Resumen Cálculo Diferencial e Integral

Patricio Felmer

Matías Carvajal Nicolás Fuenzalida

3 Derivadas

3.1 Funciones derivables

Definición 1 Diremos que $f:(a,b)\to\mathbb{R}$ es derivable en el punto $\bar{x}\in(a,b)$, si existe el límite

$$\lim_{x \to \bar{x}} \frac{f(x) - f(\bar{x})}{x - \bar{x}}$$

Dicho límite se denota $f'(\bar{x})$ o bien $\frac{df}{dx}(\bar{x})$ y se llama derivada de f en \bar{x} .

Observación De manera equivalente, f es derivable en \bar{x} si existe una pendiente $m=f'(\bar{x})$ tal que la función afín $a(x)=f(\bar{x})+f'(x)(x-\bar{x})$ es una aproximación de f en el sentido que

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + o(x - \bar{x})$$

con $\lim_{h\to 0}\frac{o(h)}{h}=0$. Usando el cambio de variable $h=x-\bar x,$ lo anterior puede escribirse equivalentemente

$$f'(\bar{x}) = \lim_{h \to 0} \frac{f(\bar{x} + h) - f(\bar{x})}{h}$$

o también

$$f(\bar{x} + h) = f(\bar{x}) + f'(\bar{x})h + o(h).$$

Notemos que si f es derivable en \bar{x} entonces es continua en dicho punto.

Observación Algunas derivadas conocidas:

f(x) = a + bx tiene derivada $f'(\bar{x}) = b, \ \forall \bar{x} \in \mathbb{R}.$

 $f(x) = x^2$ tiene derivada $f'(\bar{x}) = 2\bar{x}, \ \forall \bar{x} \in \mathbb{R}$.

 $f(x) = \operatorname{sen}(x)$ tiene derivada $f'(\bar{x}) = \cos(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

 $f(x) = \cos(x)$ tiene derivada $f'(\bar{x}) = -\sin(\bar{x}), \ \forall \bar{x} \in \mathbb{R}.$

 $f(x) = \exp(x)$ tiene derivada $f'(\bar{x}) = \exp(\bar{x}), \ \forall \bar{x} \in \mathbb{R}.$

 $f(x) = \ln(x)$ tiene derivada $f'(\bar{x}) = \frac{1}{\bar{x}}, \ \forall \bar{x} \in \mathbb{R}^+.$

3.2 Reglas de cálculo de derivadas

Proposición 1 Sean $f,g:(a,b)\to\mathbb{R}$ derivables en $\bar{x}\in(a,b).$ Entonces:

a) f + g es derivable en \bar{x} con

$$(f+g)'(\bar{x}) = f'(\bar{x}) + g'(\bar{x})$$

b) fg es derivable en \bar{x} con

$$(fg)'(\bar{x}) = f'(\bar{x})g(\bar{x}) + f(\bar{x})g'(\bar{x})$$

c) Si $g(\bar{x}) \neq 0$ entonces f/g es derivable en \bar{x} con

$$\left(\frac{f}{g}\right)'(\bar{x}) = \frac{f'(\bar{x})g(\bar{x}) - f(\bar{x})g'(\bar{x})}{g(\bar{x})^2}$$

Observación Más derivadas conocidas:

 $f_n(x) = x^n$ tiene derivada $f'_n(\bar{x}) = n\bar{x}^{n-1}, \ \forall \bar{x} \in \mathbb{R}.$

 $f_n(x) = x^{-n}$ tiene derivada $f'_n(\bar{x}) = -n\bar{x}^{-n-1}, \ \forall \bar{x} \in \mathbb{R} \setminus \{0\}.$

 $p(x) = a_0 + a_1 x + \dots + a_n x^n$ tiene derivada

 $p'(\bar{x}) = a_1 + 2a_2\bar{x} + 3a_3\bar{x}^2 + \dots + na_n\bar{x}^{n-1}, \ \forall \bar{x} \in \mathbb{R}.$

 $f(x) = \tan(x)$ tiene derivada

 $f'(\bar{x}) = \sec^2(\bar{x}), \ \forall \bar{x} \in \mathbb{R} \setminus \{\pi/2 + k\pi : k \in \mathbb{Z}\}.$

 $f(x) = \cot(x)$ tiene derivada

 $f'(\bar{x}) = -\csc^2(\bar{x}), \ \forall \bar{x} \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$

 $f(x) = \operatorname{senh}(x)$ tiene derivada $f'(\bar{x}) = \cosh(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

 $f(x) = \cosh(x)$ tiene derivada $f'(\bar{x}) = \sinh(\bar{x}), \ \forall \bar{x} \in \mathbb{R}$.

 $f(x) = \tanh(x)$ tiene derivada $f'(\bar{x}) = \frac{1}{\cosh^2(\bar{x})}, \ \forall \bar{x} \in \mathbb{R}.$

 $f(x) = a^x$ tiene derivada $f'(\bar{x}) = \ln(a)a^{\bar{x}}, \ \forall \bar{x} \in \mathbb{R}, \forall a > 0.$

Teorema 1 (Regla de la cadena). Sea $f:(a,b)\to(c,d)$ derivable en $\bar{x}\in(a,b)$ y $g:(c,d)\to\mathbb{R}$ derivable en $\bar{y}=f(\bar{x})\in(c,d)$. Entonces $g\circ f$ es derivable en \bar{x} con

$$(g \circ f)'(\bar{x}) = g'(f(\bar{x})) \cdot f'(\bar{x})$$

Teorema 2 (Derivadas de funciones inversas). Sea $f:(a,b)\to(c,d)$ biyectiva y continua. Si f es derivable en $\bar x\in(a,b)$ con $f'(\bar x)\neq 0$, entonces la función inversa $f^{-1}:(c,d)\to(a,b)$ es derivable en $\bar y=f(\bar x)$ con

$$(f^{-1})'(\bar{y}) = \frac{1}{f'(\bar{x})} = \frac{1}{f'(f^{-1}(\bar{y}))}$$

Observación Más derivadas conocidas:

 $f(x) = \arcsin(x)$ tiene derivada $f'(\bar{x}) = \frac{1}{\sqrt{1 - \bar{x}^2}}, \ \forall \bar{x} \in (-1, 1).$

$$f(x) = \arctan(x)$$
 tiene derivada $f'(\bar{x}) = \frac{1}{1 + \bar{x}^2}, \ \forall \bar{x} \in \mathbb{R}.$