

Auxiliar 10: Cálculo de volúmenes

Profesor: Juan José Maulen Auxiliar: Iñaki Escobar Cano

P1. Considere la función f definida por:

$$f(x) = \frac{1 - x^2}{1 + x^2}$$

- Calcule el volumen generado al rotar la región formada por f, el eje OX y los ceros de f en torno al eje OX.
- Realice el mismo cálculo para una rotación respecto al eje OY.

P2. Una empresa quiere fabricar jaboneras con la forma que se muestra en la figura. Un ingeniero modela un corte de la jabonera con las siguientes funciones, $f(x) = x^m + \frac{1}{4}$ e $y = \frac{5}{4}$. Le solicitan que la base sea circular de radio 2cm y que su volumen sea $\frac{22}{5}\pi$. Calcular cual es el $m \in \mathbb{R}^+$ adecuado para obtener el volumen solicitado como sólido de rotación de las funciones propuestas.

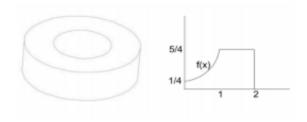


Figura 1: Caption

P3. Determine qué función f continua tal que $f(x) > 0 \ \forall x > 0$ satisface la siguiente propiedad: $\forall x \in [0, \infty)$ se define $R_x = \{(t, y) \in \mathbb{R}^2 : 0 \le t \le x; 0 \le y \le f(t)\}$ y al hacer rotar esta región en torno a los ejes OX y OY los volúmenes de revolución V_{OX} y V_{OY} son iguales.

P4. Encuentre el volumen del sólido que se genera al hacer girar, en torno al eje OX, la región acotada por la recta x - 2y = 0 y la parábola $y^2 = 4x$.

P5. Sea R el área formada por las funciones $y=x^2-1$ e y=x-1. Calcule el volumen generado al rotar R alrededor de la recta y=x-1.

Resumen:

[Rotación OX (Método del disco)] Dada la región R, el volumen generado al hacer rotar R en torno al eje OX será:

$$V = \int_{a}^{b} A(x) \, dx = \pi \int_{a}^{b} (f(x))^{2} \, dx$$

[Rotación OY (Método de la cáscara)] Dada la región R y agregando la condición $a,b \geq 0$, el volumen generado al hacer rotar R en torno al eje OY será:

$$V = \int_a^b A(x) dx = 2\pi \int_a^b x f(x) dx$$