Resumen Cálculo Diferencial e Integral

Patricio Felmer

Matías Carvajal Nicolás Fuenzalida

4 Derivadas: Los teoremas

4.1 Máximos y mínimos: la regla de Fermat

Definición 1 (Puntos extremos de una función). Sean $f:A\subseteq\mathbb{R}\to\mathbb{R}$ una función, donde A es su dominio y $\bar{x}\in A$.

• Diremos que \bar{x} es un punto mínimo global de f, si $f(\bar{x}) \leq f(x)$ para todo $x \in A$.

De manera análoga se define un punto $m\'{a}ximo~global$ de f.

• Diremos que \bar{x} es un punto *mínimo local* de f, si $\exists \delta > 0$ tal que

$$f(\bar{x}) \le f(x) \quad \forall x \in A \cap [\bar{x} - \delta, \bar{x} + \delta].$$

De manera análoga se define un punto $m\'{a}ximo~local$ de f.

Si se cumple cualquiera de los 4 casos, diremos que \bar{x} es un punto extremo de la función f.

Teorema 1 Si $\bar{x} \in A$ es un punto extremo de una función $f: A \subseteq \mathbb{R} \to \mathbb{R}$, y f es derivable en \bar{x} entonces $f'(\bar{x}) = 0$.

4.2 El teorema del valor medio

Teorema 2 (TVM). Sean $f, g : [a, b] \to \mathbb{R}$ funciones continuas en [a, b] y derivables en (a, b). Entonces existe $\xi \in (a, b)$ tal que

$$[f(b) - f(a)]g'(\xi) = [g(b) - g(a)]f'(\xi).$$

En particular, si q(x) = x se tiene

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

4.3 Algunas aplicaciones de la derivada

Una primera consecuencia directa del TVM es la llamada regla de l'Hôpital para el cálculo de límites de la forma 0/0 o ∞/∞ .

Teorema 3 (Regla de l'Hôpital). Sean $f, g: (a, b) \to \mathbb{R}$ deriva-

bles en (a, b), tales que

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = L$$

con L=0 o $L=\infty$, y $g'(x)\neq 0$ para todo $x\in (a,b)$. Entonces

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$

siempre que este último límite exista.

Observación La regla de l'Hôpital también se aplica para límites con $x\to a^-,\, x\to a,$ e incluso para límites con $x\to\infty$ de la misma forma.

4.4 Derivadas y monotonía

Teorema 4 Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Si $f'(x) \geq 0$ (resp. ≤ 0) para todo $x \in (a,b)$, entonces f es creciente (resp. decreciente) en [a,b]. Si la desigualdad es estricta, la monotonía es igualmente estricta.

4.5 Derivadas y convexidad

Definición 2 Una función $f:[a,b]\to\mathbb{R}$ se dice convexa si las rectas secantes al gráfico de la función quedan por encima del gráfico, vale decir

$$f(z) \le f(x) + \left\lceil \frac{f(y) - f(x)}{y - x} \right\rceil (z - x) \quad \forall x < z < y$$

o también

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z}$$

Teorema 5 Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Entonces f es convexa en [a,b] ssi f' es creciente en (a,b).

Observación Análogamente, $f:[a,b]\to\mathbb{R}$ se dice cóncava si las rectas secantes quedan por debajo del gráfico de la función. Esto equivale a la convexidad de -f y por lo tanto, en el caso diferenciable, a que f' sea decreciente.