Resumen Cálculo Diferencial e Integral

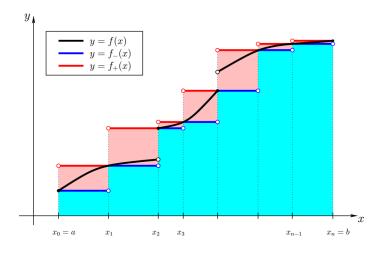
Patricio Felmer

Matías Carvajal Nicolás Fuenzalida

8 Funciones Riemann Integrables

En esta sección veremos cómo la condición de Riemann permite demostrar que tanto las funciones monótonas en [a,b] (no necesariamente continuas) y las funciones continuas en [a,b], son ambas clases de funciones Riemann integrables.

Teorema 1 Toda función monótona en [a, b] es Riemann integrable en [a, b].



Teorema 2 Toda función continua en [a, b] es Riemann integrable en [a, b].

Observación En la demostración de ambos teoremas, se han usado las funciones escalonadas definidas en los intervalos (x_{i-1}, x_i) por:

$$f_{-}(x) = m_i(f) = \inf_{x \in [x_{i-1}, x_i]} f(x) \text{ si } x \in (x_{i-1}, x_i)$$

$$f_{+}(x) = M_{i}(f) = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$$
 si $x \in (x_{i-1}, x_{i})$

e iguales a $f(x_i)$ en cada punto de la partición. Con ellas se tiene que

$$\int_{a}^{b} f_{-} = \sum_{i=1}^{n} m_{i}(f) \Delta x_{i}$$

$$\int_{a}^{b} f_{+} = \sum_{i=1}^{n} M_{i}(f) \Delta x_{i}$$

que suelen llamarse suma inferior y suma superior de f asociadas a P, y se denotan respectivamente s(f, P) y S(f, P). Pues bien, en ambos casos (funciones monótonas y/o continuas) exis-

te $\delta > 0$ de modo que si $|P| \leq \delta$ se obtiene $S(f,P) - s(f,P) \leq \varepsilon$. Estas sumas son interesantes, pero no tan fáciles de calcular, debido a las definiciones de m_i y M_i . Por este motivo muchas veces se suele usar la suma obtenida por la integración de una función escalonada intermediaria, la cual se define en cada intervalo (x_{i-1}, x_i) por:

$$f_*(x) = f(s_i) \text{ si } x \in (x_{i-1}, x_i)$$

donde los reales s_i son arbitrarios del intervalo $[x_{i-1}, x_i]$. Claramente en este caso:

$$s(f, P) \le \int_a^b f_* = \sum_{i=1}^n f(s_i) \Delta x_i \le S(f, P)$$

La sumatoria intermedia se conoce como suma de Riemann. Como la integral de f también satisface la desigualdad

$$s(f,P) \le \int_a^b f \le S(f,P)$$

se concluye que:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall P \text{ partición de } [a, b], |P| \leq \delta$

$$\implies \left| \sum_{i=1}^{n} f(s_i) \Delta x_i - \int_a^b f \right| \le \varepsilon$$

Esta propiedad es una de las motivaciones de la notación de Leibniz, entendiendo que la integral es el límite de una sumatoria, es decir:

$$\int_{a}^{b} f(x)dx = \lim_{|P| \to 0} \sum_{i=1}^{n} f(s_i) \Delta x_i.$$

En este límite la variable que tiende a cero es la norma de la partición $P(|P| \to 0)$ y se calcula sobre las sumas de Riemann. Esto explica el uso del signo integral (especie de S alargada, como límite del signo sumatoria) y de la notación de Leibniz, donde el término denotado por f(x)dx representaría al sumando $f(s_i)\Delta x_i$ en el proceso de límite.

8.1 Propiedades de la Integral

Teorema 3 (Linealidad). Si f,g son dos funciones Riemann integrables en el mismo intervalo [a,b]. Entonces, para todo $\alpha,\beta\in\mathbb{R}$ la función $\alpha f+\beta g$ es una función Riemann integrable en [a,b] y se tiene

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

Teorema 4 (Aditividad horizontal) Si f es una función definida y acotada en [a,b] entonces f es Riemann integrable en [a,b] si y solamente si, para cada $c \in (a,b)$ arbitrario se tiene que f es Riemann integrable en ambos intervalos [a,c] y [c,b]. En tal caso, se tiene que

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Teorema 5 (Monotonía). La integral de una función Riemann integrable positiva en el intervalo [a,b] es positiva; en consecuencia, si f,g son funciones Riemann integrables en [a,b] tales que $f(x) \leq g(x)$ para todo $x \in [a,b]$, se tiene que

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

Teorema 6 (Desigualdad triangular). Si f es una función Riemann integrable en [a,b], entonces |f| es Riemann integrable en [a,b] y se tiene que

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|.$$

En consecuencia, si $|f(x)| \leq M$ para todo $x \in [a,b],$ se cumple

$$\left| \int_{a}^{b} f \right| \le M(b-a).$$

8.2 Integral de a a b con $a \ge b$

Definición 1 Sea f una función integrable en un intervalo [p,q]. Si $a,b \in [p,q]$ son tales que $a \geq b$ entonces se define la integral de a a b del modo siguiente:

$$\int_{a}^{b} f = -\int_{b}^{a} f \text{ si } a > b, \text{ o}$$

$$\int_{a}^{b} f = 0 \text{ si } a = b.$$

Proposición 1 Sean f y g integrales en [p,q], y sean $a,b \in [p,q]$ entonces:

1)
$$\int_{a}^{b} \alpha = \alpha(b-a), \forall \alpha \in \mathbb{R}.$$

2)
$$\int_a^b f = \int_a^c f + \int_c^b f, \forall c \in [p, q].$$

3)
$$\int_{a}^{b} \alpha f = \alpha \int_{a}^{b} f, \forall \alpha \in \mathbb{R}.$$

4)
$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$
.

5)
$$0 \le f(x) \le g(x), \forall x \in [p, q] \Longrightarrow \left| \int_a^b f \right| \le \left| \int_a^b g \right|.$$

6)
$$\left| \int_{a}^{b} f \right| \leq \left| \int_{a}^{b} |f| \right|$$
.