

Auxiliar 12: Series

Profesor: Juan José Maulen Auxiliar: Iñaki Escobar Cano

P1. Estudie las convergencias de las siguientes series:

1.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

3.
$$\sum_{n=1}^{\infty} \cos(n\pi) \arctan\left(\frac{1}{2n}\right)$$

2.
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{\sqrt[n]{n+1}}$$

$$4. \sum_{n=1}^{\infty} \frac{\sin(n^2)}{\sqrt{n^4+1}}$$

P2. Sea $\{a_n\}$ una sucesión de términos positivos. Demuestre que si la serie $\sum_{n=0}^{\infty} \frac{a_n}{1+a_n}$ converge, entonces $\sum_{n=0}^{\infty} a_n$ converge.

P3. Determine para qué valores de $\alpha \in \mathbb{R}$, la serie $\sum_{n=1}^{\infty} \frac{\sqrt{n!}}{n^{n\alpha}}$ converge.

P4. Demuestre que si $\sum a_n^2$ converge, entonces $\sum \frac{a_n^2}{1+a_n^2}$ converge.

Auxiliar 12: Series

Resumen:

Teoremas:

- 1. Si $\sum a_k$ converge, entonces $a_n \to 0$.
- 2. Sean $\sum a_k$ y $\sum b_k$ series convergentes y $\lambda \in \mathbb{R}$. Entonces:

$$\sum (a_k + b_k) = \sum a_k + \lambda \sum b_k$$

Y es convergente.

3. Una serie de términos no negativos converge si y sólo si las sumas parciales son acotadas superiormente.

Comparación: Sean (a_n) y (b_n) dos sucesiones no negativas, de manera que existe n_0 y $\alpha > 0$ tales que para todo $n \ge n_0$, $a_n \le \alpha b_n$. Se tiene que si $\sum b_k < \infty$, entonces $\sum a_k < \infty$.

Comparación por cociente: Sean (a_n) y (b_n) dos sucesiones positivas tales que $c = \lim \frac{a_n}{b_n}$ existe.

- 1. Si c = 0 y $\sum b_k$ converge, entonces $\sum a_k$ converge.
- 2. Si c > 0, $\sum b_k$ converge si y sólo si $\sum a_k$ converge.

Criterio del cociente: Sea (a_n) una sucesión tal que $r = \lim \left| \frac{a_{n+1}}{a_n} \right|$ existe.

- 1. Si r < 1, entonces $\sum a_k$ converge.
- 2. Si r > 1, entonces $\sum a_k$ diverge.
- 3. Si r = 1, no se sabe nada.

Criterio de la raíz n-ésima: Sea (a_n) una sucesión de términos no negativos tal que $r = \lim (a_n)^{1/n}$ existe.

- 1. Si r < 1, entonces $\sum a_k$ converge.
- 2. Si r > 1, entonces $\sum a_k$ diverge.
- 3. Si r = 1, no se sabe nada.

Criterio de Leibniz: Sea (a_n) una sucesión decreciente tal que $a_n \to 0$. Entonces, la serie $\sum (-1)^n a_n$ es convergente.

Auxiliar 12: Series