Respuestas a las preguntas de la lectura 13

- 1. La distancia del punto al origen en \mathbb{R}^2 .
- 2. Porque si tuviera, tendría que ser r=0 pero serviría cualquier θ y no se tendría una representación única. El argumento de z=(a,b) es un número θ entre 0 y 2π tal que $\tan(\theta)=\frac{b}{a}$ si $a\neq 0$ (si $a=0, arg(z)=\pm\frac{\pi}{2}$). Con esa igualdad se puede calcular, considerando el cuadrante en el que se encuentra el complejo.
- 3. Para z=0 no se tienen coordenadas polares y un complejo es 0 si sus partes real e imaginaria lo son.
- 4. Con la relación $\tan(\theta) = \frac{b}{a}$ como se comentó en la pregunta 2. Si tenemos (r,θ) , el complejo es $(a,b) = (r\cos(\theta),r\sin(\theta)) = r\cos(\theta) + ir\sin(\theta)$. Para $(r,\theta) = (2,3)$ habría que ubicarse a 2 unidades del origen en el eje OX positivo y luego rotar ese punto en 3 radianes antihorario conrespecto al origen (quedaría un poco antes de llegar al punto $(-2,\pi)$ en el segundo cuadrante).
- 5. Como se dijo antes, |z| es la distancia al origen y $\arg(z)$ el ángulo que se forma entre el eje OX y el segmento que une z con O, luego se ubica el punto en el eje OX a |z| unidades de O y luego se rota $\arg(z)$ antihorario en torno a O.
- 6. Si se factoriza por el módulo se obtiene $z = a + ib = |z| \left(\frac{a}{|z|} + i\frac{b}{|z|}\right)$, donde $\left(\frac{a}{|z|}\right)^2 + \left(\frac{b}{|z|}\right)^2 = 1$, es decir, el punto $\left(\frac{a}{|z|}, \frac{b}{|z|}\right)$ está en la circunferencia unitaria y por lo tanto $\left(\frac{a}{|z|}, \frac{b}{|z|}\right) = (\cos(\theta), \sin(\theta))$, para algún $\theta \in [0, 2\pi)$. La conclusión es que si uno factoriza, obtiene un punto de la forma $(\cos(\theta), \sin(\theta))$ y podría obtener fácilmente θ si se obtienen números conocidos como en el ejemplo.
- 7. Se usa la notación por que tiene las propiedades del producto de potencias con igual base. La base e es coherente con el desarrollo en serie de potencias de e^x , si se reemplaza x por ix y se compara la serie con la de $\cos(x) + i \sin(x)$. Esto lo verán al final del curso de cálculo diferencial.
- 8. $e^{i\pi} \cdot e^{i\frac{3\pi}{2}} = e^{i\frac{5\pi}{2}}$
- 9. Se verifica que como $e^{i2\pi} = \cos(2\pi) + i \operatorname{sen}(2\pi) = 1$, entonces $e^{i\frac{5\pi}{2}} = e^{i(\frac{\pi}{2} + 2\pi)} = e^{i\frac{\pi}{2}}$ y se tiene la igualdad módulo 2π .
- 10. Como se argumentó en la pregunta anterior.
- 11. Si $\omega = z^{-1}$ se tiene que $0 = \arg(1) = \arg(z\omega) = \arg(z) + \arg(z^{-1}) \mod 2\pi$ y por lo tanto, $\arg(z^{-1}) = -\arg(z) \mod 2\pi$. Con eso se puede iterar para k < 0 en (I).
- 12. Como $\bar{z}z=|z|^2\in\mathbb{R}$, entonces $0=\arg(\bar{z}z)=\arg(\bar{z})+\arg(z)\bmod 2\pi$ y por lo tanto $\arg(\bar{z})=-\arg(z)+2\pi$ pues $-\arg(z)\in(-2\pi,0]$. Por otra parte, como $z^{-1}=\frac{\bar{z}}{|z|^2}$ se tiene que $\arg(z^{-1})=\arg(\bar{z})$ y $|z^{-1}|=\frac{1}{|z|}$. Luego, la forma polar de z^{-1} es $z^{-1}=\frac{1}{|z|}e^{i\arg(\bar{z})}=\frac{1}{|z|}e^{i(2\pi-\arg(z))}=\frac{1}{|z|}e^{-i\arg(z)}$.
- 13. Se obtiene de $i^n = e^{i\frac{n\pi}{2}}$.

- 14. Según la formula las raíces cuadradas de 1 son $\omega_k = \sqrt{|1|}e^{i(\arg(1)+2k\pi)/2} = e^{ik\pi}, k = 0, 1$. Para k = 0 obtenemos 1 y para k = 1 obtenemos -1.
- 15. Para k = n se tiene que $e^{i\theta_0/n} = e^{i\theta_0/n + 2\pi}$ pues $e^{i2\pi} = 1$ y lo mismo ocurre con k = n + m, se obtiene $\omega_k = \omega_m$. Son distintas pues los argumentos son todos distintos pues son distintos números en $[0, 2\pi)$.
- 16. Basta notar que $r_0 = 1$, $\theta_0 = 0$, y que $e^{i\frac{2k\pi}{n}} = \left(e^{i\frac{2\pi}{n}}\right)^k$.