MA5801 Análisis Convexo y Dualidad

Profesor: Alejandro Jofré **Auxiliar:** Benjamín Vera Vera

Auxiliar 4

Funciones convexas 1 de septiembre de 2024

P1. (Valor propio máximo) Consideremos el espacio $(S^n, \langle \cdot, \cdot \rangle)$ de las matrices simétricas con el producto interno

$$\langle A, B \rangle = \operatorname{tr}(AB)$$

Consideremos en este espacio la función $\lambda_{\max}: \mathcal{S}^n \to \mathbb{R}$ tal que $\lambda_{\max}(A)$ es el mayor valor propio de la matriz A. Pruebe que esta función es convexa.

P2. (Cuasi-convexidad) Sea X espacio vectorial y $S \subseteq X$ convexo. Decimos que $f: S \to \mathbb{R}$ es cuasiconvexa si

$$\forall x, y \in S, \lambda \in [0, 1] : f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}\$$

- a) Pruebe que si f es convexa, entonces f es cuasiconvexa.
- b) Encuentre
 - Una función cuasiconvexa que no sea convexa.
 - Una función cóncava que sea cuasiconvexa.
- c) Pruebe que f es cuasiconvexa ssi $\forall \lambda \in \mathbb{R} : \Gamma_{\lambda}(f)$ es convexo.
- d) Pruebe que si $(f_i)_{i\in I}$ es una familia de funciones cuasiconvexas, entonces $\sup_{i\in I} f_i$ es cuasiconvexas.
- **P3.** (Inf-convolución) Sea *X* evn.
 - *a*) **(Propuesto)** Pruebe que si $F \subseteq X \times \overline{\mathbb{R}}$ es un conjunto convexo, entonces $f: X \to \overline{\mathbb{R}}$ dada por

$$f(x) = \inf\{\mu : (x, \mu) \in F\}$$

Es una función convexa.

b) Dadas $f, g: X \to \overline{\mathbb{R}}$ convexas, definimos

$$(f\Box g)(x) = \inf\{f(x_1) + g(x_2) : x = x_1 + x_2\}$$

Pruebe que $dom(f \square g) = dom(f) + dom(g)$.

- c) Pruebe que $f \square g$ convexa.
- *d*) Pruebe que si $C \subseteq X$ es un conjunto convexo, entonces $d(\cdot, C)$ es una función convexa.