Resumen Auxiliar 4

Álgebra lineal - MA1102-1 - Primavera 2024

Ignacio Romero Orrego & Ignacio Dagach Abugattas 🛡 🕏

Definición (Espacio Vectorial) Dado un grupo abeliano (V, +) y un cuerpo $(K, +, \cdot)$, con una ley de composición externa. Diremos que V es un espacio vectorial sobre K si y sólo si la ley de composición externa satisface $\forall \lambda, \beta \in K, x, y \in V$:

(EV1)
$$(\lambda + \beta)x = \lambda x + \beta x$$
.

(EV2)
$$\lambda(x+y) = \lambda x + \lambda y$$
.
(EV3) $\lambda(\beta x) = (\lambda \beta)x$.

(EV3)
$$\lambda(\beta x) = (\lambda \beta)x$$
.

(EV4) 1 x = x, donde 1 es el neutro multiplicativo del cuerpo K.

En tal caso, los elementos de V se denominan vectores y los de K, escalares.

Definición (Subespacio vectorial V sobre un cuerpo K. Diremos que $U \neq \phi$, es un subespacio vectorial (s.e.v) de V si y sólo si:

- 1. $\forall u, v \in U, u + v \in U$
- 2. $\forall \lambda \in \mathbb{K}, \forall u \in U, \ \lambda u \in U$.

Es decir, ambas operaciones, la interna y la externa, son cerradas en U.

Proposición 2.1. Sea un espacio vectorial V sobre un cuerpo \mathbb{K} . $U \neq \phi$, es subespacio vectorial (s.e.v) de V si y sólo si:

$$\forall \lambda_1, \lambda_2 \in \mathbb{K}, \ \forall u_1, u_2 \in U, \ \lambda_1 u_1 + \lambda_2 u_2 \in U.$$

Dado un conjunto fijo, $v_1, ..., v_n \in V$ de vectores, definimos el conjunto de todas sus combinaciones lineales como sigue:

$$\langle \{v_1, ..., v_n\} \rangle = \{v \in V \mid v = \sum_{i=1}^n \lambda_i v_i, \lambda_i \in \mathbb{K} \}.$$

Proposición 2.2. Sean V e.v. y $v_1, ..., v_n \in V$. Entonces $\langle \{v_1, ..., v_n\} \rangle$ es un subespacio vectorial de V. Además es el s.e.v. más pequeño que contiene los vectores v_1, \ldots, v_n Es decir, si otro s.e.v U los contiene, entonces $\langle \{v_1, \dots, v_n\} \rangle \subseteq U$.

Por ende, $(\{v_1, ..., v_n\})$ es llamado subespacio vectorial generado por $\{v_i\}_{i=1}^n$.

Definición Sea $\{v_i\}_{i=1}^n \subseteq V$, diremos que estos vectores son linealmente dependientes $(\ell.d.)$ si y solo si: existen escalares $\{\lambda_1, ..., \lambda_n\}$, no todos nulos, tales que $\sum_{i=1}^n \lambda_i v_i = 0$. En caso contrario, es decir $\sum_{i=1}^n \lambda_i v_i = 0 \Rightarrow \lambda_i = 0 \ \forall i = 1, ..., n$, diremos que el conjunto de vectores $\{v_i\}_{i=1}^n$ es linealmente independiente $(\ell.i.)$.

Sea V un espacio vectorial sobre un cuerpo K. Diremos que los vectores $\{v_1, ..., v_n\} \subseteq V$, generan V si y sólo sí:

$$\langle \{v_1,...,v_n\} \rangle = V$$

o de manera equivalente:

$$\forall v \in V, \ \exists \{\lambda_i\}_{i=1}^n \subseteq \mathbb{K}, \quad \text{ tal que } \ v = \sum_{i=1}^n \lambda_i v_i.$$