Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA1101-2 Introducción al Álgebra

Pauta Auxiliar 10: Conjuntos numerables

Profesor: Iván Rapaport **Auxiliar:** Francisco Castro y Gary Vidal

En esta pauta no ahondaré mucho en demostrar biyectividad o igualdades de conjuntos, ya que no es realmente el foco de esta materia y es algo que ya se profundizó en auxiliares pasados. De cualquier modo pueden preguntarme si tienen dudas o no saben cómo demostrarlo.

P1. Pruebe que los siguientes conjuntos son numerables.

entonces que A tiene que ser numerable.

- a) $A = \{p^k \mid k \in \mathbb{Z}\}$, con $p \in \mathbb{N} \setminus \{0, 1\}$ fijo. **Pauta:** Podemos definir la función $f : \mathbb{Z} \to A$ como $f(k) = p^k$, veamos que la función es epiyectiva. Sea $p^m \in A$, basta tomar $m \in \mathbb{Z}$, tal que $f(m) = p^m$, por lo que la función es epiyectiva. Además como A es infinito, ya que por cada $k \in \mathbb{Z}$ tengo un p^k distinto, se tiene
- b) $A = \{(m,n) \in \mathbb{Z}^2 \mid m \leq n\}$ Pauta: Notamos que A es infinito, ya que si fijamos $m \in \mathbb{Z}$, tenemos que todos los enteros menores a m nos sirven para formar elementos en A, es decir, $(m,n) \in A$, $\forall n \leq m$. Como hay infinitos enteros menores a m tenemos que A es infinito. También notamos que $A \subseteq \mathbb{Z} \times \mathbb{Z}$, lo que nos dice que $|A| \leq |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}|$, ya que el producto cruz de numerables es numerable. Luego como A es infinito y de cardinal menor o igual al de \mathbb{N} , tiene que ser numerable.
- c) $A = \{n + m \mid n, m \in \mathbb{N}\}$ Pauta: Sea $A_n = \{n + m \mid m \in \mathbb{N}\}$, notamos que A_n es numerable, ya que $f : \mathbb{N} \to A$ definida como f(m) = n + m es biyección. Veamos que es inyectiva: Si $f(m_1) = f(m_2) \Longrightarrow n + m_1 = n + m_2 \Longrightarrow m_1 = m_2$. Concluimos inyectividad. Veamos la epiyectividad: Sea $(n + m) \in A_n$ basta tomar $m \in \mathbb{N}$ tal que f(m) = n + m. Entonces es epiyectiva. Como hay una biyección con los naturales, A_n es numerable. Ahora notemos que $A = \bigcup_{n \in \mathbb{N}} A_n$ (verifíquelo) y por lo tanto A es unión numerable de numerables y por lo tanto, numerable.
- **P2.** a) Sean A y B conjuntos tales que $A \cup B$ es numerable. Demuestre que A es numerable o B es numerable.
 - Pauta: Por contradicción supongamos que ninguno es numerable. Si alguno de los dos es infinito no numerable, digamos que A, tendríamos que como $|A| \leq |A \cup B|$, $A \cup B$ es no numerable, una contradicción. Por lo que como por hipótesis ninguno es numerable y ya vimos que tampoco pueden ser no numerables la única opción que queda es que ambos, A y B sean finitos, pero esto lleva a otra contradicción, pues unión de conjuntos finitos sigue siendo finita, por lo que $A \cup B$ no puede ser una unión de conjuntos finitos y numerable al mismo tiempo. Como cualquier escenario donde ni A ni B son numerables nos lleva a una contradicción, tenemos que necesariamente al menos uno de los dos debe ser numerable.
 - b) Sean C y D subconjuntos de \mathbb{R} , donde C es finito con $|C| \geq 2$ y D es numerable. Demuestre que el conjunto $E = \{c \cdot d : c \in C, d \in D\}$ es numerable.

Pauta: Como nos dicen que C es finito, de tamaño mayor o igual a 2. Llamemos k = |C| al tamaño de C. Podemos ordenar los elementos de C de la siguiente forma $C = \{c_1, \ldots, c_k\}$, a

partir de esto podemos definir el conjunto $C_j = \{c_j \cdot d : d \in D\}$, con $j \in \{1, \dots, k\}$. Cada C_j es numerable, ya que podemos definir una función $f: D \to C_j$ como $f(d) = c_j \cdot d$ la cual será biyectiva siempre y cuando $c_j \neq 0$ (verifíquelo). En particular es importante que $|C| \geq 2$, ya que si |C| = 1, se podría tener que $C = \{0\}$, y en ese caso E sería también el singleton 0. Como ya vimos que habrá al menos uno (en realidad habrá al menos k-1) de los C_j que sean numerables y que además tenemos que $E = \bigcup_{j \in \{1,\dots,k\}} C_j$, sigue que como E es unión finita de numerables, tiene entonces que ser numerable.

P3. Demuestre lo siguiente :

a) Demuestre que $C = \{A \subseteq \mathbb{N} \mid |A| \le 2\}$ es numerable.

Pauta: Notamos que los conjuntos en C, tienen cardinalidad 0, 1 o 2. Podemos separar a C de la forma $C = C_0 \cup C_1 \cup C_2$, donde C_i son los subconjuntos en \mathbb{N} de tamaño i. Partimos notando que $C_0 = \{\emptyset\}$, pues el vacío es el único conjunto de cardinal cero. Notamos también que C_1 son simplemente los singleton que contienen a un natural, en particular podemos definir la función $f: \mathbb{N} \to C_1$ como $f(n) = \{n\}$, la cual será biyectiva (verifíquelo). Luego tenemos que C_1 es numerable. Veamos qué pasa con C_2 .

 C_2 son los subconjuntos de $\mathbb N$ de tamaño 2. Podemos asociarlo entonces a $\mathbb N \times \mathbb N$ el cual sabemos es numerable. Definimos entonces la función $g:C_2\to\mathbb N\times\mathbb N$ como $g(A)=(\min(A),\max(A))$. Veamos que es inyectiva:

$$g(A) = g(B) \Longrightarrow (\min(A), \max(A)) = (\min(B), \max(B)) \Longrightarrow \min(A) = \min(B) \land \max(A) = \max(B)$$

Como A y B son conjuntos de tamaño 2, en particular los podemos describir como $A = \{\min(A), \max(A)\}$ y $B = \{\min(B), \max(B)\}$, por lo que la última implicancia dice que A = B. Sigue que g es inyectiva, es decir, $|C_2| \leq |\mathbb{N} \times \mathbb{N}|$. Veamos entonces que C_2 sea infinito para poder concluir.

Fijemos el 1 y creémonos infinitos conjuntos de tamaño 2. Definamoslos como

 $B_n = \{1, n\} \ \forall n \in \mathbb{N}_{>1}$, donde con $\mathbb{N}_{>1}$ me refiero a los naturales mayores a 1. Claramente cada $B_n \in C_2$, por lo que C_2 infinito. Concluimos que C_2 es numerable y entonces C es unión de un singleton y dos conjuntos numerables, lo que sigue siendo numerable.

b) Demuestre que $C = \{x \in [0, \infty) \mid \exists n \in \mathbb{N} \setminus \{0\}, x^n \in \mathbb{N}\}$ es numerable.

Pauta: Similar a desarrollos anteriores la idea es separar a C en una unión numerable de conjuntos numerables.

Definimos $C_n = \{x \in [0, \infty) \mid x^n \in \mathbb{N}\}\ , \forall n \in \mathbb{N} \setminus \{0\}$. La igualdad $C = \bigcup_{n \in \mathbb{N} \setminus \{0\}} C_n$ queda propuesta. Veamos que cada C_n es numerable:

Partimos con que C_n es infinito, ya que siempre se tendrá que $\mathbb{N} \subseteq C_n$, falta ver que es a lo más numerable. Para eso nos definimos la función $f: C_n \to \mathbb{N}$ como $f(x) = x^n$, verifiquemos que la función en inyectiva.

$$f(x) = f(y) \Longrightarrow x^n = y^n$$
. Como $n \neq 0$ tenemos que $x = y$.

Luego f es inyectiva y concluimos que $|C_n| \leq |\mathbb{N}|$. Por lo tanto cada C_n es numerable y entonces C es numerable al ser unión numerable de numerables.

c) [**Propuesto**] Demuestre que $C = \{x \in \mathbb{R} \mid \exists k \in \mathbb{Z}, \exists i \in \mathbb{N}, x = \frac{k}{3^i}\}$ es numerable.

P4. Demuestre lo siguiente:

a) Sea A un conjunto numerable. Se define $F = \{f : \{1, 2, 3\} \to A \mid f \text{ es función}\}$. Muestre que $|F| = |A \times A \times A|$. Concluya que F es numerable.

Pauta: Aprovechando que el dominio de cada f es pequeño (de tamaño 3), podemos definirnos

una función que nos ayude a demostrar la numerabilidad. Sea $g: F \to A \times A \times A$ definida como g(f) = (f(1), f(2), f(3)), veremos que es biyectiva.

Partiendo por la inyectividad, sean $f, h \in F$

$$g(f) = g(h) \Longrightarrow (f(1), f(2), f(3)) = (h(1), h(2), h(3)) \Longrightarrow f = h$$

Donde la última implicancia se tiene porque si para dos función cualquiera ϕ y ρ se tiene que coinciden en dominio y codominio, y que $\forall x \in \text{Dom}, \phi(x) = \rho(x)$, entonces $\phi = \rho$. Luego g es inyectiva. Veamos su epiyectividad:

Sea $(a_1, a_2, a_3) \in A \times A \times A$, basta con definir la función $f : \{1, 2, 3\} \to A$ como $f(1) = a_1, f(2) = a_2, f(3) = a_3$, en cuyo caso tendremos que $g(f) = (a_1, a_2, a_3)$.

Como g es biyectiva, se tiene que $|F| = |A \times A \times A|$ y como A es numerable, $A \times A \times A$ también lo es, lo que implica que F es numerable.

b) Sea A un conjunto y $f: A \to \mathbb{N}$. Demuestre que si $\forall n \in \mathbb{N}, f^{-1}(\{n\})$ es numerable, entonces A es numerable.

Pauta: Como cada $f^{-1}(\{n\})$ es numerable, entonces $\bigcup_{n\in\mathbb{N}} f^{-1}(\{n\})$ es numerable (unión numerable de numerables), y como la preimagen se porta bien con la unión esto no es más que $f^{-1}(\bigcup_{n\in\mathbb{N}}\{n\})=f^{-1}(\mathbb{N})=A$.

P5. a) Pruebe que el conjunto de todas las rectas no verticales que pasan por el punto (0,1) y corta al eje X en una coordenada racional, es numerable.

Pauta: Sea R el conjunto de todas las rectas no verticales que pasan por (0,1) y cortan el eje X en un punto racional, notemos que cada recta de este estilo pasa por (0,1) y por (q,0), donde q es un racional distinto de cero (pues no son verticales), en particular cada recta vendrá dada por la función $f_q(x) = \frac{-x}{q} + 1$. En otras palabras $R = \{f_q : q \in \mathbb{Q} \setminus \{0\}\}$.

Nos podemos entonces definir la función que recibe a un racional y que entrega la recta y así probar la numerabilidad.

Sea $g: \mathbb{Q}\setminus\{0\} \to R$, definida como $g(q)=f_q$, veamos que es inyectiva. Sean $q,p\in\mathbb{Q}\setminus\{0\}$:

$$g(q)=g(p)\Longrightarrow f_q=f_p\Longrightarrow f_q(-1)=f_p(-1)\Longrightarrow \frac{1}{q}=\frac{1}{p}\Longrightarrow q=p$$

Como es inyectiva veamos que también es epiyectiva. Sea $f_q \in R$, basta tomar el mismo $q \in \mathbb{Q} \setminus \{0\}$ tal que $g(q) = f_q$. Se concluye entonces que g es biyectiva y por lo tanto R es numerable.

b) Pruebe que el conjunto de todas las rectas no verticales, que no pasan por el origen y que cortan a los ejes X e Y en coordenadas racionales, es numerable.

Pauta: Esto es lo mismo de antes, pero en vez de pasar por (0,1), pasan por (0,p), con p algún racional distinto de 0 (no pasan por el origen).

Definimos R_p como las rectas no verticales, que pasan por (0,p) y que cortan al eje X en una coordenada racional. Ahora las rectas que pasen por un racional q vendrán dadas por $f_q^p = \frac{-p}{q}x + p$.

Notamos que similar a la parte anterior $R_p = \{f_q^p : q \in \mathbb{Q} \setminus \{0\}\}$. El cual será numerable por el mismo argumento, es decir, $g : \mathbb{Q} \setminus \{0\} \to R_p$, definida como $g(q) = f_q^p$, es biyectiva. Luego el conjunto que nos piden no es más que $\bigcup_{p \in \mathbb{Q}} R_p$ lo que es una unión numerable (está indexada sobre los racionales, un conjunto numerable) de numerables y por lo tanto numerable.