

## Auxiliar 3: Derivadas

Profesor: Juan José Maulen Auxiliar: Iñaki Escobar Cano

**P1.** Considere la función  $f: \mathbf{R} \to \mathbf{R}$  definida por

$$f(x) = \begin{cases} \frac{2x^2}{x+a} & si \quad x < a \\ 2x - e^{x-a} & si \quad x \ge a \end{cases}$$

donde  $a \in \mathbf{R}$ . Estudie la deravilidad de f para los distintos valores de a.

**P2.** Demuestre que

$$2f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h}$$

**P3.** Considere las funciones  $f, g : \mathbf{R} \to \mathbf{R}$  derivables y que satisfacen:

- $\forall x \in \mathbf{R} \ g(x) = x f(x) + 1$
- $\forall x, y \in \mathbf{R} \ g(x+y) = g(x)g(y)$
- f(0) = 1

Muestre que  $\forall x \in \mathbf{R} \ g'(x) = g(x)$ . Muestre además que para todo  $n \in \mathbf{N}$ 

$$g(x) = xf^{(n)}(x) + nf^{(n-1)}(x)$$

donde  $f^{(n)}(x)$  es la derivada de f iteradana n veces.

 ${f P4.}$  Una compañía vende máquinas para realizar moños de regalo, a P pesos cada una, la función de demanda de estas máquinas está dada por:

$$P(q) = 300 - 0,02q$$

El costo de producción de cada máquina está dado por \$30 cada una y la compañía tiene un costo fijo de \$ 9000 pesos al año.

Hallar la cantidad de máquinas que debe producir la compañía para maximizar las ganancias en un año.

Auxiliar 3: Derivadas 1

## Resumen

**Derivada:** Diremos que una función  $f:(a,b)\to\mathbb{R}$  es derivable en el punto  $x\in(a,b)$ , si existe el límite:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Si f es derivable en x, entonces f es continua en x.

Si  $x \in (a,b)$  es mínimo local o máximo local de una función derivable  $f:(a,b) \to \mathbb{R},$  entonces f'(x)=0.

Auxiliar 3: Derivadas 2