Resumen Cálculo Diferencial e Integral

Patricio Felmer

Matías Carvajal Nicolás Fuenzalida

12 Integrales Impropias

12.1 Introducción

El propósito de esta sección, es extender la noción de integral al caso de intervalos no acotados, y al caso de funciones no acotadas sobre un intervalo acotado.

Definición 1 (Integral Impropia de Primera Especie (Intervalo no Acotado)). Sea $f:[a,\infty)\to\mathbb{R}$ diremos que f es integrable en $[a,\infty)$ si se cumple que:

- i) $\forall x \in (a, \infty), f$ es integrable en [a, x] y además
- ii) Existe el límite definido por

$$\lim_{x \to \infty} \int_{a}^{x} f$$

Observación 1. Si una función es integrable en el intervalo $[a,\infty)$ entonces al valor del límite se le llama integral impropia de primera especie de f y se le denota

$$\int_{a}^{\infty} f = \lim_{x \to \infty} \int_{a}^{x} f.$$

- 2. Si el límite $\lim_{x\to\infty}\int_a^x f$ existe, se dice que la integral impropia es convergente y si no existe se dice que la integral impropia es divergente.
- 3. De una manera análoga se definen las integrales de primera especie de la siguiente forma

i)
$$\int_{-\infty}^{b} f = \lim_{x \to -\infty} \int_{x}^{b} f$$

ii) $\int_{-\infty}^{\infty} f = \int_{-\infty}^{c} f + \int_{c}^{\infty} f \text{ donde la constante } c \in \mathbb{R}$ puede ser cualquiera. En esta última definición es importante que las dos integrales de la derecha existan o que sean convergentes. Si alguna de estas integrales no converge, entonces la integral de la izquierda tampoco.

Definición 2 (Integral Impropia de Segunda Especie (Funciones no Acotadas)). Sea $f:[a,b)\to\mathbb{R}$ una función no acotada, diremos que f es integrable en [a,b) ssi:

- i) $\forall x \in (a, b), f$ es integrable en [a, x].
- ii) El límite $\lim_{x\to b^-} \int_a^x f$ existe.

Definición 3 (Integrales Impropias de Tercera Especie o Mixtas). Son las que se obtienen combinando integrales impropias de 1° y 2° especie. Por ejemplo

$$\int_{-1}^{\infty} \frac{dx}{x^2} = \int_{-1}^{0^{-}} \frac{dx}{x^2} + \int_{0^{+}}^{1} \frac{dx}{x^2} + \int_{1}^{\infty} \frac{dx}{x^2}.$$

Este tipo de integral será convergente ssi cada una de sus componentes es una integral convergente.

12.2 Algunos criterios de convergencia para integrales impropias

Teorema 1 (Criterio de Comparación). Sean f y g funciones continuas en $[a, \infty)$ tales que:

$$(\exists b \ge a)(\forall x \ge b) \quad 0 \le f(x) \le g(x)$$

entonces:

1

Si
$$\int_a^\infty g$$
 converge $\Longrightarrow \int_a^\infty f$ converge.
Recíprocamente, si $\int_a^\infty f$ diverge $\Longrightarrow \int_a^\infty g$ diverge.

Teorema 2 (Criterio del cociente de funciones). Sean f y g funciones continuas en $[a,\infty)$ y no negativas en $[b,\infty)$, donde $b \geq a$ y tales que:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0$$

Entonces las integrales impropias $\int_a^\infty f$ y $\int_a^\infty g$ son ambas convergentes o ambas divergentes.

12.3 Convergencia absoluta

Definición 4 (Convergencia absoluta). Sea $f:[a,\infty)\to\mathbb{R}$, diremos que $\int_a^\infty f$ es absolutamente convergente si $\int_a^\infty |f|$ converge.

Teorema 3 Sea $f:[a,\infty)\to\mathbb{R}$, se tiene que

$$\int_a^\infty f \text{ converge absolutamente } \Longrightarrow \int_a^\infty f \text{ converge.}$$