MA2001-1 Cálculo en Varias Variables

Profesor: Javier Ramírez Ganga.

Auxiliar: Anaís Muñoz P.

Resumen 7:Optimización sin restricción (Aplicación)

5 de enero 2025

Resumen

Punto crítico

Un punto $x_0 \in A$ se denomina **punto crítico** si f es diferenciable en x_0 y $\nabla f(x_0) = 0$ o no existe.

Clasificación de x_0 como mínimo o máximo local

- x_0 es un **mínimo local** \iff $H(x_0)$ es definida positiva.
- x_0 es un **máximo local** \iff $H(x_0)$ es definida negativa.

Determinación de la naturaleza de $H(x_0)$

Existen tres métodos principales para determinar si $H(x_0)$ es definida positiva o negativa:

1. Usando el determinante de H(x)

Sea $H(x_0)$ la matriz Hessiana de $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, con f de clase C^3 . Entonces:

- d > 0 y $\frac{\partial^2 f}{\partial x^2} > 0 \implies x_0$ es un **mínimo local**.
- d > 0 y $\frac{\partial^2 f}{\partial x^2} < 0 \implies x_0$ es un máximo local.
- $d < 0 \implies x_0$ es un punto silla.
- $d = 0 \implies$ No se puede concluir nada.

2. Usando valores propios de $H(x_0)$

- Si $\lambda_i > 0 \ \forall i \implies x_0$ es un **mínimo local**.
- Si $\lambda_i < 0 \ \forall i \implies x_0 \text{ es un máximo local.}$

3. Usando menores principales de $H(x_0)$

Sea la matriz Hessiana:

$$H = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Sean H_i los menores principales de $H(x_0)$, entonces:

- $\det(H_i(x_0)) > 0 \ \forall i \implies x_0 \text{ es un mínimo local.}$
- $(-1)^i \det(H_i(x_0)) > 0 \ \forall i \implies x_0 \text{ es un máximo local.}$