$$F(x_0, V(x_0), D_x V(x_0)) := \lambda V(x_0) - \mathcal{H}(x_0, D_x V(x_0)) = 0,$$

Definición 7.1 (Sub(Super)-solución de viscosidad). Una función $V(\cdot)$ continua en Ω se dirá sub-solución de viscosidad asociada a (HJB) si para todo $\varphi \in C^1(\Omega)$ y para todo $x_0 \in \Omega$ máximo local de $V(\cdot) - \varphi(\cdot)$, se tiene que:

$$\lambda V(x_0) - \mathcal{H}(x_0, D_x \varphi(x_0)) \le 0. \tag{7.2}$$

Análogamente, diremos que dicha función es una super-solución de viscosidad asociada a (HJB) si para todo $\varphi \in C^1(\Omega)$ y para todo $x_0 \in \Omega$ mínimo local de $V(\cdot) - \varphi(\cdot)$, se tiene que:

$$\lambda V(x_0) - \mathcal{H}(x_0, D_x \varphi(x_0)) \ge 0. \tag{7.3}$$

Definiremos, en base a la definición 7.1, lo que es una solución de viscosidad de (HJB).

Definición 7.2 (Solución de viscosidad). Una función $V(\cdot)$ continua en Ω se dirá solución de viscosidad de (HJB) si es sub-solución y súper-solución de viscosidad de (HJB).

$$F(x_0, V(x_0), D_x V(x_0)) := \lambda V(x_0) - \mathcal{H}(x_0, D_x V(x_0)) = 0,$$

Proposición 7.4. Se tienen las siguientes afirmaciones:

- a) Si $V \in C(\Omega)$ es solución viscosa de (HJB) en Ω , entonces es solución viscosa de (HJB) en todo abierto $\Omega_1 \subseteq \Omega$.
- b) Si $V \in C(\Omega)$ es solución clásica de (HJB), entonces V es solución viscosa de (HJB).
- c) Si $V \in C^1(\Omega)$ es solución viscosa de (HJB), entonces es solución clásica de (HJB).

$$\min_{u(\cdot)\in\mathcal{A},\,T\geq 0} J(u(\cdot),T) := \int_0^T e^{-\lambda t} \ell(x(t),u(t))dt \tag{P_{x_0}}$$

con $\lambda \geq 0$, $\mathcal{A} = \{u(\cdot) \in L^{\infty}([0,T]; \mathbb{R}^m) : u(t) \in U \,\forall t \in [0,T] \text{ c.t.p. }\}$, donde $U \subseteq \mathbb{R}^m$ es compacto, $x(\cdot) = x(\cdot; u, x_0)$ solución de (6.12) tal que se debe llegar al objetivo $x(T) \in \mathcal{T}$, con \mathcal{T} un conjunto cerrado. Notemos que para este problema el tiempo final es libre y es considerado una variable de decisión. Estas dos últimas condiciones pueden reescribirse como $e[x] \in B$ con $B = \mathbb{R}_+ \times \mathcal{T}$. Diremos que el par $(u(\cdot), T)$ es admisible si $t(u; x_0) > T$ y se cumplen las condiciones anteriores.

$$\dot{x}(t) = f(x(t), u(t))$$
 c.t.p. $t \ge 0$; $x(0) = x_0$.

$$V(x_0) := \operatorname{val}(P_{x_0}),$$

Principio de Programación Dinámica (PPD)

Teorema 6.10. Sean $x_0 \notin \mathcal{T}$ $y \tau \in (0, T(x_0))$, entonces se satisface:

$$V(x_0) = \inf_{u(\cdot) \in \mathcal{A}} \left\{ \int_0^\tau e^{-\lambda t} \ell(x(t; u, x_0), u(t)) dt + e^{-\lambda \tau} V(x(\tau; u, x_0)) \right\}$$

Lema 6.11. Sean $x_0 \notin \mathcal{T}$ $y \tau \in (0, T(x_0))$. Entonces

$$\tau \lambda V(x_0) = \inf_{u(\cdot)} \left\{ \int_0^\tau l(x_0, u(t)dt + V(x(\tau)) - V(x_0)) \right\} + o(\tau),$$

con $o(\cdot)$ uniforme con respecto al control.

Lema 6.5. Sea $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ una función localmente Lipschitz con respecto a las variables de estado uniforme con respecto al control, entonces

(i)
$$x(t; u(\cdot), x_0) = x_0 + O(\tau) \quad \forall \ t \in [0, \tau],$$

(ii)
$$x(\tau; u(\cdot), x_0) = x_0 + \int_0^\tau f(x_0, u(s)) ds + o(\tau)$$
,

donde en ambos casos $o(\cdot)$, $O(\cdot)$ son uniformes con respecto al control $u(\cdot)$.

Definición 6.12. Se denomina a la función $\mathcal{H}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ el (verdadero) Hamiltoniano del sistema, definida por

$$\mathcal{H}(x,p) := \min_{v \in U} H(x,v,p)$$

donde la función $H(x, v, p) = l(x, v) + p^{T} f(x, v)$ es conocido en este contexto como el pre-Hamiltoniano.

Teorema 6.13 (Hamilton-Jacobi-Bellman). Sea la función valor $V(\cdot)$ diferenciable en $\mathbb{R}^n \setminus \mathcal{T}$. Entonces

$$\lambda V(x_0) = \mathcal{H}(x_0, D_x V(x_0)) \quad \forall \ x_0 \notin \mathcal{T}.$$

Definición 6.12. Se denomina a la función $\mathcal{H}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ el (verdadero) Hamiltoniano del sistema, definida por

$$\mathcal{H}(x,p) := \min_{v \in U} H(x,v,p)$$

donde la función $H(x, v, p) = l(x, v) + p^{T} f(x, v)$ es conocido en este contexto como el pre-Hamiltoniano.

Teorema 6.13 (Hamilton-Jacobi-Bellman). Sea la función valor $V(\cdot)$ diferenciable en $\mathbb{R}^n \setminus \mathcal{T}$. Entonces

$$\lambda V(x_0) = \mathcal{H}(x_0, D_x V(x_0)) \quad \forall \ x_0 \notin \mathcal{T}.$$

Este resultado sigue siendo cierto si V(.) es solo continua En tal caso V(.) es solución de viscosidad de (HJB)

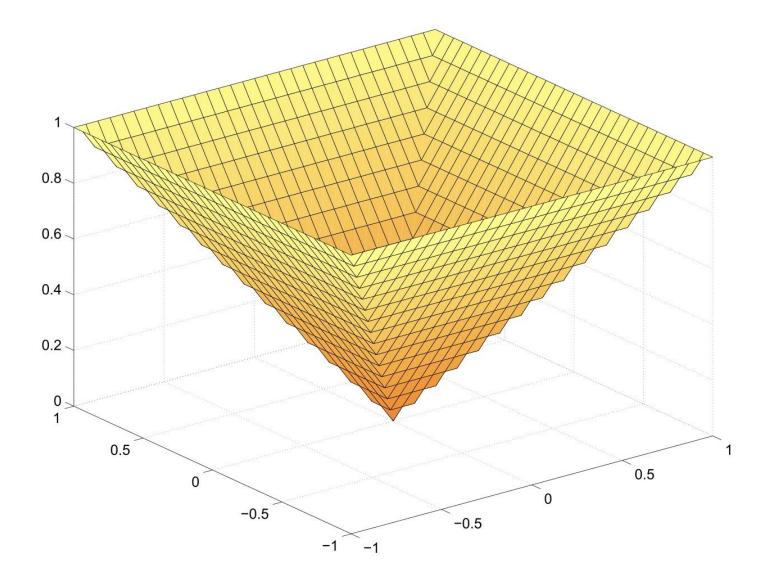


Figura 1: Solución obtenida $u(x) = |x|_{\infty}$

Definición 7.5. Sea $V \in C(\Omega)$. Se define el superdiferencial de V en el punto $x \in \Omega$, como el siguiente conjunto:

$$D_x^+ V(x) := \left\{ p \in \mathbb{R}^n : \limsup_{y \to x} \frac{V(y) - V(x) - p \cdot (y - x)}{\|y - x\|} \le 0 \right\}. \tag{7.5}$$

De manera análoga se define el subdiferencial de V en el punto $x \in \Omega$, como el siguiente conjunto:

$$D_x^- V(x) := \left\{ p \in \mathbb{R}^n : \limsup_{y \to x} \frac{V(y) - V(x) - p \cdot (y - x)}{\|y - x\|} \ge 0 \right\}.$$
 (7.6)

Lema 7.6. Sea $V \in C(\Omega)$ y sea $x \in \Omega$, entonces:

- 1. $p \in D_x^+V(x)$ si y solo si, existe una función $\varphi \in C^1(\Omega)$, tal que $D_x\varphi(x) = p$, y tal que la función $V \varphi$ posee un máximo local en x.
- 2. $p \in D_x^-V(x)$ si y solo si, existe una función $\varphi \in C^1(\Omega)$, tal que $D_x\varphi(x) = p$, y tal que la función $V \varphi$ posee un mínimo local en x.

Definición 7.7. Una función $V \in C(\Omega)$ es una sub-solución viscosa de (HJB) en Ω si

$$F(x, V(x), p) \le 0,$$

para todo $x \in \Omega$ y para todo $p \in D_x^+V(x)$.

Similar para super solución y D^-V(x)

Compatibilidad para soluciones generalizadas

Proposición 7.9. Se tiene las siguientes dos propiedades:

a) Si V es una solución viscosa de (HJB), entonces:

$$F(x, V(x), D_x V(x)) = 0,$$

para todo $x \in \Omega$ donde V sea diferenciable.

b) Si V es localmente Lipschitz continua, y es una solución viscosa de (HJB), entonces:

$$F(x, V(x), D_xV(x)) = 0$$
 ctp en Ω .