnlX2NmqqgamBYsKncn2IUvLailNpgFF2zJXktIRJyt2bs/gggbAi8Llsla2C2ws7qEPf8ew33njmRiUNksrKkZ+hVORY1NTUAKatWgUCACy+8kEceeYTi4uI2HzMSifDEE0+Qk5PDwQcf3Oy5k8/bkHA4TDhcX7DH5+u4CoVE0pfpLFnB5DhiMzbIr91dS1GWm4JMp726Z1q4NJUst572mMmJ2rW1tXy0toynPtvepQW1JJ3He++9R2ZmJueee27K9hdeeIFAIMDs2bN7qGX9m+akTmtCBqpqeybSGXxh00JXoLIuwoffl5PrcTC6MIO1ZXWtkjltOOkORS3ChoWu2knalrAnz0JgF6hTVAzTwqlrGJbF8HwPXqcjxQNgz7kFX26p5OWvdzRa+KgJGIk+Jl5kE2H/N4p9LlPY++VlODtczC25j3SpKuW1YSxhe2EUFCwBqiIozHRSEzISRszO6oCdUyEgYtjJ7eli1qOm7XmJ34NQ1GBNaZRLn/6ScYOyZX8n6RF6jdysZVn8/Oc/56ijjuLAAw9MbL/uuuuYOnVqm0MaXn/9dTIzM3G73Tz00EO88847FBSkf8E2bNjAH/7wB+bOndvk8RYsWEBOTk7i37Bhw9rUHomkv9EZsoLxOOKaQBRVVXBq9iBvCSjzhVi1y8fu2jDVgSi7a8NsKPdjCZFyzIbqT8edP5fb/7WuWflMSe9iwYIFafvnoqIi7r333h5o0b5DU1KnBw7OYfygLMKGSPt+7/GFCRoW97+1luuf/5Yr//4VNcEoqiLYURWkoi6MP2wQiBhpZU6TJ91QX4xOjdWPSJwL+/y2JC24HCpeh45b1xMegFDUtL+n2UneEdPitW93YQmROD7UT8RbIr6fS1OJxrwy7ZHUTu4jg2EzqYq3ghACwxK4dBWPU0sxYobkelGwE9Xjp1EUaGjeOTQ1cQ+CkVTltO92+WR/J+kReo3HYt68eaxatYqPP/44se3VV1/lvffe45tvvmnz8Y499liWL19ORUUFTz75JOeddx6ff/55I4WRnTt3ctJJJ3Huuedy+eWXN3m8m2++ORZeYePz+aRxIdmn6Whhp6biiCF1MtCQMl+YX/1zJfecdVAjo+Lmm2/h8meWt0qZRoYJ9B62bdvGqFGjGm0fMWIE27Zt64EW7Vs0pSD03017077fe3xhAhGDDJedjxBPit5WGSAYsT0HvpBdOVtXVfYvzuTmk8elrJ43DMNKFKPDrmWhYE+mAQyrPoH7wsOH88/lOwmbZiMPAMSrY9t5GIoKVYFIoi9IzhURsX3TydfE94t7Xbft9XPWO9+zvTKAJQQeh9YqD2hyH1lRF7aL/2mxJOyYdG68NkZyaNmpBxZzw4v1ieuNLIoY2W6NbVUhDMvuL+PdZnUgiku36290R38nk7QlyfQKj8XVV1/N66+/zvvvv8/QoUMT29977z02btxIbm4uuq6j67YddPbZZzNjxoxmj5mRkcGYMWOYMmUKf/rTn9B1nT/96U8p++zatYtjjz2WqVOn8sQTTzR7PJfLRXZ2dso/iWRfpyOFnZLjiOuNCtt72RLPLdvBN99826hOxfqKUKuTvyW9h6KiIlasWNFo+7fffsuAAQN6oEX7HumKiaV7v/2hKKoKGS6NoXkehAB/xMAfMQiEDaKmPdEfke+lONuN16XhCzWuQ9KwkJvAnmhHDEHYsBJhUKqiMCDDQaZLZ/KoPOafsB8lRZlU1EUIRQ00NZ4/ITBMyw6XioVNxr0KZb4QwahJllsjeb7rUFVUpT7kCkBTIMerJ7yuLofKPf9ew4od1VQHItSGolQFoqzYUZ3wCBiGxZKvd/LH99az5OudGEZ9Hxa/h6MK7SryRixR3ONQE/U4IDV0dN2eOrzOJCNI0CgcSgF8YZNg1MAS1Hs2AFWFkGERjBp8t6umS/u7lgoiSvY9etRjIYTgf//3f1myZAkffPBBoxWrm266icsuuyxl28SJE3nooYc47bTT2nQuy7JSciR27tzJsccey2GHHcaiRYtQ1V5hY0kkfY726qXH44j1pN0EolEyZToMS/DsZ5uwLCulTkVloKbTEsol3ccFF1zANddcQ1ZWVkK448MPP+Taa6/lxz/+cQ+3bt9myugBZLh0vtlejSIg063zwNvrUBSFrXuDidwGMzaz1WI5EpqqMiDTQX5MmjbdynlyvYPvdtUQNlIXFewEZYvdtRHyvA6umjEGXVe5cnoJ1z2/nBrL3su0RMqkOxgxCUZNADKEhqapVPkjqKpCpkunNmTYxkTMmElOGB+Q5SJsCKoDEVRFsLMqmMjTUlUFIYglkgNEuPWfK6nyR6kNNa41cfm0ksR1vjgyn3MWfmYnrGc68Ti1RlW84zkoH22owKXrFGXp7K0LJ/JCgIRhJAT4w1GSnbsK4NBVNEVBVQVRy8IXMqjw1899OpOuqGMk6fv0qGExb948nn32WV555RWysrIoKysDICcnB4/HQ3FxcdqE7eHDh6cYIQcccAALFizgzDPPxO/3c8899/CjH/2IQYMGUVFRwSOPPMLOnTsTiYE7d+5kxowZjBgxgt/97neUl5cnjtWeBHGJpDfSne7p9sgKDsn1okIsgdHe1paqOlbBKBYsWMCoUaMSdSo6K6Fc0r3cfffdbNmyhZkzZyY805ZlcfHFF8scix4kXXG5/AwnNaEokajtVdBUBaHUhyvFQ3zs8BytRZnoqWMKmBybdAcjPkKGRbr0hbqwkTAApo4p4H+PG8udr64mmrRzPCE7Zm+gKZDrdRKImDh1lYuPHMHRYwr5dKN9XbXBKAK7/4nXsRACAmGDA4ozKasJUVEXwaEraDGvqqKAotn1JAJhg5qgYcvWagp6TLGqJhDlvjfXASSMC11XuXHW/tyyZCU1IQNFVZoMHY33Yxku3U7sDhpETQuHppLj0akKRqmojRBNMipUBXTNNirsdtr5JpYlqPZHO/YgpKEtBRFlWNS+RY8aFo899hhAo7CmRYsWcckll7T6OOvWrUsoSmmaxtq1a3n66aepqKhgwIABHH744Xz00UdMmDABgHfeeYcNGzawYcOGlNAroFGSmkTSF2mq2mxvUgk57aBB3Pn6ajtxW7FQFbVFwyJSvhXVnYmeNYAR+Rnsv//YlM+bk89Mp0wj6R04nU6ee+457r77br799ls8Hg8TJ05kxIgRPd20fZaP15dzw4sr8IcNcjwOcj0OopZge2UAf9hEBZwOFQUFo0FOlBkreBenJU/hmrJadtcEAVte1aWCUEBY8TAl2yvxu7e/Z2qJXVPix5OGcf9ba6kJGjhUUFSFaBp3Z7ZbJ8fjoLQmxFurdzOuOJupJQXMOXIk/1pV1qjydnwhxhKCOYu+sCfoDZIcFBRURRCxnSLoan3CuW2kWEQMwSMfbGTO1FGJ4netrUid2o+5yPU6CEUtDMuy1bOiFpNH5TFz/yLueWMtliVw6moizwRsb4xlCVRVIc+bXr67I3RFHSNJ/6DHQ6E64zvJ29xuNy+//HKzx7jkkkvaZLhIJD1NW7wPfcU9resq82aUcN+b64gYAl1rPrciUr6Fmo+fRXG6KTj2Z1wxbXSjfTqaUC7pWfbbbz/222+/nm7GPs/H68u5+h/f4AtGURWFYNSkSlcpzHIzIMOWRrWwx954InJDAhETbyJ/wAQBmyv8afuvykCEYNQiatpyswKIxvIsktlYXj9RXVNWi66qif0R9VW0E99TFMKGwBQWgYjJyh3VXPf88pTk6zN/MCRx/OQJ8Iffl9veVOqPm0xyb9WwP1EVFV2zqA1GeW1Faco5WhM6mtyPbasMxkKvrMQ9d+oq0/crZNIou8hgTTCKYQo0tT4h3bTsJPhst4MBma5Gv09H6cw6RpL+Ra9RhZJIJOlpi/ehr7mn42EC8ToWTZkWcaNCmFEc2SM476gDcDobhzpB61cFJT3L/Pnzufvuu8nIyEhR3EvHgw8+2E2tkny6oYIbXlyBLxhFUxU0xZ64B6MWO6uC5GU4UGMhP1FD0Hj6b1NeF8bttAvf7awOoqDwx3fX49TVRv1XvtdpHxNACKJm+mPWhQw+3lCeqPStKgpD8jzsrYskcirA9hposXyI2nCUKn8UU9i9S5Zbx6VrLS605HudeBwqEUONhVCSsjKfLDebrq6jqoCJnUvW6LNWhI5OHVPARUcM54F3vidiWAmVLKeu4dQVnvl8G+MGZTN+cDYrdlRjxKqTC8vez6Wr6JrC+MHZXeKhlWGnkqaQhoVE0otpq/ehL7qnL59Wwpypo3htRSk7qwP4Iyb/WrGL3TV2Ybxko8I5cAxnzJnHb88/rNljtjehXNJ9fPPNN0Sj0cR/N0VXVuNesGABL7/8MmvXrsXj8TB16lTuu+8+9t9//y47Z28mvjDhD9t5A/GaCwrgUO26CnEvhhCigXsgFSEEu6qD9qRYgUE5LnI9zrT914TB2QwfkMGKHdUpeQONjgm8+NUO5k4rSUxsnZrKyAIv1YEopTWhFKPCFBa+oJEIzRIKODUNt6PlhZYJg7MZMzCLb7fXYFgWUUugq7E6O9TXl7C3NX5GrdjtGZLrbfsPgf1bLF1fQaZLJyfHgSkEuqridqogbNnthUs3MXfaaH75z1XUhQ3yHc6ExyIYNcl06Wk9tJ2RfyfDTiVNIQ0LiaSX0h7vQ191T+u6mhIucMyYAh77cCPLl3/L1k//gSIMCkYewFMP3cMJE1PrxzQ1SLYnoVzSfbz//vtp/7s7+fDDD5k3bx6HH344hmFwyy23cOKJJ/Ldd9+RkZHRI23qSeILEzkeB8GorfYUny8qioKu2opImqomQm0csYm1PaFN9TbYlbRhaJ6XLLcd55+u/wI4+wdDWLG9usU2bq8MsHJnDROH5DTKQ6gORAlFzVjxOXBqKoZloalgWeB2aPbEnJYXWpLDkSr9NApHcul2Pkg4aqGpVqpktrAwTEGO18FpBw3q0G+R53XidjTwCCgk2p7jcaZ4aKMJD236ytudlX/XMOw0x6MnDJpgxCTHk96okfR/pGEhkfRS2uN96OvuacOwEp6Lw3NDlG58naxBGRx08CE8vOAu3O7UWOG+kKQu6b28+eabKX//5S9/oaioiK+++iohe7svEV+YyPU6qApohKImila/Ih//Xy1W5TquAKWq9iq5JezicgVZTixLsLs2TGGWK2FUxEnuv579YhtvrS7ju101TYZCxtFjUrbfbK9m4pAcZk0o5vvdteyoDtq1Ltw6gYiBYdiehCyXk72BCMTkbwuzXCnehZYWWpLDKjfsriVoWKjA8AEZXH/ifqwp9aXkiMVDxOx8B4V5M0oSidvt/S1as0g0fb/CVnloOzv/Ln5/FryxhnVldYlCfQ5NZVi+p13XLen7SMNCIumltMf70Jvd0015FuLbn/l8K/9aUUogYieGEglSV6VxxP778T//ez2fb/OlfK+vJKlL0nPWWWe1et+WBDk6i7i6YH5+ftrPw+FwSj0kn69/FVqML0xETUFhloudVcGUpGBTCCxhr8SffGAxz3y+DdOysEz7c7dDozDLRabLrr+gAB5H+mmGS1Mpj5j84d31GJZFXdhMu18ysTRtNpfXMXvRF2zcU0coYuGPGNQEookMa0WxjSF/1AAhcOoaxTnuRDG6OK1ZaGkurPLosYVAfY6Yid2EHK8jpY5FOloKR2rrIlFLHtrOzr+Lt//bHdWU10XwOFQyXLZ3RVWhtCYs++EG7CsVyqVhIZH0UtrjfeitqkjpPAujCzPYb2AWX2yuZFN5HYGk4GqHqoDbi/fIi1il6Vzy169w6XrCIzF32mgWLt3UZ5LUJY3JyamfBAkhWLJkCTk5OUyaNAmAr776iurq6jYZIB3Bsix+/vOfc9RRR3HggQem3WfBggXceeed3dKeniB5YWJglpOCLCeV/ogdAmQBCmR7HNx/zkFMLSng+911rNpVQ45bx6HZYUYKdv5FIGqixypbpyNsmrZHBEF+hpPKVtRaMCy7XsRb3+3GMC3yvE4cmkogYlf2VoHCbBeZTp0KfwSnrlKc7aYmGCWjgdhD8kLLuOIsVu6oaValqalJe8McsUE5HkYXZuALGazcUdOk56AlT2tnLxJ1Zv5dcvvL68KYlsDj0HA5NDJixps7W5P9cBL7knddEbJwQ7vw+Xzk5ORQU1NDdrZMTpJ0PpYlmL3oi0QMccOBpcwXZtygLJ6eM7n5gSsWc9tTnVg6z0J1MEKZL5yo1hsnUr4F01eOt+TwRAVfsBVW9i/KxBBQFYjaBpdhkZ+RJv4YO843EDZY+NNJMs+ig3RHX/eLX/yCyspKHn/8cTTN/j1N0+Sqq64iOzub+++/v0vOm8yVV17JG2+8wccff9yovlGcdB6LYcOG9atx4NMNFVz3/HIq/RFETMLV1lsV5Hoc/P7HhyZW6uvfbTPtIkaWW6e0Jpy2/9pRHSQQNhme78EfMSmtCbXYNgXIcGm4dJVBOXaozZa9foJRO5fDjOVRjCzwxhKcQ+R4HNSGokRMQUGmE5empbTxoiOGs3R9RadM+FozeWzK01oVa0/yCn9L97ct3oAPvy/n+ue/pSjLlXaSb1mCPXVhfnfuwUzfr7DZa4y33+PQKK0JoigKlgAtptIV9wzJftimLb95b6Ut44D0WEgkvZSOeB96iypSOvd7XdigvDa9URFXf1LdWbiGHFB/HAG1YZO8DCfF2SrbKoMEowYDs9Prs/fWJHVJev785z/z8ccfJ4wKsIudzp8/n6lTp3a5YXH11Vfz+uuvs3Tp0iaNCgCXy4XL1fk1AXovIlG0UkVB11TUJAOhJWlnoMn+y6WrCAtcuoY/Uh8G1YzQFB6nbVTkZ9iGSjBixhLE7SrTqIJw1KQ6EMUwLWpDBpX+CF6HTsS02B4J4nZoZDg1xg3KYtrYAp75fFurwilbCmNpTWjmlNED2hSO1JnS2Z2Rf9ewP68LG4BiyxILWzWsvDZEhjPDLnQo++E+JwHfGUjDQiLpxXRkYOkNqkgN3e9CCPbUhhoV1GooKesqticlyZOMaKy6r6IoZHt0/OEotSGD3DQDYW9PUpekYhgGa9eubSTzunbtWiyrpZTe9iOE4H//939ZsmQJH3zwAaNGjeqyc/UF4pMg0xIMyXWz2xchYibKX1Ppj7DgjTW8Mu/oxCSopUWMpvqvWROKefT9DURMC69DS7zrjYrcxVCwlaPeXLU7kXdmWFaKcpWIFevbVR0kuYvxOjWKPS4q6iK4dJWrjh3DjycNY87TX7ZqwvffTXub9US0dvKY4dLbHI7UWYtEnRFa1bA/11U1IW+rxlTDwoZdHdzj1GQ/TN+UgO8o0rCQSHo5DQeWXI+tsFIdjDYZw9tbaJiAXhmIEAibKZOGhkZFztTzQHM0OpYjKYk926WzW1XwBaPkeBy9Kkld0nbmzJnDpZdeysaNG5k8eTIAn3/+Ob/5zW+YM2dOl5133rx5PPvss7zyyitkZWVRVlYG2PkfHs++oWqTvBJfWRdh4546XLrGruowlhDoalxKVsEwLb4rreXZL7bxkykjEsdouIhhWSIlZ2HR7MNZU1abMjEGeGt1WSKfw+VQCcXyrJL7h3jXNn5QNuccNox31+xJrLonJraAJQRR06oP3UqiMhAhw60zNM9DmS/MW6vLmDgkp1UTvme/2MZTH21q1hOR5Xa06ljLt1W3Sw68MxaJOiP/rmF/7naquPRk9bC4cWchhCr7YfquBHxHkIaFRNIHiA8sn26o4Hdvr+u1CWANwwVyPY6E+92ICvb4wi0aFUqSURHfV1Mgx1PfXUUsQbZbx6lrvSpJXdI+fve731FcXMwDDzxAaWkpAIMGDeKGG27g//2//9dl533ssccAmDFjRsr2RYsWcckll3TZeXsLDXMCTMuiNmygxWRTdU2pl5pV7L8jpuDPH29mSJ6HggxX2pCgdKv7c6eNJt/rpDIQYfUuHxMGZycmurtrI+RnONnjC2EkOajiUrb5GU5uOWVcg9oVKm6HiktXCUZNLKve25GMim10lNeGyBiQ0bZJvilY/MW2Fj0RPzt6lH2tqkIgbBCIVQH3OjQ7fCs2eRQKacORBIJQxLKT0AWJxaPOpqOhVQ3DqRSUFPUwW43L9hqV+cKyH6bvS8C3B2lYSCR9hN4ur5pe+SmTAZlOSmtCBCN24ao4ZqCmWaMimWyPg7AhcDvtbNLqQJTxg3MS6lAdjT+W9CyqqnLjjTdy4403JiRcuyMZuqe0SyIRk8eXbmJrpZ8R+RlcMW00TmfjSUdXkq4/8YWiVAWjRIU9AW5YUdqMxSptqfBz3eLleBwqA3M8zJowkKPHFFITjCSqQCf3Ud9ur+Gyvy4jw6mjKkrKgkjyRDfD5SAQNkCxPZRep8YBxVlcNWNM4n1uuOo+IMPFjuoggnqhh3iNPgXQNdurEQ/RcenNT/LjhGOhl2W+UIueiGp/FEtYbCz3E4l7TWLndzlU8jOcOFSFQ4flNgpHiuechaIGpmVf9/1vrU255uT6PkNyvZx20KB218doT2hVfMFob12Yomw32ysDDMqxDa1Ml86QPA97fCGCURNNVTBNq0P9cH+SZe3NEvBdhVSFaidSFUrSndQrRPlSVs6gZYWo+Pe7sqNuTvVCi1XrrQ5E7QJSFolCWP41S4lWbE9rVCTHWWuKvWLq0DScukKe15kwpPrTINQb6a6+zjAMPvjgAzZu3MiFF15IVlYWu3btIjs7m8zMzC47b0doz7259eUVPLdsR0qeka4qnD9pKPecdVBXNTWFpvoTIQQb9tQRMqzEpDhuXBiWlaiqrSpQkOGiLmwQMky7doPHkahKPSzPmzhmXdhgZ1XAXmzQFYbketBUheqAkVDEaSrUs7lCb8mqd6GIQV3YTOxnWgIFe5KuqUqsErdgaJ4HXVMJhA0e+8lh/O7tdc2q7g3MdrG7JsTAbHezSkpzpo7gof+sT6k6noyiwIGDs3ll3tH8d9PehNKTS1fZ4wthxaZhmmp7AMKGSNyb1btqEnUyLGwPTJan5ToZnUXDBSNLCPwRA6emUZTtSvIUR3BqKj89ciRHjylodz/cH2VZU9W9dCwLQlGTQNQk1+Po8UXB1iBVoSSSfkZHEsC6uqNuTeJittuBLxi1Ne6TgqEyxk1DWCZK0orh0Fw3JUWZrN7lIxQxsIRC1LSwgLBhIlC56Ijhibb3hiR1ScfYunUrJ510Etu2bSMcDnPCCSeQlZXFfffdRzgc5vHHH+/pJnYKt768gme+2N5ou2GJxPbuMC7S9SdCCEJRC69TI2TYq+6mJeywKERi0qyrIFCoDEQQ2OFRpinwR0wihl19urwuTJbLgUtXKK0JEol9N2IItu0N4tAV8rwO6sJGIkG6Le9ww1X3yroIv31zTUK1qswXImJYgMAUAmEBCFRIrBBPHJLTTM5BBIemMnJABjuqgtSEouR6HY08OPEwlrdW704YBxALx4qtjMTy3hPqWvFwpEc/2MiXWyoxYnksLl2lMMsu4hc3bG7950q2VwYxLYGuKeixELWaQJT73lwH0KXGRVMLRoZlETZMqvxhVFWNeYqzOzym9HavfHtJrlD+/e66hBCJrqoMy+t/uVzt86VJJJJupTUJYNE0CWDxjnpNqY8Ml05RlosMl57oqD/dUNHhtrXG6PGH7ZUZV+0Oaj55FsxIYohONiqmjMrnjxf8ICFFO7Igk9GFGYwYkMGwPA+jBmSQ4dRZur4Cy5LO1v7Ctddey6RJk6iqqkpJmj7zzDN59913e7BlnUckYvLcsh2JvxWl/l+c55btIBJpuQJ1R2nYn9SFDbbs9bO10o8vZCT2My17pd+yYmFFaryuhb1y7VAVNEVF19RE4rQpYI8vzNZKP+vL/YmE7MQxYwZMaU2Y2lCU73b5WL2r7RXM4wsK0/cr5PRDBjNmYBa+UJSKujCGZS9fRExBxBBELYFpwfaqIJpKIu4/PuEbNyiLQNhgT12YKn+EUNSkvDbMv1eWUhOMsqMqyIbdtTF5VZt4GEtRtpudVQEUFHRNSSSbxw0JRbE9PLt94cR1Th1TwA2z9ifLrTMo282I/AxGDshI1H9QFIVst8aWigCmJXDqSqzYoIquqjh1BdMSPPLBRgyja1TTGi4Y2RW1FdwOjWF5XjJdOsPyM/jtOQex8KeTeHrO5A5N+ps7X3G2i7qwyWMfbuzT/b4vGMXjsIs2jhyQwfB8T6JCeWeMxb0FaVhIJH2A5ASwdKRLAOuujro1Rg+A17+LLe/8lXDZesLrPsYVS7zUk9zlX22r4rK/LeOLzVW4dDseVVEUPE6NLLcDr0snL8OZ8M5I+gcfffQRv/zlL3E6UxMYR44cyc6dO3uoVZ3L40s3JcKfGtjfib8NS/D40k1d3pbk/sQOVQoSjFoxyVBbNhTsyXG2R6cg05kITVRREjkQ8YUES4gUedf4f0bSTHoV6hOsw4agKhDh4w3lHboeVVWYNrYAf9gkEDFpJAuVfPIGTB1TwNNzJrPwp5P42VEjEQj8YTsfzKHX34uQIdi2148vFCUYNRPJybMmFBPL1UZXFJy6ansXVNvQcGkqChAxrcTCj2UJvtleTdQQuB0abofaaFEmHPMaaSqoSmrfqir2OWqDUV5bUdr+G9cMK3fWsLa0Fqdmq3Ule5rtBSM72b4gw8XEoTkdDj9ti1e+rxEfi/0Rk6F5XgZk2gt8Hqfeb4ymZKRhIZH0AeIJYFWBaKOE0/jKWUlRZkoCWHd11K0xeqLlW6j6+B+JRO2sCdNB2LkX8cmWptQn00ZNi/LacMoKYZymvDOSvotlWZhm45X6HTt2kJWV1QMt6ny2Vvo7db+OEO9PKv0R9vhCmEIkJtCWsKVlXbo9Ma4LmYSiJiigKSpZHh1E/RzdsiyMJnIL0hKzLOLfF2CHEsX6gbhU7Yffl7NyR02rJluWJVi6vgKvU8PjUEkufRL3GLgdGvsVZWJaNJrEqarChMHZfLKhgtqQgarG8jMUFYem4dBiuRsCdlUHCYQNxg3K4t4zJ3L0mAIceiwPRQgihn0/DEtgmIJwzJPj1FTyvU4+3VDB7EVf8Mh7G6gNR9lWGWDLXn+jvi4Y81w17LsTbY7J7O6sDrR4f9rKpxsquHXJSvb6w+z2hdha6WdLRSCljZ3dD7fXK9/bSPf89mejKR0yx0Ii6QO0R4O8u/SzW1K9KN38PXWf/YPBWTqZQ8Yy4KjzCVkqltEwRAI7JlnYq3RmgyqucfqjPN++zoknnsjDDz/ME088AdiDbV1dHbfffjunnHJKD7eucxiRn9Gp+3WEeH/y/174lqpABFWBqElKnoBTUSnIdFIXNsnPcNo5FKaFL2h7J0zLlheNmiKtfyCdLEzylCr+sa4qbNvr55XluyjMciZU3tqSDxafuA3MdmNZgq2V9mRbS9TgIJYXIMj16qwtreWv/93KYcPzEknGq3f5WFvqs8O+FCXWPmGHOKkqChamJfA6dG6YdQCnHzIYVVWwLMEBxVl8tmkvcdtYIeaFivVnAhiY7UpRzcr1OghEDIIR28uyvTJAUbYr0a9FWjDWrJhxNyTX2+x+bSUePlsdiKDG5H4VFEJRk51VQYbkech06Z3eD/clWdamVLqaymecWlLQ7rG4L4qTSMNCIukjtFWDvL0ddVs7suaMntLN37Pnw7+zf4GbAw8+BCtvBiFLJRBq7ImIUxWwq+NGDCuliiv0X3m+fZ3f/e53nHTSSYwfP55QKMSFF17I+vXrKSgo4B//+EdPN69TuGLaaP7vvfV2/L9IDYeKT8J1VeGKaaO7pT1TxxRw8ZEjeODt71MUqlTFnpBHTUFZTSiWfCwoynInvBsCiFrxOtn1JCu5WWksi3TF60xTUB2Mctsrq4haFk5NZWC2u8XE3eR+anOFn4hhkedV8Zt232IX9ovdZMVO4K4LR6kNGQSjJg+9/T0ZLi1huHy7o4aqYDSxwBE3nHRNjdXTsPMaUCA/05noE1VV4YrpJXy+uRIzYY6kXqfdDMHjH25KEbnIcjsIREyEsO9XaXWIKn8Eh6aR79UhFpalKlZKOJQlbK9IjtfBaQcNavG3bi3J4bNDcj1srQwQjFo4VDtJ3zAF5bVhvM7Gxe86OgHuK7KsTy7d2Eil687XV3PqgcV8snFv2sTzDXvqsITV5rG4rypktdmwCAaDCCHwem0reevWrSxZsoTx48dz4okndnoDJRJJPW3RIG9PR93ejiyd0aMLi/Dy19i/wM3MY6Yw47z/4bMXV1MTijZ7jVZshU9V7Jhzf8TApcvid/2ZYcOG8e233/Lcc8/x7bffUldXx6WXXspFF13UbypgO50a508amlB/Sreif/6kod1az2JqSQEPq+uxYqpDdk4TCfW2UNRuZEGmkwyXA6euUl4bxh820nspkv9b2O9wciSTQiO7Ak1TEMLOQYgYFlYsYdztUBoVopsyegCqqjTqpwB8IQOXI4LHoSeqcStJbRHAXn8EyxKoisKATCeaqrCmtJbrnl9uS6k2iOa0BEQNK5a1LhIXWVkXO06sD8rxOMl269SFzCbrWJT5wuz2RRLhMHVhg0p/pN6zEbs3dj4D/PRIW+3pvjfXETEEumYl7qdh2uc+aUIxa8pqO20VOzlkR1VtlaqdVUGilq1cpSoQihrsrA6R63Ek+uHOmAB3RmXwrubJpRu57811jVS6qgNRnvliOxlOjVEF9R72+uc3hCmg0h9J1P+I09xY3FcVstpsWJx++umcddZZXHHFFVRXV3PEEUfgcDioqKjgwQcf5Morr+yKdkok/YLOcGu2Vl61rR11RzuydEZPxoVjefnllzj8lAu5/V/r0iZzpiNqCPIznfiCBlHTYk9dWBa/66dEo1EOOOAAXn/9dS666CIuuuiinm5SlxGXku2JOhbp+h4g4T1RFSVlwpOcgxCXWc106WS4NMpqQlTUNR9CGZdZrT8G6BoglJi3AxyqgiXs/IOoaeLQFExBSghkwxj02lC0UT8VNk2qgxFKa0IMy/PEqnHbK+0CO9dBAIZlX6vHYRffUxSFgVkK3++pA8DjUAhE670OcUMoatQbC4Gowf1vreXlb3Yk+qLKQARVUSkpdBM2rEaVt4WAHdVBwA6HEbFK4KaIhcfEJqimKSjKchKN5Yw8PWcyQGKFPJ6FpKkKXqfKu2v2sPT78k5bxW4YPhsvfldeG7KTyYXdziG5Hm49ZRxTxxR06gS4o5XBuxLDsHjkg40Jla64B8kePk2iJgSjjfPE4onuVf4ITl1t1VjcGgn3ZEO7t9Fmw+Lrr7/moYceAuDFF19k4MCBfPPNN7z00kvcdttt0rCQSJqgJ9yare2oO6sjU1WF/QrduFxxwyeH+fP/H7MXfUFd2CDLraXtfBtiCUEkanH4yHxumLV/s8WyJH0bh8NBKBTq6WZ0G/ecdRC3/3BCt1bebjr2ewAeh0YwKmKr0vWT6bjhY1eyrrcQ/GGT6kDzXsd0CMAwQVXq62FYgKYoZHt09tZZqKqCImgUAhmPQa/wh/nzx5sb9VMeVWdIrodtlQF21YQoyHQSMSK2ByRNQzJdDjuPQghqgkaioF5OpotIbSRx7aL+K4AtMDE414NTU1MmzvGw06gl8Lp0vK7UqVXIMBOVzCOmPUEPG1ZKuJaCQFUhw+UABTbuqeOV5bvYrzibRZcczqZyP//dtJf31+3BsiwGZLYcLtZW0oXPZrp0MpwZhKIW/oi90HPvmRM5eFhul0yA21MZvDt4bUUptcFoTFI4NVdCQQUs23sRjJLXIKTJpamoqsLFR47g0417WzSaOlK3qjfQZsMiEAgkVDrefvttzjrrLFRVZcqUKWzdurXTGyiR9Ad60q3Zmo66ox1ZfDV02fJveenPj3DvHb/koIMmNjp2a4yKOBkunatmlHDwsNz2XbikzzBv3jzuu+8+nnrqKXS9/6f+OZ0a1xw/tlvO1Vzfs2FPHbqmUOh2UROMJlalFQVcukbYMFEVBU1RCEZMopbF7ppQirelJWy1KVt+1RICh6YSjJooKLgddriNpihU+iP2ualPtgZ7chuPQa/2RxsX9kMQitjmw4CEl9MO3WmYAB1Pqq6oCxM1TUJRi5BhJcK1qgJRCjJdVAcjhKNWStiWrsKwfC+ZLrsyePLEedHsw1sMOz2gOAtQWFtWS0bMixHfTSAwrZj0rFOlNmRQXhfm7tdXo6kqDk1hdGEGNUHboBuc621yEj95ZD5rymrbNSlvKnxWUezfqjooGDcom4lD7DGgqybAvbHo6c7qABagp7mVyZceL36XTPz5PXpMIXOnlbRoNHWX8EpX0eYefMyYMfzzn//kzDPP5K233uK6664DYM+ePS2W+ZZI9kXasqpjWSKt2kRHaamj7khHFl8NXbliJdv+81ewosy+8zEeue+uRJhA/NguXaW0OpSyApqObI+D355zkAx52kf48ssveffdd3n77beZOHEiGRmpykgvv/xyD7Wsb9NS31NaY7+LYcNiRL6XsCEwLCtWhA3W7/FjCWFXso5JQ7fw6jZCUxVMCwZmu6kNRcl061T6o2Q4NQqynKiKikDg0jVCUdNWIVLsqsSQGoOe53U0KuxXXhsmbJixdgkUReHQYbl8unFvSs0Muw43iUTpvX57kq4lTwoNi0p/hMF5bsIRi/JYsT0bhfLaCKCQ6dJTJs5rymoTYaelNSE8Tg1NUTCFIBgxyXLrXDVjDEBMcSkaa5NAiSWKq4pCYZYLf9hWX7KEIMOlk+12EDEtVu30URs2GJjlIhS1Er9TvAZGrtfBd7t8nLPwM/b4Qu3yirc1fLavT4DbwpBcr+2XENDQTos/ZwJS6jJB4xyK1hhNfUkhKx1tNixuu+02LrzwQq677jqOO+44jjzySMD2Xhx66KGd3kCJpK/T2lWdu//1HUu+2dlIbWLejBIun1bSpnO2NZejvR1ZfDW0fNt6ypc+gyoMPIPHYk44lZuXrGRBUphAxLRwOzQKs1yU+ZoOfcly6zxy4aEcPbawTdcs6bvk5uZy9tln93Qz+h0t9T15GU6q/GEcmsru2gi5XgcZTltKdE9tlEyXji8Yxd+BauC2upKCP2JQFzapCkRRFQhEDOrCBkXZbjJdOoVZLnZUBhJF45yaQjBqpkxos9wOHJqCLxQlalp2MraIKUCpYFp2YvM7a/bEcjpi9SWakW5N/sgSIEyLXdVBTLO+6F/c0xGMGOyoMhma5yHT5UgJ0SrIcDFldD6vryyjqiqCUOw+PMvj4KIjhicm9veeOZFHP9jAF5uriBoWmipwO+zrz3BpbC7327K2To0cjx2y5Vbt/64ORinzhdBUJcmzZHt9LCGoDkSImlarVLWaoi15Dk2NG3EvUiBigIBcj6PVz0tX0Bm5jacdNIg7X19NTSDaSKVLxMoHqood4haMmh1KPO8rCllN0WbD4pxzzuHoo4+mtLSUgw8+OLF95syZnHnmmZ3aOImkP9CaVZ3SYJS/frrFHiST1CZqAlHue3MdQKuNi/bkcrSnI4uvhpZvW8+eD58hFArjGDga56SzCRgQrA6y4I01LLnyqJRjF2a5ANhTG6JhRMWoAi/3nNF71S4kXcOiRYt6ugn9ktb0PaqqcvGRI/l0Y0XKRPKA4kxqglE2GVaHDAvDsvMHkpO91VhYVLx+w5A8Dw5NxevSCBsWXqdKuT/SaEL78fpyAlETXzCa6DvsQnF2PYlokpUgIOXv1hBXZooYotH2eAK4aQq2VQYZng+aqmJZFr//z3q2VwaoDkQQgENXyfHouHQ7p+yZz7cxYXAOU8cUJEJTn/1iG394bz1hw6Ig04lL06gJ2FW9dU2hKDtVPSgeYmMJUIXt4RACAhGTHZV+FEVFAIWZLtwOe5Lf3lyH1uY5pBs34l6kUNTAtOxCg/e/tZarZozpkX69s3IbdV1l3oySJlW64gIM26qCHU487wsKWc2hiIZlfFvJhg0b2LhxI9OmTcPj8SCEaLJCZH/E5/ORk5NDTU2NDAGTNMvKHTXM/dsyMlx6osNPxh+OsrnCLuiUrDYBtl55xLD1ypfdcnyLYVFNxVNXxTqj5lat6r9rpu3IGn535Y4afnr/C2x/76+EQ2GcA0soOObHqLrDjpE2bQmWO380gdEFGY2PbZjs9oVBgeljC7n0mFEcPDS313aW+yrd2dft2bOHdetsQ3r//fenqKioS8/XUXr7ONBS3xOMmgTCBgt/OokJg7NTJpKWEFz596+oCkSJGFaL4YttQVNsj4mdB2GhqQqFmS5KijKZO200OR5nowltvH+q9EcIRMw25Xm0qk0xj0dzJEvD6qrtLTAFZDp1u4CgYaJpduiXpigMyfOQ4dQo84UZNyiLp+dMTunfUia9lsCyBL5QlME5HrKTVvmFEGyu8CcMvISMboP2eXSVkqLMRnOx5N+5s3MXkscNl66w2xci1vWjqQpFWS7Chmhx/OkK2joetsazkVzHIq4cluVxJCILOrOgXcPnw6H2XB2LtvR1bfZY7N27l/POO4/3338fRVFYv349o0eP5tJLLyUvL48HHnig3Q2XSPojLXkD9tTGVrnSqE2oioquWdQGo7y2opQzfzCkyfM0jKcGErG4OW6d6mC02VWrtkr9VQYi7F33BZGwbVQUTvsxqmaHStmFpezkycVfbOPVq49Oe+xDhuf2uIygpOfx+XzMmzePxYsXY8bKF2uaxvnnn88jjzxCTk7vSuTsK7TFE9kw9vvD78sJRk2ipmkXh2u/06IRqhJThFIVBmW6CUbMlGrWDUnu24bneymvC9uLEg3QlNTQprbQsIZFOpJtK8MCK2qR5dLJ8TioCUXRNTVWrdpW2SqvDZExIKPJJOaGnoHKugi/fXMNzgYLSKGoXVwtvkLe1CW6YxK6DenKXIf4uHHvv9ewutRXf4+E/fs6dY08r9btEqltVaxqrWfj8mklzJk6qslcyM5MPO+tClkt0WbD4rrrrsPhcLBt2zbGjRuX2H7++eczf/58aVhIJA1oya2pq7ZKfFN9haqAia1K0RzJ8dT+iJmiPR5PhvxuV02zCh1t6cjyvU4GHnk2UU8+2QdMTRgV9ShoCpT5Qqze5euznaSk67n88sv55ptveP311xN5e5999hnXXnstc+fOZfHixT3cwr5JR0Iq8r3ORLiN/XnneQhMYa/4R0wLl64RMUVKNeuGNMwVyXI52KuG7cmiIFEXQ1UVLDNVKra1tHV/h2ZX4s72OOxq5ALi60K2N6ZeNtelNz2xT56IWpbg5W92NDIEDcsuHJic8xFvc/Iv4w+baaNHuiPZt6IuHDMmbG8N2KFoO6uCDMnzdLtEalsUq9LVRmkuP0XX1WYX+TqT3qiQ1RJtlpt5++23ue+++xg6dGjK9rFjx0q5WYmkCeKrOuMGZREIG+ypCxMIG4wblMUFRwxvVKE2GSsmwTgk19vsOeLx1BHDYmdVkGDUQo2FG6iKQsS0Eyc/3lDR7HHiHdn0/QqZODSn0WC/c+dOhBBMGJzNwDwvnv2PQSg6loinsNmroYYlcMVWceIDakvHluybvP766/z5z39m1qxZZGdnk52dzaxZs3jyySd57bXXerp5fZrm+p7mQlMmDM5mWL7XfqOFaHLhoz1Ywu4jhLDDdFqa9DbMFXE7VdwO3V4dT2pXUnFsuqJn0VR7ocfjUCnOctnniS3aKErjgoBx2dzWTuzjhmCmy17hD0bNRCXy+Pigawouh4pTV3Fq9v/H+9moZRFskA8T90yVFGV2SbJv3DMQiJioip1Toan2P4dqK2OV14Zwqnadj+5SiGpNflHUEuytC6d4NtwODVVVcDs0irNd1IVNHvtwY0rByKawLMHKHTV8+H05K3fUtOo7/ZE2eyz8fj9eb+MJTmVlJS6Xq1MaJZH0R5pasbcswT++2JZWbcISFoZp51icdtCgZo+f73Wiq1BeG8YUdqhRffElexXJEIK3Vpcxd9rodk3qV61axR133MEJJ5zAgcedRShq2kmSll2SVQE0zV7l1BSFHK8DBO1aKevMWFVJ72bAgAFpw51ycnLIy8vrgRb1L9rjLVRVhetP3I/L/rqMcNTOg7A6Mc/CsEBVbTnWiUNzmp30NlQfUrClWXdWBe1crsQxU5O3Oxthga6pFOd4iJpWQn5UINBUhaghcOh2pfK40aEpSiLkbP+iTJZ8vbNZOfF0Iam6Al6XRiBs2vkpKHa+h1JfWdyt26Gn5XURilSl25J9456BHI+DYNRMqc+R7LnxhY1ulUhtrdJhVaBxbZQ4banFkRxKFYoYRCyB16Ezbf9C7j39wC4tgNnbaLNhccwxx/DXv/6Vu+++G7BvvGVZ/Pa3v+XYY4/t9AZKJP2JdG5NVVWaVZvQYp+3lLg9YXA2Rdluynw1aKqtlELMLS6wV7xcusaeWGhSW92rcaMiHA7z+aoNPFv1LX5DJNzGUK+e4naoFGe7qQub7ZLF64kq5ZKe45e//CXz58/nb3/7G8XFxQCUlZVxww038Ktf/aqHW9c/aE9IxdFjC/l/J+zHA+98TzjaiiSENiCwk6WdutLipLc+V8RHjtsOPdJVlfwMZ7PS1R0hXb6GQ1cYnGsnZJfWRPE4NXb7QjHvi706b0VFrP8Fp6ZRHYyS5dYZnudh8m/ebZWceDpDcPn2Ku547TtbgUgTCQ9JvAbGgEwXoajJsHwve3yhDqkStYW4ZyDX66AqYNciUTTb+IF6z40vaHDwsOYNyM6ktflFuRmODtfiSE4SjxgmvpDtNaoLm7z41Q6WfL2DHx8+jHvOOqhzL7KX0mbD4re//S0zZ85k2bJlRCIRbrzxRlavXk1lZSWffPJJV7RRIun3xAeWuNqEid0h53gdra5j8d9Ne6mJKVUYlu2CV2MrZrbGtkJRtotAxGyzOzrZqDj00EPZMORE/OVBirPdZLlNdlQGsIQ92FkxzcbakEGWW2/zSllPVimX9AyPPfYYGzZsYPjw4QwfPhyAbdu24XK5KC8vZ+HChYl9v/76655q5j7J5dNK2K8oizl/+bLTvQCaahfOmzwyn5U7apr0pqiqwrSxBXy5pZJKfyRRV6I1kSZqTJ0oWXq2NRkjpkg1LlRgcI4HTVUo84XRNQVLqAQiZsxTC4oV73vt83qdKuMHZzM8z8Nzy3ZgWqLVcuINDcEJg7N5ftl21pbVYloWxLwWbodGQaaTurDBsHwv1xw3hpqgQW6Gg4IMV5d7euOegagpkrxItnGlKNjGlhBkdLNEamvzi+K1UdpbjC45Sdy0RMKoSMYU8MwX2wH2CeOizYbFgQceyPfff88f//hHsrKyqKur46yzzmLevHkMGtR8qIZEImmaltQmmiM+Ga+OFZ+KD7hWrMqs26EyKDYoOlSrTe7oZKPiBz/4AafPvpqrn1uRcB1nunSG5nsTFXAVIYiaFsPyvdw4a/82GQHJnfTAbBfhqMAfMdBVlYHZTnb7It2qLCLpHs4444yeboKkGSoD0U41KnTVXuTwOjV2VYdarBb96YYKnvl8G05NRUUhalqxCat9PJVYhe9Y3kZyWx2aysBse8JrKzYpmJaF0QoHjCnAqSkJD0ld2MShWYkaH6U1IYbne6moCxM27Mm+Q7NX6AuzXPzPMaM5aFgOl/5lGaYlUuTEVQVUxZYTf+SDjcyZOqrZvl5VFW4+eRw3L1lJTTCK16HF8gGI9b0W2yv9/OKllSn3sCv6yeQw1VyPg9GFGawtq6M428WQPE9iLLBitT+yPQ7uP+egbl8Qao3SoWWJDhWji4eCZbs0Nu0NNtue55bt4PYfTuj3YVFtNizAjnu99dZbO7stEsk+T3vUJpIn40Py3Bh7BaGoacdEW/ZqkaYqeB12dd22hCY1NCpuvfVWPttS08h1nOnSyXBphCIWEdOkNmTw85lj2zyQxDtpl66xdW+QsFEfs+vS7eqzzcW7yryMvsntt9/e003ot3TGO7GzOtBphoUCjBjgxevU8YWiVAcihA2DDKcDBTu0Z/XOmoR3csroAYn+bVieh1DUIhA1CUdNKgNRwDYkNE1BtWwZWzMp2dmwBJZlT8xVxf5ntMpnYWMJwZAcN/8zfQzD8r0pNT7yvE7cDo1Ml56Q9o6YFpV1Efb4Qvz+3fWAoDpooKt0SE4c7InygqSJcm3YwLIEYcPCqankZ7hwqAq1YYNvt9fw/174lvvPOYijxxamXpMl+HZHNW+sKiMYNjlkeC6nHzy41YtYDcNUB2Q60VQSnoHh+R5qQwa+YJQMl85v07Shu2gpv6ijxejioWDRloqgYD+Ljy/dxDXHj+3Ua+xttNmwWLp0abOfT5s2rd2NkUj2VToy+CfL6qmKmnBHm5ZtUChAOGqxszpErtfRplWs6upqIpFIwqhwOp1NJsUpKHicGkTB4xAMyGy7mENlIII/YhdzEtirkIpqrwCGYpMJr0tPG8ol8zIkklQ6650Ykuu1E5U7oU0C2FkdZFCOmz2+MJYAf9iiLlxfl0JV7NoNj324kQyXHltsUNlaGUhIaDc8pmmKtB4Ly7LDcnRVjS24NF2zoqG5YYdRqfzP9DH8ZMqIxPYPvy9PWVxRFLvvqwsLKmojmJaVqE0UjlXxjieraw0ShFsrJx4neaK8ty7Mw++uZ3uln0E5HvwRk9KaYOIe1YWjXP2Pb/jjBYcmJvafbqjg1n+uZEtFvbH4t8+3cvurq7h25thmw26bClMtrQmjqTAox8XeukjCM3DQsN5Rp6il/KK21nBKJj4e+kJGq9qytdLf5vb3NdpsWMyYMaPRtmTXkdmZVXQkkn2Ajg7+DWX1Ml06g3Pd7PaFiZgmwrIHyxyPg8uOGc2U0QNa3bajjz6a7OxsDjjgAJxOO3yqLUW32kqux0EoamIJgUNX6xMAFVA0iBoWoahJblJVWmg84Dk0hdqQwYrt1U2u2kkkfYX2LDx0Zq7SaQcN4rZXVlIb7pzxPRS12FoRaNJQsQQEoibfbq/im+3V+MMmwagRq39h5xZYiBRLJ9pEwoUAdlWHMCyRyD9LhxL7HyVmmKiK7VmpC9kJ0ck0XFwR2OpWpTVBDMtKGDeV/tQFEMO0UJP6tfi1tkZOPJn4RHnljhr2+ELkZ7jwR0x7QUmIxD0yBfiCUW54cQUPnHswAPOe/ZqqmKcnmbqwyW/eWAs0zveA1hWcy/E4uev0A1mxvQahwKHDcpk4pG/UYGjOs9Hc+xcfD5dtqWrVeUbkZ3TlZfQK2mxYVFWl3rxoNMo333zDr371K+65555Oa5hE0p9oqmPqjMG/4SBXFzaoqAsnBrj4OFpRG+LR9zfw1uqyZo2WNWvWUFhYSEGB/flBB6Umm3XUddwSyZVbU8ToRYPPYzQc8OxVu5Ad42sJasNGo1U7iaSv0J6Fh7ZWHW6JL7ZU4nHpnWZYQHrvR3xyH3/Ha0MmpmkSjJqYlsCh1S9kaCjoiokhGh+jYeG4poyORiR5O4qy3HYtBq1xTlry4kqmy6KiLkIoaqbI3SrYNScsSyQSwK2YipOm2h7etsiJpyO+qORQFUprgo1kxjXFfhYCYYNHP9iIZZlUJxkVyc4TIWxD5JH30+d7tKbg3JpSH3e+9l2z+TK9mYbFClfv8vHxhgreWl2WuCaAomwXF0wezoWThyfGw1+UL2d7dfPvh64qXDFtdJdfR0/TZsMindb4CSecgNPpZP78+Xz11Ved0jCJpL/Q1MRg7rTRLFy6qcODf8NBbld1CDNZoSlGxLK3NWe0xHMq8vPz+c1vfkN+fn7ac3bEddwc1cEoHodGMCqIWgJdrZ8gGLHQLo/TlnCM07Di+M6qYCKvRNPt6rjJq3Z9YYCTSKD9Xoe2VB1uSYI23gZ/K0M9OoKI/U/8nRfAF1uqSEz3ky7FsKxGcrDxYyhK0q5J+zg0O3lbCLsqtEL9pD++m6YqFGa6KMh0UuYLN/K+xiecU0sGsHpXDVv3hlGV1El6/HiC+CS/3oyKmiKhmmRatFpOPB3xRaXasEHYsGKeimQPsj1ZzvY4WFdWSzBSn4TfcESJ33NfKH2+R0sF56KmRXUgQtS0GJjt7tNqfvEx+7tdNQnvjkOz/UyGJaioC3P7q6t57stt3HzyOKaOKeC+cw5h/vPLKfOFmzzu+ZOG9vvEbWhn8nY6Bg4cyLp16zrrcBJJv6C5icENL64gYljkZ7R/8E8e5Nbvrk1MqnXNLpYESStnAmqCUUbke9ld21hdKTlRe9CgQWRmZjZ7be0putUS+V4nGS6NTLdGTTCaiBVWYtVusz2NC+4lVu00hdKaUOL64+EGmgJCAX+sgqpUlOrdfPLJJ0yaNGmfL7jaWq/D5JH5rCmrTXkHW1N1uCVt/uQ21IYah850Jcn2wvtr99iegERdH3vV32jGC6EqSqKvVRSBYYFDVdDUeE4EODR74SXP46DSH8Gp2f1LQYaTiCUo84UbeV8bLhLVxo2tJqRvI4aVtgJ4PCQr06W1mNfQHPFFpW+316QUprPPITAtWxFQ1xRqfJHEmBBvQ8JeixXbQ9jGSLp8j+YKzgkEe3xhBFCY6cLtsD9vr4esJ4mP2bWhKMGIlTBS47kyDk3BqdvP4tqyWm5+eQULzrIVrz69aSZXPvMV73y3O+V50FWF8ycN3SekZqEdhsWKFStS/hZCUFpaym9+8xsOOeSQzmqXRNLnaWlisK0ySDBqy6qmo6XBv+EgFzFMDCFiqyr2AKFgr4ipioKi2OohYUM0MlrSqT/Fcyqaoz1Ft5oj2fsyIt9L2BAYloWuqrh0Ja2qVX5STkXYMGMJ60mrdtgDZ7ZHb/UqraTnOPnkk1m+fDmjR3dfyMAjjzzC/fffT1lZGQcffDB/+MMfmDx5credPx2t8Tp8t8uXVqp11oTiDmnzN2yDreAUQtcUzJiEaOt1lTpGNHY+sBcJoqbVbP0KVQGnplIUk5iNt7ShR0FR7EraXqdG1HQwNM9DlT9CuT+S1vvacJHItARVAdtboaKQ4dKoTuPVadjUgkwnKgqBqMnBQ7O59Oj2P+fxMJz/98K31IWjidob8cJ5YP9/cqJ2OuJjRfy+pMv3aC63Lhg2CRsmbl2zBTySaKuHrCdJHrNzPU58oQCaqmAkGWSmJdB0NbZYJ6gJGilG08KfTiISMXl86Sa2VvoZkZ/BFdNG7xOeijhtNiwOOeQQu5Jvg0DnKVOm8Oc//7nTGiaR9HVamhhke3T84Si1IYPcNAN8c4N/Ok9IVSCCL2ygxoom1cWUlQxLJAYZVVEwLIsMp54wWtprVHQFyfkbu2sj5HodZDh1wqbF7tpI2vyN+IC3Ynu1rQCjpyaTG5awvR0unXJ/pM3FASXdS8Oxpat57rnnmD9/Po8//jhHHHEEDz/8MLNmzWLdunUUFRV1a1uS6Ujoyba9fgZkOimtCXdIYKHeG6gihF3QTtEUOxG6m34mhwZRM7bKH/NYxA2LdMaN3edZGKaFSKp10fC5iq/wCwEZTo17z5yIqihpva/pFolsL46Cptp9TF2k5fwTTVXI9ThxO1T21IZZsdPHH9/bwBXTRrNuT127PL9TxxRw/zkHcfU/vsEXjGJZAlVV0GNF60JRq1UGYHyfbHf6fI/mcusq6uzwn8IsV6OxDlrvIetpksfsqGklDK5kw0uI+r+tWMHD1TtreGX5Lk4/ZDCqquB0av1eUrY52mxYbN68OeVvVVUpLCzE7XZ3WqMkkv5ASxODbJfOblXBF4yS43G0evBvyhPideroqr2i6A/bK2cNc59NIYiYFnrMaKneuZk/PPLbXmFUxGlr/kbyql1trPqppiTlZSgKhVluIrHjtKU4oKT/8+CDD3L55ZczZ84cAB5//HH+9a9/8ec//5mbbrqpx9rV0dCTbA9kuLQOCSzE22AJ22sQiYWDNJyoKsTCaUTnSNLG0ePhS4ogYliNVJ3inhNNtXOpBCTyJ8prIyk5GFELwELX1ESYkEtXCUZNxg3KZuKQnCbvx+pdPjbsqUNTFcrrwjg0FZduHydu9FitsLQ8sQWfzXvDicWeh/7zPf/33nq8ThWXrrc54dmyBDkeJ5cfM5pFn2wmGDXRVQVf0GizR0lTYN6x9fkeDUVHpowekLZvHlWYyfZKP84m8kRa6yHraZLH7LjhGYvCSxEWEML+vU0BVf4IloDbX1vNS1/v4KoZfSNRvStps2ExYsSIrmiHRNLvaG5iAHYydbZbx6k3PfjPmlDMRxsqUlaxmvKEuB0qTl3FH5N8TqijJKmsAFT7I4SjFuMHZ3PUxBLeKChg4MCBrTYq4oNNhT9MtT9KntfBgExXoxW+juRetDV/o+GqnVDq8zIKs9xkOLW0iZiS3sfChQsZOHBgt5wrEonw1VdfcfPNNye2qarK8ccfz2effdbl5w+FQk1+NrbAnRJ6Yhn1q72BsEkwFMStazgVA8sQqLotwawoClkOi/KqOv5n+mj+s2Y3m/b4qYpNAvcbmMXVMw9ITH7C4TBCCCIRkyc/3sy2Sj/D8zO4/OhRjBngYnRhBt9sq7In7kaUlOzqGPFsLkWvl4EWZrSxhFsSiu5sdl9FAU3RsAzQ9Pr8tOR9FQU0TQULrJjFET9uxLTQMLCSQqcigKHGLkFR0JxuMl06V04vwTQNIk14HZ7+aB2l1cFEEoMwDRTRjCdAq18oEpYJVuy4ukVpZWr+gtAcCAt8IZNCr4LbobB6215uer6aO0+fwJEl9ZNUp9OJGssTMQyDj9aV8eRHm9i0x48/YuKPGAmDBU1HiRXkS2lDOlQNl0Pnhln7M2fqCEKhEJ9trEgcOx5mN7oogyuP3Z+n50xm9S4f5bVBsh0KBxRn8T9/X8ba0joGZtePS4qqoaga1YEo+w/0UpLvbPKZ13UdXbenpJZlEYk07d1o775CCMLhppOrs51qYsx26QoODIJRs1FtFMMCU6gomo4p7OPW1vn5bH2AdTv38ttzDkr53TRNw+FwtKoNqqqmjMPN9REd2bcraZVh8X//93+tPuA111zT7sZIJP2J1tR7GD84J6EOlbwCNCjHzrt49P0NjWT7IoZlr0pptrqJ22nroiuKQo7bgT8mCanGdMyTx2tNhZBhkeNVuXJ6CQUFA/jNb36D1+ttVaeTrJbhCxkJt3u228H4wdlcOd1OQuyMolxtzd84emwhf7zgUG54cQX+sEm2RyfbpTeZiCnpnVx44YXddq6KigpM02xkyAwcOJC1a9c22j8cDqdMCnw+X4fOf+655zb52aRJk7jyonmJ0JNtL9yNYhpYws6VMkwLj1OjSlXJGjSKcT+6IvHd71+4H39dHU99kE2+14krHEWNvYsDDxzH1LkPJfa96qqrWPrtBnbVhFLChW5TFIYPG0bJGdfij9iT9sr3nsT0ladtrysrj5xZ9eN/1Qd/wajalXZfxeWl8LQbEn9Xf/wM0fKtKfuosaxZVXMw5JxfxgwNqPzsBSJl6xutIscpOud2+/tAzedLMEvXxcJB610dimIXzJty3W+5+vjxTB1TwMMPP8y7776b2EcIqA1H2VkVZFd1kILTrkd1ZaAAtSveJrjxy7TXBjDg5GvRMnIB8K96l8D3tpGa7s7ln3glerYdcrd12X9QNn0CKIQNi58+p3HIsLxEfsiDDz7I2LF2iM1vF/6dBx5ZiGkJVEWxPTqiPh8ld/psnIUjAQhu/pq6b/7dZHtzj7qA3/3vOZw7aRjvvvsut9/zW9aU+RISv6pie63WmoI1Ky7gkfkXMnVMAR9/vJI777sPsFfut5b52GTF1LcUhSFHn4069CAyXRrHDfBz/vnnNdmGK664glNPPRWA1atXc8sttzS575w5czjrrLMA2LhxI/Pnz0+7nxBw9KzTOXLW6eR7nWQZ1fzv/17d5HFPP/0MSooOZE1pLXlKgD1LfpOoq9QQT8nhZB16CgBKJED56w/YOcfAj19wcPjI/MTvNnPmTH7+858Ddh/S3Ht/1FFHpXhKW+ojbr/99sTfP/nJT5o0Wg488EAWLFjQ5LE6k1YZFg899FDLO2GvAEjDQiKxaW29h6ljCphaUpBYnd9eGeDJpRvxR8xGSlLXPb+cLJeOLxjFF4yiqgouXaMwy0WmS8epq8QW5NJiWmDu3cqUgTlMHTMTgNzc3FZdTzyvo9IfIRjrbOPFg2qCUVbsqOa655fHziM6XJSrPRw9tpAHzj04Ydg0lYgpkbSHBQsWcOedd3bb+ZLDAjebAtOwUBU74TgYiU2+02Ba9sKCQ7MLpWW76z0JDWPgv9pSyc7qYKNjCCHYUR3E3F2LqjTrfLAn/V1osMdDl5y6Zud4JraTtrNTlXolvKhl4dJVLEuzQ7oEjC7MIMfr4KmLD8fr9aSeS9iVwXdVBwlFTaJmanBXa8KLFGwjKMfrIKgorU50F0AkauFyaDg0hUDEpDYcJcvloDYc5YvNlYQ8NYwrzuKt1WWJcK5AxIx5pxvnvzbbztjvmunWOfMQW17WsgRb9vpjx673tKuKgktXCMYqojcstJqX4WRccTZb9voJREyiQhCOmvwg1vc6qjbzz1a3rONU+SNs2etn3cebeKnmWxyaQrFWR5U/Ql5G+kU0VVW4cpo9Zu/ZG0ZRwOVQCUetJkPdFEC1C5PY75ZlhyLXhqK2iuE+iCK6O1Oun+Dz+cjJyaGmpobsbBlaIWmaFPWmmEdidGEmJx1YzLB8b6MKn7MXfcGaUl9K/gRAbSjKtspAbMJgT9g1xR48VUVhSJ4HFdi8148eO5ZF6oAf3L2Z6o//wX6FHv78h/tbreQWb9d3u2oIRS1ChpUoxCSwddlder3E7X5FmQmXPdiTlHgo0tNzJne516CjoViSevpzXxeJRPB6vbz44oucccYZie2zZ8+murqaV155JWX/dB6LYcOGtfvetDZ0wbIEX2/aQ2UwQr7H2Sj0RFW1RCiUEIJde2s5YFAmT118eKPnPvm4kYjJuF++jhFfzW80A7bDm3RVsfO3jCiGaSZCi+KGi2nZibt7/PXhQe0JhUo+va6Bptqx7kJ1JHIpguFwh0KsUGB8cRY3nnQAM8YPSfSx0WiUj7/fzf1vrWVNWR2WEIkq3EBqeJNp2JJS8Xuq2JNSw7STeVVNR6AyNM+DME12VNVhCft3bESDsClVmAzLz8DrUCmvizB76kj+u6mCTXv8GGg4HRpF2W62lfvI9WgIAduqAqhKvD5HrF2tDIXSVIVfnDyeucfuB8A3W/Zy5V+/wOvSErk7yYQthWBUsPCnkxg/KJNoNFWK2LIE3+3yURmMUJjl5eDh+aiqgmmajfZNpjNDoT7bWMHtr6y2xU0y3bidTiKmRaU/QoZmNQoxa3jcTzdU8OgHG9iwq8qup6SA16VjWoLyuhCBiAWKiqbr6FpsMc+0r820LAxLcOvJ4/npVDt1oD+EQrVlHOi0OhYSiSQ9yfkCe+vCfL6lkqXr9vDQO+swTXvVf/iADK4/cT9yPM60+RNC2EV54lvyvE4q6iKYIqbrblqU1YTIcGk4dTUxuDh1NSG9Gtq9meqPn0WYBkbu/hxwwLhWX0Mj2cmkQkwKCppq63wLIVAUhbAh8CT1Yc1JDnaFEdDZMriS/onT6eSwww7j3XffTRgWlmXx7rvvcvXVjUMmXC5Xp9bXaK3oiaoqTBqTGq519fHjuWXJSsqDJrleFZclEt7Q7EwPVx8/vtFqfEMeX7oJU9VR1DQ2RRJmbJKt6g4cmoNIrH/R4sm6lsDhdKEFQ4n6EorW+tXa5H3jb74JCflUp6bijBWC68hx49e3rcbkzn+vx+VyJ/rmjzdU8NfPtlBRF0HVHDg121CIJ4Anf1/RUqdOmqrEPAYCE7AsUBVbLSpkwNAB2Rw+agAvf7Uj4SVIW3lc1VAUjcqQhcPpBM3iH1+VEjUt8jK9CQ/w5vI6asMWWV63/dtpzkQbTMU+smhwXNLk+aWro+GLWJiqA4/blbYfdlsCXzhMZSCCpmloWuPjThrT+Llrat90qKrahncjdV/LEvz5vzsJWCqDB2SnyLwPynFT5gvz5//uZPq4Ic3m7KXL8QO47421PPHxJrSYsR0fX+MGrRCWHXbodqW9BkVR2iR21FX7diXtMix27NjBq6++yrZt2xpZig8++GCnNEwi6U+oqi1P+MA76/iutDaRYBdXU6neUc1lf13GGYcMTqskFYpahA0LTVOwLNtgGJLnobw2RNiwQFEIGyaDctwcWTKAf60oTcjkgSC0ZwsVS58B0yB/+P54J5/L+ooQE4emTpKamuQ3lJ1Mqwkfl+FTiK2Apg4i6SQHm6pKLsOWJN3F/PnzmT17NpMmTWLy5Mk8/PDD+P3+hEpUb6Wt6mnp2FrpT/x3c6ELyZWqk6XmTMtOjFZQ2O0LNVu0rrWopE66rZgCT5bHia8D1b+TWyaERW3IYMEba8jx2AseFf4IRqxmhp0joKKqFqZZr4QVNy70WNXs+DFNS+DQ7byC+DFMAYGwwYQhOVw5vYTJI/P5z5rdVAeaLzaoqwqhqMWuqiCKohA1BIVZLly6nafnVjUKMl3Uhg3Ka8MMynHb/S+xiuNKvRyvQ1WINvhNFCDDqYKiku/VmTA4dQGmJdGR3q7w1FlV51VVYcLg7MR4uHqXjwmDsznloEEs+nSLnbOTUuLdXgA0TYGuqhw6LLeLrrD302bD4t133+VHP/oRo0ePZu3atRx44IFs2bIFIQQ/+MEPuqKNEkmvo62r7J9uqODmJSvZVR1EJHX0cXlEXVUIRy1e/mYnWS5Ho07dsOo1teOJhx6nRoYzg8pAhL11ESKG7dX4dMNeFEXBoSqYwjYqqj56FsWKMmDkAYw7aTYVIauRpnhzk/xk2cnEIJb03YbGhq42lh1sOCA1V5W8O/IxJD3Lq6++2up9f/SjH3VZO84//3zKy8u57bbbKCsr45BDDuHNN9/sNmWqjtBW9bSGjMjPaNP5GuY01Eu/imZFh9pCupV8t65SG4x2uCCfgt3XRi1BhqLwXWktWS6NLLcDhC1uYVh2vQxFEaQXT7WPJEjtx+0aG0os9NTOTxg+IINFsw9PyLfOm1HCgjfWNlmHQ1Pqw0mTjTR/1Ewo3GW6dDwuDZeuETJMhIjL5tr9q66qCY9SchvjoWRD8zxkuR2J8NSGFbGbEh0RCIJhk4q6MKMKMxlXnNWu36Cr6ayq802Nh3OnjWb/4kxW7/IRjRVvjf+OhmWHAu5fnMnEIfuux7zNhsXNN9/M9ddfz5133klWVhYvvfQSRUVFXHTRRZx00kld0UaJpFfR3AS8KffpYx9upCZgFy9KcVFTr4Hu0OzVqYhmURWIpORY6Koai2UWeJw6bqfdafojJhW1EUzLQlOhINNF1LS/b1qQI2qp/vw5PKpF3sjxjJ11MWGh4lBFyopTS5P8X59xICVFmXy3y4dTU2M5FiRyLOxEP4W4WqNLT53YNKzL0VJV8nQDnqR/kZzT0ByKYsdndyVXX3112tCnvkBrw/7SLYZcMW00D7/7fbOVrJNpLlyqM5M1U2oGAFlunaoWVvpbc0xb4cietPuCETshXNOImpatrhSbi9qGgoVTV9FF/SQ/fo3pPDOWAMu0i3EW53jRVIU9vhBrymoTv8/l00oorQmx6NMtjSRMbRW/9HfRtATBiMnOqiBD8jxkunSKsl3sqAxQ4beThCNGOFHULU5yzQ+XQ2VQjv1daHr1Pp3oSNS02OMLEzbs93B7pZ85T3/ZKz3LneFxaW48/OU/V3HREcPZUxum0h+pl/fFznXMz3Ry88nj9ulxq82GxZo1a/jHP/5hf1nXCQaDZGZmctddd3H66adz5ZVXdnojJZLeQnMdznXPL6coy8XeukjC4BhV4GVQrpdvtlXZCdVJg0l8hV+JS8IqCqpiewQcmpqiJBU3RwRQkOlEwVb/KK8NYcaSCN0OHa9LAzQq/RECEZOAI5tBE6YQqt7D2BMvRtF0qhvUc2jNJH/h0k3MnTaaX/5zFVFToCoWUcuyZQgtO69C11Sy3BoCElWzmyrKtXJHTae4qyV9F8tKtzYt6QqaW33N8Tj+P3vnHSdXWe//92nTt2Z3s+khBQghAQQpESmKImCk/VBRigiIeL0qIFxQ4YJXQMBruyKgKEakVysBlBKQGqUkEBLSSNtNdrO7M7NTzpz2++PMmZ3Znd2d2ZJtz9tXcKed88yZmed5vu3zLXnTvieUXqTcf7pI6MUlP8vByR7XjRI76NmvX2tCz23y87+SdnZedtM/rYJme94QpazyFriF05btRi3CfgXHpodn3LYdTj5wGq9s3M3m3UkiPrcYuyqg8d7OeJ9F6ZYDjm3THE0xpy6MpshUh3zMqA2xK5Ym6FNJ6KZbD4MbfQHXuJCl4oXjvXnv89Ps3t0RoyOZwQECWQVCnyqP2shysYiLg0M6Y2NYFtG0yf5Tq3rtZ1TKerji/Vb+94wDuP35DbzXHM/9pvZtrOBrx8wbVddjJCjbsAiHw7m6iilTprBhwwYWLlwIuJrgAsF4pa8JJ+K32dKWpC2RYdakEH5FYWcsxUsb2nBo6/fY3mLnyTaec8RsXtrQWpA7vW9jBbviOp26harI2LZD2rCzIXyZ+gp/rpCsoTLA1rYkadNmygGfZJpPRndkOor0c+g/J1XlvaY461sSXPDROSxf3cSaplhJfSx6y/seqnC1QCDom76cIZc//Dbl2nduOpHXyXrPENNNhsKsyZh20RqO3jDt7POzzwmqMkgSlUGViE9lS3sSkHI9NyQJdNMmnbFBokfqpzcvJnQL3bQxLJsGVSFpmAWe796wHUgZNhtbE2iKwgEzqrjr3A+zpjlOa0LnZ39fx+bWJH5VIpb2pHIdbAcylkNTNMW8+khunu/Le79kXh2Hzq7l/93xMoZlUx/xE/QpudeO1shy94iLX5XpSGbQTcuVYZYloqkMr2zcXdQAKLVGoyro4/dfPkyoDxahbMPi8MMP58UXX2TBggWceOKJXHbZZaxatYpHH32Uww8/fDjGKBCMCrwJpyqg0pE0MCwbTZGpDCg5xSbHccCR2J3I0JooPXQvQbYoWyGoKRw5r46LjprTY9J6ZePursUp43rxgln5QS/EHduxkV3vvMyUJafRHDdIZSwyloMm20ULO/va5HfqJrtiaVKGxU+eWkfYrzCnPsIln9iHqVUBVm+PgQwzqkMsXTwll0vcX973WC8QFAw9iUSC559/vqgoiOiPNDD6875ubUuSNCxCmpuj39fWVs3WH6jy4Lb4Xp+dvlKqCmRes/cqkoSsQFBTBlXEnW9UeKldvaV4WbarTuWRMm0kIKjJBMIyqiyjmxaqLCHLrvSubTl06gbJjM2c+jALGit6GHc1IR8dqQy74jrNsTTl7kVTho1hORw1vw5VlVk0vYpV26LsiumE/SotcR3bcaMntuPkDKO04dbWTQr7e6Sn9rhOtsOf325iy+4EVUGtwKiA0R1Z9iIuNz6xhneb4u61kCRCPpnqkEZTVO812lKO06uvNMSJLHletmHx4x//mM7OTgCuu+46Ojs7eeCBB5g/f75QhBKMa9qSGaJJg2bTKvByeXOFmlVsypgmu+K960l7eMXY3sImSw4+1U1R8Cah7pNWfrHmv7a0c+sz66kKqQS1LqNi3RO/xTYNlKp66vc7msuP35faiK/Xya0628SnPZkhlK3fkJDo1E22t6ewsilPkyKupOF7zXHe3xXvkfb16BvbckZLf3nfpXQl723BE4w/3njjDU488USSySSJRILa2lpaW1sJhUI0NDQIw2KA9Od9rQxqdOom4aAPw85klZ96brLddB/wvN/d04LKQVEkZMlVmerNSd+99kCR3bk1oClMivhIGRZGCYPw0pW61zP4sw4QPWsokBX36S0TKd8YcoC2pJFLH3NwowGS5eQUmXbGdWRga1uSL/3udaKpTA/jrjbspzqosb0jjWm7aTql4lMkgj6FFe+3cv6RcwqU+5IZA9tx+2lIFBZzA+yO6wQ1hWjK7BG99vCiK+/uiNGeMoinTdqTmVzxeO465m2yR8tG2htHxnTXrYhPoTrkQ1NkApqcayLYW7RlqGo0JrLaYdmGxZw5c3J/h8Nhbr/99iEdkEAwWnlu7S4SRs/J31scPVWQWNosuRjSe5pPlQhoCjUhX9GJPh9v075waiX/WLOTNU1xApUK8aZNOaOicvp85L0OoybsY059mEXTqooe02sEFE25ERhFdms16it8tGSLwpEgoMmEsh6rgrSv2hB+VSlbzanUruQTxcMz0bnkkktYunQpt99+O1VVVbzyyitomsZZZ53FN7/5zZEe3pilP+9rRUBFliV002ZadYCt7emiKTmS5M5vMoMzKiTAshxs2d3Ey5IrnW2YdtHjVoVUOtMWluWgyDIRv8r29nTxRnPdkCWYXRtClmUM25WN1U2T1k6DyZV+MqZNc0zPRUjy6zryDQklayx0P2Ox255hElAVGir9+BSZ1TuixNMmjZX+HsadLMvUVfjZGe3fEZWPprqpr/nRAm+jq5sWiuw6hyzH6Wp+mEW33Nq8xqogB0yvZmdMxzTtXLQ5P7oS8ilEU+61SRl2QfG4eyx3k721Lcm5d7024hvp/A19yrCIpQz8qoIsu4aYR1/RlgWNFTRUBtjYkqA+4iuI1JTi9BJqh/ShptYLF1xwAc8999wwDEUgGL1kMhYPr9yau+3pheevE7bj5tQmMqV5nuRs4V/ErzIp7Gfx9OqyJh1vcx7xK2x6/z3W/O032KaBb/JcnANPJWFKbGtLcfEf/sW5d73GS+sLa6C8CfC95jj1Fa6XxnEglTHdFImMm26gSK7MoVcE19qZyVuD3RSAgKbQWOmnU7e47fkNJS38Xrh6wZQKkrrJrk6dpG6yYErFhJh8BV28+eabXHbZZciyjKIo6LrOjBkzuPnmm/nOd74z0sMbs+R7X4uRsRwqAxphv0KnbtNY6UeV3Y2BGylwN/5mNpLhbc5ketRX90uuKFty+164stlSTrhClVxhiuqQ5nb0JltM7Tj4VIVpNQE6dTPPG983tuOmPQV9CpUBjZqwj4CmImcjGBG/hpJNX4LCaEXAp+QMh2KCG30hSzC3PkxlQCOgKVQFVGzb3ZA6RUIifs+T3v+hATcVLWPa2DYYeXVoC6dW0lDpx/2oHSzHwTDtok6ueNri/Z2dPPzvbXz7oTc55Ia/8+sVG3qkzlWFNAKampVEd1WrWuJpHMfJbbInRXz8+oWNrGmKEfarNFT4CfvV3Ea6+7ozXHjrmTeOioBn/LhqWp16YfqcX5ELrp93jPOWvc7WtiQJ3WDT7gQbWhLEUgYpw6K5SI1iPt2vX0BTBrw+dj/uqm1Rnl/Xwqpt0bJfv6cpO2LR0tLCpz71Kerr6/n85z/PWWedxQEHHDAcYxMIRgUvrW/l2j+/Q1zvMhi8NKZcCD17v0+V0UvI/5Uk+MbH53PsPg10pIyyQ8deuNewHY6fanDb/fdhZjJok+eiHXI6kqIxucJPddBX1FtSLPfapyq5hntek6ewr7B+I52xsx4xV+EqvxHeQHJuB6vDLxgfaJqGnNX6bGhoYMuWLSxYsICqqiq2bt3az6sFvbFwaiVz6iOs3hGlKqCiKUou1dHbGO43tZKLjprDHSs2smFXJ2G/RtqwcBw3kupTZOoqQpx8wFSiaZM/vLQZR3KNklIKjsFL9YR9Giv4/KEzuf+1LbzXHM8213MKejQAWJbNjlia8z8ym3+818K29iQyUm7ucXvp9H/u1k6dSEDNvd+UYVER1EhmLCqDKkFNcd9rVsrbI5nnHMo3KkoRpnILrC1CPve9aIqCImeLug07Z5x5SkWuA0fisDm1vLKxf6EPcMeRNqyClBxZljjz0Jn895/ewbQcbKentLmXquUFaDQZHCSiSYOblq+lKZrukTpXX+HPpsQ6yBLohk1HyiBt2G6jPSAxwrLhxdYzx3GviUSXQRT2hXstXM+PNNSGfUQCak5id2t7kpqQxn5Tq/qMwgxVc758xmJaVdmGxR//+Efa29t56KGHuPfee/nxj3/Mvvvuyxe/+EW+8IUvMHv27GEYpkAwMniTza5YV6jaMyQc3P/kTx+pjFVSGpRflfn6MfNy4edyx+RNNLqeYcuffoxi6Ox/wIHIB55Gh24zrTqY26gVm+SLTYARv0rYFyZt2HSkMrR1ZqgJaQU5tblGfbKnDlM4/oGoOZWqwy8Yvxx00EG8/vrrzJ8/n6OPPpprrrmG1tZW7r77bvbff/+RHt6Y5ZWNu4mmMsTTJtGkgSKDX3VzznXTznlfl8yrY8ncupyBv2V3gof/tY2tbUlsB1rjOr9+cROODWnLzjVbk2QJy+5/i+/gplBlTJt59RFuPG0x5y97HZ8iu3VdWmGdVcZ2CGkKx+wzmYNn1fKdx1bR2qm7KnQK9BKA6UEyY9GWyIADScOiOqjxxcNmcs+rW9gZy1AV1EhmSk9dLZVoysgZFgGfjF9VSBquSlMQhc5s1+y0YWLZrqRtLGX02SfEw5WPdUgaFoumFcqmfuHQmTzw+hbWNMVz0RHPoFBkqUddiiTJblG8ZJMxHR5YuZWQphSkzkX8KtNqgrnx2k5XR/HjFzbyy2fXj7hseLH1zLvuacPqYdiV0lcpoClUBFRSukVLp07Yr/HhWT1Tx/IZarXDsZpWVf6uBqipqeErX/kKzz33HB988AFf+tKXuPvuu5k3b95Qj08gGDHyJ5vacF6hVl4KlJTNEdayBYmTqwIlhbRrQr6SPDimafPYv7fzi2fe57F/b2fFul0F4d5IOEDFYWeQmTSfrTOPZ0tHBt10SHbTguw+yfc2AUqSm4vaUOFHUVzJwvzwvWtIOFiW2+01oBW+Xqg5CQbCDTfcwJQpUwC4/vrrqamp4eKLL6alpYVf/epXIzy6sYm3KWmKpmms9BPyKYBE0rBojrn3XfDRORjZNAuARdOr0GSJ37y4ie0dKSZF/FSFNGJZwyRpmPgUGScrX2pm+zZ032P1NrNt60hx5SNvEU8bLJhSScZyehgV3qbPE7HwUib3qo8A7sa6VEPAdqCpI01zLE1St6gIqCycWpVLwbQdp6QohDuwEp9H4fgkJKpDPmRJIpoyaEtk2NaWJJUxs30yJOorfGxpT+VqOvodigOVAZXjFzbywvrWXHqMLEtcdcICakOuIIcqg6ZKqFkDsPvb8d67LMmoikRKtzBsp0fqXMSvMrsuxJSqIDUhH1d/eiHLzjuUGbWhfjfS3dONhoNi65mERH2FH1mS3LoeBwzLLprS1FukQcJNbe7UTba0Jfnx39fz7Yfe5ODrn+b7f36nR2pSf6mH5ayPw5VWtScYkGHhYRgGK1eu5NVXX2Xz5s1Mnjy5rNevWLGCpUuXMnXqVCRJ4vHHHy94XJKkov9uueWWXo952223sXjxYiorK6msrOSII47giSeeKHjOMccc0+OYX/3qV8sau2D8kz/ZVAW13ITvTcaeiohpualDlQGNp75xFPMmR3Kh/2Ko2fDsOztifeZO3vH8Bg76n6e57KE3+d+n1nHZQ2/y5d+tpCWepiGsYtoOTR1p5Jrp1H3ks0iKhg3oRv85peXkXjfHdFKG5Y5NcrK1Fm6X7742BAJBqRxyyCEce+yxgJsKtXz5cmKxGP/6179Equ0A6L4pqQ372asuzOxJYWbWhAioClvbk/zy2fV8+8G3uOjulZx712u8+H5Lwev8mszuTndT6FO9Bp9OgWRrsXSo3rY6acNma3uaq/+4mouOmkOk2/zSWx77knl1PHzRESyaXk3YpzKl0p+bj/vbh0uS29dnZm0wJzMKsOy8QznzwzNLrm0oZ/sWyisUdhwH3bTZL+sdb+3UMR0nV1A8rSZEbdhPbTCbBlbCiWTZTVHr/vm9tL6VJfPq+MZxe+eUr2y31VEuuuy9Xy+SkTum5D6vKuA2TOxRD+K4Bdz7Ta3k5AOnImc3yEO1kR4MvY3Di7b4VAUch2jaKFrH15ujrSUrB+x9xZWs1HI0ZfLbf27ma/f8q+Dae2qHxa5fuetjOWlVo42yU6EAnn32We69914eeeQRbNvmtNNO4y9/+Qsf+9jHyjpOIpHggAMO4Mtf/jKnnXZaj8ebmpoKbj/xxBOcf/75nH766b0ec/r06fzwhz9k/vz5OI7DsmXLOPnkk3njjTdyjfwALrzwQr7//e/nbodCobLGLhh/mKbNn99uYntHkmnVIaqCam6ykWWJ+ooAzdmUqPw5w1sIasIa/97WwakHTeNHT64FsjmsEjh2lwrKtJogyYzFi+tbuPnJ94rmTv717R3c+9rWgsXMccB2HJLbN7Hrr3+i5iNnYkcacrKCDja25aYK2I5DS1wn7FdyTfPyJ/lS5F6751731qhPqDkJBKOLvjYladMibVo4Gdd5UBPyFTTMy5gWtWHXaZDKWLm6BlmSUGUn23StCwc3ilAqDrCpNcnf1+zkgo/O4b5XP2B7RwrbcaO/xboX27bDmuY4xy9s5PcvbyZt2vhUhZRh9bvhlyWJzrRJXcRHo6YUpIRKUqGRNBC6hHi7CKhuA9P8efGqExYQ9qu9poD5VLewvD8HdGVAdfsLxXUmVwaKpsd84dCZLF/dXFBbkzYttmWjIpAVH8k7rp1dn05aNIW/rW7KqvWp2LZbz+GlkuXP76NFNryvcYR9CmG/wj6NFXzzuPnUhf0l9VVyHIeWTr3gPN3tp6RuMaUyUHDth0rtcCw3kS3bsJg2bRptbW186lOf4le/+hVLly7F7/cP6OQnnHACJ5xwQq+PNzY2Ftz+4x//yLHHHlsgedudpUuXFty+/vrrue2223jllVcKDItQKNTj+IKJy69XbODW5zYQTxnYuKG8oF9FhtxkU1/hRzetnH55PpUBhXja4juPreKCj86hOuQjmXFzar0ohKbKTKkKZLtmm/z+5Q8wLLtH7uQ37/83rZ1GoRJJtuAu07KZ6Iv34lgG9uoV1C05I2c4yFJXoz1VdmUH05niOaWlyr12z70u1qivt+7aAkGp7LXXXj02wPls3LhxD45m7NN9U+Lm9KdJG1aBEWBYrue8e8O8yRUBoLCmCihotjYQ8msIfv/yB9SEfMTSBpbtRkIlTzYqj+7Fq7bjStNqioRu9r8Rt7JF295cWB1Sea8pzrV/fofn1raUNO6ITyZp2IR8Co5DgfJf/ulloLEqQFvSwLB0NEVmZm2Ib39yb5bMq+P5dS1ISK7BJ7tiGKZto8puWmlQU4qqCnpXJehXcoZdfcRPQHM3wcXq6L52zNxsfr5FdUih0l9ouKhy1wbcdtyoe1VI49JP7M2R8+u48Yk1rNvZmTufKsvMqAkWjGu0yIb3Pw6VK47fp9e1qZhh0pEy+hUn8KIXjZX+3LVfdt6h3HDqokGvj2O5iWzZhsW1117LGWecQXV19TAMp3d27tzJX//6V5YtW1byayzL4qGHHiKRSHDEEUcUPHbPPffwhz/8gcbGRpYuXcrVV18tohYTlF+v2MBNy9di2a6MoZqdfDuz6k6WnWKvujCJjEVC76n4JAFpw6E2rNCpWyxf3cSCKZW8saW9oLBRN93+D0FNQVNlMqbFlKpggZLG5EqJNTviXUYF5CQ8jF1dRoVv8jwqDv6MG8XAyYa0JeRsUbWV7QiVsSwwKDrJe7nL/U2A/TXqG+1qTqOlcZOgd771rW8V3DYMgzfeeIPly5dz+eWXj8ygxjD5mxLTcFxVH8dBlvK39rA7oRP0KUT8akHDvLhuUh3yZTef5NIgS2lKVyq2Ax1Zb6vXITppmLy9LZrz/gJFi1fbEhmCfoUTFzXy/LoWmqJ60XN46aqW43bDthyHXbE0yYzFH175oOT6iuqwnwrL5sxDZyHLsHZnnBXrWoin3ToJSXI7gjdU+okmDWJpA9sGWYYtu23uWLERWepKHepIGURTBrpp5V7vVxUCmhuF8catyIDk1kcosoRfkWnXDdcI8RVuNrunxxSb3yN+Nde13MHJGYpeD6b/OGZurig5ljIIajKTwj43v1+iaMfqUteR4WYw4yhmmGTM0mTjoymDyVX+Htd+sOvjaIkGDYSyDYsLL7xwOMbRL8uWLaOioqJoylR3Vq1axRFHHEE6nSYSifDYY4+x33775R7/whe+wKxZs5g6dSpvv/02//Vf/8XatWt59NFHez2mruvoetfkFYuNvrw2QfmYps2tz23Ast2u13LWNSdLIEs2uul6u5qiKZIZu8CDIeFGIWRcPfHWTjc0vbElwaLpVUU9T3bW2+W3bGbUhnp4adsTRkFo3jtbpptRUbXks6BoZLIKLd6Ygz6FuoifnTGdjGkRT5sENafXyXUwE+BYUHMai1J9E5HemuDdeuutrFy5cg+PZuzjbUre3REjnVUjUuTCVA6vn0N+yqTXMC+aMqkKagR8MooskTb6ThgqVYq1+1Mc3PQnTw7WsB0s2yaeNvnlc+sBqUCpx7ZtUhkLRZKIp91+O7d94WAuuHslHSnDLWCWJExvnpbc5ncO0J40aEsYmJaNQ7ZXh1xaGldbp45PU7jvtQ8wbTdasv/UKhbPqCbsc6MMf35zG83RdO5aeTULcd3ira2usfSDU/ZnUsTHOztirqqeIiNlmwWmMibJDMyaFCLsU1nTHMe0HSTJfS+W7bi5+5CLmuQr9kHP9Jhi8/vLG1r45fMbiacMLPcSURXS+I9j5nLhUXNz9TmJjMX0msI1KtAtlSzfSTUaHE2DGUd3wyTVz3few7Jd2WC/WnjtB7s+jpZo0ECQnGIdW0YASZJ47LHHOOWUU4o+vu+++/KJT3yC//u//+v3WJlMhi1bthCNRnn44Ye58847ef755wuMi3yeeeYZPv7xj7N+/Xrmzp1b9DnXXnst1113XY/7o9EolZWjz2IUlMZj/97Otx96E1mWekingpsKYFkO02tDbG9PZiME7qKhKq5UH3gpAg4zakJEUxnShk0iYxXNv/UIqhKN1aHc4tCpm2zZnehRvJef/uQZFZKiFX0/jZUB6iI+mqJpZtSG+NbH5zMp0jOndCLQm1Rfe3ZSHq1SfaONWCxGVVXViMx1Gzdu5MADDxy1jpyRvDb98dL6Vi576C2aeunq7DbolLEdh1m1YYI+11vensi43bAt19myK6Z3bdRLpJhsarH7VFlCU2QcXHUmz3HTWOknbdpZRSW30VxLXKclni6YHyXg04un8M6OGJtaE6gyKLL7O7e7PS/3/1kjSFPd1KuMaZdUmB3SZKbVhHrMIz84ZX+u/uNqNrcmexxHzp5PU2T8isRe9RE6kgZb2pJI2fu96+KlnS2cWsljF3+E+1du5c4XNrKlLZlVi5Ky6V+e3K9c0AUb3P4ZSd3kjrMPKdjUdq8fPGG/yTzx7s7c7aWLp+QiFau2Rbno7pWE/SoBTcn12/BStpAckrrV4xzjBS/C3RJP87V7/k26H8tTlSWm1wRRFTl37RdOrSzLuOkrql7gHMtGYUbCOVbOXDeg4u09zQsvvMDatWt54IEHSnq+z+fLSd8efPDBvP766/zsZz/jjjvuKPr8ww47DKBPw+Kqq67i0ksvzd2OxWLMmDGjnLchGIVs70hiA2ovv3lZAkuCD8+qJp428KsyrZ2ZXDGjhxe6ThkWVlbdRFMkFEnCdBzMIikEKdNhW1uS+ko/miyzM5YqqgiSXPdyUaMif6H2FD6iKQPDsqkI9J1TOt4ppksOe75xk2BwPPzww9TW1o70MMYkS+bVsW9jpFfDws7byLubWrlAtOH25zfw2qb2XGM07zX9oclSr4ZId+NClSUsx3GjCE7XYy2dGVRZQlVkfIqcU+fpjgP8+e0mNMVVqjOyXacVyU2t8pAlV2RDktxibjdiIeWkw0txr2Ysh4Ru4o/4CuaRyx9+u/drnB2kbtroJryVlfWVcc+ZyW5aFdkt+K4K+WiN6/z57SamVwepCmpU+FWqQz7XONEkPtidIpUxsRy7oOlbb+kxxeoHrwu6EYqvf2x+jzHn1+d4/TbyU7Z8ioyqyKOyaHgo6Io0VHHmYTO565+be32umm3WqEhS7tpHUxnOveu1kqPk/UXVR0s0qBzGhGHxm9/8hoMPPnjAsoO2bRekMXXnzTffBMjpqBfD7/cPuEhdMHqZVh1CpksRoztuZ1iYNSlCUGsj5HfrKNKGhZRNcc33tCWzucnRtOkeTwK7j7xkIysZ63VELUbVYaeTeO9Fwgs+mjMqtKzsnW27i5eDG/LPmBb7NFZMaKMChqcDqmD4OOigg3rkEDc3N9PS0sIvf/nLERzZ2MU0bVZu7sjdzv8VeFONaTsouPNXvszrknl1VAQ0Lli2Ek2RcgpGG1oSZEwLOa/Zmpp1y1u2k4sIdN+sqzK5za/nAHY3+67Txek2voxpY0gQkSXShlt4nnsfeWIWHpbl5IwWI2sIKXL2jux5wW1MWhP20RLXcylFpcZiTNuhKZommjJoqHS7hFcFFTa2JEs8QhfdfeDu3C9hWg7tyQw/+Ou72I5DLGXgV5WcNC14nbBtLNtt+JbMuJ9HsfSY3uoHvU7bABceVehMza8DaYnr2I6TbYbY1fEb02ZrW/nvu6RrM4pq4q4+aT+eW7uraDRKkdx5SlMUomm3QPyo+XV87/HVJTe0K7UB3lhIO85nRA2Lzs5O1q9fn7u9adMm3nzzTWpra5k5cybgRgYeeugh/vd//7foMT7+8Y9z6qmn8vWvfx1wIwsnnHACM2fOJB6Pc++99/Lcc8/x5JNPArBhwwbuvfdeTjzxRCZNmsTbb7/NJZdcwlFHHcXixYuH+R0LRhtLF0/hur+8QzRpIEt2rsYCCpUyvnrUHF7/oI01TXHqIj52dKTJmE4uhO+RzJgsnlHNtna3Y61ntPSFt8DlYyU6UMLVAEiqj8j+H+v2GsmNmsju5OYt6kGfyrc+Pn9CGxUwtqX6JiInn3xygWEhyzL19fUcc8wx7LvvviM4srHLn99uIpnJE5vI25tJ+RtqyTUsutdhdaRc9bt8BaOqoMbuRGGakem55bP/lR1XTCKkKoBD2sw+P7uLV2Up22PBIZmxc0ZF/hToPT2ZcSVSPd9MMaMC3I26X5UxsjVnmiozrSpIQJNJGzbNsTQZy2ZqdYCgphJLGaQyVkk9I/JxcDfW29tTTKsJFqRRFUv1KhXbgVTGyqXPhnwKkuQWUOtW1/kifjXXm2FXLE3KsNidyBD2KT0+v/7qBzOmw63PbeC8JXsVdJFeOLWSOfURXt20G9t20LI1MLkrILnHWL66iS8cOnNIN/2jrSZOliWuP2URVz76Nm1JA5/sNsJNZKxcSlrIp7BgSpc0e6lR8vEcVS/JsPjTn/5U8gE/85nPlPzclStX5poiAblUo3PPPZff/e53ANx///04jsOZZ55Z9BgbNmygtbU1d3vXrl2cc845NDU1UVVVxeLFi3nyySf5xCc+AbhpUn//+9/56U9/SiKRYMaMGZx++ul873vfK3ncgtHDYL0bqipz8dFzufnJtWRMB0W2sgolhUoZPp+SK6TqzHZw3Z3ouSk1bfjn+60gZV8vlb/UeDUVoX2WEN7vmB6Py7jhfKNb+gC4ErM14dEnP7enGctSfRORa6+9dqSHMCoZzPzmpXl6qUmO01VjkM+SuXVc8al9e9X2765g5G76e5/XTNs1HiZXBQj7FJqibgfvTx8wlRnVIerCPq7+02paO/Xc3FWsHkOR3YhGL73XemBlC7edvCiIbjlEsz0sKoMaTVGdoKZSF/Hzwe6BedzlrIJVS1zHl9cme7DFqt7blCSoDKrohisF7Kn85ac9RfwqSnWAaNLkPz42j4Nn1vT4/P78dhPxlIGqSAUOM/A6bdvEUwZ/fruJUz80reDxxdOqeGmDu6+yHQcv+GPaDookU1fhY2NLYkgjvqV67/c0S+bV8cPTFhfUOVQHZSZXBTl+4WSOnFefq6koJ0o+nqPqJRkWvRVUd0eSJCyrNIkucDtg91c7/pWvfIWvfOUrvT6+efPmgtu/+c1v+jzejBkzeP7550seo2D0MhTejZfWt/Li+lbCPpl42tV4N7Oh9HylDOhSjfjlcxt4fXNbrsGQF5nQsl44b1FzALPM1Sa/UNvYvR3HtpDyNsbexsDrMOrVVng/I8NyeGtbBwfMqC7vxOOMsSzVNxFRFIWmpiYaGhoK7t+9ezcNDQ1lrSvjhcHOb16aJ5I7N+XqGJwu20KW4LQPTS+6cVk4tbJXBSPd7EqDkiWJTDfXv6pIOaWpmrCfzrTJsXs35M5zw6mLuP5va3i3KdYjAuHlrHt7ZFkmd/y+tgu27W7EXYeC08OTD+QUdgKanOvpUOyQXvShexRCwn2/SJA2TGxbyV0Hyx68cQHuPko3HAI+GX+2CaAsuV2vO5IG1SE3HbYj6XaQPufwWUWNzZLqB7PP8/C+c+9sj+aiUobproeyDEFNpr4iQEhT2NWpD1nEd7R770upcyg3Sj6eo+rF31E3bNsu6d9EnPwFI4Pn3VjTFCPsV2mo8BP2qznvxkvrW8s6xuTKIPtOjjC5wk9IU6gN+/j55w/skX+6ZF4dlx+/DxUBlcZKP35VQZHAp8nIkusZkmSpZH30fIqqP3XztqtK4bGLpVE9+PrWXFO+ocC2HVZti/L8uhZWbYv2OHZ/j48EnlRfxO/KI6YMCztbVJ+fSz7WQszjld4cTLqu4/NNvKjSUMxvSxdPoSKoYVoOEg4+VXb/KTKa4nrCK4MaSxf3rC20bYdV26PEsz0P8jNh8ouiVUWmsSqAIrmREb8q41OknAQnuBsko9sGyXPSTAr7mBTxoWTTa7xUJ9N2yFhuimdlUM2dXpN7BFxyKIr7PZIkidqwj0s+sTd3nH0Iy847NFcEe8Opi1gwpYKkbubU/bQiu6DuxkThg24KrGVDxK8Q8StY2SjNYKcTJeusMm1XESviV7Edt3+IZTs0RVNsaEmwpS3V7xyWXz9YDK9+cFq127+r+3dOk6Ws4eh+LvUVfmZPChPxq0Me8S3Hez9SeHUOR+9dz6LpVT2ue36UvBjdr1m5zx9LjInibYEgn8F6N7xF84a/raEjmWFadRA5KzXbUKlQX+GwoyPFD/66hqVbo0yvKZTj60gZSEgENZVWO4OquJXUNu7k7ymiKLJbXF3KNrtUSVmvYDJvnc9FLZSs2klzLD1k4dP+vKajLSc2n9HSuEnQOz//+c8Bd/Nw5513EolEco9ZlsWKFSsmXI3FUHlvVVXmP46Zy03L3TRPVenqrVCsIZqH95t+rynO7kRW9CS72c/34LteeifbCE7KOlYknGwaqGnbgNLrBmnRtCoWTKnk7a0dXSlW9Cwy70gY+DUZw7Qx+5hPvX5macNmn8ZQUU++53n+45s7+MFf30WWob1ISmv++T0kXK+9lR2opsh847i9SWVMblq+FjNbIK04bgF57nPIpk513+B7kWZ37nZTyKTsJl6VXUWmtkQGGTeyAF60yMLB4fMfnsPOmM4vnnm/h2QslF4/uHTxlB7fOYD2ZIaUYaMqbjQmljKpDfuGJeI7Hrz35UbJx3NUfUCGRSKR4Pnnn2fLli1kMoUf9De+8Y0hGZhA0BuDyU3svmjKksQHbUnqKwI5PfDWzgwdKYO2pMGPn16HLMF1f3knlxbleRrSWS+4IzlFw+BZUah+DYty+lR4uKFpKfu3u0KZjitZCAzJBNxfzusXD5vJPa9uGXU5sfmMRam+icRPfvITwF1Ib7/9dhSlK0Ln8/mYPXs2t99++0gNb0QYytxrL+LqyY0Wa4iWT/5v3pftsaAorlqRDEyK+NBkmeZYKluA6jpQ/KpMyrBzanXe5rivDZIXVbzsobeIpruKzPOLoVXFLXJ1HDjniFk8uHJb0caj+a8D2LexotffuCxLnHzgVB759zZe3bS7pAZ5igTTa4JoioJh2XQkM+xVF2Z6dZBJET+XHw+3Pe9eY4cuhcGg5krItsTSPQwLLyXNMzzkrHER9nmysmlsxzVWsB18ikJDhdsNvTmW4kdPrcN2nFyzv/w1CooZlnYu/au7YblqW7THd66+IsD29lQuNThtmESTBinDHtKIr207tHVmXBWstEFVSMsrFncZC977chvajeUGeP1RtmHxxhtvcOKJJ5JMJkkkEtTW1tLa2kooFKKhoUEYFoJhZ6DejWKLpiy7uaue6kYqYxXopasyIEkF8nznHzmHuQ0R/r2lPee9KoZpuwuML9uwqTes+O5+jYruBorldEksuikAbsSiKqSBw6An4P69pmlufW4DigRTqoKjLic2n7Em1TeR2LRpEwDHHnssjz76KDU1NSM8opFnqL23Fx41l/OW7FXQIK27dxt6/ubThp0tHpbwKRKG7fZxmFUboiOlkMpY2SZvSm4TamRDtAFNAcnpN+1wybw6vnbMXK754zs9evKocrYOIqu8d8pB0/nMgdP40m9fI5Fx+wXl10Hk//97zfFczUUxZFniU/s38vKG/lPKABoq/ET8Gnq2MV7GstnanuLyh9/ORWl//vkD2d1p5K7xpIjGr1/YxIZdnYT8Ggnd7NHfQ5GzxdGShE+V0E0HRZaJpUzShokkSZg2KJKbchbxq7TEdRLZNDO3IaDUq4RsqYZlse+cpz7VEk+jG66yVzJjsd/UyiGL+HqOvvU748TSBu3JDG2JTE7OF8aW977cKPl4jaqXbVhccsklLF26lNtvv52qqipeeeUVNE3jrLPO4pvf/OZwjFEgKGAgij99LZqa7Iaud0aTpPOqrV3Dw51oVdlNcbr1WVee76j5dSXlOUvAlCo/2zvSvTaNCs45GDkQwTd5Tq+Rit6iHl5aQ0CTaawM0KlbQzIB9+c1DWoKOzpSTK0ODtqrKhA8++yzIz2EUcNwKJqpqtxD+ac73X/zXvFw2rDcHgiylG305lAX8bOlLZktZHYIqQp1FW5/CBuyXYitkjZIMyeFqfCrJA0T23E3yl7RuWG7nvWgT6EjZfDReXXsVR/h7W0daGo29crpSikybQefIrGtPcnvX/mgqFqSx4zaEL5spKU/UqbNrk4d27bJWBZ+VaY2XBilveaP73DDqYsKrvOR8+pz0dLqoMbb2zq4//WtbGtPkcyYOeOnMqCy39Qqjppfx4r3W3l3R8y9FnQVTLv1FnZBTw9Z8mr7epeQLcWw7O07F/GrhH1hOlIGSd3keyftx8kHTh0SZ1GPiLiqsCOaIpmx2NqWZFpNEE2RS/Lej6beF+VGycdjVL1sw+LNN9/kjjvuQJZlFEVB13XmzJnDzTffzLnnnstpp502HOMUCHIMJDexr0VTyRaopQyncAMv0UPStSNl8KOn1/LOjhhBn9ssr08kCU1RmF4TZMvuZE5S0Ni9DSVSi+x3C+f8U/cp6xoogJMteLSzHfI6dZOIXx1U+NSboJ9ft4uUYeUUSIq8rWzIv/h5xkJOrGD0cPrpp3PooYfyX//1XwX333zzzbz++us89NBDIzSyPc9I5V5391pLSNlmbCk3FSpbE5DImBiW40q4BjQ3jQUIqjKH7VXLp/afwozaUMkbpNqQj0hApSKoZmVtbbdLNg5BTaYy2BWFlWWJ4xdOZtW2Djdiq7idj4FcLx/HcWhLZPjJU+sI+5Vea75qQ25aUc92dT359OIpfHzBZH729/fZ1p4sufale7T0gBnVfPGwWbyzI8buTp32pEFVUCWaMqkOa9SF/Tkj4H/+8g5hv0pVUMudK5o0u3p6APnTb18Ssv0Zln1958CtW1k4rWrIjIpiEfGA5jYC9Ppz7OhIUR/x92ucjsY6v3Kj5OMtql6SKlQ+mqZ1Fbo2NLBlyxYAqqqq2Lp169COTiAowkAUf3pbNB3HQTdd1Y3uUQHHKS5H+IeXP+DdHTEqAxpqVjmj2P5albsUPrzCak2RsHZvJvrC7+l44W5svXwtdUWC6ZOC2SZKEpLs9rSYXhMaVF3DS+tbOfeu17jo7pXc+cImYimDTa1JOnWzx3OdbApY2rCIp91mU/nKPmMhJ1YwelixYgUnnnhij/tPOOEEVqxYMQIjGjmGS9GsP/W2Yio1XjpMQFOyBcgOhmUzpcpPQ0WAjpRBxnJTlSZXBfjq0XM56/BZvSrnFMPb1Oqmw6zaELNqw0yvCTKrNsys2hAZ02FuQyRnSB05r57qrIfbzvassB13QwmuwIUsSUyK+Aj5FFZti3LJA2/yh1c+KHjPC6dWMqU6kLvtFU57MuK5z0OCg2fWUhf2syuWpjqokTbsgnmvHOUibxN5zL4NTK70c9dLm7nlyfe44qG3uejulZy37HXqK3wsnFbVI5pi5H023lgLjp11+ORLyJbCnlbR6y0iHvGr7FUXZmp1kAq/yuXH75tT9SrGUKinCYaesiMWBx10EK+//jrz58/n6KOP5pprrqG1tZW7776b/ffffzjGKBD0oNzcxGKh3lTG6rcrdjGSGYu0aTOjNogkZT1FWW9evioUeIaFQ1vKQJagMtXErn/eh20aqP4Iktp3kXYxKoMamqwwqzaUNYpsommDbx438I7b3cPS1UGNzaZNyrDY1pZkem2oIOc1mjKQZYmWTrcAXpLcAs76Crcp1ljJiRWMDjo7O4vKymqaRiw2chKTI8VQ516X4tXtzWsd8auEfDLbO9JMqw7y+Q/P4BfPrqctkcFxnFwa0js7Ylz20Fv87xkHUBX0lZzWkV/EujOeoTqkEfappE2L7R06flXm+IWNuecvnFrJflMrWdMUoyoQwHLcdKmdMZ2MaYIEAU3Gdhx2xXV00yaadvifv7zL8tXNfO0Y9z3LssR3TtyX8+5aWSDb3b2ezZPk/efG3SR0i2jKrbHw3rc374U0pawobV/iGN97fDVfPGwmW9uSBYW9+aiK3KPIubuEbDksmVfHD07Znx89tY4tuxO5KNRw5Pv3VUckSRJVAQ3dtKmN+PpMf+oe9fC+j94a9Mvn1o+KOr+JRtmGxQ033EA8Hgfg+uuv55xzzuHiiy9m/vz5/Pa3vx3yAQoEvVFObmL3RbNTN9kZSw+ooZGDayzE00aeGkpWblGRkCQ7qzuOK9Vn2cypD7NuzTtse+EeNGzkxnlUHtG/+lN3ZAniaZNO3cwtaJoqE9IU6sL+Abyb3gu1J1cF2N6exLAcmqNp9qoLkbEcdsV0khk3z1g37ZzHLmVYbGtPEtRUasPamFW0EOx5Fi1axAMPPMA111xTcP/999/PfvvtN0KjGlmGKve61I7G/anUVAc1rjphX25a/h4tcb2raV7WqWJaNrtiOl/9w7+o8KuYNiWnpRw+ZxIXfHQO97+2heZYmoxpkzbsXMrlL59dz5PvNOeO440zmjapDmnYtkPacCOriiQT8Wvs6EhjOQ6q7NbRWbbN6h3R3HsG+M2Lmwn6FJJ5SlP5a4Kap5y0tS1JZ8YEx+l633SJf9RV+EqO0npzbjxtUB305VJu3Vo5P80xnRXvt/KDU/bnjhUbc8alKrljcqV/C8V5u0vIlstL61u5Y8VGdmXXRUWSmFwV5KKj5gx5StFQ1BF1j3p06qZbaG7aOSPxtU3t3PvaFs46fNaQjl/QN2UbFoccckju74aGBpYvXz6kAxIIyqHU3ERZlrjoqDlc/vDbbNmdIGXaPTTKNVXG7hZxKIb3aHvSYHpNkKYOHcN2XAUpHGzb9QjWRfycc8RsjpxXh9X6ASffdT+6nqFh9r7ULPksO5Ml6Bx2G6OqSMjZJcVd0JIENJUDZlTlogPlFrL1FZaeVhOiOZomY1o0RdMEVBlZhrBfYUZNiETGoiWuo5sWOGA5DrIMPzhl/zGraCHY81x99dWcdtppbNiwgY997GMA/OMf/+C+++4btvqKzZs38z//8z8888wzNDc3M3XqVM466yy++93vjpqmfIPNvS63J0Z/kZKwX2Xdzs7cfOl5zCUJFFnGsmw6dbc2qzbs61N+2usn9Oi/t/HC+lZiKQMJN5UpbVhoisyU6gB+RSl6nBtOXcQvn9vA2uY4yYxbexDSFOor/LR26liOO3Yp21vDtqAqoNKpW9z4xBpiaZOEbjKtOkgsZbArrhcoU+UrJ9m2w/LVzTm5Vjddyn33rviHTUtc57C9alnQWMGqbdE+5993dsR4d0eUVMYmlk72iH54aVVVQR/Lzju0YD5/aUMrtzzZv4RsOXQ3PmtC7me3rT3F9x5fPeTS4UNRR5Qf9ejUTba3p3KGpJRVEzNMm/975n3m1IXFerQHEQ3yBBMCzxuTMS2ShlWgXS5LrudNkSQURcJ2ek+Ryg+TOw5EUyZ1FT6iSa/o0M3v3bexgqtOWOA2Y3r2VX56y/XUBmSonk/k8M8SCQfp0JPoVukxEyVbqC3JXU2VDMtBli0uOmoOsiwNqJCtr7B0xK+y16QQO2Jpzj9yL6ZVh7jlyfcI+1Ukye0MG/YrpDM2pm1j2W6TwKrg6NiYCcYGS5cu5fHHH+eGG27g4YcfJhgMsnjxYv7+979z9NFHD8s533vvPWzb5o477mDevHmsXr2aCy+8kEQiwY9+9KNhOeeeZiA9MfqKlCz752YMy3Y3b3necgevIZ6LlW2a15sB89L6Vm58Yg3vNcULmsn51a46CbDd42jFj9N15mzT0Gwqasay0c3sGLPv2du4a4pCVVBmbXMnIZ8rquEVDtdX+GlPZrIOoxB/+Y+P4PMpueu4saWThooALXE9u4nvErFwG6TC3pMrOG/Z6/3Ovy+ub6U9aWRTabuuZMqw2N6eYkpVINetvLtxuWh6FRIOP392A8m0iUnfvUn6Y6gaMpbDUPRw8KIeumnREk8XGJLgfh8U2UE37VEjfT5RKNuw2GuvvXpMUPls3LhxUAMSCIaafG9MbdhP2KeytT3V1UE2a1SQdzvTS9ekfDMg5FOYVh2kPZEh6FMI+hQaKwN8/tCZfOHQmbyycTfn3vUaa9ZvYfOuDMGaqSw+6UvIqsbuzgwBn4qRNvqs8/DSDACqwz7Shu12Xs12aQ1oCiGfQlXQV3LKQ3f6C0tnbIeQpnD03g1FjRAJVw4SFGzbYVenLtSgBGVz0kkncdJJJ+2x833qU5/iU5/6VO72nDlzWLt2Lbfddtu4MSwG2hOjt0iJ402T3bYAnuRrMbobMPG0wSUPvsmumN4jFVXPyn2r2Q7XLfE0YV/YFanIO869r23hzhc25ua6hojE5t1JUobFzmgakPB6LTq4zo6AphDwuTK4pm0T8hUaW5IkURv2E/SpdKYN1u7qzF0D7zo2VPjwqXIuSps/DyPBX99uwnKcPudf23Z48p3m3DWzcQqTmiSbXXGd6qBaNBXopfWtvLB+NxV+NfeaKVVBrj5xAR/dp774h9AHQ9mQsRwGW0fkRT1WbYv2NCRzn7lKXcQnpM/3MGUbFt/61rcKbhuGwRtvvMHy5cu5/PLLh2pcAsGQkMlYXPvnd9gVS7u646qE4ygoMrlu2YZpI2tdYX3bLjFFyYEDZ1QzuSLAwumVNEQCOc9ewSa/fjLVp38dRwuyM2ET9pt87dh5zKgNsbUtya9WbGBLWyp3WAlXy12RXY12T6VFkSRm14Vy0QFVlvGpEi2dGXZ36vzmn5sG5HUqJyz9zo7YkGvsCwSjhWg0Sm1tba+P67qOruu526O9sHyoe2IcNKMaNZvyJCtOQUQgP40opBWeyzNgWhM6v3lhE22JTEH0V8re8G7bjlufpmdrLYLZyIFfkYlaDve/tqXXmrCM5dYf2HRFMWTJVQGUcGvBIGsMFKGYsZV/HbtHaV3JWoet7Sl002J6TajP+fedHTG2tiULGwJm/3ZwDaq0YTG5sWcqUHfnUW02ZaktkeHqPw0sZWmoGzKWw2DqiLyoxyUPvEk07bhd3/NEVLzP3K8oRG1TOLv2IGUbFr01wbv11ltZuXLloAckEAwVv16xgZ//Yz3xrFxqsiNNUzRNXYWfgOYW7HkLomnZrmEhuQZHKXRmLO59bQsyUBF0w9CLpldh2w433PMkO7bvpnHu/qQyFooWQVNkGipgR1Tnvte2cMOpi/jooTMJagqXP/wWcjZP2cvfBdeb5aFlVUC86AC4oXNNlmhPGgP2OpUTlh4pjX3B+MayLH7yk5/w4IMPsmXLFjKZwk1AW1vbsI9h/fr1/N///V+f0Yobb7yR6667btjHMlSU83stpTZr0bQq9mmM8M6OGEZ2U+3aBHnpTJpM0F+4afcMmI6EwdrmOE5WyalA8lZyDQEH17Ag69F3U6yU3HEAmmPpXmvCmjpSpE0bw3RQZNdrXV/hJ+JXcRyHVMat35B7KUMoZmwVu47ePOw4Dts6UjgO1EX8/c6/uzt1YmkD1xyhMFrhfTbAJ/drKLj+w5WyNBwNGcuhnDqi7t/Rw+dM4j8/Pp//+cu7WLaNbXVFkLzP3FsjhbNrz1F2H4veOOGEE3jkkUeG6nACwaD49YoN3LR8bc6o8LAc2BnT0RQ5tygCmLbb5dXI1jxI9P/jUCTwKRKyLBFNGvxw+VqufORtvn3Hn3n+vtvY/tx9bHh/Hds6UmxpS7KxtZO1zZ3EUgZrmmKcv+x1zr3rNeorfFQGtaxB43STEOwaT2WwcNL3NgZzGyJUh7V+vU5GH14nLyy9YEoFSd1kV6dOUjdZMKWiwAu2p/XOBROD6667jh//+Md87nOfIxqNcumll3LaaachyzLXXnttWce68sorc6kzvf177733Cl6zfft2PvWpT3HGGWdw4YUX9nrsq666img0mvs32ns3lfp79dI2L7p7Jd9+8C0uunsl5971Wo8+ALIscdUJC6iv8CNLUk5e23G6PO+NlYHC+ou8eaompHVJtco9N9T52I6DJJGNCHQdp6HSDw691oTNqQsT9itUhTQiAY3GKj8hTcm956qgyt6TI3QkzYLeO93Hmu8c6e86+lWZoKbgV3uPgnjzb3vSwLYdFMWNSkOXgeEhAVOqCiVjy0lZKgfPaGpPGiVfj5Egv89S/nd09qQQH55dSySgMa06wKzaMLPrQjlDcrSMfyIxZMXbDz/8cJ8hZIFgT2DbDm9t6+Cnf38fK5uzmVN5yqtXiKUMJkV8tMQz3kPIkhsVkHFIe0XVfdQ/KLKMLElZb52b0/n7v71A9MV7cSwD3+R5qDWNucPkz9my5C6Ma5riXPPHdzhp/0YeWLmtuNKH5Gqp74obVIcoGk2oCGiD9jqVGpYeao19geCee+7h17/+NSeddBLXXnstZ555JnPnzmXx4sW88sorfOMb3yj5WJdddhlf+tKX+nzOnDlzcn/v2LGDY489liVLlvCrX/2qz9f5/X78/oHJOo8U/f1egbJqs5bMq+Mnnz2QXz63nvea47ki5cZKPy2dGTp1C1WRe52nfFmpVpyuGjKvuDofy3blV32Km77kHefMQ2fyy2fX91kTVhXQ+Nqx83jynebsezaLvudyCof7uo7HL2zsc0z586/tOMiya5TlLU1AnjAI0BQtbHI3XClLQ1FIPdyU0vNjW3syq0im4NiQtqxRM/6JxoAa5HUPpzY3N9PS0sIvf/nLIR2cQFAOniLSqm1RElldcivrSnMcN8zuLWSWA9GUgQMEVJnJVQE0WSagyaQyFhtbE/32uJAktxOqZ7hkWjYXGBVVS3rvU+E4ENQUasOuB2xLe4rLj9/H1TZPGVgUKn0snFrV50betp0hSVEqNSw9VBr7AgFAc3Mzixa5vQUikQjRaBSAT3/601x99dVlHau+vp76+tKKWLdv386xxx7LwQcfzF133YXcW37MGKe33yvAuXe9VnZ6TW/He2Xj7n7nqX0aK3h1UwbLdtOhHMvp4XhRZNfJE/LJtCQyBcc5fM4knnynuehcZzs2rZ0606qDLJpWxecPmcGa5njROcprBre1LYntOAQ1pV/nSF/XsbcxFatTqwyotCWMrud0O48EPPXuLr569LzceIczZWk0O4tKSQEr1vNjtIx/IlK2YXHyyScX/GhkWaa+vp5jjjmGfffdd0gHJxCUSr5HI39vm5/C6+AaFx666WpeT6kO5rpKA7lCwf7Q85SjyjEq8skPYV9x/L6c/5G9+PPbTWzvSDKtOsTSxVNymuR9beRHwus0WI19gcBj+vTpNDU1MXPmTObOnctTTz3Fhz70IV5//fVhixBs376dY445hlmzZvGjH/2IlpaW3GONjY19vHJsUuz3umpbdFC1Wd3v68/hIMsSXztmLu/vitMS192UoDwhDXCjuftNqeS/PrVvrx28i811HSmDXfE0tgPb2lJc/Id/5aRej9670ND05Md3RlPZQl9oqAyU1Ayut3nPG1NTNE3Qp6BIEla2pqMioBbUqc2oDdOW6CiIVOSKuCXwqwo7o6mC6z7c9W2j1VlUagpYsZ4fo2H8E5GyDYty810FguGmu0ejI2nQlnS9QZ7ySHfVEXBrKKbVFBoVAG2JTFkduc1YS9lGhZxddKAwhK2qMqd+aFrx1/SzkR/NXieBoC9OPfVU/vGPf3DYYYfxn//5n5x11ln85je/YcuWLVxyySXDcs6nn36a9evXs379eqZPn17wWPdc8/HKcKTXlDJP/eSzB3LjE2tYt7MTI1uQrcoS02uCXPDROXzh0Jl9bgi7z3UtGSvnVGqs9FMd7L0534vvt3D5w2+T0E2qghpTwz4Myxl0M7gl8+r4wqEz+PmzG2hvz2DjrjGVIY0vHjazoE7t+IWNvL2tA3AVAD3LwrIdVFmmocJP0rAKrvuecB6NRmdROd/R0Tj+iUjZhoWiKDQ1NdHQ0FBw/+7du2loaMCyrCEbnEBQCt09GlUhlaaom+7keYK84kIPCbd4sC2hY1o2AVXBchwUSaItkSl4Xn9bDKViEv7pC7HTnSUZFYoEstxVlFhuCLsv9ZbR6nUSCPrihz/8Ye7vz33uc8yaNYuXXnqJ+fPns3Tp0mE555e+9KV+azHGOyOlCLRkXh2PXfwR/vjWDt7Y2kFYU/jUokYOmF5d8lzlzXWrtkf57mOr2NaeZFp1MJfOViyd66UNrXz9vjdyXb5ThkV70lUQaqz0D6oZ3K9XbODHf3/f7YEkufLgalb56p5Xt7BwalXOuDhyXh13vqCRytgYtp1bp0I+hfqKAIosoVl2j+s+EZ1HI61aJSifsg2L3jw5uq7j84kPVrDn6e7R8MKju7M5rPkFceT9bdkQT1vE064xLEvuP09uthSjwj2fTMUhS8G2Skp/shxXPDGVMfEplBXCLqWztvDaCMY6hx9+OIcffvhID2PcM1Ly0cXmsXebY2VvjmVZQs46g+orAgU1Mo7jkDZsNEViTVOMP7z6Abc9t4FYyijoE5TOdrueVhMccDO4F99v4X+fXodu2GiqhIzkypjbDo5h0ZYwCgyWhVMr2W9qFe/uiDElGMBy3EhFQHPH3xzTe73uE815JCTOxx4lGxY///nPAXfTdueddxKJRHKPWZbFihUrRI2FYETI92iYhpPriioD3VtS5Hey7o7tFDZ66suoyLRsJr1lFRUfOglJkpEk2a04LJGM5bA9mmZHFKpDWkkh7IF21hYIRiOvvPJKycZDMplk06ZNLFy4cJhHNbEYSHpNKf0u+mKo57FiqTKduklLPI1uutK2tuNw0xPv4Thu4zRFkpCQ3J5Biqu+1xLXmVkbLDv1y7YdfvTUOjKma8QoUtbBBWiyJ2Nus35nPGew5F/3aNrMXfe0WVpa00RyHg1HCthgv8OCvinZsPjJT34CuBbi7bffjqJ0haR8Ph+zZ8/m9ttvH/oRCgT9sHBqJXPqI7y5tZ1UxtVTUhUJRZMwTRszayHURXy0JzI5xaVihkMpEYr8Qm21YhKhvZcMeOwOrvTtOzuifS6mw9UcSSAYKc4++2zmzJnDBRdcwIknnkg4HO7xnHfffZc//OEP3HXXXdx0003CsBgGykmvKSVi2hdDPY/ZtkNbZwbLtomlDaqCGomMG4FwowCuHLjjQDJjuVEKnIJuQRISigy6aRFPm2Wn1XidtCXoMWZJklBltwFryrQLDJYl8+pyylRbdiewgaAqj+u0poEylClgg/0OC/qnZMNi06ZNABx77LE8+uij1NTUDNugBILu5HsYqoMaju3w1rYoTjZ9qT2h06l79T0Otuk2IPIiFhIQT5uU0J6iT7qrPwXnfnjA70lTJGQJMqbDrc9t4Lwle+UUoLpTTnOkieLJEoxt3n33XW677Ta+973v8YUvfIG9996bqVOnEggEaG9v57333qOzs5NTTz2Vp556KidHKxh6SkmvGYpIw1DOY/kbxLhu0pEyaMmqQlm2g6q4EQnLBk2VMUzb7TnkuDLhbj8NKXtusC2HWMpg8YzqstJq2pKZXDO/Yv04JMgVcucbLJ4y1a5YGge3JmNyVbAkZaqJyFCkgImo/56h7BqLZ599djjGIRD0Sv4CktAtkhkTMy+fyXGy9RF0dTB1cMPbPlXCst3HM1b3xKjyGKikbG9IuPnBqmITTxn8+e2mXhWhhqs5kkAwUmiaxje+8Q2+8Y1vsHLlSl588UU++OADUqkUBxxwAJdccgnHHnusaLy6h+grvWaoIg1DNY913yCals2uzgxps2tdsC0HCVdtqjbsoyWuu/fjrhWG7aBmu39bjttLI+xXueioOWVtXmtDPoKaQtqwMSwbSaGg87iNg+M4zJwUzhks3cdfE3JVrAarTDXeGUwKmIj67znKNixOP/10Dj30UP7rv/6r4P6bb76Z119/nYceemjIBicQ5E/AflUmkTG7Omnn4d2lym5HbNtxsG0HVZLQNIlUxuq1tqIUhtqocHG1QGQJLGB7R7LXZwplDMF45pBDDuGQQw4Z6WEIemGoIg3d5zEn2+chabjRZkUCVaLPeaz7BrG1M0NLZ09DxMk2LqoN+6kN+4ilTFIZE0mSmBTxkdBNdNPGznbADvkVPrmwkduf38DGlkTJaTJecfHb2zowLdehpcjZKIjtYFgOfk3m25/cGzmrEiU2uHseEfXfc5TdZnTFihWceOKJPe4/4YQTWLFixZAMSiCAwgVkcoWfjqRR1KjIx7TJFeipioxhO1QGtEEZFbahE335oSE2KlzFECu7qEnAtOpQr8/1Fq/2pNFDmc1TxpjbEBHKGAKBYMgpJdJglBBpyJ/HYimdtc1xNrQmaIqmaYqm2daRJq6bRFO9Hyd/g9iZMdmZTSUqhoRbyA1QX+FHkiRsx0FTZGbWhKgKaiBJuT5Hd7/yAa9uakOSoKHCT9iv5tJkXlrfWvQcXnFxTchHyK+gKTKWbWOYNqbtGhWXfWJvjpxf32P8/W1wBUPHUH2HBf1TtmHR2dlZVFZW0zRiMfFDEAwdq7ZHWdMUw6fIRFMmaaO0HikZyyFjumFp2+6SSJalwl4WpSJrfioPPRXf1H2GzKgAN8qSsWwMy6EiqLF08ZTex5BdvCJ+heaYTsqwsG2HlGHRHNOHpbO2QCCYWNi2w6ptUZ5f18KqbVHsrCMnP9JQjFIjpt48ljZMPmhLYxRxFCV0i8seeqvXjby3QdRkiZ1RPWdUSEXmd1dO1iSdsQn7FMJ+hcqghmXZbI+maU8ayBJMqQrkXmA7Di3xDEnDIqApNFb66dQtbnt+Q+56dMcrLl48vZqakEZFQKM65GPx9GruPOcQLjxqbo/xiw3unmWovsOC/ik7FWrRokU88MADXHPNNQX333///ey3335DNjDBxOal9a1c/7c1tCUyyJKrCW6VEXVw8GRlHXZ3urm1FX6FmG6VXLnt2BZSNu3I3zgPf+O8ct4Ciixh9bIQdVel+trRc3ot3PaYiM2RBALBnqEvtZzD50wasl4Cq7d35AltFKctkeGXzxVPB/I2iHHdzG0Sc8ORQOomGW7bkMyYdKQcakI+fnDK/lQENL7z2Kps/4oAuuGwy9JRFRkJt/6iJZ4m7AuXnCZTanHxeEtrHW3Srb2NR/TD2HOUbVhcffXVnHbaaWzYsIGPfexjAPzjH//gvvvuE/UVggHRfSKIpjJ87/HVdGS9SbKUbWg3wOMbWQdFNF36ETItm4n/6y9UfeTzqBUD27ArkoSiuqpP4L4Pz87wFj5Zgohf5Yi59SUdc6I1RxIIBMNPKWo5Q9FLwDRtfv7shj6f4zqFHNY2x4tu5L0N4ltbo4UWRNZb40AutckT8jAsp8ABs2pblPZEhvoKP7IkY9qGq+gku4XXqgy6aZM2bII+peSi8lKKi8fTBne0Sbf2N56h7ofRndFmZI0UZRsWS5cu5fHHH+eGG27g4YcfJhgMsnjxYv7+979z9NFHD8cYBeMYbyJYvzNOyrCRcDCzKk6TIj7SpoVhuhOEMWCR2PLIL9ROvvdPKj988oCO4+AgOV2xCU2RMW1XW706pKEpMpV+lZZEpqyw90RqjiSYuHR0dFBdXT3Swxj3lFpMvOy8QwcdMf3z200k02a/z7NsN0202LzopVNd9tBbdOoGkDUm8iIVSjYvyrQdplUHOP+jc/jQzBoWTXPnze7pSKosF8jFSrh/m7YNKEMaRRiOhm8jwWiTbi11PMMV9R9tRtZIUrZhAXDSSSdx0kkn9bh/9erV7L///oMelGBi4E0EbYkMpuV2J7UcJ+fVj+smEpJ7n+kUePyHi+7qTxUf6ilUUCquOkjXgE3bQZEkplYHifjdn17KsMZU2FsgGA5uuukmZs+ezec+9zkAPvvZz/LII4/Q2NjI3/72Nw444IARHuH4pZxi4sFGTLd3JClV9NunyL3Oi0vm1XHL/1vM1+97g2jSyEUmPPJFPmJpk18+u6Fgo9c9HSngk/GrCmnDQlK6oh6qLA86ilDMiz3W01pHm7JVOeMZjqj/aDOyRpoBGRb5xONx7rvvPu68807+9a9/YVkDTVgRjAe6T6ILGitY0xzv8QP2JoK2RIa0YWE5oMgU5DvZDvgUkJEwLWePGxXFCrXLMW5UxR03uB6wgCrTUBnIGRVjLewtEAwXt99+O/fccw8ATz/9NE8//TRPPPEEDz74IJdffjlPPfXUCI9w/FJub4nBREynVYeQoV/jQpZgn8YKFjRWsGpbtOgG8Mj59fzizIO4/OG3aUtk0M3iR01mLGrC7mbP2+j94JT9e6Qj1Vf42d6ewsgeJ6ApODiDEsfoz4s9WtNa+0vpGW3SreWOZyij/qPNyBoNDNiwWLFiBXfeeSePPvooU6dO5bTTTuPWW28dyrEJxhjdJ1HbsV2DQXIbweVPqhUBjfU745iWg5VtcFfMeDAsB58q49ckMqY9bMZFKUaFRHkRkwq/ysxJYfZtrOD5dS0Ylo2SNarGWthbIBhOmpubmTFjBgB/+ctf+OxnP8snP/lJZs+ezWGHHTbCoxvf9FZM7DgOacMmkTFxHIfq4ODU8GzbYa9JIYJ+hUQ/xdt1FX6O3ruO85a93mdqyZHz63ORC8OykZDc7tpZNMVtkLq7M8PsuhCNlX6aYzp3rNjIRUfN4XuPr86lI4U0hfoKP7vi6ZzoRixlsm9jBV87pvwoQqle7NGW1lpKSs9oa9g6kuMZbUbWaKAsudnm5mZ++MMfMn/+fM444wyqqqrQdZ3HH3+cH/7wh3z4wx8ernEKRjneJLqmKUbYrxLyKcTSJtGkQTRlEPIrBZrgL65vJeV1Ku3FqAA3JK2bttvIKNcEb2g34Y7jkHj3uX77VJRj00gSfO7QmTx68RJ+ePpi/veMA1gwpZKkbrKrUyepmyyYUjHhQqQCQTFqamrYunUrAMuXL+e4444D3N+miIIPL8V65HTqJpt3J/igLUFzLE08bXLLk2t7lYDtj5fWt3LuXa/xtXv/3e9zGyv9XHDkXtzz6pbcetJXT4mqoI+gKjOtOsiM2iBTq4IosoSmyMiSjCJL6KZFOmMXbPSqgj5uOHURC6ZU5ObltGER9qlE/KqbBtUjyao0unuxA5qCLEsly9eOFN3X8d6u+2iTbh3J8Qj54J6UHLFYunQpK1as4KSTTuKnP/0pn/rUp1AUhdtvv304xycYA3SfRAGaoik3lUkt7jF68p1mJBxswLacfFGPouT3hKsNa8TTJimj1GzdvpEkiaojPkdizQoi+39sSPpUyBKs2taRuz2aw94CwUhz2mmn8YUvfIH58+eze/duTjjhBADeeOMN5s0rT+ZZUB7di4l9qkRrXM957VVJoi7i573mgeWLd/fca4pMKpMs6kiqDKjccvoB/OrFjb2mljRF09z85Fq+ZdpMivhpTeiYtrsuyLJEPG3kirDB/X/H7irEzvdeH713fW5efnF9C79/+QMypkV9OJCLMLzX3Fn2+x5qL/aeUBsqJ6VntClbjeR48o0avyyTztiYto0qywR88piTDx4KSjYsnnjiCb7xjW9w8cUXM3/+/OEck2CM0X0STWUsdNNGld0UKGQn5zEK+hSqQxq7YmnqKwN07Ors16jojqrIVAd9pIz0oMZtpeIowQoAZF+QigOOH9Tx8nEcWNMUK1g4hJqTQFCcn/zkJ8yePZutW7dy8803E4lEAGhqauJrX/vaCI9u/OMVE//yufW8tqkdw3JQZAhoKvUVfiJ+Fcdxys4X783pJEkSfsVNdVVlmYZKP1UBlZ3xDP/793XsjKaKbsoTGYtkxmLVtg4uefBNgppCQ2UA27FzqVw5hSe61J28Qmzo6b32ehzc/OR7GJbNlKrgoPPkhzI1Z0+pDZVrDI0mZauRVNryjJq3t3VgWg4Zy85953yKjKpILJ5ePaHqKEtOhXrxxReJx+McfPDBHHbYYfziF7+gtXVgYVHB+KL7JGra2R9W9nFPxs/1GHWFBk85cCpa9odeTkC4rTODX5MH1EXbI9OymbYnf0Fy/auDOErv2A60Jw1aE3rPx3rpbisQTFQ0TePb3/42P/vZzzjooINy919yySVccMEFIziyicOSeXVcfvy+VAU1plQFmD0pwuy6UE5sovvmshS6b1bThp3ndJLRFDfdKKAqyLJMdUhja1uSlGH32JR36ibb21NksqlxFQGVsF9lW3uSRMZiZ0zHcRwCmoxfdaW9bcfGsh38qqv85Hmv5zZECjZ65WyqS2GoUnNKSU0aqvWk3JQezxjNTyUbyRTfkRqPLEscNb+OhO4avZAVosEVDkjoFkfNr5tQ2QklRywOP/xwDj/8cH7605/ywAMP8Nvf/pZLL70U27Z5+umnmTFjBhUVFcM5VsEopXvxX6keo4/Ob6ClM8Nd/9xc1vl003alW2XoRQikT/ILtTNN6wnOPbTHYjIU2A68unE3x+7TkLtPaF0LBC5/+tOfSn7uZz7zmWEcicCjI+X2hagJ+YpuhPrytBdL1+nV6dRHmpLtuNLi+cXkjuN2wrYcV7LbkcCnKNmahQBb25PopkVTNE1N2MeksJ8d0RQZ00GRJbcnktG793qoi3+HIjWnlNSkG59YQ1VQY2NLYtDryUA6go+2FN+RGI9tO6x4v5WQT8Gy3YiFZbvf7ZBPQZFlVrzfyvlHzpkwxkXZqlDhcJgvf/nLfPnLX2bt2rX85je/4Yc//CFXXnkln/jEJ8paLATjg+6TqOcxShk2quxg2a50X77HyJtUF07dj9c3tfFuU6xkxSUHSOpmQd1FqRRVfxoGo8LjqXeaueL4fZFlSWhdCwR5nHLKKSU9T5IkUcC9hxjI5hJ6d5gcv7CxbKeTl960rT2V25R7kQ5FBjtvPQGyUrEB2hMZZtSG2BVLY9gOlQE1p0qYzFhost1rn4iBvu/eGIrUnP6iKH5V5t2mOBV+hfqKwKDXk4EaQ6MtxXdPj8f7nCZXBvCrMmkjr8ZCk0mbtlCFKod99tmHm2++mW3btnHfffcN1ZgEYwxvEo34FZpjOmnTZlLY73qdTHf3XxvW6EgabGlLoSkSFx3lWu+yLPGdExdQHymvsKktaWCVaViUIik71LR2ZnhnR2zMqoQIBMOFbdsl/RNGxZ6jmEKUR29pRH2l6/x6xQYmRXy545WapvTtT+6dW09ShoVhuaqAluUgZ3tOSHnJsH5FRpYlvvXx+dxx9iH86IwD+N15h7HyO8fxu/MO5UdnHMAdZx/CsvMOZcm8uh7pQwsaK8p+3/0x2NScvqIoDg4dyQy241AV9A3JetJ9HU8ZFrbtkDKsQfXyGO/kf06SJBH0KVQENII+JVtLJFShBoSiKJxyyikle6AE44/unUTzPUa27dAUTWPbDrLs9rO4Y8VGZEliybw6lsyr44T9p/C7lz8YtvGNhFHhVY/8a0s7//6gnTVNMaqDmtC6FggEo5JyPe2lpOtUBiGc3axWh7SS0pS6rydJwwLHwacqNFZ1NRn18CIKkyL+HvNn99u9RVeOml/H1rbkkBb/DiY1p68oSjpjo5sWiuTK6uYzmPVkrHcEHwmGOto1HhgSw0IggOKTaEciwxWPvg1AVVCjIqBiWE5BuBbgT2/tKPk8+VNyqf4Yo237kBoVAdUN6fcleavIbgj/1mfWk7Fs4mmDVMYq6L7tsacbCgkEo41EIsHzzz/Pli1byGQKfwff+MY3RmhUE49yNpelFD3v7szwtWPn8eQ7zT2cTn2lKeWvJ60JnZ/9/X22tScJ+wo3b+XIifaVjrq1LckXD5vJivdbh3RTPdDUnL5SkwzLwrIh5HPTbbozmPVktNVNjHZGm/TuaEAYFoIhJX8StW2Hc+96DcOymVkbyv3gFJmcN+uXz20AHPQyqrBlWcpprJdKeJ+PoISq8E/dZ0iMivu+cjivbtzND5ev7fV5lu0gKRJVIRXbhoRukDYstrenmFYTLDAuJqJXQyDweOONNzjxxBNJJpMkEglqa2tpbW0lFArR0NAgDIs9TKmby1KLnmfUhlh23qEFx1vQWMGa5nifx/ekYN/ZEeP4hZP5/csf5Aq0y40olBJdWfF+K3ed++F+x9UfQ9F3oq/oUTRtIsuu4VasRnCw68loq5sYzYyk1O1oRRgWgmGjN2+Wg0PasPEpEqt3RFElqAlpJDNWSRGIUo0Ko207SkUdsuYHIDBj/4G8jQIk4PQPTeOA6dX8+Ol1hH0KiUzxHHAHmFYdIKiprqSippLKmFiOTUs8TdgXRpIkHMfJFR7u7tRZtS0qPESCCcUll1zC0qVLuf3226mqquKVV15B0zTOOussvvnNb4708CYkpWwuy0kDKXa8/o7fPW3Jdhwsx6E9oSPLclkRhVIlZdc0xwe1qR5K5b/eokf7T60imsrQFHUldoWXfGQRKWSFCMNCMGx43ixNdpvmmbbbxCiaNMhYNrbtdt6WJZjmU/FrrqLCUODVVKg1U6g+8otI6uAjAbIEAVXhnxt2c+9rW9iwq5Op1UFM26Y5quc0yyXHwcqpnbiLrYREfYWPbe0WluWQytgkMiaKLLMrppOxLLa2Jbn84beFBK1gwvHmm29yxx13IMsyiqKg6zpz5szh5ptv5txzz+W0004b6SEKijCcaSC9pS21JzNoisw5R8zmyHl1JTthBiIpW27kYaDKf32dp7fo0Ssbdwsv+ShCpJB1IQwLwbBRG/JhOzabdycxbBvbBiuruKHJEooigZUt7o6lmRT2s8tM9yo7K0uUJEmbX6gtKb4u0fQBIAOVIY2IT6UqqCJJEs0xnftf25JbpAKawtwGlXTGlZnTTZtdcR0cJ6fP3qmbtMQz2A7YAI7DlrYkYZ9KxrLxqzK1YSFBK5iYaJqGnJUcbWhoYMuWLSxYsICqqiq2bt06wqMT9MZwpYH0nbYUoDmm89KG1py6YCmUW2RbbuShlFSrYt27SzlPsWiP8JKPPkQKmYswLATDRjSVIZGx0A0bTZWw82T8TNtBciDoU3Bsh5Rh05HK9NpNW8INV/fXvGKo1Z8kCXTDpioAuukQ0NyQeXMsjUTXIiXhysyBgpqxkNAhq8/udYy1HQdVllAksGzXQ5Y2bIKazIyaUMkLkUAw3jjooIN4/fXXmT9/PkcffTTXXHMNra2t3H333ey//+BTGAXDx3BscMvphF3qRq6c6MpAIg8DGfNgexsJL7lgNCIMC8GwYNsOd6zYiF+VsSy3SV6uKVL2Hw7UR/xIksTWtiRpw0YGfAo4uAXaEm6UwqH/2orhkJS1HUgZFtvaU8iy25RoUtit2Wio9LMzpvdYpPyqlA2SSPhViQ/a0q5RobidoUwHgj6Zhgo/m3cnyVgS3S0qIUErmEjccMMNxONxAK6//nrOOeccLr74YubPn89vf/vbYT+/ruscdthhvPXWW7zxxhsceOCBw37OsUhvKTtDvcEd6k7YUHp0BRhQ5KHcMQ80wlHsfYn1QTCaEIaFYMixbYc/vrmDd7ZHqQxo1IR8NMfSWLaTMy7AnRBVWSboU6ir8NEcdb38tuNuzEM+Bb+qsDvRtXioMhQTkBquPhXdTZlkxkI3U1QGVM48dCZ3vrCx6CJVG3bD6dujadKGiSxJOI4bqVGynWLtbNGdYVmkM3Y24tGFkKAVTBQOOeSQ3N8NDQ0sX758j57/iiuuYOrUqbz11lt79Lxjif5SdoZygztcvQFKia6s2hYdULSk3DEPJiozFKpTgvIR1700hGEhGDT5P7atbUmWr27m3aYY7UmDaNrEp8jUBDVarAySBLLkxi1MG+JpAwDJcQ2OmpCGT1UIaQoBTWbz7kThuXqrv/AFQdXw1c0aluZ3lgN2ttW3YbnF2Z8/ZAZz6sK9LlIA1/9tDWuasu8Rh6AmU1/h9rFIZSzk7HvyajHyERK0AsHw88QTT/DUU0/xyCOP8MQTT4z0cEYlg03ZKZdS0pb2bazAdhyeX9dS1iavv+jKQKMl5RayD/Q8Q6k6NZYY6U39RL3uA0EYFoJBkf9jS+gWnRkTcFwPPW76Usq2SBkWqgyO495vWG70oiWu09Kp5wyG9qSBIpv4VZnKgEbGctyahOzjvRkWatVkao45DyVUNWwdtfNPbdsOa5rj/S5SN5y6iPOXvY5PkQn5VAJa14IT0GRURc51UC04l5AMFEwg9tprr6J6/B4bN24clvPu3LmTCy+8kMcff5xQKDQs5xjrDFXKTjn0l7akym4N38V/+NeANnl9RVcGGi0pt5B9IOfZ0wbeaGGkN/UT9boPFGFYCAZM/o+tOqgRTRk4joPtQLGOFG4KU67CAvAUkvKelJVpTRk2aUPPpU8VI9OyGQBf/WwA1Irh/WF79SESbkpUSzwNVBU0cWpLZnhnRyxnXCyaVsWCKZWsaYpTq8k9Nk+aIuPgEE0bSLIkJAMFE5JvfetbBbcNw+CNN95g+fLlXH755cNyTsdx+NKXvsRXv/pVDjnkEDZv3tzva3RdR9f13O1YLDYsYxtNDEchdSn0lrY0pcrPrrjuNsobhk3eYCR0yylkL/c8I2HgjRTdsyB+/cJGEiO0qZ9I132oEIaFYEB0/7GlDbdHRT+iTf0fF7AsB0WWMK2+jYroi/eCJFF9zHlo1Y2DO3EengHhoSlufYTluEpWDm6txA+Xv0dAcz1NfXlT+vJi1YY1vnjYXFa83yokAwUTlt6a4N16662sXLmyrGNdeeWV3HTTTX0+Z82aNTz11FPE43Guuuqqko994403ct1115U1nrHOcBRSl0r3iHB1UOOWJ9+jKZoetk3eYCV0Sy1kL/c8I2Xg7WnyoxMZ0yaWNnFwmFYdzK23e3JTP1Gu+1AiDAtBWXiehH9/0M6aphjVQQ1JkjCzfSq6GwLdN+mloClyrt9FMboXaqsVk8p9G0WpDbuF5p1pk51x1yspS25zO9O2CwrPAZo60lzy4JuAm/LVlzelPy/W+UfOEUVhAkE3TjjhBK666iruuuuukl9z2WWX8aUvfanP58yZM4dnnnmGl19+Gb/fX/DYIYccwhe/+EWWLVvW43VXXXUVl156ae52LBZjxowZJY9tLDJchdSlkp+2tGpblI0tiWHf5A1WQrfUQvZyzjOSBt6eonvKUUBz6MhmQuzoSDOtRiLid7ete2pTPxGu+1AjDAtByRTUU2Qs4mmDVMaioTKAKstFrYiBBDBqwhphn0Y0laG10+1t4QlBDZf6kwSEfSoBVUFXbfJbZhh5RoX3fhTZ7aS9tT0FwN4NkVyDr2LelP68WEIyUCDoycMPP0xtbW1Zr6mvr6e+vr7f5/385z/nBz/4Qe72jh07OP7443nggQc47LDDir7G7/f3METGO8PZXbtc9uQmb0/1iCj1PCNt4A03xVKOPHEXVXHl51viOmG/2zcK9symfrxf9+FAGBaCkujpSVBI6AZpw2JbW5KasIYqS/32migF3bAJaQ5Odmcvy2Dbw2dUAPhUGct22NWpo0pQFdQwTBvLdkjn6dtKuFGMoCYjIWXHKKGbDsG8eaWYN0UYDwJBcQ466KAeG9bm5mZaWlr45S9/OSznnDlzZsHtSCQCwNy5c5k+ffqwnHMsMlzdtQfCnt7k7ak5u5TzjCYDbzgolnKkynKuJ5Qig24WSrPviU39eL/uw4EwLAT9UsyT4OCgKTIpw8ZyHHbFMxT3IZVPW9KgLWnkbps2GB3Nw2ZUAHx4dg3/9akFOY9RNJXhe4+vpj2RIWPaKG5OFLbjoEiuZKzlODjZYvNicrEiRCoQlMYpp5xScFuWZerr6znmmGPYd999R2ZQghzD0V17IEzkTd5oMvCGg2LRqIAm41fdfYarKtm11u6pz3u8X/fhQBgWgn4p5klI6BaGVRid8CILw4FaWY82eQ5YVslGRTn1HYfOntTDY3TDqYu4+cm1rNrWgQ3IQFBTCvpQeOuaKvc0q0SIVCAojf/+7/8e6SEwe/bsXJRU0JM9lRrUFxN9kzdaDLzhoFg0Sso2k93ensK07FwfrJRh7dHPezxf9+FAGBaCfunuSXBwaI6meqQ9mbZbe2D3IRE7UCRZoerwM8CxS45UKLLb96K/7CxVlvjqUXN63L9kXh0Pz67l/93xMhtbEtRHfAR9Ss648mtS19+q6EMhEJRDOVKtlZXiNzQaGMl0Tk84xLAdLvjoHJavbmJjS2LCbfJGg4E3HPQWjYr4VaZWB9jekUKWJOJpE03Z85/3eL3uw4EwLAT90t2T0JbIkDLc0ER+VEACcBxkwBqC82ZaNpNpWkd40SeQJAlJVuiebtQXZonRk88dMh2fr/hxVVXmiuP34apH32Z3IkPQUAhqCpIE0ZTJpLAPB9gZz0w475lAMBiqq6v7bIqXj2UNxYwiGKsUa5A2pz7C146dx4za0ITb5JVi4I10p+py6Ssa1albTK0KcOFRc0f08xZ1kqUxVGnxA2LFihUsXbqUqVOnIkkSjz/+eMHjjuNwzTXXMGXKFILBIMcddxzvv/9+n8e87bbbWLx4MZWVlVRWVnLEEUfwxBNPFDynubmZs88+m8bGRsLhMB/60Id45JFHhvrtjRs8T0J70sB2bNoSbs1AvlGRLUHAcobOqIi+eC/JdS+T3vivQR1LplAmNp8vfHg615+2uN9jVAY1UobFzliazbsTbG1LMaXKz48/eyA/+eyBLJhSQVI32dWpk9RNFkypEN04BYI+ePbZZ3nmmWd45pln+O1vf0tDQwNXXHEFjz32GI899hhXXHEFkydP5re//e1ID1UwgnjCIWuaYoT9Kg0VfsJ+lfea49z5wka07GZvNG+a9zQvrW/l3Lte46K7V/LtB9/iortXcu5dr/HS+taRHlqfeClHxdbTG09bzFmHz+LovevF5z3KGdGIRSKR4IADDuDLX/4yp512Wo/Hb775Zn7+85+zbNky9tprL66++mqOP/543n33XQKBQNFjTp8+nR/+8IfMnz8fx3FYtmwZJ598Mm+88QYLFy4E4JxzzqGjo4M//elP1NXVce+99/LZz36WlStXctBBBw3rex6L5HsStnekMbKhgIIMI6dLEnawdFd/Csw+YMDHqgqq1IR8qLJbBNbaqaNbNjLg1xTOPGx2n6/PV8OaURvEtiFtWCQNi1jaBESIVCAYCEcffXTu7+9///v8+Mc/5swzz8zd95nPfIZFixbxq1/9inPPPXckhigYYUTX4/LpruC4pztVDxaxno59JGeUVKtJksRjjz2WUwdxHIepU6dy2WWX8e1vfxuAaDTK5MmT+d3vfsfnP//5ko9dW1vLLbfcwvnnnw+4soK33XYbZ599du45kyZN4qabbuKCCy4o6ZixWIyqqiqi0eiEyf99aX0r1/9tDWuaYv3WLQyUoZCUlXALyR0HZk8KE/IrpDM2pp1VdwIMyyaeNvnJZw/kmH0bih7Hth3Oves11jTFChY1yMphxnQWTKlg2XmHiklPMG7ZE3NdKBTirbfeYv78+QX3r1u3jgMPPJBkMjks5x0sE3Ed2JOs2hblortXEvarua7L+aQMi6RucsfZhwx5ispYSyUCsWaNJ0bb96+cuW7U1lhs2rSJ5uZmjjvuuNx9VVVVHHbYYbz88sslGRaWZfHQQw+RSCQ44ogjcvcvWbKEBx54gJNOOonq6moefPBB0uk0xxxzTK/H0nUdXddzt8spPBwveGHKc37zKrG0OeQF2kPVp8IBLJtsHYTBrriOblrYtisXC67xIUnw03+8j0+Vi3pwiqlheeyprp8CwURgxowZ/PrXv+bmm28uuP/OO+8c952tBb0zUl2Pi9V0zG2IjPricLFmjQ/G6vfPY9QaFs3NzQBMnjy54P7JkyfnHuuNVatWccQRR5BOp4lEIjz22GPst99+uccffPBBPve5zzFp0iRUVSUUCvHYY48xb968Xo954403ct111w3iHY0PFk6pzPaxGFpsPUn0pQeGrE+FtwztTridu1VFwna61Koc3EVpa1uy1/DwSC1qAsFE4yc/+Qmnn346TzzxRK7r9Wuvvcb7778v6t8mMCPR9XgspxKJNWvsM5a/fx4jWrw9XOyzzz68+eabvPrqq1x88cWce+65vPvuu7nHr776ajo6Ovj73//OypUrufTSS/nsZz/LqlWrej3mVVddRTQazf3bunXrnngro441zfEhNyoAZH+Iig+dhG/K3oM2KtxUKAkvaugAhtVTAleSoLHKT6ducdvzG7C75XflL2rFEH0qBIKh4cQTT2TdunUsXbqUtrY22traWLp0KevWrePEE08c6eEJRoh84ZDuWduepPfchsiQSXp3r+kIaAqyLBHQFBore18rRgtizerCth1WbYvy/LoWVm2LjtrPLJ+x/v3zGLURi8bGRgB27tzJlClTcvfv3LmTAw88sM/X+ny+XPTh4IMP5vXXX+dnP/sZd9xxBxs2bOAXv/gFq1evzhVzH3DAAbzwwgvceuut3H777UWP6ff78fv9Q/DOxjaep0MGHMmtYxgMjuN0FeTN2B//9IUlS1AWQ1MkJCBj9T+wjGkTTZlUh9Si4eGJ3OVVINjTzJgxgxtuuGGkhyEYRezphnhjPZVIrFkuYzWVaKx//zxGbcRir732orGxkX/84x+5+2KxGK+++mpBvUQp2Ladq4/wigDlbp2SFUXBHq620eMAz/rf1JrIdr+k9LbWvZBp2Uz7P36FlYzm7huMUQGuodO9I3hv2A7s6EjR1JEmkbF6hIe9RS3iV2iO6aQMC9t2SBkWzTFd9KkQCAbB22+/nZtz33777T7/CSYufUmQDnVaSCmpRMYoTiUSa1bv8sReKtFoltwd698/jxGNWHR2drJ+/frc7U2bNvHmm29SW1vLzJkz+da3vsUPfvAD5s+fn5ObnTp1ak45CuDjH/84p556Kl//+tcBN2XphBNOYObMmcTjce69916ee+45nnzySQD23Xdf5s2bx0UXXcSPfvQjJk2axOOPP87TTz/NX/7ylz36/scK+da/blh0pk3MITAqvELt5HsvUPGhTw/JWE27qzi7lCE6DqQyFpJss7Wtp/KMt6h573+idXkVCIaLAw88kObmZhoaGjjwwAPd2q0iIVBJkkSDvBFgNKnS7CkJ0pGo6RhqJvKaNdblicfD9w9G2LBYuXIlxx57bO72pZdeCsC5557L7373O6644goSiQRf+cpX6Ojo4Mgjj2T58uUFPSw2bNhAa2uXBbpr1y7OOeccmpqaqKqqYvHixTz55JN84hOfAEDTNP72t79x5ZVXsnTpUjo7O5k3bx7Lli0TubxFyC8k8qsyadMuuviXQ3f1p8gBlBf4BAAAOARJREFUxw/RaF3KmS4cyEVglq9u4guHzuwx4QhdbYFg6Nm0aRP19fW5vwWjh9GYSrInuh6Pl1SiibpmjfVUou7fPyS6pPIliWjaYMGUylH//Rs1fSzGGhNBvzxfEzviV9nRkcZybGRJwixSDF0KA5WUHYLMq16RJZgU9qEp8rDooQsEY5mJMNcNlPF4bXpTpWnP1jSMBVWawdD1/q2iNR3j/f2PZZ5f18K3H3yLhgp/USPKth12der86IwDOHrv+hEYYf9437/2ZIaM6WBYFo7j7n98qsxln9ibC4+au8fHVc5cN2prLAQjj2f9Vwc1Wjt1TNvGttljRkX+l3Mg51Nl12joz0fjONCezNDSqfPi+pYBnEkgEAyGZcuW8de//jV3+4orrqC6upolS5bwwQcfjODIJhbjRZVmMOzJmg7B0DIeVLGWzKvji4fNRDdtdNPCQUKWJAKqgk9RuOfVLaO6TgRGsSqUYOTxColsB1KGneu2PZBgquM4dL71VFmRioAmkzQGVlAvZf/5VBnDspEA03bvU2SpoBbDp0rYDli2w+9f/oADpleLxUMg2IPccMMN3HbbbQC8/PLL/OIXv+CnP/0pf/nLX7jkkkt49NFHR3iEE4OxnkoyVEzUVKKxznhIZbNthxXvtxL2KUyrCmI5DqosE9BcV+torxMBEbEQ9IFn/acMM+ehknL/KQ9Jkqj6yJkE53645PSnpGGjKRKTK/0ln1LN/tAcXNUnHJCQyHdgWHnvRVNkJFzDIqgpZEx73HvkBILRxtatW3MS4Y8//jj/7//9P77yla9w44038sILL4zw6CYO40WVZijwajqO3rueRdOrRu0mTtDFeFDF8oz72rCfkF+lIqAR9ClIktTDuB+tCMNC0Cue9R9PW12pSGX+Hm29S2lJCVZQcdCJZTW/MyyHjGlz1mEzCWoKEb+CpvQ9CG9NdBzIWDYhn0JVSKMyoCJJ2YJtXCNEksCwHRRJoqEyQE3YN+p/tALBeCMSibB7924AnnrqqZzYRiAQIJVKjeTQJhTjIZVEMLE5fM4kLvjoHBor/XQkM+yMp8dUKtt4MO5FKpSgVzzr/1v3v0Gn2wYExyndtsi0bCb6z/upOOhEArMWD3gc7UmDf25opTqoEgloZEyLbe0pbKdn7YWZF2lQFQlZlvjMgdM4/UPTkCWJP7zyAY+9sQ0cL6rhENRk6isCRPwqtu0QHeU/WoFgvPGJT3yCCy64gIMOOqig2/Y777zD7NmzR3ZwE4jxkEoimLh0VzOTkGio9HPmoTOLKj6ORsaD5KyIWAj6ZMm8Or5x3N5oeT/InMc/2+W6GLlCbVMnvXX1oCVqN7YmCflU2pMGiizlVBL6ImM5pA2bx/69jf+459/86Km1HDCjmvqInynVQabXBJlVG2b2pDARv2tjj4UfrUAw3rj11ls54ogjaGlp4ZFHHmHSpEkA/Otf/+LMM88c4dFNHMZDKolgYlKsMV51SGNnTOfOFzbyysbdIz3EkvCM+/ak0WPf5Bn3cxsio9q4F3KzA2Q8ygzmk98cqTqocfPy93hzWweW5XQVPktuvUL3coSBSsr2R8SvoikSsbRBL5H6ooR9ClOqAnSkTMI+mcqgRlNUp7HS38Mj1xzTWTClgmXnHSoWT4GA8T/XDYbxem0KPL/ZBmsj3cdCIOiNfGn8/MZ4MDbX9dEoeVzOXCdSoQQ9KNYcaVLER8SvYloOQZ+CIkmkDYudcb3gtcNlVACYlo1u2GUZFWouX1iisdJPc0ynMgjhrEeu2I9WeOQEgj3PCy+8wB133MHGjRt56KGHmDZtGnfffTd77bUXRx555EgPb0IhVJEEY4nxpmY21runC8NCUEBvzZGaojqKDFOrA+zuzKDbdk5dCdzUKH0YjQpw6yFM2+1NUYpokypLqJIrLWvaNpKkUB3S2N2Z4WvHzuPJd5rH5I9WIBhvPPLII5x99tl88Ytf5N///je67josotEoN9xwA3/7299GeIQTjz3R6VogGApKKXgea7WTY9m4F4aFIEf35kie5R+QFRorZZpjOlVBjR+csoiOlMGf39zBw//eBrj1DpmdG4bNqPApMrZtI5Xxm1Jkya0HkUCV3QnHm2Bm1Ia469wP8+e3m9jekWRadYili6egqqLsSCDY0/zgBz/g9ttv55xzzuH+++/P3f+Rj3yEH/zgByM4MoFAMNoZDwXPxRirxr0wLAQ5SgknbmxJIEsSmiyxoluX6vDCj6GEqgnMWjykRoUsQW3YR0s8jUzpXbgdx8FyIKh1NZfxJpitbUnOe2FjQbrXo29sExELgWAEWLt2LUcddVSP+6uqqujo6NjzAxIIBGMGoWY2uhDuWUGOUvWTWxNu58eEbmJ0NONYJuAaH8E5Bw+pUQFu9+yQJuPgNrTTehlfd8xsf4r6Cjf64k0wkyI+fv3CxgL1iLBfZU1TnO88toqX1rcO6fgFAkHfNDY2sn79+h73v/jii8yZM2cERiQQCMYKQs1sdCEMC0GOUpojKRI88NpWXtvURse2DXQ8+1uiLz+YMy4Gg0RhjwxVlvCpEqbl5kb6VBlNVajpJ5zpHUOWJOoqfIQ0JTfBhH3uVz6RTfcKaAqyLBHQFBor/XTqlui8LRDsYS688EK++c1v8uqrryJJEjt27OCee+7h29/+NhdffPFID08gEIxyvILnBVMqSOomuzr1MdUYbzwhUqEEOfoLJ25rS5I2bZa/01yg/oTjUHqCUt/kH8WynVy/iuk1IU4+cCr3vLqFeNrMFZXn46lXJXWbhgofkyv9bGpNsqtTzxVnH7+wkV8+u37cqEcIBOOBK6+8Etu2+fjHP04ymeSoo47C7/fz7W9/m//8z/8c6eEJBIIxwFgueB5PCMNCkMMLJ37nsVU9pFg9owKGVlJWlcDymt1JIGX/liQ34lAb0gCJ609dxKJpVQR9Kve/tgXTSpKxbCTc9KjaiI+wTyGaMqkNa3z/5P2LTjAvrG8dd+oRAsFYR5Ikvvvd73L55Zezfv16Ojs72W+//YhEIqRSKYLB4EgPUSAQjAHGasHzeEIYFoICDp8ziQs+Oof7XtvCrpgr+ajIDKlRIQOSLIHjoCgStpWNTDiuQSFlAyAODhnTZvGMauJpg3Pvei1XbO1TFWZP8qHIEqmMhWE7pDJWD8nY7hPMeFWPEAjGAz6fj/322w8AXdf58Y9/zM0330xzc/MIj0wgEAgEpSAMC0GO/MZ4GdMGCRorAzRU+mmOtQyNUSFBdVCjPWVkC3wkVFnCsGwcsllVHg6E/SpHza/je4+v7tFboz1pEPYrfO3YecyoDZUU9hTqEQLB6EHXda699lqefvppfD4fV1xxBaeccgp33XUX3/3ud1EUhUsuuWRYx/DXv/6V73//+7z99tsEAgGOPvpoHn/88WE9p0AgEIxXhGEhAHo2xqsJuZv35pjOhpZOACRJAUkaVPqTLEHQp9CRMlAUCct2UGQJRXb/zrcrIn6Vi46ey4Mrt9KRNJhWE0CWXHMkv7fGk+80s+y8Q0vKo+wr3Ut03hYI9izXXHMNd9xxB8cddxwvvfQSZ5xxBueddx6vvPIKP/7xjznjjDNQlJ6RxaHikUce4cILL+SGG27gYx/7GKZpsnr16mE7n0AgEIx3hGEh6Lcx3vu7DAC0uhlUH3MeasWkgddUKDI+RUKVZWQJMraNWUSBSZVhZm2A/3vmfdoSGWQJPtjtUF/hJ+J3v7YDLbb21CO86IzovC0QjAwPPfQQv//97/nMZz7D6tWrWbx4MaZp8tZbb/UQVxhqTNPkm9/8Jrfccgvnn39+7n4vFUsgEAgE5SMMC0GfjfHiTZvw66D7JgGgVTcO6lwZ02ZbR5pJYR+tnb0XSNsObG1PE/GryJKELEHasNjenmJaTTBnXAy02FqoRwgEI8+2bds4+OCDAdh///3x+/1ccsklw25UAPz73/9m+/btyLLMQQcdRHNzMwceeCC33HIL+++/f9HX6LqOruu527FYbNjHKRAIBGMJ0cdC0GtjvNiOjax74rc0P/M7zFhLL68uE8eVkW1LZPApEj6l+AbCdlxDArIF3ZKEqkjYjkNLXMdLmhpMsbWnHnH03vUsml4ljAqBYA9jWRY+X9dvV1VVIpHIHjn3xo0bAbj22mv53ve+x1/+8hdqamo45phjaGtrK/qaG2+8kaqqqty/GTNm7JGxCgQCwVhBRCwERZWSPKPCNg0CjXNRItVD0qnCrylUh1R2ZhWnMlbvRzVth2jKwKdIpE03XUmRJdKGRVtnhqCmEE0bLJhSKYqtBYIxiOM4fOlLX8Lv9wOQTqf56le/SjgcLnjeo48+WvIxr7zySm666aY+n7NmzRps21W6++53v8vpp58OwF133cX06dN56KGHuOiii3q87qqrruLSSy/N3Y7FYsK4EAgEgjyEYSHooZQUb9rEuid+i5nJEJo6n6ojzkBSNRzHIZ2xyBRvzN0rXhwgoCnMrQ/TqZtI9G1UgBu10E2L6pAP3TTImDbeqZujaZDAp8ocNb9ORBsEgjHIueeeW3D7rLPOGvQxL7vsMr70pS/1+Zw5c+bQ1NQEFNZU+P1+5syZw5YtW4q+zu/354wggUAgEPREGBaCAqWkTe+/R/Nzd5PRdbSGuUgfOpWEJTOzykcyYyFLMlbawMHd+HtI9N5727u/Kqi5KU1y6Rl4pg3tSQPHcci3ZyRZwq/IqIrMPa9uYeHUKlF0LRCMMe66664hP2Z9fT319fX9Pu/ggw/G7/ezdu1ajjzySAAMw2Dz5s3MmjVryMclEAgEEwFhWIxxMhmL21ds5IO2BLNqw3z1qDn4fKXJM9q2U1C8fNGBIS695x7SadeoqPnIZwn4A1SHNNqTBhIwKewjmTELog2lxApkoFM3qIv4CPhkpL4ske6vlVwDI/98DRV+JoXd3OzmmM5tz2/g8DmTRORCIBCURGVlJV/96lf57//+b2bMmMGsWbO45ZZbADjjjDNGeHQCgUAwNhGGxRjmu4++zQMrtxXItf78mff53CHTuf60xX2+Nr8ZnmE5aIrErGqVcP0MnGqH+Z88G78/gOXYtMQzpA0Ty4aEbjG9JsjOaIqE4Z63FPvAAXTTJm3YBDQZuQzLQkIiv8OFLEE8bTAp7Buw5KxAIBDccsstqKrK2WefTSqV4rDDDuOZZ56hpqZmpIcmEAgEYxJhWIxRvvvo29zz2tYe95u2k7u/N+OiezM8r5P1ml061kGns1dlkOoKtxZie3sa23FQZBlZdrBth50xHd0qb7wOYNuQyJh0pBwCmkLGMvt9nSy5KlLe36oiI9FlpAR9yoAlZwUCwcRG0zR+9KMf8aMf/WikhyIQCATjAiE3OwbJZCweWLktd9uVY3X/eTywchuZTM/df/dmeJmWD2h+81kCmkJVUANFI5ZxcLKyrrbjoCqS20sCV+5VN+2CzX5vSICmSLnn2DgYls0+kyPUR0orgNyrLkxDpR9VltAUGUWS3HoOB8ysqstgJGcFAoFAIBAIBEODMCzGILev2JhLf+reR8q7bdoOt69wddpt22HVtijPr2vhj2/uYP3OODUhX079advrT9K67t+5jXvasGiOpUkZFpLkbuIdHGzHcf923NQpCTdNqbdeFJIEiiyhyu5z95oU5hsfn09CN9m8O9FvbUZVQCXkU5kU8RHQZEzLwbIdLMdBkkCVZRzHoSNpMLchIiRnBQKBQCAQCEYQkQo1BvmgLVHy87rXUtiOQyxtYLRuYfszv8c2Dapm7E3tnEUkTBvbcbAdcl2x3ZiHkzUiXBQvgmG7xoPlkDNA8lFkN8JhWA5+TeZzH57Bb1/cRFsiA5KET3GLsi278IUSbiTEQcJxHBIZK2dQWFZXpCSRMehIQcSvcPHRc0XhtkAgEAgEAsEIIgyLMcis2nD/T8KNJnSvpYilDXZ+sI6mF+8jINvUztqH+Z88h6QlsaMjhd1LPbWT/SdLICPhOCDLUF/hJ5YySRkWVtaykHAlbG0HHNs1Ki45bm9eXN9Kp25SH/GTak9CNtrhKA4Z00aVZRoq/QRUmfakgU+V2dqeJKFbOI6DKnepQ9kO7Ipn2G9KBVedsEBIzQoEAoFAIBCMMCIVagzy1aPmoGa9892jBN5tRYKmaCpXSxHQFGRZQu7YSuyf92GbGaS6vZj3ibORVJWWuJ6rWegNr7bBxk1J8qsKtWEfs+tC7DUpTG1YQ5UlIn6FkE+hKqCyeHo1d55zCEvm1rFhVyc1IZ9bcK3KmLZbyyHh1k84OPgVmY6UyX5TK7np9EVIkhv1kCQJSZII+xWmVgWYVRukIqBSFfRx+JxJw3CVBQKBQCAQCATlIAyLMYjPp/C5Q6bnbrt1D4VGxif2m8ym1gQ1IVeSFSCTjPP+8t/hk2wCjfOIHH4GMQOSukXaMHuNVuTjAIbppkbVV/iRsv8zbZt42nQjGpKEJkvMnBTm25/cmyPn19OWzGBYDj5FRpIk6isCKJKEYbvpWeAqTrV26rnUppqQn6AqM606yPSaILNqw+w1KcykiJ/KoI+6iJ+NLa7MrEAgEAgEAoFgZBGGxRjl+tMW88VDZ+QiFx6qLPHFQ2dw5mGzcht5D1+ogumHnUjtrH1ZeNKXUDUfSd1kdyKD1XewAujqOqEpEiG/4tZQ2A5tiQxb2pJYtkN9hZ/pNSEmRfxsa0/xvcdX89L6VmpDPjRFIpM9UcSvMq0mSFCTsR0nl+K0V32EG05dxJJ5dbQlM5g2VAY0KgIaQZ+SM5IA/IqMIWRmBQKBQCAQCEYFosZiDHP9aYv5708vLNp5e9W2aG4j75fk3IZ88sIjaNjvcNKmTT0Klx+/L7GUwS1PvUdnCc0pIj6Zs46YzYvvt9IcS4MDcd1EkSWmVQepCGgABGSFxko51xX7rnM/zNyGCGua4jRWuuOJ+FXCvjCpjEVLZ4Y59WEevugIVNU1hvKNkYDcs5u4kJkVCAQCgUAgGD0Iw2KM4/MpfOO4+T3uXzi1krkNEf795tuk332W+cefixbsKvruSBosmFLByQdOBeC3/9xEp57s93yGDX96cweG5dZGVARVMpZNQ4WfoK/w6+R2xVZ5rynOH17bwvELG9nSlqQ5plMd0vArMrplE02b1IY1rjh+n5xRkf8e8o0RD09mdsGUCiEzKxAIBAKBQDAKEKlQ4xRZljh+SoZdz/+B3ds38cHKv2PbDinDojmmF0i0yrLEiYunlHRcSYKwX6Whwk91SGN3p06nbmJYPQs0OnWTpo40uxM6P3lqHb98dj2VAZUpVX6SusmuTp2kbrJgSkUu/an7e7j46LlE/ArNMZ2UYfX6HgQCgUAgEAgEI4uIWIxTVq9ezeO//Rn71AWIReYTWvRxdnXqaLLEgikVXHz03IKN/GXH7c3dL2/uNx1qTl0IJZuWFJAV6iJ+4rpJS1ynIqDmogqdusn29hSWbSNLEpMiPhRZoimqE/bJfO3YecyoDVEb8rFwamWvxsGSeXXccOqiXC+OqO30+h4EAoFAIBAIBCOHMCzGIatXr+baa69F13U+/tHDueqq7/B+a5q2ZKbXjbyqynzz4/P54RPvUST4ALjhrZThEPF33Rf0K/hVhbRpkcpYhPwqDg4tcR3LtkGCgCYTyhZee3UXT77TzLLzDi0p2rBkXh2Hz5nEOztifb4HgUAgEAgEAsHIIQyLcUa+UfGhD32I7373u/h8PhZN9/f72vOPnMO9r21hc2uSfNtCloBsd+2WuE7YryBl+3BLSDRU+tnWlqSlM0NDVikqbZgAKJJMfUUgF8lw6y40NuxyZWIXTa8q6X3JslTycwUCgUAgEAgEex5hWIwjbNvm1ltv7WFUlMo7O2Lohs2c+hC64WBYNpoi41MltranANCzkQmvd4Uqy2iKRHXIx4zaELtiaRIZC9uBoKbQUBkg4i/8mvkVmaiQiRUIBAKBQCAYVwjDYhwhyzLXXHMNDz74IBdffHFZRgWQa2JXo6qEfIUKTH5VJmVYODZs70hh2U62KZ8DEsyeFObBCw9n7a5O/v1BO//37PtUB7UeSlEgZGIFAoFAIBAIxiNCFWockEgkcn9PmTKFb37zm2UbFUCPJnYeXqdskLCBjGHjOA6W7WA5YNmwqTXB6Xe8RDxtcPYRs1gwpZKOlOkaHnl4MrFzGyJCJlYgEAgEAoFgHCEMizHO6tWrueCCC3j99dcHfSyvb0R70uhhEIR8MuAgAZIsYdpuJ24J0GT3/99rjnPVY6t4ZeNuIRMrEAgEAoFAMMEQhsUYxivU7uzs5Mknn+xhDJRLX30jtnekAYnGSh8+RUKWwKdI+FUZVVFQFRnHcYimDG57fgOHz5nEDacuYsGUipJ6VggEAoFAIBAIxjaixmKM0l396YorrijoTD1QeusbMa06yLa2FEGfRmvCQFNk5ILzuTUXMrCmKcaq7VEhEysQCAQCgUAwgRCGxRikN0nZYti2U/bGvphBYDsOF//hX6QNCycrPeth2Q6G5eAA0ZSJg8N3HlvFd09cwJJ5dUImViAQCAQCgWACIAyLMUY5RsVL61tzkQfDctAUibkNkZI6VnfvG2HbDnMbIqzaFkWSuuorXKPCzt1WZLAdVznqO4+tEmlPAoFAIBAIBBMEUWMxxnjhhRdKNiq+89gq1jTFCPtVGir8hP0qa5rifOexVby0vrWs83r1F1VB1xY1LRvLtnJGBYCmyNgOBDSVadUBOnWL257fgG0PrvZDIBAIBAKBQDD6EYbFGOOiiy7iggsu6Df96bbnN9CpmzRWBghoCrIsEdAUGiv9A97wL5lXx42nLWbfxgqQJDJWnjKUImE7DrIkUV/hR5bkgg7bAoFAIBAIBILxjTAsxgAffPABlmUBbhO8k08+uc8+Fe/siLFhVyc1IV+Pgm5Jkga14V8yr44//seRXPeZhcyqDSFJ4JVsBDSFaTXBXKdtvyJjiA7bAoFAIBAIBBMCYViMclavXs1ll13GT37yk5xx0R9eB22fUvzjHeyGX5Ylzjp8Fj8/8yDqwn4mVwaYVRtmdl0oZ1SA6LAtEAgEAoFAMJEQhsUoJr9QOx6Pl2xY9NZB22OoNvyLplWx75QKMpZDQJOR6IqOiA7bAoFAIBAIBBMLYViMUspRf+pOXx20h3LD31dDPdFhWyAQCAQCgWBiIQyLUchgjArYsxt+r6Ge6LAtEAgEAoFAMLERfSxGGYM1Kjx666C9YEpFSX0syj2X6LAtEAjGGuvWrePyyy/nn//8J5lMhsWLF/M///M/HHvssSM9NIFAIChgIA2PRwJhWIwydF3Htu1BGRUee3LD372hnkAgEIx2Pv3pTzN//nyeeeYZgsEgP/3pT/n0pz/Nhg0baGxsHOnhCQQCATC4hsd7GsnpnoQvKIlYLEZVVRXRaJTKyqEtTl67di177bXXoIwKgUAgGAqGc64bSVpbW6mvr2fFihV89KMfBSAej1NZWcnTTz/Ncccd1+8xxuu1EQgEowev4XGnblIT8uFTZDKWTXvSIOJX9kjaeTlznaixGAW88847bN++PXd7n332EUaFQCAQDCOTJk1in3324fe//z2JRALTNLnjjjtoaGjg4IMPHunhCQQCwbA1PB5ORCrUCOPVVITDYW655RYaGhpGekgCgUAw7pEkib///e+ccsopVFRUIMsyDQ0NLF++nJqamqKv0XUdXddzt2Ox8puMCgQCQamU0/B4tKSjj/qIxW233cbixYuprKyksrKSI444gieeeKKk195///1IksQpp5xScL/jOFxzzTVMmTKFYDDIcccdx/vvvz8Mo++b/ELt2bNnU11dvcfHMBhs22HVtijPr2th1bboqLKYBQLBxOTKK69EkqQ+/7333ns4jsN//Md/0NDQwAsvvMBrr73GKaecwtKlS2lqaip67BtvvJGqqqrcvxkzZuzhdycQCCYSw93weDgY9TUWf/7zn1EUhfnz5+M4DsuWLeOWW27hjTfeYOHChb2+bvPmzRx55JHMmTOH2tpaHn/88dxjN910EzfeeCPLli1jr7324uqrr2bVqlW8++67BAKBksY12NzaoVJ/GinGUiGRQCAYOGOtjqClpYXdu3f3+Zw5c+bwwgsv8MlPfpL29vaC9zV//nzOP/98rrzyyh6vKxaxmDFjxpi5NgKBYGyxaluUi+5eSdivEtCUHo+nDIukbnLH2YcMa8SinHVg1KdCLV26tOD29ddfz2233cYrr7zSq2FhWRZf/OIXue6663jhhRfo6OjIPeY4Dj/96U/53ve+x8knnwzA73//eyZPnszjjz/O5z//+WF7Lx7jwagoVki0pinOdx5bJfpXCASCEaO+vp76+vp+n5dMJgGQ5UJPoCzL2LZd9DV+vx+/3z/4QQoEAkEJeA2P1zTFaayUC9KhvIbHC6ZUDLrh8VAy6lOh8rEsi/vvv59EIsERRxzR6/O+//3v09DQwPnnn9/jsU2bNtHc3Fyg+FFVVcVhhx3Gyy+/PCzjzmft2rVj2qgYi4VEAoFA0J0jjjiCmpoazj33XN56661cT4tNmzZx0kknjfTwBAKBYI82PB4qRn3EAmDVqlUcccQRpNNpIpEIjz32GPvtt1/R57744ov85je/4c033yz6eHNzMwCTJ08uuH/y5Mm5x4oxVEV706ZNY/r06VRVVY05owLGZiGRQCAQdKeuro7ly5fz3e9+l4997GMYhsHChQv54x//yAEHHDDSwxMIBAJgzzY8HgrGhGGxzz778OabbxKNRnn44Yc599xzef7553sYF/F4nLPPPptf//rX1NUN7YW+8cYbue666wZ9nEgkwvXXX4+maWPOqIDSComio6yQSCAQCIpxyCGH8OSTT470MAQCgaBP9mTD48EyJgwLn8/HvHnzADj44IN5/fXX+dnPfsYdd9xR8LwNGzawefPmgroML1dWVVXWrl2b66a6c+dOpkyZknvezp07OfDAA3sdw1VXXcWll16au+0V7Q2EcDg8oNeNBmpDPjRFImPZBOSehUS6ZaPJErWhsWc0CQQCgUAgEIxGZFkaE5kgY8Kw6I5t2wVpSR777rsvq1atKrjve9/7HvF4nJ/97GfMmDEDTdNobGzkH//4R86QiMVivPrqq1x88cW9nlMU7bmMxUIigUAgEAgEAsHwM+oNi6uuuooTTjiB/9/evQdFeZ1/AP8uCOuCXFREFhGCrkKs4BTTUqyKClHMSFBSMdEKNkaroSNqjbeZeGsSHY2Xmma8EIWaWjWJ4jXR4gW81NDRAUVjN0JBooGYmEAR5CL7/P7wx9Z1l+suLJfvZ2Zn5L2c95xn3z2PZ9/37Ovt7Y3S0lL8/e9/R1pamv7ydWxsLPr06YO1a9eia9euGDx4sMH+tc+GeHr5/Pnz8c4772DAgAH6n5v19PQ0et4FGaudSLQ8JRtF/62Eq4MdlLY2qKzRofj/Hy/f1iYSEREREVHLa/MDi/v37yM2NhaFhYVwcXFBYGAgTp06hRdffBEAUFBQYPRzgQ1ZvHgxysrKMHv2bBQXF2P48OE4efJko59h0dm1t4lERERERNTy2vwD8tqq9vbQqJag00m7mEhERM3Hvq5ujA0RdQYd6gF51Ha1l4lERERERNTy2tUD8oiIiIiIqG3iFYtmqr2DrLkPyiMiag9q+zjeNWuMeYCIOoOm5AEOLJqptLQUAJr9LAsiovaktLQULi689fFpzANE1Jk0Jg9w8nYz6XQ6fPvtt3BycjJ4lkNDah+s980333CynwmMT90Ym/oxPnUzJzYigtLSUnh6ejb5F/g6uobyAM9J0xgXY4yJMcbEmLVi0pQ8wCsWzWRjYwMvL69m7+/s7MwPSj0Yn7oxNvVjfOrW3NjwSoVpjc0DPCdNY1yMMSbGGBNj1ohJY/MAv34iIiIiIiKzcWBBRERERERm48CilSmVSqxcuRJKpdLaVWmTGJ+6MTb1Y3zqxthYB+NuGuNijDExxpgYaw8x4eRtIiIiIiIyG69YEBERERGR2TiwICIiIiIis3FgQUREREREZuPAwgzbtm1DYGCg/veEQ0JC8MUXXzRq3/3790OhUGDixIkGy0UEK1asgFqthkqlQnh4OG7fvt0Ctbes8+fPIzIyEp6enlAoFDh8+LDB+ua0qzHxLSoqwvTp0+Hh4QFHR0cEBQXh4MGDlm6e2RqKj0KhMPnasGFDnWU2Jj6jRo0yKnPOnDkt0cRmW7t2LX7xi1/AyckJ7u7umDhxIrRarcltRQTjx483GcNnrVq1Cv7+/nB0dET37t0RHh6OjIwM/fr8/HzMnDkTvr6+UKlU6N+/P1auXImqqipLNs9sDb3PO3fuxKhRo+Ds7AyFQoHi4mKzywSAiooKxMfHo2fPnujWrRteeeUVfPfdd5ZuXoe0atUqo8+dv7+/tavVqloiJ3QEDcVlxowZRudORESEdSrbChrT/3fGvqgxcWmr+Z0DCzN4eXlh3bp1uHr1Kq5cuYIxY8YgKioKN2/erHe//Px8LFq0CCNGjDBat379emzduhXbt29HRkYGHB0dMW7cOFRUVLRUMyyirKwMQ4YMwYcffmhyfXPa1Zj4xsbGQqvV4ujRo8jOzkZ0dDRiYmKQmZlp8Taao6H4FBYWGrx2794NhUKBV155pc4yG3v+zZo1y6Ds9evXW7Rt5kpPT0d8fDy+/PJLpKamorq6GmPHjkVZWZnRtlu2bGn0k+4HDhyIv/zlL8jOzsbFixfx3HPPYezYsfj+++8BAP/+97+h0+mwY8cO3Lx5E5s3b8b27duxfPlyi7bPXA29z+Xl5YiIiGhSvRtz7ixYsADHjh3Dp59+ivT0dHz77beIjo62ePs6qp/97GcGn7uLFy9au0qtqiVyQkfQUFwAICIiwuDc2bdvXyvWsHU1pv/vjH1RY/Nim8zvQhbVvXt3+eijj+pc//jxYxk2bJh89NFHEhcXJ1FRUfp1Op1OPDw8ZMOGDfplxcXFolQqZd++fS1ZbYsCICkpKfq/LdmuZ+Pr6Ogoe/bsMdimR48ekpiY2LzKt4Jn42NKVFSUjBkzpsllPxuf0NBQSUhIaHI51nT//n0BIOnp6QbLMzMzpU+fPlJYWNioGD6rpKREAMjp06fr3Gb9+vXi6+vbnGq3KlP9zLlz5wSA/PTTT2aXWVxcLHZ2dvLpp5/q19+6dUsAyOXLl5td785i5cqVMmTIEGtXo81oyZzQnpnqx579f0Fn82z/z77oCVN5sa3md16xsJCamhrs378fZWVlCAkJqXO7NWvWwN3dHTNnzjRal5eXh6KiIoSHh+uXubi4IDg4GJcvX26RercGS7SrrvgOGzYMBw4cwI8//gidTof9+/ejoqICo0aNsnQzWs13332HEydOmDxH6lLf+bd37164ublh8ODBWLZsGcrLyy1dZYsqKSkBAPTo0UO/rLy8HFOnTsWHH34IDw+PJpdZVVWFnTt3wsXFBUOGDKn32E8ft61pbD9jbplXr15FdXW1wWfW398f3t7e7bovak23b9+Gp6cn+vXrh2nTpqGgoMDaVWozOmqus5S0tDS4u7vDz88Pc+fOxYMHD6xdpVbzbP/PvugJU3kRaJv5vYu1K9DeZWdnIyQkBBUVFejWrRtSUlIwaNAgk9tevHgRu3btQlZWlsn1RUVFAIDevXsbLO/du7d+XXtkTrsaiu8nn3yCKVOmoGfPnujSpQscHByQkpICjUZj+Ya0kr/+9a9wcnJq1KXehuIzdepU+Pj4wNPTE9evX8eSJUug1Wpx6NChlmxCs+l0OsyfPx+//vWvMXjwYP3yBQsWYNiwYYiKimpSecePH8err76K8vJyqNVqpKamws3NzeS2OTk5+OCDD/D++++b1YaW0JR+xhJlFhUVwd7eHq6urgb7tPe+qLUEBwcjOTkZfn5+KCwsxOrVqzFixAjcuHEDTk5O1q6e1XXUXGcJERERiI6Ohq+vL3Jzc7F8+XKMHz8ely9fhq2trbWr16JM9f/si+rOi201v3NgYSY/Pz9kZWWhpKQEn332GeLi4pCenm6U9EtLSzF9+nQkJibW+R8bMtZQfN9++20UFxfj9OnTcHNzw+HDhxETE4MLFy4gICDAyrVvnt27d2PatGno2rVrg9s2FJ/Zs2frtw0ICIBarUZYWBhyc3PRv3//FmtDc8XHx+PGjRsG96MfPXoUZ8+ebda8mdGjRyMrKws//PADEhMTERMTg4yMDLi7uxtsd+/ePURERGDy5MmYNWuW2e2wtMb2M9Yuk54YP368/t+BgYEIDg6Gj48PPvnkkyZdiaTO59VXX9X/OyAgAIGBgejfvz/S0tIQFhZmxZq1PFP9P9Udlzab3619L1ZHExYWJrNnzzZanpmZKQDE1tZW/1IoFKJQKMTW1lZycnIkNzdXAEhmZqbBviNHjpR58+a1UgvMh2fuG7Vku56Ob05OjgCQGzduGG3z+9//vll1bw3Pxudp58+fFwCSlZXVrLLrOv9qPXz4UADIyZMnm1V+S4qPjxcvLy/5z3/+Y7A8ISFB/zmpfQEQGxsbCQ0NbdIxNBqNvPfeewbL7t27JwMGDJDp06dLTU2Nuc1oFabeZ3PnWDxd5pkzZ0yW5e3tLZs2bWpW+Z3dCy+8IEuXLrV2NayiJXNCe1ZfLniam5ubbN++veUrZEV19f+dvS+qKy6mtJX8zjkWFqbT6VBZWWm03N/fH9nZ2cjKytK/Xn75Zf03qn379oWvry88PDxw5swZ/X7//e9/kZGRYbH7qa3Bku16Or619xLa2Biexra2ttDpdGbW2jp27dqFoUOH1jsPoD51nX+1am/DU6vVzSq/JYgI/vCHPyAlJQVnz56Fr6+vwfqlS5fi+vXrBp8dANi8eTOSkpKadKxn43Pv3j2MGjUKQ4cORVJSktG51FY19D6bW+bQoUNhZ2dn8JnVarUoKCho132RtTx8+BC5ublt6nNnTR0117WEu3fv4sGDBx323Gmo/++sfVFDcTGlzeR3qw5r2rmlS5dKenq65OXlyfXr12Xp0qWiUCjkH//4h4iITJ8+vd5vqEz9+sO6devE1dVVjhw5ItevX5eoqCjx9fWVR48etWRTzFZaWiqZmZn6KzObNm2SzMxMuXPnjog0rl1jxoyRDz74QP93Q/GtqqoSjUYjI0aMkIyMDMnJyZH3339fFAqFnDhxonUD0ICG4iPy5FeLHBwcZNu2bSbLaGp8cnJyZM2aNXLlyhXJy8uTI0eOSL9+/WTkyJEt29gmmjt3rri4uEhaWpoUFhbqX+Xl5XXuAxPf9Pn5+cmhQ4dE5Mk3N8uWLZPLly9Lfn6+XLlyRX73u9+JUqnUX+G6e/euaDQaCQsLk7t37xocuy1p6H0uLCyUzMxMSUxMFABy/vx5yczMlAcPHujLaOq5IyIyZ84c8fb2lrNnz8qVK1ckJCREQkJCWq/h7dgf//hHSUtLk7y8PLl06ZKEh4eLm5ub3L9/39pVazWWyAkdUX1xKS0tlUWLFsnly5clLy9PTp8+LUFBQTJgwACpqKiwdtVbRGP6/87YFzUUl7ac3zmwMMPrr78uPj4+Ym9vL7169ZKwsDCDxBwaGipxcXF17m9qYKHT6eTtt9+W3r17i1KplLCwMNFqtS3UAsupvQ3j2Vdt+xvTLh8fH1m5cqX+74biKyLy9ddfS3R0tLi7u4uDg4MEBgYa/fxsW9BQfEREduzYISqVSoqLi02W0dT4FBQUyMiRI6VHjx6iVCpFo9HIW2+9JSUlJS3VzGYxFRcAkpSUVO8+zw4snt7n0aNHMmnSJPH09BR7e3tRq9Xy8ssvy7/+9S/99klJSXUeuy1p6H1euXJlg/Frzmfr0aNH8uabb0r37t3FwcFBJk2a1OYGXW3VlClTRK1Wi729vfTp00emTJkiOTk51q5Wq7JETuiI6otLeXm5jB07Vnr16iV2dnbi4+Mjs2bNkqKiImtXu8U0pv/vjH1RQ3Fpy/ldISJiscsfRERERETUKbWPG4qJiIiIiKhN48CCiIiIiIjMxoEFERERERGZjQMLIiIiIiIyGwcWRERERERkNg4siIiIiIjIbBxYEBERERGR2TiwICIiIiIis3FgQdRMM2bMwMSJE/V/jxo1CvPnz2/1eqSlpUGhUKC4uLjFjpGfnw+FQoGsrKwWOwYRUXvDPEBkiAML6lBmzJgBhUIBhUIBe3t7aDQarFmzBo8fP27xYx86dAh/+tOfGrVtayQBIqLOiHmAyHq6WLsCRJYWERGBpKQkVFZW4vPPP0d8fDzs7OywbNkyo22rqqpgb29vkeP26NHDIuUQEZF5mAeIrINXLKjDUSqV8PDwgI+PD+bOnYvw8HAcPXoUwP8uW7/77rvw9PSEn58fAOCbb75BTEwMXF1d0aNHD0RFRSE/P19fZk1NDRYuXAhXV1f07NkTixcvhogYHPfZS+CVlZVYsmQJ+vbtC6VSCY1Gg127diE/Px+jR48GAHTv3h0KhQIzZswAAOh0Oqxduxa+vr5QqVQYMmQIPvvsM4PjfP755xg4cCBUKhVGjx5tUE9Tpk6diilTphgsq66uhpubG/bs2QMAOHnyJIYPH65v34QJE5Cbm1tnmcnJyXB1dTVYdvjwYSgUCoNlR44cQVBQELp27Yp+/fph9erV+m8NRQSrVq2Ct7c3lEolPD09MW/evHrbQkTUGMwDhpgHqLVwYEEdnkqlQlVVlf7vM2fOQKvVIjU1FcePH0d1dTXGjRsHJycnXLhwAZcuXUK3bt0QERGh32/jxo1ITk7G7t27cfHiRfz4449ISUmp97ixsbHYt28ftm7dilu3bmHHjh3o1q0b+vbti4MHDwIAtFotCgsL8ec//xkAsHbtWuzZswfbt2/HzZs3sWDBAvz2t79Feno6gCeJLzo6GpGRkcjKysIbb7yBpUuX1luPadOm4dixY3j48KF+2alTp1BeXo5JkyYBAMrKyrBw4UJcuXIFZ86cgY2NDSZNmgSdTtfEaP/PhQsXEBsbi4SEBHz11VfYsWMHkpOT8e677wIADh48iM2bN2PHjh24ffs2Dh8+jICAgGYfj4ioLswDzAPUSoSoA4mLi5OoqCgREdHpdJKamipKpVIWLVqkX9+7d2+prKzU7/Pxxx+Ln5+f6HQ6/bLKykpRqVRy6tQpERFRq9Wyfv16/frq6mrx8vLSH0tEJDQ0VBISEkRERKvVCgBJTU01Wc9z584JAPnpp5/0yyoqKsTBwUH++c9/Gmw7c+ZMee2110REZNmyZTJo0CCD9UuWLDEq62nV1dXi5uYme/bs0S977bXXZMqUKSa3FxH5/vvvBYBkZ2eLiEheXp4AkMzMTBERSUpKEhcXF4N9UlJS5OkuJSwsTN577z2DbT7++GNRq9UiIrJx40YZOHCgVFVV1VkPIqKmYh4wxjxArYVzLKjDOX78OLp164bq6mrodDpMnToVq1at0q8PCAgwuJ/22rVryMnJgZOTk0E5FRUVyM3NRUlJCQoLCxEcHKxf16VLF7zwwgtGl8FrZWVlwdbWFqGhoY2ud05ODsrLy/Hiiy8aLK+qqsLPf/5zAMCtW7cM6gEAISEh9ZbbpUsXxMTEYO/evZg+fTrKyspw5MgR7N+/X7/N7du3sWLFCmRkZOCHH37Qf0NVUFCAwYMHN7oNT7t27RouXbqk/2YKeHIrQUVFBcrLyzF58mRs2bIF/fr1Q0REBF566SVERkaiSxd2S0RkHuYBQ8wD1Fr4zlGHM3r0aGzbtg329vbw9PQ06qAcHR0N/n748CGGDh2KvXv3GpXVq1evZtVBpVI1eZ/aS9QnTpxAnz59DNYplcpm1aPWtGnTEBoaivv37yM1NRUqlQoRERH69ZGRkfDx8UFiYiI8PT2h0+kwePBgg1sHnmZjY2OUTKurq43as3r1akRHRxvt37VrV/Tt2xdarRanT59Gamoq3nzzTWzYsAHp6emws7Mzq71E1LkxDxhjHqDWwIEFdTiOjo7QaDSN3j4oKAgHDhyAu7s7nJ2dTW6jVquRkZGBkSNHAgAeP36Mq1evIigoyOT2AQEB0Ol0SE9PR3h4uNH62m/Kampq9MsGDRoEpVKJgoKCOr/hev755/UTEGt9+eWXDbZx2LBh6Nu3Lw4cOIAvvvgCkydP1nfaDx48gFarRWJiIkaMGAEAuHjxYr3l9erVC6WlpSgrK9Mn6Gd/2zwoKAharbbe90KlUiEyMhKRkZGIj4+Hv78/srOz64wrEVFjMA8YYx6g1sCBBXV606ZNw4YNGxAVFYU1a9bAy8sLd+7cwaFDh7B48WJ4eXkhISEB69atw4ABA+Dv749NmzbV+9vjzz33HOLi4vD6669j69atGDJkCO7cuYP79+8jJiYGPj4+UCgUOH78OF566SWoVCo4OTlh0aJFWLBgAXQ6HYYPH46SkhJcunQJzs7OiIuLw5w5c7Bx40a89dZbeOONN3D16lUkJyc3qp1Tp07F9u3b8fXXX+PcuXP65d27d0fPnj2xc+dOqNVqFBQUNDgRMDg4GA4ODli+fDnmzZuHjIwMo3qsWLECEyZMgLe3N37zm9/AxsYG165dw40bN/DOO+8gOTkZNTU1+rL+9re/QaVSwcfHp1HtISKyFOYB5gGyEOtO8SCyrKcn7TVlfWFhocTGxoqbm5solUrp16+fzJo1S0pKSkTkycS3hIQEcXZ2FldXV1m4cKHExsbWOWlPROTRo0eyYMECUavVYm9vLxqNRnbv3q1fv2bNGvHw8BCFQiFxcXEi8mSi4ZYtW8TPz0/s7OykV69eMm7cOElPT9fvd+zYMdFoNKJUKmXEiBGye/fueift1frqq68EgPj4+BhMUBQRSU1Nleeff16USqUEBgZKWlqaAJCUlBQRMZ60J/Jkkp5GoxGVSiUTJkyQnTt3yrNdysmTJ2XYsGGiUqnE2dlZfvnLX8rOnTv1+wcHB4uzs7M4OjrKr371Kzl9+nS9bSAiagjzQN2YB6ilKUTqmHVERERERETUSHyOBRERERERmY0DCyIiIiIiMhsHFkREREREZDYOLIiIiIiIyGwcWBARERERkdk4sCAiIiIiIrNxYEFERERERGbjwIKIiIiIiMzGgQUREREREZmNAwsiIiIiIjIbBxZERERERGQ2DiyIiIiIiMhs/wfLcoQjJFrkQQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Se puede observar este algoritmo predice los datos de mejor manera que la regresión lineal y polinomial, ya que el coeficiente de correlación es mayor (0.818) y el error absoluto medio es menor (1,50°C).\n",
"El valor del coeficiente de determinación sugiere una buena capacidad de predicción del modelo."
],
"metadata": {
"id": "-q7oP0dnlbyB"
}
},
{
"cell_type": "markdown",
"source": [
"**Predicción de las precipitaciones**"
],
"metadata": {
"id": "luRO63tKpzW2"
}
},
{
"cell_type": "markdown",
"source": [
"Se repite un procedimiento similar al realizado con la temperatura ambiente, pero ahora para predecir las precipitaciones."
],
"metadata": {
"id": "Gk8doOPUqbSO"
}
},
{
"cell_type": "code",
"source": [
"df=pd.read_csv(\"datos2022.csv\", sep=\",\")\n",
"df['fecha']= pd.to_datetime(df['fecha'])\n",
"y = df.pop('PP')\n",
"X=np.array(df.iloc[:,1:] )"
],
"metadata": {
"id": "xoK5bBiOqh-I"
},
"execution_count": 97,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Se dividen los datos en datos de entrenamiento y de validación, en este caso, se escoge un 70% y 30% respectivamente."
],
"metadata": {
"id": "kc5FjeqtqrJ3"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(\n",
" X, y, train_size = 0.7, test_size = 0.3, random_state = 5)"
],
"metadata": {
"id": "NBty5Dpkqu2r"
},
"execution_count": 98,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from sklearn.linear_model import LinearRegression\n",
"lm = LinearRegression()\n",
"lm.fit(X_train,y_train)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 75
},
"id": "72Je7l9bqxU-",
"outputId": "bd1fdd45-20f6-4bc7-b58f-433be5265842"
},
"execution_count": 100,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LinearRegression()"
],
"text/html": [
"
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()
"
]
},
"metadata": {},
"execution_count": 100
}
]
},
{
"cell_type": "code",
"source": [
"from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n",
"print(\"R^2:\", lm.score(X_train, y_train).round(2))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tKFQtuRRqzg0",
"outputId": "37540ae2-6fb9-4ba6-fef0-b6702a143cef"
},
"execution_count": 101,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.08\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"y_pred = lm.predict(X_test)\n",
"print(\"R^2:\", r2_score(y_test, y_pred).round(2))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "s5_x56Taq3vz",
"outputId": "70f5460f-50c7-4795-dbce-4275751dd936"
},
"execution_count": 103,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"R^2: 0.06\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"El coeficiente de determinación de 0.06 sugiere que el modelo de regresión no está explicando una proporción significativa de la variabilidad en los datos. Esto sugiere que el modelo no está capturando adecuadamente la relación entre las variables independientes y la variable dependiente.\n",
"\n",
"Es posible que el modelo seleccionado no sea el más apropiado para describir la relación en los datos. Es probable que existan otras variables relevantes que no están siendo consideradas en el modelo, como por ejemplo, la nubosidad.\n",
"Este y otros factores importantes que no se están teniendo en cuenta, afectan la capacidad del modelo para explicar la variabilidad."
],
"metadata": {
"id": "Yo952SnLrvdK"
}
},
{
"cell_type": "code",
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import PredictionErrorDisplay\n",
"\n",
"fig, axs = plt.subplots(ncols=2, figsize=(8, 4))\n",
"\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"actual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[0],\n",
" random_state=0,)\n",
"axs[0].set_title(\"Valores reales vs predichos\")\n",
"\n",
"PredictionErrorDisplay.from_predictions(\n",
" y_true = y_test,\n",
" y_pred = y_pred,\n",
" kind=\"residual_vs_predicted\",\n",
" subsample=500,\n",
" ax=axs[1],\n",
" random_state=0,)\n",
"axs[1].set_title(\"Valores residuales vs predichos \")\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 407
},
"id": "5HaCk977rBBh",
"outputId": "498530a8-0398-4f65-9250-7453cc5fe713"
},
"execution_count": 104,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyfklEQVR4nOzdd1wT9xsH8M9dFiBb9nDhQsVRENSquFGstmpdtVWxWutoVbRWraMucFVtq1WrdXS4rbY/q6h1762l1gUOVEBAhLAMSe77+wOJRmYgIQSe9+vFS3P53t2TS3KX576LY4wxEEIIIYQQQkgp8MYOgBBCCCGEEGL6KLEghBBCCCGElBolFoQQQgghhJBSo8SCEEIIIYQQUmqUWBBCCCGEEEJKjRILQgghhBBCSKlRYkEIIYQQQggpNUosCCGEEEIIIaVGiQUhhBBCCCGk1CixIHr34MEDcByHjRs3GjuUcqtdu3Zo166dscOocGrUqIGhQ4dqHh87dgwcx+HYsWM6bWfo0KGwtLTUb3CEmAA6fxdMl2MzdOhQ1KhRw6DxbNy4ERzH4cGDBwbdT2Xz9ddfg+M4rWVvXluKI/f6s3PnTj1GV/5RYlHJ9ezZExYWFkhLSyuwzKBBgyCVSvHs2bMyjIwQQkhh6PxNCClvKLGo5AYNGoSsrCzs3r073+czMzPxxx9/oGvXrqhatWoZR0dI6bRt2xZZWVlo27atsUMhRO/o/F22qlevjqysLHz00UfGDoWUsdu3b2Pt2rXGDsMkUGJRyfXs2RNWVlbYvHlzvs//8ccfyMjIwKBBg8o4slcyMjKMtu/MzEyj7bsyMdR7zPM8zMzMwPN0qiMVD52/C6fv8zfHcTAzM4NIJNLrdol+vHjxAoIgGGTbMpkMEonEINuuaOhqW8mZm5ujd+/eOHz4MBISEvI8v3nzZlhZWaFnz55ITk7GpEmT4OPjA0tLS1hbW6Nbt264fv16sfZ15MgRtGnTBlWqVIGtrS3effdd3Lx5U6tMbtvG//77Dx988AHs7OzQunVrzfO//vorfH19YW5uDnt7ewwYMACPHj3S2sbdu3fRp08fuLi4wMzMDB4eHhgwYABSU1MLja9du3Zo1KgRLl++jLZt28LCwgLTpk0DACgUCsyaNQu1a9eGTCaDp6cnJk+eDIVCobWNDRs2oEOHDnBycoJMJkODBg2watWqYh2f4u7j0KFDaN26NWxtbWFpaYl69epp4ixIo0aN0L59+zzLBUGAu7s73n//fc2yrVu3wtfXF1ZWVrC2toaPjw++/fbbQref2/Z4yZIlWLZsGapXrw5zc3MEBgbi33//1Sqb238hOjoawcHBsLKy0vzwEQQBy5cvR8OGDWFmZgZnZ2eMHDkSz58/19oGYwzz5s2Dh4cHLCws0L59e9y4cSNPXAX1sTh//jyCg4NhZ2eHKlWqoHHjxvm+xidPnuC9996DpaUlHB0dMWnSJKjVaq0yGRkZmDhxIjw9PSGTyVCvXj0sWbIEjDGtciV53wgpDJ2/X9HH+buo72hBfSz27NmDRo0awczMDI0aNcq3Bqmgc1F+2/znn38wdOhQ1KpVC2ZmZnBxccGwYcOK3Zxt//79mvfKysoK3bt3z3N+jI+PR0hICDw8PCCTyeDq6op333230P4aS5YsAcdxePjwYZ7npk6dCqlUqjlX6+N9bNWqFczNzVGzZk2sXr1aq1zu8dy6dSumT58Od3d3WFhYQC6XA8g5x3ft2hU2NjawsLBAYGAgTp8+nWd/p06dQvPmzWFmZgYvLy+sWbMm37jy62ORkpKCCRMmoEaNGpDJZPDw8MDgwYORlJSkVU4QBMyfPx8eHh4wMzNDx44dERUVlWcfO3bs0Hw/HBwc8OGHH+LJkydaZUryvpU1sbEDIMY3aNAgbNq0Cdu3b8fYsWM1y5OTk3HgwAEMHDgQ5ubmuHHjBvbs2YO+ffuiZs2aePr0KdasWYPAwED8999/cHNzK3Aff//9N7p164ZatWrh66+/RlZWFr7//nu8/fbbuHLlSp5Obn379kWdOnUQFham+YE2f/58zJgxA/369cPw4cORmJiI77//Hm3btsXVq1dha2uL7OxsBAUFQaFQ4LPPPoOLiwuePHmCvXv3IiUlBTY2NoUei2fPnqFbt24YMGAAPvzwQzg7O0MQBPTs2ROnTp3CJ598Am9vb0RGRmLZsmW4c+cO9uzZo1l/1apVaNiwIXr27AmxWIz//e9/GD16NARBwJgxYwrcb3H3cePGDbzzzjto3Lgx5syZA5lMhqioqHxPmK/r378/vv76a8THx8PFxUWz/NSpU4iNjcWAAQMA5FxYBw4ciI4dO2LhwoUAgJs3b+L06dMYN25cofsAgJ9//hlpaWkYM2YMXrx4gW+//RYdOnRAZGQknJ2dNeVUKhWCgoLQunVrLFmyBBYWFgCAkSNHYuPGjQgJCcHnn3+O+/fvY8WKFbh69SpOnz6tuWM0c+ZMzJs3D8HBwQgODsaVK1fQpUsXZGdnFxnjoUOH8M4778DV1RXjxo2Di4sLbt68ib1792q9RrVajaCgIAQEBGDJkiX4+++/8c0338DLywujRo0CkJPg9OzZE0ePHsXHH3+Mpk2b4sCBA/jiiy/w5MkTLFu2rFTvGyFFofP3K6U5f5f0O3rw4EH06dMHDRo0QHh4OJ49e6b54VdShw4dwr179xASEgIXFxfcuHEDP/74I27cuIFz587l6Vj8ul9++QVDhgxBUFAQFi5ciMzMTKxatQqtW7fG1atXNe9Vnz59cOPGDXz22WeoUaMGEhIScOjQIcTExBTY6bxfv36YPHkytm/fji+++ELrue3bt6NLly6ws7Mr9fv4/PlzBAcHo1+/fhg4cCC2b9+OUaNGQSqVYtiwYVpl586dC6lUikmTJkGhUEAqleLIkSPo1q0bfH19MWvWLPA8r7npd/LkSfj7+wMAIiMj0aVLFzg6OuLrr7+GSqXCrFmztK5VBUlPT0ebNm1w8+ZNDBs2DG+99RaSkpLw559/4vHjx3BwcNCUXbBgAXiex6RJk5CamopFixZh0KBBOH/+vKZM7nWvefPmCA8Px9OnT/Htt9/i9OnTmu9HSd+3MsdIpadSqZirqytr2bKl1vLVq1czAOzAgQOMMcZevHjB1Gq1Vpn79+8zmUzG5syZo7UMANuwYYNmWdOmTZmTkxN79uyZZtn169cZz/Ns8ODBmmWzZs1iANjAgQO19vPgwQMmEonY/PnztZZHRkYysVisWX716lUGgO3YsUPn4xAYGMgAsNWrV2st/+WXXxjP8+zkyZNay3OPz+nTpzXLMjMz82w3KCiI1apVK8++AgMDdd7HsmXLGACWmJio02u7ffs2A8C+//57reWjR49mlpaWmrjHjRvHrK2tmUql0mn7ue+5ubk5e/z4sWb5+fPnGQA2YcIEzbIhQ4YwAGzKlCla2zh58iQDwH777Tet5REREVrLExISmFQqZd27d2eCIGjKTZs2jQFgQ4YM0Sw7evQoA8COHj3KGMv5rNesWZNVr16dPX/+XGs/r28rN8bXP9eMMdasWTPm6+urebxnzx4GgM2bN0+r3Pvvv884jmNRUVGMsZK/b4QUhc7fOUp7/i7Od7SgY+Pq6spSUlI0yw4ePMgAsOrVq2uWvXkuKmyb+V1HtmzZwgCwEydOaJZt2LCBAWD3799njDGWlpbGbG1t2YgRI7TWjY+PZzY2Nprlz58/ZwDY4sWLC3ytBWnZsqXWOZAxxi5cuMAAsJ9//pkxpp/38ZtvvtEsUygUms9gdnY2Y+zV8axVq5bW8RIEgdWpU4cFBQVpndMzMzNZzZo1WefOnTXL3nvvPWZmZsYePnyoWfbff/8xkUjE3vx5XL16da1ry8yZMxkA9vvvv+d5Dbn7zY3R29ubKRQKzfPffvstA8AiIyMZY4xlZ2czJycn1qhRI5aVlaUpt3fvXgaAzZw5kzFWuvetLFFTKAKRSIQBAwbg7NmzWtVpmzdvhrOzMzp27Aggp41hblt1tVqNZ8+eaaqLr1y5UuD24+LicO3aNQwdOhT29vaa5Y0bN0bnzp2xb9++POt8+umnWo9///13CIKAfv36ISkpSfPn4uKCOnXq4OjRowCguRNy4MCBErWvlclkCAkJ0Vq2Y8cOeHt7o379+lr77tChAwBo9g3kNE3IlZqaiqSkJAQGBuLevXuFVgEXdx+5dy3++OMPndqS1q1bF02bNsW2bds0y9RqNXbu3IkePXpo4ra1tUVGRgYOHTpU7G2/7r333oO7u7vmsb+/PwICAvJ9j3Pv+ufasWMHbGxs0LlzZ61j4OvrC0tLS80x+Pvvv5GdnY3PPvtM687d+PHji4zv6tWruH//PsaPH685lrnyuwv45uewTZs2uHfvnubxvn37IBKJ8Pnnn2uVmzhxIhhj2L9/P4CSv2+EFIXO36+U5vxdku9o7rEZMmSI1l34zp07o0GDBjrHn+v168iLFy+QlJSEFi1aAECh79WhQ4eQkpKCgQMHar1WkUiEgIAAzWs1NzeHVCrFsWPH8jQzLUr//v1x+fJlREdHa5Zt27YNMpkM7777LoDSv49isRgjR47UPJZKpRg5ciQSEhJw+fJlrbJDhgzROl7Xrl3D3bt38cEHH+DZs2eaY5CRkYGOHTvixIkTEAQBarUaBw4cwHvvvYdq1app1vf29kZQUFCRMe7atQtNmjRBr1698jz35rUkJCQEUqlU87hNmzYAoLmWXLp0CQkJCRg9ejTMzMw05bp374769evjr7/+AlC6960sUWJBAEDTxj23E+Djx49x8uRJDBgwQNNRTRAELFu2DHXq1IFMJoODgwMcHR3xzz//FPqjObc9Zr169fI85+3trfnSv65mzZpaj+/evQvGGOrUqQNHR0etv5s3b2raF9esWROhoaFYt24dHBwcEBQUhJUrVxbZrjOXu7u71gkgd983btzIs9+6desCgFbb5tOnT6NTp06adsiOjo6aNrqFxVDcffTv3x9vv/02hg8fDmdnZwwYMADbt28v1oWwf//+OH36tKbN5rFjx5CQkID+/ftryowePRp169ZFt27d4OHhgWHDhiEiIqI4hw4AUKdOnTzL6tatm6f9p1gsztNU4O7du0hNTYWTk1Oe45Cenq45Brmfpzf35ejoCDs7u0Ljy70YNmrUqMjXYmZmBkdHR61ldnZ2Wif0hw8fws3NDVZWVlrlvL29tWItzftGSFHo/J2jNOfvknxHCzoXAfkfr+JKTk7GuHHj4OzsDHNzczg6OmqOaVHXEQDo0KFDntd78OBBzWuVyWRYuHAh9u/fD2dnZ7Rt2xaLFi1CfHx8kbH17dsXPM9rblIxxrBjxw5069YN1tbWAEr/Prq5uaFKlSpay3LfrzevJfl91oCchOPNY7Bu3TooFAqkpqYiMTERWVlZJX7voqOji3UdAaCVuADQXKdyryWFfcfq16+veb4071tZoj4WBADg6+uL+vXrY8uWLZg2bRq2bNkCxpjWaCJhYWGYMWMGhg0bhrlz58Le3h48z2P8+PF6/4H0+h0IIOeiyHEc9u/fn++IHK9PZvbNN99g6NCh+OOPP3Dw4EF8/vnnCA8Px7lz54ps9/rmfnP37ePjg6VLl+a7jqenJ4CcE03Hjh1Rv359LF26FJ6enpBKpdi3bx+WLVtW6DEq7j7Mzc1x4sQJHD16FH/99RciIiKwbds2dOjQAQcPHix0tJL+/ftj6tSp2LFjB8aPH4/t27fDxsYGXbt21ZRxcnLCtWvXcODAAezfvx/79+/Hhg0bMHjwYGzatKnAbevq9bunuQRBgJOTE3777bd813nzR76h6XPkl9K8b4QUhc7f+e83d9+GPrcWR0H9It4cDALI6ctw5swZfPHFF2jatCksLS0hCAK6du1a5HUEyOln8Xpfulxi8auffOPHj0ePHj2wZ88eHDhwADNmzEB4eDiOHDmCZs2aFbgPNzc3tGnTBtu3b8e0adNw7tw5xMTEaPrk5SrN+6iL/D5rALB48WI0bdo033UsLS3zdNw3pII+O+yNAT6Ko6TvW5kyYjMsUs7MnTuXAWDXr19nTZs2ZXXq1NF6vkmTJqx9+/Z51nN3d9fqL/Bmm9HY2FgGgE2ePDnPul27dmUODg6ax7ltdN9s57po0SIGgN2+fVvn13X69GkGgH311VeFlgsMDGQNGzbMszw4OJi5u7trtdfMT24b3dfbazL2qu1/bjvY3H29fsyKu4/8zJ8/nwFghw4dKrKsv78/a9GiBVMqlczBwUGrzWh+1Go1GzlyJAPA7t69W2C53Pf8zbbVjDEWEBDA6tWrp3k8ZMgQVqVKlTzlRo8ezUQiUb7ti1+3efNmBoBFRERoLU9ISCiyj8XFixcZALZs2bJC91FQjLmfz1yffPIJE4lETC6Xa5U7d+5cvn1aXqfL+0ZIUej8Xbrzd37e/I4WdGze7C/GGGMNGjTQ6mNx/fp1BoDt3r1bq9zhw4e1tpmcnMwAsNmzZ2uVu3PnDgPAZs2apVn2Zh+L7du3a/Wr0cWdO3eYhYUFGzRoUJFlf/jhBwaA3bp1i40bN45ZWFiw9PT0QtfR5X0Ui8V5trdq1SoGgJ09e5Yx9urc/mY/jtz+HmvWrCl0PyqVipmbm7MBAwbkeS44OLjIPhYNGzZkTZo0KXQfBcX45ufozJkzDAD74Ycf8mzD29s7T5+W1+nyvpUVagpFNHLvbs2cORPXrl3LM/a5SCTKk2Hv2LEjz3Bob3J1dUXTpk2xadMmpKSkaJb/+++/OHjwIIKDg4uMrXfv3hCJRJg9e3aeGBhjmmH45HI5VCqV1vM+Pj7geb7Edyj69euHJ0+e5Ds5TlZWlqYZQO5didfjS01NxYYNG/S2j+Tk5DzP596VKc7r69+/P86dO4f169cjKSlJqxkUgDzDGfI8j8aNGxd7+3v27NH6PFy4cAHnz59Ht27dily3X79+UKvVmDt3bp7nVCqV5rPTqVMnSCQSfP/991rHevny5UXu46233kLNmjWxfPlyrc8iULK7R8HBwVCr1VixYoXW8mXLloHjOM3rLu37RkhR6PydP0OeW18/Nq838zl06BD+++8/rbLVq1eHSCTCiRMntJb/8MMPWo/zu44AxTu/BQUFwdraGmFhYVAqlXmeT0xMBJAzv8eLFy+0nvPy8oKVlVWxjnOfPn0gEomwZcsW7NixA++8845W06XSvo8qlUpr2Nfs7GysWbMGjo6O8PX1LXRdX19feHl5YcmSJUhPT8/zfO4xEIlECAoKwp49exATE6N5/ubNmzhw4ECRMfbp0wfXr1/Pd2hhXa8lfn5+cHJywurVq7WOz/79+3Hz5k10794dQOnft7JCTaGIRs2aNdGqVSv88ccfAJDnwvTOO+9gzpw5CAkJQatWrRAZGYnffvsNtWrVKnLbixcvRrdu3dCyZUt8/PHHmuEKbWxs8PXXXxe5vpeXF+bNm4epU6fiwYMHeO+992BlZYX79+9j9+7d+OSTTzBp0iQcOXIEY8eORd++fVG3bl2oVCr88ssvEIlE6NOnT4mOy0cffYTt27fj008/xdGjR/H2229DrVbj1q1b2L59Ow4cOAA/Pz906dIFUqkUPXr0wMiRI5Geno61a9fCyckJcXFxetnHnDlzcOLECXTv3h3Vq1dHQkICfvjhB3h4eGiNF1+Qfv36YdKkSZg0aRLs7e3RqVMnreeHDx+O5ORkdOjQAR4eHnj48CG+//57NG3aVNNvoDC1a9dG69atMWrUKCgUCixfvhxVq1bF5MmTi1w3MDAQI0eORHh4OK5du4YuXbpAIpHg7t272LFjB7799lu8//77mvkkwsPD8c477yA4OBhXr17F/v37tYb4yw/P81i1ahV69OiBpk2bIiQkBK6urrh16xZu3LhRrAvK63r06IH27dvjq6++woMHD9CkSRMcPHgQf/zxB8aPHw8vLy8AKPX7RkhR6PydP0OfW8PDw9G9e3e0bt0aw4YNQ3JyMr7//ns0bNhQ64etjY0N+vbti++//x4cx8HLywt79+7NM/+ItbW1pu28UqmEu7s7Dh48iPv37xf5Wq2trbFq1Sp89NFHeOuttzBgwAA4OjoiJiYGf/31F95++22sWLECd+7cQceOHdGvXz80aNAAYrEYu3fvxtOnTzVDjxfGyckJ7du3x9KlS5GWlpbnBlVp30c3NzcsXLgQDx48QN26dbFt2zZcu3YNP/74Y5GT1PE8j3Xr1qFbt25o2LAhQkJC4O7ujidPnuDo0aOwtrbG//73PwDA7NmzERERgTZt2mD06NFQqVSa9+6ff/4pdD9ffPEFdu7cib59+2LYsGHw9fVFcnIy/vzzT6xevRpNmjQp8nXmkkgkWLhwIUJCQhAYGIiBAwdqhputUaMGJkyYAAClft/KjJFqSkg5tXLlSgaA+fv753nuxYsXbOLEiczV1ZWZm5uzt99+m509ezZPs578hs9jjLG///6bvf3228zc3JxZW1uzHj16sP/++0+rTEFV6bl27drFWrduzapUqcKqVKnC6tevz8aMGaOpYr937x4bNmwY8/LyYmZmZsze3p61b9+e/f3330W+9oKq0hnLGQ5u4cKFrGHDhkwmkzE7Ozvm6+vLZs+ezVJTUzXl/vzzT9a4cWNmZmbGatSowRYuXMjWr19fZFOo4u7j8OHD7N1332Vubm5MKpUyNzc3NnDgQHbnzp0iX1+ut99+mwFgw4cPz/Pczp07WZcuXZiTkxOTSqWsWrVqbOTIkSwuLq7Qbea+54sXL2bffPMN8/T0ZDKZjLVp04Zdv35dq2xBzYxy/fjjj8zX15eZm5szKysr5uPjwyZPnsxiY2M1ZdRqNZs9e7bms9iuXTv277//5qmuLmiIx1OnTrHOnTszKysrVqVKFda4cWOtZkvFbQrFWM4QjxMmTGBubm5MIpGwOnXqsMWLF2s1vdDH+0ZIUej8XfLzd3G+owUdm127djFvb28mk8lYgwYN2O+//86GDBmi1RSKMcYSExNZnz59mIWFBbOzs2MjR45k//77b55tPn78mPXq1YvZ2toyGxsb1rdvX02zq8KaQuU6evQoCwoKYjY2NszMzIx5eXmxoUOHskuXLjHGGEtKSmJjxoxh9evXZ1WqVGE2NjYsICCAbd++vcjjnGvt2rUMALOystIaIpUx/byPly5dYi1btmRmZmasevXqbMWKFXleIwoZ0vbq1ausd+/erGrVqkwmk7Hq1auzfv36scOHD2uVO378OPP19WVSqZTVqlWLrV69Ot/z/JvXFsYYe/bsGRs7dixzd3dnUqmUeXh4sCFDhrCkpKRCYyzoc7Rt2zbWrFkzJpPJmL29PRs0aJDW8O36eN/KAsdYCer/CSHkNQ8ePEDNmjWxePFiTJo0ydjhEEIIMUHt2rVDUlIS/v33X2OHQkqI+lgQQgghhBBCSo0SC0IIIYQQQkipUWJBCCGEEEIIKTXqY0EIIYQQQggpNaqxIIQQQgghhJQaJRaEEEIIIYSQUqMJ8sqAIAiIjY2FlZUVOI4zdjiEEFIsjDGkpaXBzc0NPE/3ofSBrgeEEFOjy7WAEosyEBsbC09PT2OHQQghJfLo0SN4eHgYO4wKga4HhBBTVZxrASUWZcDKygpAzhtibW1t5GgIIaR45HI5PD09NecwUnp0PSCEmBpdrgWUWJSB3Opua2trupAQQkwONdnRH7oeEEJMVXGuBdRolhBCCCGEEFJqlFgQQgghhBBCSo0SC0IIIYQQQkipUWJBCCGEEEIIKTVKLAghhBBCCCGlRokFIYQQQgghpNRouFlCCCGEECMTBIYbsXIkZ2bD3kKKhm7W4Hka6pmYFkosCCGEEEKM6ExUElYdj0Z0QjqUagaJiIOXkyVGBXqhVW0HY4dHSLGZXFOolStXokaNGjAzM0NAQAAuXLhQaPnly5ejXr16MDc3h6enJyZMmIAXL15onj9x4gR69OgBNzc3cByHPXv25LudmzdvomfPnrCxsUGVKlXQvHlzxMTE6POlEUIIKWO6XlNSUlIwZswYuLq6QiaToW7duti3b18ZRUsqojNRSZi2OxI34+SoIhPDyUqGKjIxbsalYdruSJyJSjJ2iIQUm0klFtu2bUNoaChmzZqFK1euoEmTJggKCkJCQkK+5Tdv3owpU6Zg1qxZuHnzJn766Sds27YN06ZN05TJyMhAkyZNsHLlygL3Gx0djdatW6N+/fo4duwY/vnnH8yYMQNmZmZ6f42EEELKhq7XlOzsbHTu3BkPHjzAzp07cfv2baxduxbu7u5lHDmpKASBYdXxaKQrVHCxNoOZRASe52AmEcHFWoZ0hRqrjkdDEJixQyWkWDjGmMl8WgMCAtC8eXOsWLECACAIAjw9PfHZZ59hypQpecqPHTsWN2/exOHDhzXLJk6ciPPnz+PUqVN5ynMch927d+O9997TWj5gwABIJBL88ssvJYpbLpfDxsYGqampsLa2LtE2CCGkrFX0c5eu15TVq1dj8eLFuHXrFiQSSYn2WdGPKdFN5ONUjPzlEqrIxDCTiPI8n6VUI1OhwpqP/ODjYWOECAnR7bxlMjUW2dnZuHz5Mjp16qRZxvM8OnXqhLNnz+a7TqtWrXD58mVN1fa9e/ewb98+BAcHF3u/giDgr7/+Qt26dREUFAQnJycEBAQU2GQKABQKBeRyudYfIQURBIbIx6k4ficRkY9T6c4U0Su5XF7gObIyK8k15c8//0TLli0xZswYODs7o1GjRggLC4NarS6rsEkFk5yZDaWaQSrK/+eYTMRDKTAkZ2aXcWSElIzJdN5OSkqCWq2Gs7Oz1nJnZ2fcunUr33U++OADJCUloXXr1mCMQaVS4dNPP9VqClWUhIQEpKenY8GCBZg3bx4WLlyIiIgI9O7dG0ePHkVgYGCedcLDwzF79mzdXiCplKjDHjGktLQ0TJ8+HQ8ePMDEiRPzPV9VViW5pty7dw9HjhzBoEGDsG/fPkRFRWH06NFQKpWYNWtWvusoFAooFArNY7rRRF5nbyGFRMQhWy3AjM9bY6FQC5DwHOwtpEaIjhDdmUyNRUkcO3YMYWFh+OGHH3DlyhX8/vvv+OuvvzB37txib0MQBADAu+++iwkTJqBp06aYMmUK3nnnHaxevTrfdaZOnYrU1FTN36NHj/TyekjFQh32iKFJpVLY2NjAxsYGXl5exg7H5AmCACcnJ/z444/w9fVF//798dVXXxV4LQBybjTlvgc2Njbw9PQsw4hJedfQzRpeTpZ4nqnEmy3TGWNIyVTCy8kSDd2o2RwxDSZTY+Hg4ACRSISnT59qLX/69ClcXFzyXWfGjBn46KOPMHz4cACAj48PMjIy8Mknn+Crr74CzxedVzk4OEAsFqNBgwZay729vfPtpwEAMpkMMpmsOC+LVFJvdtjjuJyxys14EVysecTLFVh1PBotalWlccxJiclkMkyfPh3JyclwdXU1djjlSkmuKa6urpBIJBCJXt1Z9vb2Rnx8PLKzsyGV5r2rPHXqVISGhmoey+VySi6IBs9zGBXohWm7IxEvV8DWQgKZiIdCLSAlUwlLmQijAr3oOkBMhsnUWEilUvj6+mp1xBYEAYcPH0bLli3zXSczMzNP8pB7QShun3WpVIrmzZvj9u3bWsvv3LmD6tWr6/ISCNG4EStHdEI67CykmqQiF8dxsLWQIDohHTdiqdkE0Y1cLsfevXs15ziZTEZJRT5Kck15++23ERUVpanJBnKuBa6urvkmFUDO8be2ttb6I+R1rWo7IKyXD7xdrZCpUCEhXYFMhQrerlYI6+VDzWKJSTGZGgsACA0NxZAhQ+Dn5wd/f38sX74cGRkZCAkJAQAMHjwY7u7uCA8PBwD06NEDS5cuRbNmzRAQEICoqCjMmDEDPXr00CQY6enpiIqK0uzj/v37uHbtGuzt7VGtWjUAwBdffIH+/fujbdu2aN++PSIiIvC///0Px44dK9sDQCqM4nTYS6UOe0RHcrkc06dPx/379/HixQu8//77xg6pXNP1mjJq1CisWLEC48aNw2effYa7d+8iLCwMn3/+uTFfBqkAWtV2QItaVWnmbWLyTCqx6N+/PxITEzFz5kzEx8ejadOmiIiI0HS+i4mJ0aqhmD59OjiOw/Tp0/HkyRM4OjqiR48emD9/vqbMpUuX0L59e83j3CrrIUOGYOPGjQCAXr16YfXq1QgPD8fnn3+OevXqYdeuXWjdunUZvGpSEVGHPaJvrycVtra2aNGihbFDKvd0vaZ4enriwIEDmDBhAho3bgx3d3eMGzcOX375pbFeAqlAeJ6jIWWJyTOpeSxMFY1bTt4kCAxDNlzAzbg0uFjLtJpDMcYQL1fA29UKm0L86Y4VKdKbSUV4eDg8PDz0sl06d+kXHVNCiKmpkPNYEFKR5HbYs5SJEC9XIEuphiAwZCnViJcrqMMeKTZDJRWEEEKIriixIMRIqMMeKS2VSoUZM2ZQUkEIIaRcMKk+FoRUNNRhj5SGWCzGO++8g19//RXz58+npIIQQohRUWJBiJFRhz1SGp07d0br1q1hbm5u7FAIIYRUctQUihBCTIhcLsfixYuRmpqqWUZJBSGEkPKAaiwIIcREvN5RWy6XY+7cucYOiRBCCNGgGgtCCDEBb47+NHLkSGOHRAghhGihxIIQQso5GlKWEEKIKaDEghBCyjFKKgghhJgKSiwIIaQc++677yipIIQQYhKo8zYhhJRjn3zyCVJSUjB+/HhKKgghhJRrlFgQQkg5IwgCeD6nQtnJyQmLFy8Gx9GkiYQQQso3agpFCCHliFwux6RJk3Du3DnNMkoqCCGEmAJKLAghpJzI7ah99+5drFmzBtnZ2cYOiRBCCCk2agpFCCHlwJujP82ZMwdSqdTYYRFSIQgCw41YOZIzs2FvIUVDN2vwPNUEEqJvlFgQQoiRvZlUhIWFwdPT09hhEVIhnIlKwqrj0YhOSIdSzSARcfByssSoQC+0qu1g7PAIqVCoKRQhhBgRJRWEGM6ZqCRM2x2Jm3FyVJGJ4WQlQxWZGDfj0jBtdyTORCUZO0RCKhRKLAghxIgiIiIoqSDEAASBYdXxaKQrVHCxNoOZRASe52AmEcHFWoZ0hRqrjkdDEJixQyWkwqCmUIQQYkR9+/ZFZmYmOnbsSEkFIXp0I1aO6IR02FlI84ysxnEcbC0kiE5Ix41YOXw8bIwUJSEVCyUWhBBSxtLT02Fubg6RSASO4zB06FBjh0RIhZOcmQ2lmkEqyr9xhkzEI1VgSM6k0dcI0RdqCkUIIWVILpdj2rRpWLJkCdRqtbHDIaTCsreQQiLikK0W8n1eoRYg4TnYW9Doa4ToCyUWhBBSRl7vqP3vv//i2bNnxg6JkAqroZs1vJws8TxTCca0+1EwxpCSqYSXkyUaulkbKUJCKh5KLAghpAy8OfpTeHg4nJycjB0WIRUWz3MYFegFS5kI8XIFspRqCAJDllKNeLkCljIRRgV60XwWhOgRJRaEEGJg+SUVHh4exg6LkAqvVW0HhPXygberFTIVKiSkK5CpUMHb1QphvXxoHgtC9Iw6bxNCiAFRUkGIcbWq7YAWtarSzNuElAFKLAghxIAePXqEJ0+eUFJBiBHxPEdDyhJSBiixIIQQA2rYsCFmzZoFe3t7SioIIYRUaJRYEEKInsnlcqSlpcHd3R0A0LhxYyNHRAghhBgedd4mhBA9yu1TMWXKFDx69MjY4RBCCCFlhhILQgjRk9c7ahNCCCGVDTWFIoQQPaDRn0rm/v37OHnyJB4+fIjMzEw4OjqiWbNmaNmyJczMzIwdHiGEEB1QjQUhhJQSJRW6++233+Dv7w8vLy98+eWX2LNnD06ePIl169aha9eucHZ2xujRo/Hw4UODxrFy5UrUqFEDZmZmCAgIwIULF4q13tatW8FxHN577z2DxkcIIaaEEgtCCCkFSip016xZM3z33XcYOnQoHj58iLi4OFy+fBmnTp3Cf//9B7lcjj/++AOCIMDPzw87duwwSBzbtm1DaGgoZs2ahStXrqBJkyYICgpCQkJCoes9ePAAkyZNQps2bQwSFyGEmCpKLAghpBREIhEkEgklFTpYsGABzp8/j9GjR8PT0zPP8zKZDO3atcPq1atx69Yt1KpVyyBxLF26FCNGjEBISAgaNGiA1atXw8LCAuvXry9wHbVajUGDBmH27NkGi4sQQkwV9bEghJBSqFKlCubMmYPU1FS4ubkZOxyTEBQUVOyyVatWRdWqVfUeQ3Z2Ni5fvoypU6dqlvE8j06dOuHs2bMFrjdnzhw4OTnh448/xsmTJ/UeFyGEmDJKLAghREdyuRwXL15Ex44dAeQkF1WqVDFyVKZDLpcXu6y1tbVBYkhKSoJarYazs7PWcmdnZ9y6dSvfdU6dOoWffvoJ165dK/Z+FAoFFAqF5rEur50QQkwNJRaEEKKD1/tUKBQKBAcHGzskk2NrawuO44pVVq1WGzia4klLS8NHH32EtWvXwsHBodjrhYeHY/bs2QaMjBBCyg9KLAghpJje7KhNM2qXzNGjRzX/f/DgAaZMmYKhQ4eiZcuWAICzZ89i06ZNCA8PN1gMDg4OEIlEePr0qdbyp0+fwsXFJU/56OhoPHjwAD169NAsEwQBACAWi3H79m14eXnlWW/q1KkIDQ3VPJbL5fn2KyGEkIqAEgtCCCkGGv1JfwIDAzX/nzNnDpYuXYqBAwdqlvXs2RM+Pj748ccfMWTIEIPEIJVK4evri8OHD2uGjBUEAYcPH8bYsWPzlK9fvz4iIyO1lk2fPh1paWn49ttvC0wWZDIZZDKZ3uMnhJDyiBILQggpAiUVhnP27FmsXr06z3I/Pz8MHz7coPsODQ3FkCFD4OfnB39/fyxfvhwZGRkICQkBAAwePBju7u4IDw+HmZkZGjVqpLW+ra0tAORZTgghlRUlFoQQUojs7GxKKgzI09MTa9euxaJFi7SWr1u3zuBNhvr374/ExETMnDkT8fHxaNq0KSIiIjQdumNiYsDzNCo7IYQUF8cYY8YOoqKTy+WwsbFBamqqwUY4IYQYzq5du/DHH38gLCysUiUVZXHu2rdvH/r06YPatWsjICAAAHDhwgXcvXsXu3btqnCd4+l6QAgxNbqctyixKAN0ISHE9KWlpcHKysrYYZSpsjp3PXr0CKtWrdIM8+rt7Y1PP/20QnZypusBIcTU6HLeoqZQhBDyBrlcjo0bN2L48OGwsLAAgEqXVJQlT09PhIWFGTsMQgghpUSNRwkh5DW5HbUPHTqEZcuWGTucSuHkyZP48MMP0apVKzx58gQA8Msvv+DUqVNGjowQQoguKLEghJCX3hz9afDgwcYOqcLbtWsXgoKCYG5ujitXrmhmqU5NTaVaDEIIMTGUWBBCCPImFWFhYRWyjX95M2/ePKxevRpr166FRCLRLH/77bdx5coVI0ZGCCFEV5RYEEIqPUoqjOf27dto27ZtnuU2NjZISUkp+4AIIYSUGCUWhJBKb8mSJZRUGImLiwuioqLyLD916hRq1aplhIgIIYSUFCUWhJBKb8SIEahZsyYlFUYwYsQIjBs3DufPnwfHcYiNjcVvv/2GSZMmYdSoUcYOz+gEgSHycSqO30lE5ONUCAKNEE8IKb9ouFlCSKXEGAPHcQByhjv99ttvNY9J2ZkyZQoEQUDHjh2RmZmJtm3bQiaTYdKkSfjss8+MHZ5RnYlKwqrj0YhOSIdSzSARcfByssSoQC+0qu1g7PAIISQPqrEghFQ6crkckydPxj///KNZRkmFcXAch6+++grJycn4999/ce7cOSQmJmLu3LnGDs2ozkQlYdruSNyMk6OKTAwnKxmqyMS4GZeGabsjcSYqydghEkJIHpRYEEIqldyO2rdu3cL3338PlUpl7JAqtWHDhiEtLQ1SqRQNGjSAv78/LC0tkZGRgWHDhhk7PKMQBIZVx6ORrlDBxdoMZhIReJ6DmUQEF2sZ0hVqrDoeTc2iCCHlDiUWhJBK483Rn2bNmgWxmFqEGtOmTZuQlZWVZ3lWVhZ+/vlnI0RkfDdi5YhOSIedhTRPTRrHcbC1kCA6IR03YuVGipAQQvJHV1RCSKXwZlIRHh4ODw8PY4dVacnlcjDGwBhDWloazMzMNM+p1Wrs27cPTk5ORozQeJIzs6FUM0hF+d/7k4l4pAoMyZnZZRwZIYQUjhILQkiFR0lF+WNrawuO48BxHOrWrZvneY7jMHv2bCNEZnz2FlJIRByy1QLMeFGe5xVqARKeg72F1AjREUJIwSixIIRUeLt376akopw5evQoGGPo0KEDdu3aBXt7e81zUqkU1atXh5ubmxEjNJ6GbtbwcrLEzbg0uFjzWs2hGGNIyVTC29UKDd2sAeT0ybgRK0dyZjbsLaRo6GYNnqfBCAghZc/kEouVK1di8eLFiI+PR5MmTfD999/D398/37IbN25ESEiI1jKZTIYXL15oHn/99dfYunUrHj16BKlUCl9fX8yfPx8BAQF5tqdQKBAQEIDr16/j6tWraNq0qV5fGyHEMAYNGoSMjAz07NmTkopyIjAwEABw//59VKtWjUbleg3PcxgV6IVpuyMRL1fA1kICmYiHQi0gJVMJS5kIowK9wPMcDUlLCClXTKrz9rZt2xAaGopZs2bhypUraNKkCYKCgpCQkFDgOtbW1oiLi9P8PXz4UOv5unXrYsWKFYiMjMSpU6dQo0YNdOnSBYmJiXm2NXny5Ep7B40QU5OZmQnGckbNEYvFGD16NCUV5dCRI0ewc+fOPMt37NiBTZs2GSGi8qFVbQeE9fKBt6sVMhUqJKQrkKlQwdvVCmG9fNCqtgMNSUsIKXc4lnvlNQEBAQFo3rw5VqxYAQAQBAGenp747LPPMGXKlDzlN27ciPHjxyMlJaXY+5DL5bCxscHff/+Njh07apbv378foaGh2LVrFxo2bKhTjUXuNlNTU2FtbV3sWAghJZPbp6JevXoYPXo03Q0vobI4d9WtWxdr1qxB+/bttZYfP34cn3zyCW7fvm2Q/RqLrse0oGZOgsAwZMMF3IyTw8XaLE9zqXi5At6uVtgU4k/NogghpaLLectkaiyys7Nx+fJldOrUSbOM53l06tQJZ8+eLXC99PR0VK9eHZ6ennj33Xdx48aNQvfx448/wsbGBk2aNNEsf/r0KUaMGIFffvkFFhYW+nlBhBCDeL2j9rlz55CcnGzskEghYmJiULNmzTzLq1evjpiYGCNEVL7wPAcfDxsE1nWEj4eNJkmgIWkJIeWRySQWSUlJUKvVcHZ21lru7OyM+Pj4fNepV68e1q9fjz/++AO//vorBEFAq1at8PjxY61ye/fuhaWlJczMzLBs2TIcOnQIDg45bVMZYxg6dCg+/fRT+Pn5FStWhUIBuVyu9UcIMbz8Rn+qWrWqscMihXByctKaAT3X9evX6b0rRHGGpFXSkLSEkDJmMolFSbRs2RKDBw9G06ZNERgYiN9//x2Ojo5Ys2aNVrn27dvj2rVrOHPmDLp27Yp+/fpp+m18//33SEtLw9SpU4u93/DwcNjY2Gj+PD099fq6CCF50ZCypmngwIH4/PPPcfToUajVaqjVahw5cgTjxo3DgAEDjB1eufX6kLT5oSFpCSHGYDKJhYODA0QiEZ4+faq1/OnTp3BxcSnWNiQSCZo1a4aoqCit5VWqVEHt2rXRokUL/PTTTxCLxfjpp58A5HQsPHv2LGQyGcRiMWrXrg0A8PPzw5AhQ/Ldz9SpU5Gamqr5e/Toka4vlxCiA0oqTNfcuXMREBCAjh07wtzcHObm5ujSpQs6dOiAsLAwY4dXbuUOSfs8U4k3u0rmDknr5WSpGZKWEELKgskMN5s7FOzhw4fx3nvvAcjpvH348GGMHTu2WNtQq9WIjIxEcHBwoeUEQYBCoQAAfPfdd5g3b57mudjYWAQFBWHbtm35DkkL5AxpK5PJihUTIaT07t69i5iYGEoqTJBUKsW2bdswd+5cXL9+Hebm5vDx8UH16tWNHVq5psuQtEBOJ/DIJ6m4FpMCxgHNPG3h425DHbsJIXplMokFAISGhmLIkCHw8/ODv78/li9fjoyMDM1cFYMHD4a7uzvCw8MBAHPmzEGLFi1Qu3ZtpKSkYPHixXj48CGGDx8OAMjIyMD8+fPRs2dPuLq6IikpCStXrsSTJ0/Qt29fAEC1atW0YrC0tAQAeHl50Y8XE0ATR71SkY+Fr68vpk6dCnd3d/pemqi6devmOwM3KVjukLS581ikCgwSnoO3q5XWPBZnopIQvv8m7jxNh1ItgAEQcxyqVbXA7J4N0bqOo3FfCCGkwjCpxKJ///5ITEzEzJkzER8fj6ZNmyIiIkLToTsmJgY8/6p11/PnzzFixAjEx8fDzs4Ovr6+OHPmDBo0aAAAEIlEuHXrFjZt2oSkpCRUrVoVzZs3x8mTJ9GwYUOjvEaiPzRx1CsV8VjI5XIoFAo4Oub8KCqoBpGUP6GhoZg7dy6qVKmC0NDQQssuXbq0jKIyTa1qO6BFraoF3jQ4E5WECduvITFNATAgt0eGkjFEJ2YgZONFTA6qhxFtvYz3IgghFYZJzWNhqmgei7KXO3FUukIFOwsppCIe2WoBz182EcidYKoyqIjHIrdPRWZmJsLCwuDk5GTskCokQ5272rdvj927d8PW1jbP/BWv4zgOR44c0dt+y4OyvB4IAsPg9Rdw/v4zqNUM+XfzBsQcsD6kOdrWpe8RISQvXc5bJlVjQUhxCALDquPRSFeotCaOMuNFcLHmES9XYNXxaLSoVbXCNAUqSEU8Fm921M7OpuE0Tc3Ro0fz/T/RrxuxctyOTwNjDIXdQVQxYOQvl7F2sB81iyKElIrJjApFSHHRxFGvVLRjQaM/EVJ8yZnZyFYLEBgKTSwAIEsp4Iud/+BMVFKZxEYIqZioxoJUOMWZOCq1kkwcVZGOBSUVFUfv3r2LXfb33383YCQVm/3Lpo/FbfAsf6E0uRpMQkj5QjUWpMKhiaNeqSjHgpKKiuX1CUStra1x+PBhXLp0SfP85cuXcfjwYdjY2BgxStPX0M0a9VysUNwcwUIiMqkaTEJI+UM1FqTCyZ046mZcGlysea0mQLkTR3m7WlWKiaMqyrEQBAEqlYqSigpiw4YNmv9/+eWX6NevH1avXg2RSAQgZ86h0aNH02AXpcTzHEa388J/cXIkZxReK8kBsDQTI12hNokaTFJyFXnocWJ8VGNBKpzciaMsZSLEyxXIUqohCAxZSjXi5Yo8E0dVZBXlWNja2iIsLAwLFiygpKKCWb9+PSZNmqRJKoCcocBDQ0Oxfv16g+9/5cqVqFGjBszMzBAQEIALFy4UWHbt2rVo06YN7OzsYGdnh06dOhVavjxoVdsB3w1oCjNJ4Zd7MwkPEc+ZRA0mKbkzUUkYsuECRv5yCZO2X8fIXy5hyIYL1LeG6A0lFqRCyp04ytvVCpkKFRLSFchUqODtamWSw6uWhqkei7S0NJw5c0bz2NbWFu7u7kaMiBiCSqXCrVu38iy/desWBKGgAVL1Y9u2bQgNDcWsWbNw5coVNGnSBEFBQUhISMi3/LFjxzBw4EAcPXoUZ8+ehaenJ7p06YInT54YNM7Sal3HEesG+8HWXJTnOQ6AmOfgbG2GlEwVvJws0dDNGtnZanz3911M3H4N3/19F9nZ6rIPnOhV7tDjN+PkqCITw8lKhioyMW7GpWHa7khKLohe0DwWZYDmsTAeqvJ9xZSORVpaGr766is8ePAAoaGhaNeunbFDqpTK4twVGhqKn3/+GdOmTYO/vz8A4Pz581iwYAE++ugjg06QFxAQgObNm2PFihUAcprceXp64rPPPsOUKVOKXF+tVsPOzg4rVqzA4MGDi7VPY14PzkQlIWzfTfwXJwdjAM8BZhIRbC2kUKgEzbw2f/0Ti22XHkMlvPp5IOY59PfzwPzejcs0ZqIfgsAwZMMF3IyTaw09DuQ0i42XK+DtaoVNIf7l9rpAjIfmsSDkJZ7n4ONBHUAB0zkWuUlFbkdtLy+aEbgiW7JkCVxcXPDNN98gLi4OAODq6oovvvgCEydONNh+s7OzcfnyZUydOlWzjOd5dOrUCWfPni3WNjIzM6FUKmFvb19gGYVCAYVCoXkslxuvY3Sr2g74c2xrbL4Qgy0XYpAgz4mLMQZvVyuMCvTCX//E4rcLj/KsqxIYfrvwCFEJcvw2vBXEYmrwYEp0GXrcFK4TpPyixIIQUm68mVSEhYXB09PT2GERA+J5HpMnT8bkyZM1P7rL4k5+UlIS1Go1nJ2dtZY7Ozvn2zQrP19++SXc3NzQqVOnAsuEh4dj9uzZpYpVn3iew4ctquMD/2p5ajBVKgGD1xfeZ+T8g1TUnbEfU7vVx4i2lPSbioo09Dgp3+iWAyGkXKCkovJSqVT4+++/sWXLFs3d1NjYWKSnpxs5soItWLAAW7duxe7du2FmZlZgualTpyI1NVXz9+hR3toAY8itwQys6wgfDxvwPIfVJ+5pNX8qiMCA+ftuYe2J6DKIlOhDRRl6nJR/VGNBCDG6Fy9eUFJRST18+BBdu3ZFTEwMFAoFOnfuDCsrKyxcuBAKhQKrV682yH4dHBwgEonw9OlTreVPnz6Fi4tLoesuWbIECxYswN9//43GjQvvcyCTySCTyUodb1l4mJyhU/mlh+7gI//qMDOjnxLlXUUZepyUf1RjQQgxOplMBl9fX0oqKqFx48bBz88Pz58/h7m5uWZ5r169cPjwYYPtVyqVwtfXV2sfgiDg8OHDaNmyZYHrLVq0CHPnzkVERAT8/PwMFp8xVLevolP5LKWAZmF/U82FCagoQ4+T8o9uMxBCjI7jOAwePBjvvvsubG1tjR0OKUMnT57EmTNnIJVqN8GoUaOGwYdxDQ0NxZAhQ+Dn5wd/f38sX74cGRkZCAkJAQAMHjwY7u7uCA8PBwAsXLgQM2fOxObNm1GjRg3Ex8cDACwtLWFpaWnQWMvCp21r4bsjd4vVHCpXVrYaCyNuAwD1uSjncoceX3U8GtEJ6UgVGCQ8p+m4X16HHiemhRILQohRyOVybN26FUOHDoVUmjNSCSUVlY8gCFCr886R8PjxY1hZWRl03/3790diYiJmzpyJ+Ph4NG3aFBEREZoO3TExMeD5VxX7q1atQnZ2Nt5//32t7cyaNQtff/21QWMtC1KpCP39PPIdFaogIi5nxKjvDkdhSIsakErzzpVByo9WtR3QolZVkxl6nJgemseiDNA8FoRok8vlmD59Ou7fv4/27dsjNDTU2CGRfJTFuat///6wsbHBjz/+CCsrK/zzzz9wdHTEu+++i2rVqmHDhg0G2a+xmML14MvtV7DtSpzO67lYy7Do/cZoW9fJAFERQoxFl/MW9bEghJSp15MKW1tb9OvXz9ghESNasmQJTp8+jQYNGuDFixf44IMPNM2gFi5caOzwKqWF/d5CE3fdk554uQKD11/EgB/PQKUy7KzphJDySecai6ysLDDGYGFhASBnRI/du3ejQYMG6NKli0GCNHWmcIeKkLLwZlIRHh4ODw8PY4dFClBW5y6VSoVt27bh+vXrSE9Px1tvvYVBgwZpdeauKEzpetBr5SlcfZRaonV5DviiS12Mal9Hz1ERQsqaLuctnROLLl26oHfv3vj000+RkpKC+vXrQyKRICkpCUuXLsWoUaNKFXxFZEoXEkIMhZIK02Poc5dSqUT9+vWxd+9eeHt763375ZGpXQ8yM5UYt/0KDt1KKtH6jd2s8OfnbfUcFSGkLBm0KdSVK1fQpk0bAMDOnTvh7OyMhw8f4ueff8Z3331XsogJIRUaYwzh4eGUVBAtEokEL168MHYYpBAWFhKsHRqAr4LrQ1yCDr7/xKah4Yz9BoiMEFIe6ZxYZGZmakbqOHjwIHr37g2e59GiRQs8fPhQ7wESQkwfx3EICQnRDN1JSQXJNWbMGCxcuBAqlcrYoZBCjGjrhS+71oOVTPfBJDOUAnxm7oOgwzC2hBDTpHNTqMaNG2P48OHo1asXGjVqhIiICLRs2RKXL19G9+7dNeN6k1dMreqbEH1hjGnN8CoIgtbwnaR8K4tzV+5EeJaWlvDx8UGVKtqTtP3+++8G2a+xmPr1IDtbjbZLjiJertB5XTMR8OOQ5jRqFCEmxqBNoWbOnIlJkyahRo0a8Pf318xQevDgQTRr1qxkERNCKhy5XI6vvvoKd+/e1SyjpIK8ydbWFn369EFQUBDc3NxgY2Oj9UfKF6lUhEXvN0ZJZj14oQYGr7+Iab9f13tchJDyoUTzWMTHxyMuLg5NmjTR/FC4cOECrK2tUb9+fb0HaepM/Q4VIbp6vaO2h4cHVq5cSUmFCaJzl/5VlGM69fd/sEWHifTe1O8tdyzq11R/ARFCDMbg81i4uLjAysoKhw4dQlZWFgCgefPmlFQQQvKM/vTVV19RUkGKlJCQgJMnT+LkyZNISEgwdjikCOG9G2Ogv2eJ199+5Qne/f6EHiMihJQHOl/tnz17ho4dO6Ju3boIDg5GXFzO7Jwff/wxJk6cqPcACSGmg4aUJbqSy+X46KOP4O7ujsDAQAQGBsLd3R0ffvghUlNLNocCKRvhvRtjY4hfide//iQNPb47rseIcggCQ+TjVBy/k4jIx6nUaZyQMqRzYjFhwgRIJBLExMRoJskDgP79+yMiIkKvwRFCTAclFaQkRowYgfPnz2Pv3r1ISUlBSkoK9u7di0uXLmHkyJHGDo8UoV09Z/z6sX+J14+MTYffbP0NR3smKgmD11/AsI0X8fmWqxi28SIGr7+AM1Elm4eDEKIbnROLgwcPYuHChXl+MNSpU4eGmyWkEtu6dSslFURne/fuxfr16xEUFARra2tYW1sjKCgIa9euxf/+9z9jh0eKoXUdR2weHlCyttUAkrIEeE37q9RxnIlKwoTt13D+/jM8z1Qg/YUSzzMVOH//GSZsv0bJBSFlQOfzQEZGhlZNRa7k5GTIZDK9BEUIMT1Dhw5Fu3btKKkgOqlatWq+oz/Z2NjAzs7OCBGRkmhV2wFRYcFo6m5VovXVAuA15a8SN1sSBIbw/TeRmKaAIDCIeB4SMQ8Rz0MQGBLTFAjff5OaRRFiYDonFm3atMHPP/+secxxHARBwKJFi9C+fXu9BkcIKd9evHiB3IHlpFIpJk6cSEkF0cn06dMRGhqqNQdSfHw8vvjiC8yYMcOIkRFd8TyHPZ+1RRP3ko12pQZQa9o+nLije+f9yCepuPM0HRwAiZgHz3HgwIHnOEjEPDgAd56mI/IJ9dshxJB0nkJz0aJF6NixIy5duoTs7GxMnjwZN27cQHJyMk6fPm2IGAkh5VBunwo/Pz989NFHWhPhEVJcq1atQlRUFKpVq4Zq1aoBAGJiYiCTyZCYmIg1a9Zoyl65csVYYRId/PFZG4RsOI+jt0vW9Gjw+ovo3cQZSwcWv2P4tZgUKNUCxHxOQvE6DhxEPAelWsC1mBQ08bQtUVyEkKLpnFg0atQId+7cwYoVK2BlZYX09HT07t0bY8aMgaurqyFiJISUM6931H7+/DneffddmsyMlMh7771n7BCIAWwICcDB/2Lxyc9XS7T+79ef4n+Rf+FuWPdilWe5uURB9ze4N8oRQgxC58QCyGn7+tVXX+k7FkKICchv9CdKKkhJzZo1y9ghEAPp0sANA/2TSjyRnlIAakz5C1HzukEsLrzldjNPW4h5Hmq1AF7EtGpQGWNQqxnEPI9mVFtBiEHpnFicOFH4hDZt27YtcTCEkPKNhpQlhOgivHdj8AB+K8Us3bWn78ekznUwtmPdAsv4uNugnoslbsTKoRQEiPmcfhUMgEoQwADUc7GEj3vOTRBBYLgRK0dyZjbsLaRo6GYNnqfqDEJKi2O5PS+LKb8ZdF+/M6BWq0sfVQWjy1TohJRXlFRUPnTu0r/Kekyzs9WoO7N0c125WElx7qvOBT6fO9xsckY2Xv9lw3GAfRUplvVrila1HXAmKgmrjkcjOiEdSjWDRMTBy8kSowK90Kq2Q6liJKQi0uW8pfOoUM+fP9f6S0hIQEREBJo3b46DBw+WOGhCSPkWGRlJSQUhpESkUhEeLOgOcSkqBeLTstFoZsGT6bWq7YBl/ZoioKY9bC0kqCITw9ZCgoCa9lpJxbTdkbgZJ0cVmRhOVjJUkYlxMy4N03ZHmtxcFzTLOClvdK6xKMjx48cRGhqKy5cv62NzFUplvUNFKp6jR4+iTp06lFRUEnTu0j86pkDTr/cj5YVQ4vV9XK3wv3EFN7suqJmTIDAM2XABN+PkcLE2y9MPI16ugLerFTaF+JtEsyiqeSFlxaA1FgVxdnbG7du39bU5Qkg5IJfLkZr6atz39u3bU1JBDOb06dNQKBTGDoMY2LWvuyGwTsl/+EbGpWHZwf8KfJ7nOfh42CCwriN8PGw0ScKNWDmiE9JhZyHNMzw2x3GwtZAgOiEdN2LlJY6trFS0mhdScejcefuff/7ReswYQ1xcHBYsWICmTZvqKy5CiJHl9qkQBAHz58+nkZ+IwXXr1g3Xrl1DrVq1jB0KMbBNHwfgyK14DNtYslYO3x65jx+O38flqZ1gbSkr1jrJmdlQqhmkovzvqcpEPFIFhuTM7BLFVFYEgWHV8WikK1RaNS9mvAgu1jzi5QqsOh6NFrWqmkTNC6lYdE4smjZtCo7j8GYLqhYtWmD9+vV6C4wQYjxvdtROT0+nxIIYnJ5a5hIT0aG+CzYPD8AH686XaH2lGmg872+42ZjhzNSORZa3t5BCIuKQrRZgxovyPK9QC5DwHOwtpCWKp6zoUvPi40HnbVK2dE4s7t+/r/WY53k4OjrCzMxMb0ERQoznzaQiLCwM7u7uxg6LEFIBtartgHthwWg4Yx+ySjioZGzqC/jPi8CF6V0LLdfQzRpeTpa4GZcGF2s+Tx+LlEwlvF2tUM/JEruvPMGTlEy421qgR2PXIufR0FVphrutKDUvpGLSObGoXr26IeIghJQD+SUVnp6exg6LVBJr1qyBs7OzscMgZYznOdyc3x3+8yKQkF6y7CIhXY3gb49j37jAQvczKtAL03ZHIl6ugK2FBDIRD4VaQEqmEpYyEarZmcN/wWGkZSkhIKcj6uy9NzCmnRdGtPUq2Qt8Q2k7XVeUmhdSMRVrVKjvvvuu2Bv8/PPPSxVQRUSjgBBTQEkFeROdu/SPjmnhen5/Ev88KXnnaRkP3A7rXmgZrR/2AoOEz/lhX83OHNsuPYZaYBCLOPAcIDBApWYQ8Ry+7Fqv1MlFbqfrdIUKdhZSSEU8stUCnr9MbMJ6+RSZXLwa3SoNLtYykx/dipR/upy3ipVY1KxZs1g75jgO9+7dK16UlQhdSIgpSEhIwNSpU5GdnU1JBQFA5y5DoGNatC93Xse2S49LtY17YcGF/qh+sylSPSdL+C84jNRMJaRiDjz3qpmRwARkqxhsLCS4NK1TiZtF6XO421cJijrfmpfiJCiEFJfeEwtSOnQhIaYiISEBCoWCkgoCgM5dhkDHtHhO3EnA55svl2q+i18/9kfrOo7FKrv7yhNM2nENPM9BzOdNHLJVaggM6NbIBZ0buJSo30Xk41SM/OUSqsjEMJPkbcKUpVQjU6HCmo/8itXpuqCaF5rHguibLuctnftYEEIqDrlcjujoaDRr1gwA4OTkZOSICCEEaFvXCVdmdkWbhYfxJLVkc5t8+NMFTAmqj0/bF9186UlKJgQg35nBlWoB6pe3YPf/G48DN+JL1O9C352uW9V2QItaVUvcCZwQQyhRYvH48WP8+eefiImJQXa29hdg6dKlegmMEFKw0owokiu3T0VMTAymTZsGf39/A0VLCCG643kOp6d2gs+Mv5CmLNk2Fhy4hZuxSfh2UECh5dxtLcAjp0/F66dSpVqASnjVsEPE5zT7Ts1UYmFEzqTAxU0uDNHpOncyQELKC50Ti8OHD6Nnz56oVasWbt26hUaNGuHBgwdgjOGtt94yRIyEkNeUdkQRIG9HbTc3NwNHTcgrf/75Z7HL9uzZ04CRACtXrsTixYsRHx+PJk2a4Pvvvy80yd6xYwdmzJiBBw8eoE6dOli4cCGCg4MNGmNlFzm3OxpM/wuZqpKt/0dkEvZO/QvR4QV36u7R2BWz995AaqYSPCeA53gIgnZSAQBiEQ8OHHgup9/FymPRCGlVs1jNooo73G1DN2oiR0yXzn0s/P390a1bN8yePRtWVla4fv06nJycMGjQIHTt2hWjRo0yVKwmi9rUEn3Rx4gibyYV4eHh8PDwKKNXQEyJoc5dfD5t2PPDcRzU6hJOblAM27Ztw+DBg7F69WoEBARg+fLl2LFjB27fvp1vs8AzZ86gbdu2CA8PxzvvvIPNmzdj4cKFuHLlCho1alSsfdL1oOS8Z+xHlrLkfS4A4MGCgpOLtSeisTDitmZUKMYYVK/tTsxzkLzWjEklCBAEhiV9m6LXW8Wb64c6XRNTZNDO21ZWVrh27Rq8vLxgZ2eHU6dOoWHDhrh+/TreffddPHjwoDSxV0h0ISH6oI8RRSipILqo6OeugIAANG/eHCtWrAAACIIAT09PfPbZZ5gyZUqe8v3790dGRgb27t2rWdaiRQs0bdoUq1evLtY+S3pMX7x4UeBzPM9DKpUavKxCoShwdnSO4yCTyUpUNjs7G4JQcMLw+gS83b85hH/j0gssy4lfxcvUSiCfGG7P65Znu7kxrD95D6tP3EPaCyVer6wQS6SQikUvt6sCYwIEJkCpZvisYx0E1nZEclY27M2laFbTEaKXCYhSqcyTHJ+NTsLak/dwLyEDKl4MqYiHl5MlRrxdHf41bAt8bTLZq6FlVSoVVKqCq3CkUqkmgddnWYlEApFIpHNZtVoNpbLg9mxisRhisVjnsoIg5GmSr4+yjDEoFAX37dGlrEgkgkQi0XvZ0nyXdWXQzttVqlTRvDGurq6Ijo5Gw4YNAQBJSUklCJcQUhw3YuWITkiHnYVUK6kAci7UthYSRCek40asPN82txkZGZRUEPJSdnY2Ll++jKlTp2qW8TyPTp064ezZs/muc/bsWYSGhmotCwoKwp49ewrcj0Kh0PpxIJeXbI6Gvn37Fvicn58fZs2apXn84YcfFviDpFGjRggPD9c8/vjjjwuMqU6dOlr9JkePHo2EhIR8y3p6euKHH37QPJ4wYQIePXqUb1knJyf89NNPmsdTpkzB3bt38y1rbW2N3377TfO4cdIRJF++jOuPUvKU5UQSOPaapnmcenYHsuPzbtd+Tzg61HfG3r3/0yxbunQpTp8+DQCoxhieyhVITFMgIe0FOI6Dx/tfAcj5kfz80v+Q8eAaGMv58bdgnxjzBabpn9F59DyM69YErWo7YN26ddi3b1+eGBgDZAolpsxZCi9PdzR0s8bGjRuw+Ivd+R4HIKfZXrVq1QAA27dvx5YtWwosu3TpUtSpUwdATtPDDRs2FFg2LCwMPj4+AIADBw4UmiTPnDkTzZs3BwAcP34cy5cvL7Dsl19+idatWwPI+e4sXLiwwLLjx49Hx44dAQBXrlzBnDlzCiz76aefonv3nJqnGzduYNq0aQWWDQkJQe/evQEA0dHReb6/rxs4cCA++OADAMCjR48wZsyYAsv26tULw4YNAwAkJibi448/LrBscHCwpjWPXC7Hhx9+WGDZjh07Yvz48QByzh2Ffe/ffvttrRsgupwjDEnnxKJFixY4deoUvL29ERwcjIkTJyIyMhK///47WrRoYYgYCSEo/YgiFhYWqFOnDp4/f05JBSlXMjIycPz48XwHBDHUpKtJSUlQq9V5Zvp2dnbGrVu38l0nPj4+3/Lx8fEF7ic8PByzZ88ufcBEw8FShg71nXHk1tMSb+PIrac4ciseHeq75HmO4zi42JjB2VqGk3ezoVTn1E5onXlfJhUAkK0SIBXzkHAcBMZw52k6pu2ORFgvnwL3z3GAtZkErbwc4OREna9JxaFzU6h79+4hPT0djRs3RkZGBiZOnIgzZ85o7mxUr17dULGarIrenICUDX2Mgc4Yw7Nnz+DgQG14SdHK4tx19epVBAcHIzMzExkZGbC3t0dSUhIsLCzg5ORksElXY2Nj4e7ujjNnzqBly5aa5ZMnT8bx48dx/vz5POtIpVJs2rQJAwcO1Cz74YcfMHv2bDx9mv+P3PxqLDw9PakpVAmbQr1Ztt70/drbLkZTqNfLNvWwwZ6xrQuMYf3Je1hy6A4ETgyJmAfPAWqVCkpVTvMmCymPGlWraNUicyIJnqZlw9vVCus+bAbGCn5tujRvoqZQectSU6gK0BSqVq1amv9XqVKl2O1KCSGlU5IRReRyOfbs2YNBgwZBJBKB4zhKKki5MmHCBPTo0QOrV6+GjY0Nzp07B4lEgg8//BDjxo0z2H4dHBwgEonyJARPnz6Fi0veu9gA4OLiolN5IOfH4Os/okvq9R/Xxiqry+vQpawuP3jeLPtwSS94Tf1LM8/E6ziRpMjtXXucivaLD+PoFx3zfX505waQyGRYeSwaaVlKqAFwnAjWVWTgOMDZ2gzifG705DZNvZOYVezhYF//sVrRyopEIk2Soc+yPM8X+zOsS1mO40yqLKDbd9mQdJ6Xfvjw4Th27JgBQiGEFIbnOYwK9IKlTIR4uQJZSjUEgSFLqUa8XAFLmQijAr00HbdzO2rv2LEDP/74o5GjJyR/165dw8SJE8HzPEQikWbm90WLFhXadrq0pFIpfH19cfjwYc0yQRBw+PBhrRqM17Vs2VKrPAAcOnSowPKkbESHd0cDJ4sSr3//2Qu0CT9Y4PMj2nrh0rROWNK3KUI718WSvk3x7YCmkIlFBTZNlYo4ZGarsO1SDDadfoDrj1IgCDo1ECHEJOlcY5GYmIiuXbvC0dERAwYMwIcffogmTZoYIjZCyBta1XZAWC8fzTwWqQKDhOfg7WqlNY/Fm6M/9ejRw8iRE5I/iUSiaYbh5OSEmJgYeHt7w8bGpsDOv/oSGhqKIUOGwM/PD/7+/li+fDkyMjIQEhICABg8eDDc3d01nZ3HjRuHwMBAfPPNN+jevTu2bt2KS5cuUeJeDuwLbY+VR+9g8YH8O4EX5VGqErWn/oWoAua6EIt5rSFlIx+nFjjZXbpChSfPs5CtFvDb+RhwACQiHnWdLTG1mzcNJ0sqNJ0Tiz/++APPnz/Hjh07sHnzZixduhT169fHoEGD8MEHH6BGjRoGCJMQkqtVbQe0qFW1wJm3aUhZYkqaNWuGixcvok6dOggMDMTMmTORlJSEX375pdhzQ5RU//79kZiYiJkzZyI+Ph5NmzZFRESEpoN2TEyM1pwbrVq1wubNmzF9+nRMmzYNderUwZ49ewweJymeMe3rwsfdFoPXXyzR+ioG1JjyF+6FBRc4ZHeugpqmpitUiHmWoWmaJXm5HZVawI1YOSZsv4Zl/ZpSckEqLJ07b7/p8ePH2LJlC9avX4+7d+8W2pGnsqLO26SsUFJB9Kkszl2XLl1CWloa2rdvj4SEBAwePFgzIMj69esrXI04XQ8M70xUEj5Yl7fzvS5+CfFHm3qORe7n9cnupCIO9xIz8OLlrHoSEQfxy8SUgUGpEsDzHAJqVsXPwwqeb4iQ8kaX85bOfSxep1QqcenSJZw/fx4PHjzIMwyfIaxcuRI1atSAmZkZAgICcOHChQLLrl27Fm3atIGdnR3s7OzQqVOnPOWHDh0KjuO0/rp27apVZv78+WjVqhUsLCxga2triJdFSKkxxjBnzhxKKohJ8fPzQ/v27QHkNIWKiIiAXC7H5cuXK1xSQcpGq9oOuBcWXKptfLThAr7YdrXI/YT18oG3qxUyFSrEpb5AtkoAB0D8WlIBABw4iEU8GGO4HZ+GG7Elm8+EkPKuRInF0aNHMWLECDg7O2Po0KGwtrbG3r178fjxY33Hp2Xbtm0IDQ3FrFmzcOXKFTRp0gRBQUEFTthz7NgxDBw4EEePHsXZs2fh6emJLl264MmTJ1rlunbtiri4OM3fm5POZGdno2/fvpoJTggpjziOw4cffghnZ2dKKgghlRrPc3iwoDusSj7CJnZcjUWz2RGFlmlV2wGbQvyx5iM/fNy6JsylIvA8BzGXtzaC43JGv81WCwXON0SIqdO5KZS7uzuSk5PRtWtXDBo0CD169NDLUHrFERAQgObNm2PFihUAckbw8PT0xGeffaY1+2BB1Go17OzssGLFCgwePBhATo1FSkpKoTOn5tq4cSPGjx+PlJQUneKmqm9SllQqVbGHACSkMGVx7qpZs2aemeRfZ6h5LIyFrgdlz3/eASSkl7yZtpkIuDU//07dr4t8nIqQjReQkqmEiOfAv/G5FhiDWhBgZyHD+qHNiz0MLSHGZtB5LL7++mv07du3zJsEZWdn4/Lly5g6dapmGc/z6NSpE86ePVusbWRmZkKpVMLe3l5r+bFjx+Dk5AQ7Ozt06NAB8+bNQ9WqVfUaPyGGIJfL8c0332D48OHw9PQEAEoqiEkZP3681mOlUomrV68iIiICX3zxhXGCIhXKhelBGPLTeRy/m1Si9V+oczp1P1hQeHLR0M0a9V2scP5+MlSCAAn/qlM3A4NKndPHop6L9nxDhFQkOv8CGTFihCHiKFJSUhLUanWefhzOzs64detWsbbx5Zdfws3NDZ06ddIs69q1K3r37o2aNWsiOjoa06ZNQ7du3XD27NliT9DypvxmWiVE317vqL1kyRIsX7680Du/hJRHBU2Ct3LlSly6dKmMoyEV1aaPA3D8VgKGbCzZiFFA0ckFz3MY3a427iZcQ2KaAkq1AJGIAxigFhgYgKpVpBjdzos6bpMKq1Sdt03JggULsHXrVuzevVtrdsIBAwagZ8+e8PHxwXvvvYe9e/fi4sWLpZoEMDw8HDY2Npq/3DvJhOjLm6M/ffHFF5RUkAqlW7du2LVrl7HDIBVIYH2nUnfqrjXlr0InumtV2wHL+jVFQzdriHgeKjWDSmAQi3g0dLPGUhpqllRwJtNmwsHBASKRCE+fPtVa/vTpU7i4uBS67pIlS7BgwQL8/fffaNy4caFla9WqBQcHB0RFRaFjx44linXq1KkIDQ3VPJbL5ZRcEL2hIWVJZbBz5848zVYJKa3cTt01pvxVovUFALWm7cPGED+0q5f/SJitajvgjzGtEfkkFVcfpYBjQNNqtvBxt6GaClLhmUxiIZVK4evri8OHD+O9994DkNN5+/Dhwxg7dmyB6y1atAjz58/HgQMH4OfnV+R+Hj9+jGfPnsHV1bXEscpksjLr0E4qF0oqSEXTrFkzrdo2xhji4+ORmJiIH374wYiRkYqsNMkFAAzdcAmBdR2waVhAvs/zPIcmnrZo4mlb4n0QYopMJrEAgNDQUAwZMgR+fn7w9/fH8uXLkZGRgZCQEADA4MGD4e7ujvDwcADAwoULMXPmTGzevBk1atRAfHw8AMDS0hKWlpZIT0/H7Nmz0adPH7i4uCA6OhqTJ09G7dq1ERQUpNlvTEwMkpOTERMTA7VajWvXrgEAateuDUtLy7I9CKRS27hxIyUVpEJ59913tRILnufh6OiIdu3aoX79+kaMjFR0DxZ0z2naVML1j99JQov5B3Huqy56jYsQU1as4Wb//PPPYm+wZ8+epQqoKCtWrMDixYsRHx+Ppk2b4rvvvkNAQM4dg3bt2qFGjRrYuHEjAKBGjRp4+PBhnm3MmjULX3/9NbKysvDee+/h6tWrSElJgZubG7p06YK5c+dqdRIfOnQoNm3alGc7R48eRbt27YqMmYYXJPqSkZGBZcuWYejQoZRUEIOjc5f+0TEtfxpN/wulGI0WlmLg33lFD0dLiKnS5bxVrMSC54vXx5vjOKjV6uJFWYnQhYSUhlKphEQiMXYYpBIqi3OXSCRCXFwcnJyctJY/e/YMTk5OFe6aQteD8qndoiN4kJxVqm3cCwumPhSkQtLlvFWsjEEQhGL9VbQLACHGJpfLMXHiROzevdvYoRBiEAXd21IoFJBKSzFtMiE6ODa5A9rVKd1oTbWm7cPJ24l6iogQ02RSfSwIMXWCwHAjVo7kzGzYW0jR0M26wDtcr3fUfv78OTp37kx9ekiF8d133wHIqelet26d1mdbrVbjxIkT1MeClKmNHwdgzbG7CI+4U+JtfLThAgY098CCPk30GBkhpqNEiUVGRgaOHz+OmJgYZGdnaz33+eef6yUwQiqaM1FJWHU8GtEJ6VCqGSQiDl5OlhgV6JVnXPM3R38KCwujpIJUKMuWLQOQU2OxevVqrQlJpVIpatSogdWrVxsrPFJJjWxXBx+39kLt6ftLvI2tFx8jJkGOzaPa6DEyQkxDsfpYvO7q1asIDg5GZmYmMjIyYG9vj6SkJFhYWMDJyQn37t0zVKwmi9rUkjNRSZi2OxLpChXsLKSQinhkqwU8z1TCUiZCWC8fTXKRX1JB86AQYyiLc1f79u3x+++/w87OziDbL2/oemA6SjMcLZDT1vxeITN1E2Iq9N7H4nUTJkxAjx498Pz5c5ibm+PcuXN4+PAhfH19sWTJkhIHTUhFJQgMq45HI12hgou1GcwkIvA8BzOJCC7WMqQr1Fh1PBqCwCipIJXO0aNHK01SQUzLg1ImBQJKn5wQYmp0TiyuXbuGiRMngud5iEQiKBQKeHp6YtGiRZg2bZohYiTEpN2IlSM6IR12FlKt8fqBnPblthYSRCek40asHBcuXKCkglQqffr0wcKFC/MsX7RoEfr27WuEiAh55cGC7nCwKN1ITw1n/AVB0KlxCCEmS+fEQiKRaIafdXJyQkxMDADAxsYGjx490m90hFQAyZnZUKoZpKL8v24yEQ+lwJCcmY1OnTrh008/paSCVBonTpxAcHBwnuXdunXDiRMnjBARIdouzQzGpE61S7x+hhJoNvcgzkQl6TEqQsonnROLZs2a4eLFiwCAwMBAzJw5E7/99hvGjx+PRo0a6T1AQkydvYUUEhGHbHX+87tmZKSDV72AvUXO0Jrdu3enpIJUGunp6fkOKyuRSCCXy40QESF5je1UD79+7F/i9VOzVBi8/jwlF6TC0zmxCAsLg6urKwBg/vz5sLOzw6hRo5CYmIgff/xR7wESYuoaulnDy8kSzzOVecbsz85Kx3//+xFpZ7agho2ogC0QUnH5+Phg27ZteZZv3boVDRo0MEJEhOSvdR1H3AvLW7tWXCoB+HDdebx4UYppvgkp53QebtbPz0/zfycnJ0REROg1IEIqGp7nMCrQC9N2RyJeroCthQQyEY+MjDT897+1UKfGo5qzJ9LS5LCyoiFlSeUyY8YM9O7dG9HR0ejQoQMA4PDhw9iyZQt27Nhh5OgI0cbzHB4s6I4ms/YhVaF7vwkBQP2vD9BcF6TC0rnGghCiu1a1HRDWywferlbIVKgQl5SM23vXQpqZiOZ1PbFuxVK4ubkZO0xCylyPHj2wZ88eREVFYfTo0Zg4cSIeP36Mv//+G++9956xwyMkX9dnB6ONV8lHM9t68THe/Z76EJGKR+d5LGrWrJlnZJvX0TwWedG45SSXIDCcv/0YS8LnICnuETydHbFgQTg8PDyMHRohedC5S//omFYsk3dcw/bLT0q8fm0HCxwMbQeeL93IU4QYki7nLZ2bQo0fP17rsVKpxNWrVxEREYEvvvhC180RUqmkp6dhy6rFyH4ej2oujggPp6SCEEJM1aK+TcHzHLZefFyi9aOSMlFv+j5sCPFH6zqOeo6OkLKnc2Ixbty4fJevXLkSly5dKnVAhFRkcrkcycnJsLW1paSCEABqtRrLli3D9u3bERMTg+zsbK3nk5OTjRQZIcWzoE8T1HSwxMKIWyjJdBVKAfjopwuY0q0+RgZ66T9AQsqQ3vpYdOvWDbt27dLX5gipkDw8PBAeHk5JBSEvzZ49G0uXLkX//v2RmpqK0NBQ9O7dGzzP4+uvvzZ2eIQUy8hAL9yZ2w1VLUo2uh8DEL7/Fr7/+7Z+AyOkjOktsdi5cyfs7e31tTlCKgy5XI6bN29qHnt6elJSQchLv/32G9auXYuJEydCLBZj4MCBWLduHWbOnIlz584ZOzxCik0s5nF5ZlfYW0hKvI1v/o5ChyVH9BgVIWVL56ZQzZo10+q8zRhDfHw8EhMT8cMPP+g1OEJMnVwux/Tp0/HkyRN8/fXX8PHxMXZIhJQr8fHxmu+FpaUlUlNTAQDvvPMOZsyYYczQCCmRKzO7YPC6MzgR9bxE699LykKHJUdxZFJ7PUdGiOHpnFi8++67WokFz/NwdHREu3btUL9+fb0GR4gpy00q7t+/D1tbW9jZlXxoQkIqKg8PD8TFxaFatWrw8vLCwYMH8dZbb+HixYuQyWTGDo+QEvl5eCv8cPguFh26U6L17yVlYsKWy1g20FfPkRFiWDonFtTmlZCivZlUUJ8KQvLXq1cvHD58GAEBAfjss8/w4Ycf4qeffkJMTAwmTJhg7PAIKbHRHetAJOYRvv9WidbffT0eR25F4PKMLhCLadoxYhp0nsdCJBIhLi4OTk5OWsufPXsGJycnqNVqvQZYEdC45ZULJRWkojDGuevcuXM4c+YM6tSpgx49epTJPssSXQ8qn1N3ExGy4QKUQsm3MaVrPXzarrb+giJEB7qct3ROgQvKQxQKBaRSqa6bI6RCSU9Pp6SCkFJo0aIFQkNDDZ5UJCcnY9CgQbC2toatrS0+/vhjpKenF1r+s88+Q7169WBubo5q1arh888/1/QJIaQgres44va8YHSq71DibSyIuI1hG87rMSpCDKPYTaG+++47AADHcVi3bh0sLS01z6nVapw4cYL6WJBKz8zMDK6urnj+/DklFYQU4Ny5c2jRokWxymZmZuL+/fto2LChXmMYNGgQ4uLicOjQISiVSoSEhOCTTz7B5s2b8y0fGxuL2NhYLFmyBA0aNMDDhw/x6aefIjY2Fjt37tRrbKTi4XkO64YGYMXh21hyKKpE2zhyOwmTd17Doveb6jc4QvSo2E2hatasCQB4+PAhPDw8IBK9GqtZKpWiRo0amDNnDgICAgwTqQmjqu/KRaVSITk5OU9zQUJMjaHOXXXq1EGtWrUwfPhwBAcHo0qVKnnK/Pfff/j111+xYcMGLFy4EIMHD9bb/m/evIkGDRrg4sWL8PPzAwBEREQgODgYjx8/hpubW7G2s2PHDnz44YfIyMiAWFy8+3R0PSDDNpzHkdtJJV6/31tuWNSvmR4jIqRwupy3il1jcf/+fQBA+/bt8fvvv9MIN4S8JJfLERERgb59+4LjOIjFYkoqCCnEf//9h1WrVmH69On44IMPULduXbi5ucHMzAzPnz/HrVu3kJ6ejl69euHgwYN6H6b57NmzsLW11SQVANCpUyfwPI/z58+jV69exdpO7kW2sKRCoVBAoVBoHsvl8pIHTiqE9SEB+HLndWy79LhE62+/Eos7CenYM7aNniMjpPR07mNx9OhRSioIeSm3o/Yvv/yCn3/+2djhEGISJBIJPv/8c9y+fRtnz57FiBEj0KhRI7i7u6Ndu3ZYs2YNYmNjsWXLFoPM/RIfH58n+ReLxbC3t0d8fHyxtpGUlIS5c+fik08+KbRceHg4bGxsNH+enp4ljptUHAvfb4IpXeuVeP1rj+UYuo4mkCTlj87Dzfbp0wf+/v748ssvtZYvWrQIFy9exI4dO/QWHCG6UKkE/O+fODxJyYS7rQV6NHbNM0SfIDDciJUjOTMb9hZSNHSzBs9zBa4PIN9tCgLD+duPsSR8DpLiHsHT2RHt23fA9UcpuPooBRwDmlazhY+7jWb7pqqwY1ZemEKMxlLej42fn59WzUFpTJkyBQsXLiy0zM2bN0u9H7lcju7du6NBgwZFDsE+depUhIaGaq1LyQUBgE/b1UYjdxsMWX8Bap3G58xxLOoZvtxxDQv7NtV7bISUlM7DzTo6OuLIkSN57iJFRkaiU6dOePr0qV4DrAioTa3hrT0RjZXHopGWpYSAnKo4K3MJxrTzwoi2XgCAM1FJWHU8GtEJ6VCqGSQiDl5OlhgV6IUbsal51pe8TEqUKkFrm90buSAqNgknNn+PrOR4SMwt0aTXp1Bb2OPJ8xdQCTljCkpEPOo6W2JqN2+0ql3y0UCMqbBjVl5ekynEaCylPTamdu5KTEzEs2fPCi1Tq1Yt/Prrr5g4cSKeP381M7JKpYKZmRl27NhRaFOotLQ0BAUFwcLCAnv37oWZmZlOMZraMSWGJwgMb4cdQly6skTrt6xlh1+GtaC5LojB6HLe0jmxMDc3x7Vr11CvnnYV3q1bt9CsWTNkZWXpHnEFRxcSw1p7IhoLI25DLTCIRRx4DhAYoFIziHgOX3ath4ZuNpi2OxLpChXsLKSQinhkqwU8z1RCLQhIzVKCMWjWV6oZhJffDJ4DJCIOAnu5XJGJjNO/gs9IhNTCCq6dhuEZswR7WVYs4gAGqAUGBsDRSoZl/Zqa3I/cM1FJBR4zS5kIYb18jP6aTCFGY9HHsamo567cztuXLl2Cr2/OzMYHDx5E165dC+28LZfLERQUBJlMhn379sHCwkLnfVfUY0pKb8hP53D8buGJcUHMxBwmdK6HkYFeeo6KEAPPY+Hj44Nt27blWb5161Y0aNBA180RUioqlYCVx6KhFhikYg5ingfP8RDzPKRiDmqBYeXRaKw8GoV0hQou1mYwk4jA8xzMJCI4W0mRkqmEwACJCBDzPMCgSSqAnP9zHAcRzwFMQMqp35CVHAephSXq9/gEWRIb5BZnDOA5DiKeh0TMgwOQnJGNH45FQxBKUNdtJILAsOp4dL7HzMVahnSFGquOG/c1mUKMxkLHpnDe3t7o2rUrRowYgQsXLuD06dMYO3YsBgwYoEkqnjx5gvr16+PChQsAci6sXbp0QUZGBn766SfI5XLEx8cjPj6eJoYlerHp4xYY6F+yZnIvVAzh+29h2u/X9RwVIbrRuY/FjBkz0Lt3b0RHR6NDhw4AgMOHD2PLli3Uv4KUuf/9E4e0LOXLmgbtPJnneIhFAuQvlLgRK4ejlQwcp922PPWFSpMUcC/Xz29yVLXAwHMcOI6HRb3WSL9+AG6dPgZXxQGKZ9qTajEGcBzAgYNYxEMtCLgdn4YbsXL4eNjo66Ub1I1YOaIT0mFnIc1zzDiOg62FBNEJ6UZ9TaYQo7HQsSnab7/9hrFjx6Jjx47geR59+vTRzNcEAEqlErdv30ZmZiYA4MqVKzh/PmeCstq1tWdAvn//PmrUqFFmsZOKK7x3Y8wKboCmcw/gRQny1c0XHsPDxgKjO9bRf3CEFIPOiUWPHj2wZ88ehIWFYefOnTA3N0fjxo3x999/IzAw0BAxElKgJymZEACIC+iLynOAigHZagFSUd4KOqX6VRrBGADu5b9vYAxgyPkz8/CGzLU2eEtLqARBq3aDvbYdICfBYC/3n5yZXbIXaQTJmdlQqlm+xwwAZCIeqQIz6msyhRiNxdSPTUpKCmxtbQ26D3t7+wInwwOAGjVq4PWWwu3atYOOLYcJKREzMzHWhwRgyPrzUOZ3p6sIiw7dQUxKJhb0aaL/4AgpQol6+nTv3h2nT59GRkYGkpKScOTIEQQGBuLff//Vd3yEFMrd1gI8tJsuvU54WXuQ2778TZLXfnhxnPa/mm0oMvH8zFaoM1Ny8wVwIgkkIv5l06tXZbk31mev7d/eQqrz6zMWewspJCIu32MGAAq1AAnPGfU1mUKMxmJKx2bhwoVazWv79euHqlWrwt3dHdevU7MOUjm1qu2ATcMCYGMmKrpwPrZefIwpu/T7/REEhsjHqTh+JxGRj1MrbVNKUrhSDyGQlpaGH3/8Ef7+/mjShLJjUrZ6NHaFlbkEKjWDwLR/RAlMgErNYG0mQUM3azzPVOa542hjJtYkC+zl+q9/KQRFJlJO/gJF7G08P7dLsz7PATYWYphJecjE2if+3MSCgUGlFsBxHOq5WKGhm+l01GzoZg0vJ8t8jxljDCmZSng5WRr1NZlCjMZiSsdm9erVmuFXDx06hEOHDmH//v3o1q0bvvjiCyNHR4jxtKrtgKszg9CpvmOJ1t968THWHLurl1jORCVhyIYLGPnLJUzafh0jf7mEIRsu4ExUyWcQJxVTiROLEydOYPDgwXB1dcWSJUvQoUMHnDtHk7WQsiUW8xjTzgsinkO2ir1smiRAJQjIVuWMCjWmvRfGtK8NS5kI8XIFspRqCAJDllKNp2nZsLWQvBwJCjlDxXI5iUNuUqFKiQcvqwJrvx6arMFcwkOhYmACYGshfVWTwQECY1ALApQqAQxA1SpSjG7nVa7mDigKz3MYFeiV7zGLlytgKRNhVKBxX5MpxGgspnRs4uPjNYnF3r170a9fP3Tp0gWTJ0/GxYsXjRwdIcbF8xzWDfXHB/4eJVp/8aE7OHU3sVQx5I4wdzNOjioyMZysZKgiE+NmXBqm7Y6k5IJo0SmxiI+Px4IFC1CnTh307dsXNjY2UCgU2LNnDxYsWIDmzZsbKk5CCjSirRe+7FoPNhYSCALLGRJWYLCxkODLrvUwom3OmP1hvXzg7WqFTIUKCekKZCpU8Ha1wsoP3sLUbvW11meKTKSd/hWC/ClEZpawbTsYIksH2FpIMMjfE29Vt9dshzGGRu7WqOlgATHPQ6VmUAkMYhGPhm7WWGqCQ80CKPSYlZdhXE0hRmMxlWNjZ2eHR48eAQAiIiLQqVMnADk1KzTaEiE5wno3wcYQvwL7ExZEpQZm/nED1x+llKjpEo0wR3RV7HksevTogRMnTqB79+4YNGgQunbtCpFIBIlEguvXr9NQs4WgccvLhr5m3o56koBjv30PLj0BNja2aDdoHBRmtnlm3n5zOwAQ+SSVZt42AlOI0VhKc2zK4tw1duxY7N27F3Xq1MHVq1fx4MEDWFpaYuvWrVi0aBGuXLlikP0aC10PSGmcupuIYRsvIFuHnJsD4GApQ31XK50nDo18nIqRv1xCFZkYZpK8/T2ylGpkKlRY85FfpR1hrjLQ5bxV7FGh9u/fj88//xyjRo1CnTo0jBkpf8RiHr3eci+0DM9zBZ78ctdffHgz+IxE2NrZISwsTNNMozjbaeJpiyaetiWKv7wq7JiVF6YQo7GU92OzbNky1KhRA48ePcKiRYtgaWkJAIiLi8Po0aONHB0h5UvrOo5YP9QfwzZeRLa6eLUE3MtJXnObLulSY2nqI8yRslfsxOLUqVP46aef4OvrC29vb3z00UcYMGCAIWMjxChGjBiB1NRUjBw5Mt+kghCiPxKJBJMmTcqzfMKECUaIhpDyLye5aI5Pfr6MTGXhVRccB4g4DhZSMewkHJ6kvMD8fTcR1sunWDXqr48wZ8bnrbEoTyPMkfKh2E2hcmVkZGDbtm1Yv349Lly4ALVajaVLl2LYsGGwsrIyVJwmjaq+yz+VSgWxWOdpXQip0Ax17vrzzz+LXbZnz5562295QNcDoi9nopIQuv0a4uWKfJ/PGf6cg4VUBEcrKRLTsvFCqYLAAPsqUni7WhfZNEoQGIZsuICbcWlwsdaeZJYxhni5At6uVtgU4k/NTyswXc5bOicWr7t9+zZ++ukn/PLLL0hJSUHnzp11umBUFnQhKd/kcjlmzJiBd955B507dzZ2OISUG4Y6d/F88cYN4TiuwnXgpusB0SdBYJjzv3/x8/kYCG9MW8NzHMQ8B/sqUiRnZENgDDwHqAXAxlwMAYCNuQThRTSNyh0VKl2hhq2FBDIRD4VaQEqmEpYyUbkaDIIYhi7nrVLNY1GvXj0sWrQIjx8/xpYtW0qzKUKMQi6XY/r06bh37x5+/fVXvHjxwtghEVLhCYJQrL+KllQQom88z+Hrd33wc4g/mnrawtpMDI4DxBxgIRXB3c4M6QrVy6SCg1LNoGYMqVlKpL9QIjYlC+H7bxY6qpOpjDBHyodS1ViQ4qE7VOVTblJx//592NraIjw8HB4eJRsrnJCKiM5d+kfHlBiKIDBEPknFtN2ReJKSBXdbMyiUDA+TMwAAypedvTkAUjEHgINKLQAch9k9G+LDFtWL3D6Nvlc5GWRUKEIqEkoqCCk/MjIycPz4ccTExCA7W3t0mc8//9xIURFiWnieQxNPW3wV7I1puyPxVJ4NqYiDIDDkVkhwACQiHvzLvhJiEYdsNcPWCzH4wL9aoYlCeR9hjpQPlFiQSoeSCkLKj6tXryI4OBiZmZnIyMiAvb09kpKSYGFhAScnJ0osCNFRbtOlVcejcSsuDQwAw6ukQqSVPHAQcUC8/AVuxMopcSClVqo+FoSYouPHj1NSQUg5MWHCBPTo0QPPnz+Hubk5zp07h4cPH8LX1xdLliwxdniEmKRWtR2wKcQf64b4wdPOAgAgEUErqWCMQSUwyF5OJEtzURB9oBoLUum88847yMrKQqtWrSipIMTIrl27hjVr1oDneYhEIigUCtSqVQuLFi3CkCFD0Lt3b2OHSIhJym0aNaJtLcz68wbUAgPHMXDIqcFQCQwijoONhQRgoLkoiF5QjQWpFNLS0jRttzmOQ79+/SipIKQckEgkmuFnnZycEBMTAwCwsbHBo0ePjBkaIRXCB/7V0MDVCjzPQXhZSyEwBnMJDzdbM2SrGLycLNHQjQYTIKVHiQWp8ORyOb766ivMmzcvT8dQQohxNWvWDBcvXgQABAYGYubMmfjtt98wfvx4NGrUyMjREWL6eJ7D1G7ecLMxQxWpGI5WMnjaWcDZ2gzpCjUsZSKMCvSiEZ6IXlBiQSq01ztq379/H8nJycYOiRDymrCwMLi6ugIA5s+fDzs7O4waNQqJiYn48ccfjRwdIRVDq9oOCO/dGD4eNuAApClUyMpW01wURO+ojwWpsPIb/cnFxcXYYRFCXuPn56f5v5OTEyIiIowYDSEVV6vaDmhRqyrNRUEMihKLcqo4E9EUt8w/j1Lw179xeJScCXOJCD4eNvCtbg8fdxut8iqVgD+ux+JaTAp4To1TUcmQv1DB2cYMX3ari+iELHAMaOJhAzUY9v0Ti4sPnkOhVENgAhLkCijUDDxjMJOIIAAQ8xyUQs7oEwqVGoqXE+lyACzEOZP0pL5gEN54/RwAGzMR6jlXwf3ENCRk6jaPo6DIRMrJX6BKiQdvZgnbtu+j9YrrAK7rtB1dmYkAiZiHIDBIRBxEHA81E8BzHEQ8D5lEBHMx8DxTCfkLNTiOg5hnkIlFkIo4vFDljNpRy9ECUjGPqIRMmEmAOk7WcLSUIUulBmMML7LVSEzPBsdzsJKJUduhCtyqVoFvNTs0dLXGzfg0JGdmw9ZcAgB4npGN55lK2FaRwKGKzCgXk9zPa2LaC/z7RA7wgKetBXo0doVYXHjlKU3MRAghpUdzURBDo5m3y4CuM62eiUrCquPRiE5Ih1Kd8wPVy8kSowK9NNWVxS3z1Z5IPEjKxJtvsojn0MDVClO7eaNVbQesPRGNbw/fRXruL/8CcBxQ3j8xeZOKIRBbV45qXp4DLKQiyMQiqASGF0p1zuRIYADLuahYm4nRwM1G67NiaLmf1+uPUpD2QqX5PPIcYG0uwZh2XhjR1qvQdQv7rBPDKItZomvWrAmOKzhJvHfvnkH2ayw08zYhxNToct6ixKIM6PKGnIlKwrTdkUhXqGBnIYVUxCNbLeB5phKWMhHCevkAQLHKjNl8Bc8zlQXuiwPgZC1Dp/pO2HrxEdQV5JOgTIlHyvFN4ETiSpVUvI7nct5fxqCpDRLxuc9xMJeIYV9FUiZta3M/04lpL5CR/WbdVA4xz+HLrvXyJBfF+T5QcmE4ZfEj+Ntvv9V6rFQqcfXqVUREROCLL77AlClTDLJfY6HEghBianQ5b1FTqHJEEBhWHY9GukIFF2szzV08M14EF2se8XIFfjgWBYArokw0BEFASiFJBZAzjnVyRja2XnpcYZIKAJDYusC2zYfgxLJKmVQAgMByEgsud8By5CQZEp6DigFqQUDaCxVWHY9Gi1pVDdasKPcznfZCiSzlq6QiN67c2WDVAsPKY9EIaVVT0yyqON8HQ8dPDG/cuHH5Ll+5ciUuXbpUxtEQQggpDRoVqhy5EStHdEI67CykeZoGcBwHWwsJbsWn4XZ8WqFlbsen4Z9YeZ7mT/lRqhnUgulnFYIiE8qUeM1jib17pU0qcjG8SjCAl03YOA5inkO2WoC5VITohHTciJUbLIbcz7SY55H7MdN8bLlXsYl4IC1Lif/9E5dn3cI+64aOnxhPt27dsGvXLmOHQQghRAeUWJQjyZnZUKoZpKL83xaZiIdSzZCtFgotk60WoFTl3+SkIsrtU5FyfBOUyU+MHU758/I3OUNOcpHbRErEcVAKDMmZhpvbI/czLRTS4jKn1oIDA/AkJTPPuoV+HwwcPzGenTt3wt7e3thhEEII0QE1hSpH7C2kkIhy7iab8aI8zyvUAiQiDhwKLyMV8VAzBkUlSC7e7KjNiWXGDqn8ya0pwMvO9y//VTMGCc/B3kJqsF3nfqbVhXwUc1pFMXAA3G0t8qxb6PfBwPETw2vWrJlWjRRjDPHx8UhMTMQPP/xgxMgIIYToihKLcqShmzW8nCxxMy4NLtZ8nottSqYS9V2sAHC4FV94GUEQcPZecpHNoSQiDgKDSTaHqsyjPxVHbiKh1QSJMagYYCbmkZWtRgM3azR0M1wH0tzP9H+xqeBfxsJYfn0sABsLCXo0ds2zbmHfB29XK4PGTwzvvffe03rM8zwcHR3Rrl071K9f3zhBEUIIKRGTaQqVnJyMQYMGwdraGra2tvj444+Rnp5e6DovXrzAmDFjULVqVVhaWqJPnz54+vSp5vlnz56ha9eucHNzg0wmg6enJ8aOHQu5/FWb7d9//x2dO3eGo6MjrK2t0bJlSxw4cMAgr5HnOYwK9IKlTIR4uQJZL4cKzVKqES9XwFImwuh2tTG6XVFlvDC2Qx3YWkgK3R8HoGoVKQb4eUBkYn1fKakoHM/l/L2eWXIcoGIMPAeIeB5WZmKMCvQyaMfn3M+0lZkE5pJXpxvGXoXGkDP88Zh2XlrzWRTn+2Do+InhzZo1S+tvxowZ+PTTTympIIQQE2Qyw81269YNcXFxWLNmDZRKJUJCQtC8eXNs3ry5wHVGjRqFv/76Cxs3boSNjQ3Gjh0Lnudx+vRpAMDz58+xdetWNG/eHI6OjoiKisKYMWPw1ltvabY7fvx4uLm5oX379rC1tcWGDRuwZMkSnD9/Hs2aNStW7KWax0LIaa5S6DwWhZSpiPNYUFJRsAo/j0UBn3ViGIYaGvX1mzdFqWhDstJws4QQU1Ph5rG4efMmGjRogIsXL8LPzw8AEBERgeDgYDx+/Bhubm551klNTYWjoyM2b96M999/HwBw69YteHt74+zZs2jRokW++/ruu++wePFiPHr0qMB4GjZsiP79+2PmzJnFir8kFxKaebvgmbeZWonU01uhkieUu6SCZt4uGM28bXoM9SOY5/lCJ8V7nVpd+M0OU0OJBSHE1FS4eSzOnj0LW1tbTVIBAJ06dQLP8zh//jx69eqVZ53Lly9DqVSiU6dOmmX169dHtWrVCkwsYmNj8fvvvyMwMLDAWARBQFpaWqGjlSgUCigUCs1jXe7O5eJ5Dj4eNnop07S6HZpWtytyn2Ixjz6+Hujj65Hv821qaz/2rW68EVuys4Px7NkzuLq6Fl24Eirqc2EMrz6vNujg7VzCdUlFcPToUc3/Hzx4gClTpmDo0KFo2bIlgJxz/qZNmxAeHm6wGJKTk/HZZ5/hf//7H3ieR58+ffDtt9/C0tKyyHUZYwgODkZERAR2796dp58IIYRUViaRWMTHx8PJyUlrmVgshr29PeLj4wtcRyqVwtbWVmu5s7NznnUGDhyIP/74A1lZWejRowfWrVtXYCxLlixBeno6+vXrV2CZ8PBwzJ49u4hXRXQhl8tx4sQJdO/eHRzHQSqVUlJBiIl6/ebNnDlzsHTpUgwcOFCzrGfPnvDx8cGPP/6IIUOGGCSGQYMGIS4uDocOHdI0r/3kk08KbV6ba/ny5cWucSGEkMrEqJ23p0yZAo7jCv27deuWweNYtmwZrly5gj/++APR0dEIDQ3Nt9zmzZsxe/ZsbN++PU+i87qpU6ciNTVV81dYsypSNLlcjunTp2PNmjXYuXOnscMhhOjR2bNntWqjc/n5+eHChQsG2efNmzcRERGBdevWISAgAK1bt8b333+PrVu3IjY2ttB1r127hm+++Qbr1683SGyEEGLKjFpjMXHiRAwdOrTQMrVq1YKLiwsSEhK0lqtUKiQnJ8PFxSXf9VxcXJCdnY2UlBStWounT5/mWcfFxQUuLi6oX78+7O3t0aZNG8yYMUPrjvjWrVsxfPhw7NixQ6t5VX5kMhlkMppPQR9yk4r79+/D1ta2wL4xhBDT5OnpibVr12LRokVay9etWwdPT0+D7LMkzWsBIDMzEx988AFWrlxZ4LWHEEIqM6MmFo6OjnB0dCyyXMuWLZGSkoLLly/D19cXAHDkyBEIgoCAgIB81/H19YVEIsHhw4fRp08fAMDt27cRExOjacebH0HI6Ub8eh+JLVu2YNiwYdi6dSu6d+9e7NdHSufNpCIsLMxgPzQIIcaxbNky9OnTB/v379eczy9cuIC7d+9i165dBtlnSZrXAsCECRPQqlUrvPvuu8Xelz763BFCiKkwiXksvL290bVrV4wYMQIXLlzA6dOnMXbsWAwYMEAzItSTJ09Qv359TdW5jY0NPv74Y4SGhuLo0aO4fPkyQkJC0LJlS81d73379mHDhg34999/8eDBA/z111/49NNP8fbbb6NGjRoAcpo/DR48GN988w0CAgIQHx+P+Ph4pKamGuVYVBaUVBBSOQQHB+POnTvo0aMHkpOTkZycjB49euDOnTsIDg7WaVuGbF77559/4siRI1i+fLlO64WHh8PGxkbzR+cxQgxLEBgiH6fi+J1ERD5OhWCCEwCbMpMYbhbIGcFj7NixWiN4fPfdd5oRPB48eICaNWvi6NGjaNeuHYCcCfImTpyILVu2QKFQICgoCD/88IOmCvvo0aP46quv8N9//0GhUMDT0xO9e/fGlClTNM2n2rVrh+PHj+eJZ8iQIdi4cWOxYqfhBXWjUqkwceJE3Lt3j5IKQozI1M5diYmJePbsWaFlatWqhV9//RUTJ07E8+fPNctVKhXMzMywY8eOfJtCjR8/Ht999x14/tX9OLVaDZ7n0aZNGxw7dizf/eVXY+Hp6Wkyx5QQfTPk8OFa8x6pc4Z9p3mPSq/CzWNh6kzt4lweHDp0CL/++ivmzZtHSQUhRmKoc9c///yDRo0aged5/PPPP4WWbdy4sd72myt3bqRLly5pmtcePHgQXbt2LXBupPj4eCQlJWkt8/HxwbfffosePXqgZs2axdo3XQ9IZWbIH/5nopIwbXck0hUq2FlIIRXxyFYLeJ6phKVMhLBePpRclBAlFuUMXUhKJisrC+bm5sYOg5BKy5AT5OX2c8idLC+/SxHHcQabIK9bt254+vQpVq9erRlu1s/PTzPc7JMnT9CxY0f8/PPP8Pf3z3cbHMfpPI8FXQ9IZfXmD38xDyRnKJH2QgkLmRhL+zVB27oFj7hZGEFgGLLhAm7GyeFibaY1HDRjDPFyBbxdrbApxJ8mVy2BCjdBHqn45HI51qxZg08++QQ2NjkToVFSQUjFdP/+fc3AHffv3zdKDL/99hvGjh2Ljh07ajWvzaVUKnH79m1kZmYaJT5CKhJBYFh1PBrpChVcrM2QlJ6NxLQXUL+8n5CpzMawjZfwRVA9jAz00nn7N2LliE5Ih52FNM8cMxzHwdZCguiEdNyIldNkqwZGiQUxutc7asvlcsydO9fYIRFCDKh69er5/r8s2dvbFzoZXo0aNfKtRXkdVfgTUjyv//BPSs9GvPxFnjIqgWHRgdvgOWBEW92Si+TMbCjVDFJR/mMSyUQ8UgWG5MzsEsVPis8kRoUiFdeboz+NHDnS2CERQsrQpk2b8Ndff2keT548Gba2tmjVqhUePnxoxMgIIfqS+8NfzAOJaa+SCo57+ffysVpgWHksGiqVoNP27S2kkIg4ZKvzX0+hFiDhOdhbSEv6EkgxUWJBjObNpCI8PBweHh7GDosQUobCwsI0zR7Pnj2LFStWYNGiRXBwcMCECROMHB0hRB9yf/gnZyg1zZ/eaLEEDoCYB9KylPjfP3E6bb+hmzW8nCzxPFOZpyaRMYaUTCW8nCzR0I36NRkaJRbEKCipIIQAwKNHj1C7dm0AwJ49e/D+++/jk08+QXh4OE6ePGnk6Agh+pD7wz/thTLvkwxgyEk0RBwHBuBJim59m3iew6hAL1jKRIiXK5ClVEMQGLKUasTLFbCUiTAq0Is6bpcBSiyIUXz33XeUVBBCYGlpqZl74uDBg+jcuTMAwMzMDFlZWcYMjRCiJ7k//C1kr3XtZXiVVAAQi3gIL//vbmuh8z5a1XZAWC8feLtaIVOhQkK6ApkKFbxdrWio2TJEnbeJUXzyySdISUnB+PHjKakgpBLr3Lkzhg8fjmbNmmnNtn3jxg3UqFHDuMERQvSmVW0HLO3XBMM2XoJKYJqEgudykgoODEo1g42FBD0au5Z4Hy1qVTXYBHykaFRjQcqMILzqVOXk5ITFixdTUkFIJbdy5Uq0bNkSiYmJ2LVrF6pWrQoAuHz5MgYOHGjk6Agh+tS2rhO+CKoH0csf+iIekPA589hkqxhEPIcx7bwgFpf85ynPc/DxsEFgXUf4eNhQUlHGaIK8MkATIuUcg6+//hp9+/ZFy5YtjR0OIaQY6Nylf3RMCQHWnojGymPRSMtSamourMwlGNPOS+ehZonh0QR5pFx5vaP2jz/+CF9fX0ilNOQbISTHyZMnsWbNGty7dw87duyAu7s7fvnlF9SsWROtW7c2dniEED0b0dYLIa1q4n//xOFJSibcbS3Qo7FrqWoqSPlA7yAxqDdHf5o7dy4lFYQQjV27diEoKAjm5ua4cuUKFAoFACA1NRVhYWFGjo4QYihiMY9eb7ljbIc66PWWe7GSCkFgiHyciuN3EhH5OBWCQI1uyhuqsSAGQ0PKEkKKMm/ePKxevRqDBw/G1q1bNcvffvttzJs3z4iREULKkzNRSVh1PBrRCelQqhkkIg5eTpYYFehFIz6VI1RjQQyCkgpCSHHcvn0bbdu2zbPcxsYGKSkpZR8QIaTcOROVhGm7I3EzTo4qMjGcrGSoIhPjZlwapu2OxJmoJGOHSF6ixIIYREREBCUVhJAiubi4ICoqKs/yU6dOoVatWkaIiBBSnggCw6rj0UhXqOBibQYziQg8z8FMIoKLtQzpCjVWHY+mZlHlBDWFIgbRt29fZGZmolOnTpRUEEIKNGLECIwbNw7r168Hx3GIjY3F2bNnMWnSJPy/vXuPj+nO/wf+mklmJtdJhEQS4pIESUpdYkWyRbtUQxtKt5SURAlVSulNatWtLu0qrS4ttmR1bXV1BYuyIZW6RJCGr0ukEsFSaVppbkJu8/790Z9ZIxeZzGQm4fV8POaPnPP5nPP+fDJzPvOecz7nzJkzx9rhEZGVnf2xEFm5xWjmoIZCYXjrWIVCAVcHFbJyi3H2x0J0ae1ipSjpDiYWZDbFxcWws7ODra0tFAoFoqOjrR0SETVys2bNgk6nQ//+/VFSUoK+fftCo9HgjTfewKuvvmrt8IjIyvJKylBeKVDbVH+RjcZGiQKdIK+kzMKRUXWYWJBZ3JlT0apVK7z++uuwteVbi4juT6FQYPbs2XjzzTeRmZmJ4uJiBAUFwcnJCbdu3YK9vb21QyQiK3JzUENlo0BZpQ52Spsq60srdVApFXBz4B0nGwPOsSCT3T1R+8yZM8jLy7N2SETUxKjVagQFBaFXr15QqVRYvnw52rdvb+2wiMjKHvHWws/DCb+WlOPeZzqLCPJLyuHn4YRHvPnAycaAiQWZpLq7P3l4eFg7LCJq5EpLSxEbG4uePXsiLCwM27ZtAwBs2LAB7du3x4oVKzBjxgzrBklEVqdUKjC5nx+cNDbIKSzFrfJK6HSCW+WVyCkshZPGBpP7+UGpVNx/Y9TgeL0K1RtvKUtE9fXuu+9izZo1GDBgAI4cOYLnn38e48aNw9GjR7F8+XI8//zzsLGpetkDET18wvxbYPGwLvrnWBToBCqlAoFeznyORSPDxILqhUkFEZliy5Yt2LhxI4YMGYIzZ87g0UcfRUVFBU6dOlXlzi9ERGH+LdDbtznO/liIvJIyuDmo8Yi3lmcqGhkmFlQvV69exbVr15hUEFG9XL16FcHBwQCAzp07Q6PRYMaMGUwqiKhGSqWCt5Rt5JhYUL0EBQVh7ty5cHNzY1JBREarrKyEWv2/u7jY2trCycnJihEREZGpmFhQnRUWFqKoqAitWrUCADz66KNWjoiImioRQXR0NDQaDQDg9u3bePnll+Ho6GhQbuvWrdYIj4iI6oGJBdXJnTkVv/76KxYvXgwfHx9rh0RETVhUVJTB3y+++KKVIiEiInNhYkH3de9EbSIiU23YsMHaIRARkZnxORZUq3uTCp6tICIiIqLqMLGgGjGpICIiIqK6YmJB1WJSQURERETGYGJB1bKxsYFKpWJSQURERER1wsnbVC1HR0csWLAA+fn5+tvLEhERERHVhGcsSK+wsBD79+/X/+3o6MikgoiIiIjqhGcsCIDhnIrS0lIMHjzY2iERERERURPCMxZUZaI2n6hNRA+6vLw8REZGQqvVwtXVFePHj0dxcfF96yUnJ+MPf/gDHB0dodVq0bdvX9y6dcsCERMRNX5MLB5y9yYVS5YsQevWra0dFhFRg4qMjMTZs2eRkJCAnTt34rvvvsPEiRNrrZOcnIzw8HAMHDgQx44dw/HjxzF16lQolRxKiYgAQCEiYu0gHnSFhYVwcXFBQUEBtFqttcPRY1JBRLVprMcuU6WnpyMoKAjHjx9Hz549AQB79uzB4MGDcfXqVXh7e1dbr3fv3njyySexcOHCeu/7Qe1TInpwGXPc4s8sD6mysjImFUT0UEpOToarq6s+qQCAAQMGQKlUIiUlpdo6ubm5SElJgYeHB8LCwtCyZUv069cPhw4dslTYRESNHhOLh5Rarcbjjz+OZs2aMakgoodKTk4OPDw8DJbZ2trCzc0NOTk51da5ePEiAGDevHmIiYnBnj170KNHD/Tv3x8XLlyocV+lpaUoLCw0eBERPaiYWDzEhg8fjtWrVzOpIKIHwqxZs6BQKGp9nT9/vl7b1ul0AIBJkyZh3Lhx6N69O1asWIFOnTph/fr1NdZbsmQJXFxc9C8+bJSIHmS83exDpLCwEHFxcRg/fjwcHR0BAE5OTlaOiojIPF5//XVER0fXWsbX1xeenp7Izc01WF5RUYG8vDx4enpWW8/LywsAEBQUZLA8MDAQV65cqXF/sbGxmDlzpv7vwsJCJhdE9MBiYvGQuHuidlFREWbPnm3tkIiIzMrd3R3u7u73LRcaGor8/HykpqYiODgYAJCYmAidToeQkJBq67Rr1w7e3t7IyMgwWP7DDz9g0KBBNe5Lo9FAo9EY0QoioqaLl0I9BO69+1NUVJS1QyIisprAwECEh4cjJiYGx44dw+HDhzF16lS88MIL+jtCXbt2DQEBATh27BgAQKFQ4M0338TKlSvx9ddfIzMzE3PmzMH58+cxfvx4azaHiKjR4BmLBxxvKUtEVNWmTZswdepU9O/fH0qlEs899xxWrlypX19eXo6MjAyUlJTol7322mu4ffs2ZsyYgby8PHTt2hUJCQnw8/OzRhOIiBodPsfCAqx133ImFURkCj5zwfzYp0TU1PA5FgQAWLZsGZMKIiIiIrIIJhYPsJiYGLRv355JBRERERE1OM6xeMCICBQKBQDAx8cHH3/8sf5vIiIiIqKGwjMWD5DCwkK89dZbOHXqlH4ZkwoiIiIisgQmFg+IOxO1z58/j7/85S+oqKiwdkhERERE9BBhYvEAuPfuT3PnzoWtLa9yIyIiIiLLYWLRxPGWskRERETUGDCxaMKYVBARERFRY8HEogmLj49nUkFEREREjQIvxG/CIiMjUVJSgoiICCYVRERERGRVTCyamJKSEtjb20OhUMDW1haTJ0+2dkhERERERLwUqikpLCzErFmzsHr1aoiItcMhIiIiItJrMolFXl4eIiMjodVq4erqivHjx6O4uLjWOpMmTYKfnx/s7e3h7u6OoUOH4vz58wZlpk2bhuDgYGg0GnTr1q3W7WVmZsLZ2Rmurq4mtsZ4d0/UPnr0KPLy8iweAxERERFRTZpMYhEZGYmzZ88iISEBO3fuxHfffYeJEyfWWic4OBgbNmxAeno69u7dCxHBwIEDUVlZaVDupZdewsiRI2vdVnl5OUaNGoU+ffqY3BZj3Xv3p8WLF6N58+YWj4OIiIiImh6dTnD6agGSfvgZp68WQKdrmCtfmsQci/T0dOzZswfHjx9Hz549AQCffPIJBg8ejGXLlsHb27vaencnHu3atcN7772Hrl274tKlS/Dz8wMArFy5EgDw888/4//+7/9qjOFPf/oTAgIC0L9/fxw5csRcTbuv6pIKHx8fi+2fiIiIiJquI5m/4NOkLGTlFqO8UqCyUcDPwwmT+/khzL+FWffVJM5YJCcnw9XVVZ9UAMCAAQOgVCqRkpJSp23cvHkTGzZsQPv27Y3+Yp6YmIgtW7Zg1apVRtUzFZMKIiIiIqqvI5m/4J3400i/XghHjS08nDVw1Ngi/XoR3ok/jSOZv5h1f00iscjJyYGHh4fBMltbW7i5uSEnJ6fWuqtXr4aTkxOcnJzwzTffICEhAWq1us77vnHjBqKjoxEXFwetVlunOqWlpSgsLDR41ceFCxdw5coVJhVEREREZBSdTvBpUhaKSyvgqbWDncoGSqUCdiobeGo1KC6txKdJWWa9LMqqicWsWbOgUChqfd072dpYkZGRSEtLQ1JSEjp27IgRI0bg9u3bda4fExOD0aNHo2/fvnWus2TJEri4uOhf9U0IgoODERsby6SCiIiIiIxy9sdCZOUWo5mDGgqFwmCdQqGAq4MKWbnFOPtj/X4Ar45V51i8/vrriI6OrrWMr68vPD09kZuba7C8oqICeXl58PT0rLX+nS/3HTp0QO/evdGsWTPEx8dj1KhRdYoxMTERO3bswLJlywAAIgKdTgdbW1usXbsWL730UpU6sbGxmDlzpv7vwsLCeicGISEh9apHRERERA+vvJIylFcK1DbVn0fQ2ChRoBPklZSZbZ9WTSzc3d3h7u5+33KhoaHIz89HamoqgoODAfz2hV+n0xn1xVtEICIoLS2tc53k5GSDu0ht374d77//Po4cOYJWrVpVW0ej0UCj0dR5H0RERERE5uTmoIbKRoGySh3slDZV1pdW6qBSKuDmUPcpAvfTJO4KFRgYiPDwcMTExOCzzz5DeXk5pk6dihdeeEF/R6hr166hf//+2LhxI3r16oWLFy/iq6++wsCBA+Hu7o6rV69i6dKlsLe3x+DBg/XbzszMRHFxMXJycnDr1i2cPHkSABAUFAS1Wo3AwECDWE6cOAGlUonOnTtbrP1ERERERMZ4xFsLPw8npF8vgqdWaXA5lIggv6QcgV7OeMS7bnOI66JJJBYAsGnTJkydOhX9+/eHUqnEc889p79VLPDbcyYyMjJQUlICALCzs8PBgwfx0Ucf4ddff0XLli3Rt29fHDlyxGAi+IQJE5CUlKT/u3v37gCA7OxstGvXzjKNIyIiIiIyI6VSgcn9/PBO/GnkFJbC1UEFjY0SpZU65JeUw0ljg8n9/KBUKu6/sTpSiEjDPCGD9AoLC+Hi4oKCgoI631mKiMjaeOwyP/YpEVmawXMsdAKV0rjnWBhz3GoyZyyIiIiIiMg4Yf4t0Nu3Oc7+WIi8kjK4OajxiLfWrGcq7mBiQURERET0AFMqFejS2qXh99PgeyAiIiIiogceEwsiIiIiIjIZEwsiIiIiIjIZEwsiIiIiIjIZEwsiIiIiIjIZEwsiIiIiIjIZbzdrAXeeQVhYWGjlSIiI6u7OMYvPUTUfjgdE1NQYMxYwsbCAoqIiAICPj4+VIyEiMl5RURFcXBr+/ucPA44HRNRU1WUsUAh/impwOp0OP/74I5ydnaFQ1P0ph4WFhfDx8cF///vf+z5C/WHBPqmKfWKI/VFVfftERFBUVARvb28olbxy1hzqOx5Y0oPwGWrqbWjq8QNsQ2NgrviNGQt4xsIClEolWrduXe/6Wq22Sb6hGxL7pCr2iSH2R1X16ROeqTAvU8cDS3oQPkNNvQ1NPX6AbWgMzBF/XccC/gRFREREREQmY2JBREREREQmY2LRiGk0GsydOxcajcbaoTQa7JOq2CeG2B9VsU/IGA/C+6Wpt6Gpxw+wDY2BNeLn5G0iIiIiIjIZz1gQEREREZHJmFgQEREREZHJmFgQEREREZHJmFhYUF5eHiIjI6HVauHq6orx48ejuLi41jqTJk2Cn58f7O3t4e7ujqFDh+L8+fMGZaZNm4bg4GBoNBp069at1u1lZmbC2dkZrq6uJrbGPOrTJ7dv38aUKVPQvHlzODk54bnnnsNPP/2kX3/jxg2Eh4fD29sbGo0GPj4+mDp1qv6R9ACwdetWPPnkk3B3d4dWq0VoaCj27t3bYO2szapVq9CuXTvY2dkhJCQEx44dq7HsunXr0KdPHzRr1gzNmjXDgAEDqpSPjo6GQqEweIWHhxuUWbRoEcLCwuDg4NBo3gt3GNMfcXFxVdpqZ2dnUGbevHkICAiAo6Ojvs9SUlKq3V5paSm6desGhUKBkydPmrNZJjGmTwDgo48+QqdOnWBvbw8fHx/MmDEDt2/f1q//7rvvEBERAW9vbygUCmzbtq3a7aSnp2PIkCFwcXGBo6Mjfve73+HKlSvmbBo1EsYei/Py8vDqq6/q32dt2rTBtGnTUFBQYLGYjf1cbNmyBQEBAbCzs0OXLl2we/duC0VaPXMf+63B2P/BHZs3b4ZCocCzzz7bsAHWgbFtyM/Px5QpU+Dl5QWNRoOOHTta9b1k7vHBZEIWEx4eLl27dpWjR4/KwYMHxd/fX0aNGlVrnTVr1khSUpJkZ2dLamqqREREiI+Pj1RUVOjLvPrqq/KXv/xFxowZI127dq1xW2VlZdKzZ08ZNGiQuLi4mKlVpqlPn7z88svi4+Mj+/fvlxMnTkjv3r0lLCxMvz4vL09Wr14tx48fl0uXLsm+ffukU6dOBtudPn26vP/++3Ls2DH54YcfJDY2VlQqlXz//fcN1tbqbN68WdRqtaxfv17Onj0rMTEx4urqKj/99FO15UePHi2rVq2StLQ0SU9Pl+joaHFxcZGrV6/qy0RFRUl4eLhcv35d/8rLyzPYzrvvvivLly+XmTNnNpr3gojx/bFhwwbRarUGbc3JyTEos2nTJklISJCsrCw5c+aMjB8/XrRareTm5lbZ3rRp02TQoEECQNLS0hqiiUYztk82bdokGo1GNm3aJNnZ2bJ3717x8vKSGTNm6Mvs3r1bZs+eLVu3bhUAEh8fX2U7mZmZ4ubmJm+++aZ8//33kpmZKdu3b69xv9S0GXssPn36tAwfPlx27NghmZmZsn//funQoYM899xzFonX2M/F4cOHxcbGRj744AM5d+6c/OlPfxKVSiWnT5+2SLz3aohjv6UZ24Y7srOzpVWrVtKnTx8ZOnSoZYKtgbFtKC0tlZ49e8rgwYPl0KFDkp2dLQcOHJCTJ09aOPLfNMT4YComFhZy7tw5ASDHjx/XL/vmm29EoVDItWvX6rydU6dOCQDJzMyssm7u3Lm1JhZvvfWWvPjii7Jhw4ZG8WWyPn2Sn58vKpVKtmzZol+Wnp4uACQ5ObnGfX388cfSunXrWuMJCgqS+fPnG9kK0/Tq1UumTJmi/7uyslK8vb1lyZIldapfUVEhzs7O8re//U2/LCoqqs4H68byXrjD2P6oT/wFBQUCQPbt22ewfPfu3RIQECBnz55tVImFsX0yZcoU+cMf/mCwbObMmfL73/++2vI1JRYjR46UF198sf6BU5NhrvHpn//8p6jVaikvL2+IMA0Y+7kYMWKEPP300wbLQkJCZNKkSQ0aZ00a4thvafVpQ0VFhYSFhclf//pXo8aqhmJsGz799FPx9fWVsrIyS4VYq4YeH+qDl0JZSHJyMlxdXdGzZ0/9sgEDBkCpVNZ4Wca9bt68iQ0bNqB9+/bw8fExav+JiYnYsmULVq1aZVS9hlSfPklNTUV5eTkGDBigXxYQEIA2bdogOTm52jo//vgjtm7din79+tUYi06nQ1FREdzc3OrZGuOVlZUhNTXVoC1KpRIDBgyosS33KikpQXl5eZW4Dxw4AA8PD3Tq1AmTJ0/GjRs3zBp7Q6hvfxQXF6Nt27bw8fHB0KFDcfbs2Vr3sXbtWri4uKBr16765T/99BNiYmLwxRdfwMHBwTwNMoP69ElYWBhSU1P1p8MvXryI3bt3Y/DgwXXer06nw65du9CxY0c89dRT8PDwQEhISI2XTFHTZo7xCQAKCgqg1Wpha2vbEGHq1edzkZycbFAeAJ566qk6H2vNqSGP/ZZS3zYsWLAAHh4eGD9+vCXCrFV92rBjxw6EhoZiypQpaNmyJTp37ozFixejsrLSUmHrWWt8uB8mFhaSk5MDDw8Pg2W2trZwc3NDTk5OrXVXr14NJycnODk54ZtvvkFCQgLUanWd933jxg1ER0cjLi4OWq22XvE3hPr0SU5ODtRqdZV5AS1btqxSZ9SoUXBwcECrVq2g1Wrx17/+tcZYli1bhuLiYowYMaJ+jamHX375BZWVlWjZsqXB8uraUpO3334b3t7eBgeW8PBwbNy4Efv378f777+PpKQkDBo0yCoHPmPUpz86deqE9evXY/v27fj73/8OnU6HsLAwXL161aDczp074eTkBDs7O6xYsQIJCQlo0aIFAEBEEB0djZdfftngi1VjUJ8+GT16NBYsWIDHHnsMKpUKfn5+ePzxx/HOO+/Ueb+5ubkoLi7G0qVLER4ejv/85z8YNmwYhg8fjqSkJJPaRI2PKePTHb/88gsWLlyIiRMnNkSIVfZl7OciJyfHpGOtOTXUsd+S6tOGQ4cO4fPPP8e6dessEeJ91acNFy9exNdff43Kykrs3r0bc+bMwYcffoj33nvPEiEbsNb4cD9MLEw0a9asKpNH733dO9naWJGRkUhLS0NSUhI6duyIESNGGDXRJiYmBqNHj0bfvn1NiqOuLNEndbFixQp8//332L59O7KysjBz5sxqy/3jH//A/Pnz8c9//rPK4NqYLV26FJs3b0Z8fLzBhOUXXngBQ4YMQZcuXfDss89i586dOH78OA4cOGC9YBtIaGgoxo4di27duqFfv37YunUr3N3dsWbNGoNyTzzxBE6ePIkjR44gPDwcI0aMQG5uLgDgk08+QVFREWJjY63RBLM7cOAAFi9ejNWrV+P777/H1q1bsWvXLixcuLDO29DpdACAoUOHYsaMGejWrRtmzZqFZ555Bp999llDhU5mZqljcWFhIZ5++mkEBQVh3rx5pgdOtarp2N+YFRUVYcyYMVi3bp3+R52mSKfTwcPDA2vXrkVwcDBGjhyJ2bNnN5njojnGh/tp2POVD4HXX38d0dHRtZbx9fWFp6en/ovMHRUVFcjLy4Onp2et9V1cXODi4oIOHTqgd+/eaNasGeLj4zFq1Kg6xZiYmIgdO3Zg2bJlAH77hVan08HW1hZr167FSy+9VKft1FVD9omnpyfKysqQn59vcNbip59+qlLH09MTnp6eCAgIgJubG/r06YM5c+bAy8tLX2bz5s2YMGECtmzZYvFfflq0aAEbGxuDO1oB1bflXsuWLcPSpUuxb98+PProo7WW9fX1RYsWLZCZmYn+/fubHHdDMaU/7lCpVOjevTsyMzMNljs6OsLf3x/+/v7o3bs3OnTogM8//xyxsbFITExEcnIyNBqNQZ2ePXsiMjISf/vb30xrmAnq0ydz5szBmDFjMGHCBABAly5dcPPmTUycOBGzZ8+GUnn/35NatGgBW1tbBAUFGSwPDAzEoUOH6tkasjRLjE9FRUUIDw+Hs7Mz4uPjoVKpTA37vurzufD09DTp2GJOljr2NyRj25CVlYVLly4hIiJCv+zODxi2trbIyMiAn59fwwZ9j/r8H7y8vKBSqWBjY6NfFhgYiJycHJSVlRl1NYmprDU+3A/PWJjI3d0dAQEBtb7UajVCQ0ORn5+P1NRUfd3ExETodDqEhITUeX/y24R7lJaW1rlOcnIyTp48qX8tWLAAzs7OOHnyJIYNG2ZUe+uiIfskODgYKpUK+/fv1y/LyMjAlStXEBoaWmNMdw5gd/fbl19+iXHjxuHLL7/E008/bWqzjaZWqxEcHGzQFp1Oh/3799falg8++AALFy7Enj176nTpztWrV3Hjxg2DhKoxqm9/3K2yshKnT5++b1t1Op3+vbBy5UqcOnVK//m4c9vAr776CosWLapna8yjPn1SUlJSZXC4MwiKSJ33+7vf/Q4ZGRkGy3/44Qe0bdvWmCaQFTX0+FRYWIiBAwdCrVZjx44dFvv1vD6fi9DQUIPyAJCQkFDnY4s5WerY35CMbUNAQABOnz5t8F1kyJAh+rPJxs4bNYf6/B9+//vfIzMzU/+dAvjtuOjl5WXRpAKw3vhwX2abBk73FR4eLt27d5eUlBQ5dOiQdOjQweB2flevXpVOnTpJSkqKiIhkZWXJ4sWL5cSJE3L58mU5fPiwREREiJubm8GtxC5cuCBpaWkyadIk6dixo6SlpUlaWpqUlpZWG0djuhOQsX0i8tvtZtu0aSOJiYly4sQJCQ0NldDQUP36Xbt2yfr16+X06dOSnZ0tO3fulMDAQIO7HmzatElsbW1l1apVBrcqzc/Pt0zD/7/NmzeLRqORuLg4OXfunEycOFFcXV31t0wdM2aMzJo1S19+6dKlolar5euvvzaIu6ioSEREioqK5I033pDk5GTJzs6Wffv2SY8ePaRDhw5y+/Zt/XYuX74saWlpMn/+fHFyctK/Z+5sx1qM7Y/58+fL3r17JSsrS1JTU+WFF14QOzs7OXv2rIiIFBcXS2xsrCQnJ8ulS5fkxIkTMm7cONFoNHLmzJlqY8jOzm5Ud4Uytk/mzp0rzs7O8uWXX8rFixflP//5j/j5+cmIESP0ZYqKivT/cwCyfPlySUtLk8uXL+vLbN26VVQqlaxdu1YuXLggn3zyidjY2MjBgwct13iyGGOPxQUFBRISEiJdunSRzMxMg+PR3bdDbyjGfi4OHz4stra2smzZMklPT5e5c+da/Xaz5jz2W4OxbbhXY7grlLFtuHLlijg7O8vUqVMlIyNDdu7cKR4eHvLee+81ifjrMj6YiomFBd24cUNGjRolTk5OotVqZdy4cQYHhTtfaL799lsREbl27ZoMGjRIPDw8RKVSSevWrWX06NFy/vx5g+3269dPAFR5ZWdnVxtHY0osjO0TEZFbt27JK6+8Is2aNRMHBwcZNmyYXL9+Xb8+MTFRQkNDxcXFRezs7KRDhw7y9ttvy6+//qovU1OfRUVFWaDVhj755BNp06aNqNVq6dWrlxw9etQgzrtjatu2bbVxz507V0RESkpKZODAgeLu7i4qlUratm0rMTExVZ7tEBUVVe127u5nazGmP1577TV92ZYtW8rgwYMNnkVy69YtGTZsmHh7e4tarRYvLy8ZMmSIHDt2rMb9N7bEQsS4PikvL5d58+aJn5+f2NnZiY+Pj7zyyisG7/9vv/22Tu//zz//XPz9/cXOzk66du0q27Zta+CWkrUYeyyu6T1U29hjbsZ8LkR+ux1ux44dRa1WyyOPPCK7du2ySJw1Meex31qM/R/crTEkFiLGt+HIkSMSEhIiGo1GfH19ZdGiRRZJpmti7vHBVAoRc537ICIiIiKihxXnWBARERERkcmYWBARERERkcmYWBARERERkcmYWBARERERkcmYWBARERERkcmYWBARERERkcmYWBARERERkcmYWBARERERkcmYWBCZUXR0NJ599ln9348//jhee+01i8dx4MABKBQK5OfnN9g+Ll26BIVCgZMnTzbYPoiImiKOBfSwYmJBD7zo6GgoFAooFAqo1Wr4+/tjwYIFqKioaPB9b926FQsXLqxTWUsMAEREDyuOBUQNz9baARBZQnh4ODZs2IDS0lLs3r0bU6ZMgUqlQmxsbJWyZWVlUKvVZtmvm5ubWbZDRESm41hA1LB4xoIeChqNBp6enmjbti0mT56MAQMGYMeOHQD+d8p60aJF8Pb2RqdOnQAA//3vfzFixAi4urrCzc0NQ4cOxaVLl/TbrKysxMyZM+Hq6ormzZvjrbfegogY7Pfe09+lpaV4++234ePjA41GA39/f3z++ee4dOkSnnjiCQBAs2bNoFAoEB0dDQDQ6XRYsmQJ2rdvD3t7e3Tt2hVff/21wX52796Njh07wt7eHk888YRBnNUZPXo0Ro4cabCsvLwcLVq0wMaNGwEAe/bswWOPPaZv3zPPPIOsrKwatxkXFwdXV1eDZdu2bYNCoTBYtn37dvTo0QN2dnbw9fXF/Pnz9b8YigjmzZuHNm3aQKPRwNvbG9OmTau1LUREdcWxwBDHAjI3Jhb0ULK3t0dZWZn+7/379yMjIwMJCQnYuXMnysvL8dRTT8HZ2RkHDx7E4cOH4eTkhPDwcH29Dz/8EHFxcVi/fj0OHTqEvLw8xMfH17rfsWPH4ssvv8TKlSuRnp6ONWvWwMnJCT4+PvjXv/4FAMjIyMD169fx8ccfAwCWLFmCjRs34rPPPsPZs2cxY8YMvPjii0hKSgLw26A3fPhwRERE4OTJk5gwYQJmzZpVaxyRkZH497//jeLiYv2yvXv3oqSkBMOGDQMA3Lx5EzNnzsSJEyewf/9+KJVKDBs2DDqdzsje/p+DBw9i7NixmD59Os6dO4c1a9YgLi4OixYtAgD861//wooVK7BmzRpcuHAB27ZtQ5cuXeq9PyKi2nAs4FhAZiZED7ioqCgZOnSoiIjodDpJSEgQjUYjb7zxhn59y5YtpbS0VF/niy++kE6dOolOp9MvKy0tFXt7e9m7d6+IiHh5eckHH3ygX19eXi6tW7fW70tEpF+/fjJ9+nQREcnIyBAAkpCQUG2c3377rQCQX3/9Vb/s9u3b4uDgIEeOHDEoO378eBk1apSIiMTGxkpQUJDB+rfffrvKtu5WXl4uLVq0kI0bN+qXjRo1SkaOHFlteRGRn3/+WQDI6dOnRUQkOztbAEhaWpqIiGzYsEFcXFwM6sTHx8vdh5n+/fvL4sWLDcp88cUX4uXlJSIiH374oXTs2FHKyspqjIOIqD44FlTFsYDMjXMs6KGwc+dOODk5oby8HDqdDqNHj8a8efP067t06WJwLe2pU6eQmZkJZ2dng+3cvn0bWVlZKCgowPXr1xESEqJfZ2tri549e1Y5BX7HyZMnYWNjg379+tU57szMTJSUlODJJ580WF5WVobu3bsDANLT0w3iAIDQ0NBat2tra4sRI0Zg06ZNGDNmDG7evInt27dj8+bN+jIXLlzAu+++i5SUFPzyyy/6X6euXLmCzp0717kNdzt16hQOHz6s/1UK+O0ygtu3b6OkpATPP/88PvroI/j6+iI8PByDBw9GREQEbG15qCIi03EsMMSxgMyN/yF6KDzxxBP49NNPoVar4e3tXeXg5OjoaPB3cXExgoODsWnTpirbcnd3r1cM9vb2Rte5c3p6165daNWqlcE6jUZTrzjuiIyMRL9+/ZCbm4uEhATY29sjPDxcvz4iIgJt27bFunXr4O3tDZ1Oh86dOxtcNnA3pVJZZSAtLy+v0p758+dj+PDhVerb2dnBx8cHGRkZ2LdvHxISEvDKK6/gz3/+M5KSkqBSqUxqLxERx4KqOBaQOTGxoIeCo6Mj/P3961y+R48e+Oqrr+Dh4QGtVlttGS8vL6SkpKBv374AgIqKCqSmpqJHjx7Vlu/SpQt0Oh2SkpIwYMCAKuvv/EpWWVmpXxYUFASNRoMrV67U+OtWYGCgfvLhHUePHr1vG8PCwuDj44OvvvoK33zzDZ5//nn9AfvGjRvIyMjAunXr0KdPHwDAoUOHat2eu7s7ioqKcPPmTf3gfO99zXv06IGMjIxa/xf29vaIiIhAREQEpkyZgoCAAJw+fbrGfiUiqiuOBVVxLCBzYmJBVI3IyEj8+c9/xtChQ7FgwQK0bt0aly9fxtatW/HWW2+hdevWmD59OpYuXYoOHTogICAAy5cvr/W+4+3atUNUVBReeuklrFy5El27dsXly5eRm5uLESNGoG3btlAoFNi5cycGDx4Me3t7ODs744033sCMGTOg0+nw2GOPoaCgAIcPH4ZWq0VUVBRefvllfPjhh3jzzTcxYcIEpKamIi4urk7tHD16ND777DP88MMP+Pbbb/XLmzVrhubNm2Pt2rXw8vLClStX7jsJMCQkBA4ODnjnnXcwbdo0pKSkVInj3XffxTPPPIM2bdrgj3/8I5RKJU6dOoUzZ87gvffeQ1xcHCorK/Xb+vvf/w57e3u0bdu2Tu0hIjInjgUcC8hI1p3iQdTw7p6wZ8z669evy9ixY6VFixai0WjE19dXYmJipKCgQER+m/Q2ffp00Wq14urqKjNnzpSxY8fWOGFPROTWrVsyY8YM8fLyErVaLf7+/rJ+/Xr9+gULFoinp6coFAqJiooSkd8mGX700UfSqVMnUalU4u7uLk899ZQkJSXp6/373/8Wf39/0Wg00qdPH1m/fn2tE/buOHfunACQtm3bGkxOFBFJSEiQwMBA0Wg08uijj8qBAwcEgMTHx4tI1Ql7Ir9N0PP39xd7e3t55plnZO3atXLvYWbPnj0SFhYm9vb2otVqpVevXrJ27Vp9/ZCQENFqteLo6Ci9e/eWffv21doGIqK64FhQM44FZC4KkRpmFxEREREREdURn2NBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQmY2JBREREREQm+3/haNzSQ4c6AgAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"De la representación visual, se observa que el modelo asigna precipitaciones en días sin lluvia (incluso cantidades negativas). Esto genera la línea horizontal que se observa en el gráfico de la izquierda, en lugar de una recta con pendiente 1. Algunas posibles razones son:\n",
"\n",
"* Desbalance de datos: debido a la mayoría de los días del conjunto de datos no presentan lluvia. Por esta razón, podría ser importante revisar y equilibrar el conjunto de datos, asegurándonos que haya una representación equitativa de días lluviosos y días secos, para evitar sesgos.\n",
"\n",
"* Sensibilidad a atributos: Es posible que el modelo esté dando demasiada importancia a ciertos atributos o características que no son relevantes para la predicción de la lluvia.\n",
"\n",
"* Modelo demasiado simple: Un modelo de regresión lineal simple puede no capturar adecuadamente la complejidad de los datos climáticos. Es necesario experimentar modelos más complejos que puedan capturar relaciones no lineales entre las variables.\n",
"\n",
"* Características climáticas no consideradas: Puede haber variables o características climáticas importantes que no se están teniendo en cuenta en el modelo actual."
],
"metadata": {
"id": "IDgAImUbs-jf"
}
},
{
"cell_type": "markdown",
"source": [
"A continuación, se explora la regresión polinomial:"
],
"metadata": {
"id": "A0TER3OWuo7Q"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"degrees = [1, 2, 3, 4, 5]\n",
"\n",
"for i, degree in enumerate(degrees):\n",
" X_train_poly = PolynomialFeatures(degree=degree).fit_transform(X_train)\n",
" model = LinearRegression()\n",
" model.fit(X_train_poly, y_train)\n",
" X_test_poly = PolynomialFeatures(degree=degree).fit_transform(X_test)\n",
" y_test_pred = model.predict(X_test_poly)\n",
" print(\"Grado igual a\", degree, \", R^2 igual a\", r2_score(y_test, y_test_pred).round(3))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nzPChnibuuJm",
"outputId": "2edbe685-b444-422d-c09b-0fb18c513420"
},
"execution_count": 107,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Grado igual a 1 , R^2 igual a 0.057\n",
"Grado igual a 2 , R^2 igual a 0.177\n",
"Grado igual a 3 , R^2 igual a 0.172\n",
"Grado igual a 4 , R^2 igual a -0.305\n",
"Grado igual a 5 , R^2 igual a -13.525\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que se obtiene un mejor coeficiente de determinación para el grado 2, correspondiente a 0.17, sin embargo, sigue siendo deficiente."
],
"metadata": {
"id": "J9cPZY9ruwhv"
}
},
{
"cell_type": "markdown",
"source": [
"\n",
"\n",
"Finalmente, se utilizará el método de validación cruzada, para explorar el rendimiento de distintos modelos."
],
"metadata": {
"id": "6cH1U2ZnuWl7"
}
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.model_selection import cross_val_predict\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.linear_model import RidgeCV\n",
"from sklearn.linear_model import LassoCV\n",
"from sklearn.tree import DecisionTreeRegressor\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from sklearn.ensemble import GradientBoostingRegressor\n",
"from sklearn.ensemble import ExtraTreesRegressor\n",
"from sklearn.ensemble import AdaBoostRegressor\n",
"from sklearn.svm import SVR"
],
"metadata": {
"id": "zHuvuap3rQJB"
},
"execution_count": 105,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from sklearn.model_selection import cross_val_score\n",
"from sklearn import svm\n",
"from sklearn.svm import SVC\n",
"\n",
"# Se crea una lista con los modelos\n",
"models = [\n",
" LinearRegression(),\n",
" RidgeCV(),\n",
" LassoCV(),\n",
" DecisionTreeRegressor(),\n",
" RandomForestRegressor(),\n",
" GradientBoostingRegressor(),\n",
" SVR(),\n",
" AdaBoostRegressor(),\n",
" ExtraTreesRegressor()]\n",
"\n",
"# Se realiza una validación cruzada para cada modelo.\n",
"for model in models:\n",
" scores = cross_val_score(model, X, y, cv=5)\n",
" print(f\"Model: {model.__class__.__name__}, Mean score: {np.mean(scores).round(3)}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cHsI55VxrTWO",
"outputId": "33922cb3-dddc-4ed4-cae5-393283a25435"
},
"execution_count": 106,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model: LinearRegression, Mean score: -21.284\n",
"Model: RidgeCV, Mean score: -21.276\n",
"Model: LassoCV, Mean score: -20.266\n",
"Model: DecisionTreeRegressor, Mean score: -28.11\n",
"Model: RandomForestRegressor, Mean score: -69.762\n",
"Model: GradientBoostingRegressor, Mean score: -21.291\n",
"Model: SVR, Mean score: -14.364\n",
"Model: AdaBoostRegressor, Mean score: -555.646\n",
"Model: ExtraTreesRegressor, Mean score: -21.047\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Se observa que todos los coeficientes resultan ser negativos, esto indica que los modelos de regresión no se ajustan bien a los datos en absoluto.\n",
"\n",
"R2 mide la proporción de la variabilidad en la variable dependiente que es explicada por el modelo. Un valor negativo sugiere que el modelo no es útil y, de hecho, está haciendo predicciones peores que simplemente utilizar la media de la variable dependiente."
],
"metadata": {
"id": "wHjFPLTUu58G"
}
},
{
"cell_type": "markdown",
"source": [
"\n",
"\n",
"**Discusión y conclusiones**\n",
"\n",
"\n",
"A lo largo del desarrollo del proyecto, hemos explorado diversos métodos de análisis de datos para seleccionar aquel que mejor predice la información disponible. Este proceso nos ha permitido profundizar en nuestro entendimiento sobre las condiciones climáticas, especialmente en la ciudad de Valparaíso.\n",
"\n",
"\n",
"Durante el análisis de los registros climáticos del año 2022, logramos caracterizar parcialmente el clima predominante en la zona. Si bien los modelos demostraron una capacidad aceptable para predecir la temperatura (R2 = 0.82), no obtuvieron el mismo éxito con las precipitaciones (R2 = 0.18). Esta discrepancia podría ser atribuible a la escasez de días lluviosos en la zona, generando un desbalance en los datos. Para mejorar la predicción, se sugiere:\n",
"\n",
"* considerar atributos adicionales como la nubosidad y la radiación solar, y\n",
"\n",
"* ampliar el intervalo de tiempo a por ejemplo 10 años.\n",
"\n",
"Además, reconocemos que las condiciones climáticas no son un fenómeno exclusivamente local, lo que podría influir en la calidad predictiva de nuestros modelos.\n",
"\n",
"Adicionalmente, la identificación de patrones climáticos mediante técnicas de agrupación como:\n",
"\n",
"* DBSCAN reveló que los datos identificados como anómalos correspondían principalmente a los días con precipitaciones, y\n",
"\n",
"* K-means reveló la identificación de tres grupos distintos.\n",
"\n",
"Es importante destacar que el escalado de los datos no mostró mejoras significativas en el rendimiento de K-means, ya que el coeficiente de silhouette disminuía.\n",
"\n",
"\n",
"Para mejorar y expandir el modelo se propone:\n",
"\n",
"* la incorporación del atributo de fecha para predecir comportamientos futuros, utilizando datos históricos hasta la fecha n - 1 para prever los datos en la fecha n,\n",
"\n",
"* la representación de la dirección del viento en grados (de 0 a 360) puede no ser la medida más adecuada, ya que implica dos dimensiones. Sería preferible emplear dos valores distintos: uno para describir la orientación norte-sur y otro para la orientación este-oeste. Esta mejor representación podría lograrse mediante las funciones seno y coseno aplicadas al grado sexagesimal correspondiente, proporcionando una visión más precisa de la dirección del viento. Esta modificación podría enriquecer el análisis y mejorar la interpretación de la influencia de la dirección del viento, y\n",
"\n",
"* utilizar una selección parcial de atributos para luego aplicar las técnicas de clustering.\n",
"\n",
"\n",
"En resumen, aunque los objetivos se cumplieron parcialmente y se lograron resultados relativamente exitosos para la temperatura ambiental, se reconoce la necesidad de ajustar y ampliar nuestros enfoques para mejorar las predicciones, especialmente en lo que respecta a las precipitaciones."
],
"metadata": {
"id": "9bb_FWiErCKe"
}
}
]
}