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ABSTRACT

A linear theory of orographic precipitation is developed, including airflow dynamics, condensed water ad-
vection, and downslope evaporation. The formulation extends the widely used ‘‘upslope’’ model. Vertically
integrated steady-state governing equations for condensed water are solved using Fourier transform techniques.
Closed form expressions are derived for special cases. For more general cases, the precipitation field is computed
quickly by multiplying the terrain transform by a wavenumber-dependent transfer function.

Five length scales are included in the model: mountain width, a buoyancy wave scale, the moist layer depth,
and two condensed water advection distances. The efficiency of precipitation in the model is sensitive to the
decay of the forced ascent through the moist layer and to the advection of condensed water downwind into the
region of descent. The strong influence of horizontal scale on precipitation pattern and amount predicted by the
model is discussed. The model is illustrated by applying it to the Olympic Mountains in Washington State.

1. Introduction

The distribution of precipitation in complex terrain
has usually been estimated using one of two methods:
the interpolation of rain gauge station data and the so-
called upslope method. In the former method, sparse
station data are interpolated using inverse distance
weighting or spline fitting, sometimes including an al-
titude or aspect correction (Daly et al. 1994; Hutchinson
1998). No influence of horizontal scale is included. In
the latter method, the terrain slope and wind speed are
used to estimate the condensation rate above the terrain
(Collier 1975; Rhea 1978; Smith 1979; Neiman et al.
2002). Precipitation is computed from the assumption
that condensed water falls immediately to the ground.
Again, physical scale is not taken into account.

Several quasi-analytic models have included scale-
dependent processes. Hobbs et al. (1973) and Bader and
Roach (1977) have described raindrop/snow fall speeds
and washout of cloud water. More recently, Alpert and
Shafir (1989), Sinclair (1994), and Smith (2003a, here-
after S03) have included the advection of hydrometeors
in their upslope models. The drift distances in these
models, from 5 to 25 km, improve the agreement with
station and radar data.

Simple upslope-advection models such as S03 have
two limitations. First, they assume that the terrain-in-
duced vertical air velocity penetrates upward through
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the moist layer without change. In fact, it is known from
mountain wave theory that such motions may either
decay or oscillate with altitude, depending on the hor-
izontal scale and aspect ratio of the terrain and the static
stability and wind speed in the environment. In either
case, the upslope estimate may far exceed the actual
condensation rate. Fraser et al. (1973), Durran and
Klemp (1982b), and Kuligowski and Barros (1999) dis-
cuss the role of moist wave dynamics in a vertical plane.

A second problem relates to leeside descent. In up-
slope models, it is usually assumed that only upslope
regions influence precipitation. With instantaneous con-
version and fallout, the windward slope receives rain
while the flat and downslope regions are dry. When time
delays are included, the upslope condensate is distrib-
uted downstream, without regard for local terrain. This
approach neglects the evaporation of cloud water and
hydrometeors caused by descending air. The total pre-
cipitation is overestimated by this assumption. Models
such as Alpert and Shafir’s introduce an adjustable co-
efficient to reduce the prediction into a reasonable range.

The errors induced by these two problems are strongly
scale dependent. For smooth hills with scales of 100
km, the upslope estimates are usually quite reasonable.
On the other hand, when the terrain is rising and falling
with scales of 20 km or less, both assumptions fail and
the model can overestimate the total precipitation by a
factor of 5 or greater. In the Italian Alps, Smith et al.
(2003) showed that the upslope rainfall estimate ex-
ceeded the incoming moisture flux, an obvious violation
of water conservation. The scale dependence of these
errors means that the investigator must smooth the ter-
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FIG. 1. A schematic illustration of water budget on a windward
slope with incoming flux (F ), upslope condensation source (S in the
shaded region) and precipitation (P). (top) Multiscale rise; (bottom)
smooth rise.

rain by an ‘‘appropriate’’ amount before applying the
model. The choice of smoothing scale introduces an
arbitrary factor into the analysis.

Full numerical mesoscale models are now being used
frequently to predict orographic precipitation. These
models are replete with physical scales, in both the gov-
erning equations and the parameterizations. Numerical
models are difficult to fully diagnose, however, because
of their complexity and slow execution speed. Usually,
less than 100 runs can be carried out to investigate their
properties. Bruintjes et al. (1994), Miglietta and Buzzi
(2001), Jiang (2003), and Smith et al. (2003) have been
partially successful in diagnosing model behavior, but
their range of parameter values was sharply restricted.

The goal of this paper is to develop a model of oro-
graphic precipitation with the following characteristics:
• analytically tractable so that its properties can be eas-

ily understood;
• applicable to actual complex terrain and arbitrary

wind direction so that it can be tested against real
data;

• reduces to the classical upslope model so that it can
be compared with earlier work;

• includes the basic physical elements: airflow dynam-
ics, condensed water conversion, advection and fall-
out, and downslope evaporation, leading to a theory
of precipitation efficiency.
The first criterion suggests that our model should be

mathematically linear. The challenge is to retain line-
arity while satisfying the other three criteria. Problems
of cloud formation do not lend themselves to linear
formulation because of the threshold nature of water
vapor saturation (e.g., Barcilon et al. 1980; Durran and
Klemp 1982b; Barcilon and Fitzjarrald 1985). Linear
models must also ignore other nonlinearities such as
moist airflow blocking (Jiang 2003) and cloud physics
bifurcations (Jiang and Smith 2003). Nevertheless, we
expect that our model will have a substantial domain of
applicability.

The development of the model is described in four
parts. In section 2, the equations for advection, con-
version, and fallout of condensed water are introduced.
In section 3, the role of airflow dynamics is discussed,
following classical 3D mountain wave theory. In section
4, a treatment of evaporation and precipitation efficiency
is formulated. In section 5, the combined effects of all
these processes are discussed. The last two sections of
the paper consider applications. In section 6, the influ-
ence of topographic scale is summarized. In section 7,
we display the properties of the linear model with real
terrain. The appendix describes our thermodynamic for-
mulation.

2. Governing equations for advection, conversion,
and fallout

In this section, we formulate a system of equations
that describes the advection of condensed water by the
mean wind.

a. Formulation

The physical system that we envision is shown in
Fig. 1, with a distributed source of condensed water
[S(x, y)] arising from forced ascent. While conventional
‘‘upslope’’ models assume instantaneous fallout of con-
densed water, we allow delays and downstream advec-
tion. We begin, following Smith (S03), by postulating
a pair of steady-state advection equations describing the
vertically integrated cloud water density [qc(x, y)] and
hydrometeor density [qs(x, y)].

Dq qc cø U · =q 5 S(x, y) 2 (1)cDt t c

Dq q qs c sø U · =q 5 2 , (2)sDt t tc f

where tc is the time constant for conversion from cloud
water to hydrometeors (i.e., rain or snow) and t f is the
time constant for hydrometeor fallout. The physics of
conversion and fallout in orographic clouds was dis-
cussed by Hobbs et al. (1973), Rauber (1992), and oth-
ers. As our model is vertically integrated, we use av-
erage values of the time constants, representative of the
whole column. Estimates of the time constants range
from 200 to 2000 s (Jiang and Smith 2003; Smith et al.
2003). The advecting wind vector U 5 Ui 1 Vj is
assumed to be independent of time and space.

In (1), S(x, y) is the sum of a background rate of cloud
water generation and local variations created by terrain-
forced uplift. A simple proposal for S(x, y) is the upslope
model

S(x, y) 5 S 1 C U · =h(x, y),` w (3)
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where Cw 5 is the coefficient relating conden-r (G /g)S mref

sation rate to vertical motion (see the appendix), h(x, y)
is the terrain, and S` is the background nonorographic
large-scale vertically integrated condensation rate.
Equation (3) assumes saturated conditions and a terrain-
forced vertical air velocity w(x, y) 5 U · =h(x, y) that
is independent of altitude. The final term in (1) is the
conversion of cloud water to hydrometeors. It appears
as a source term in (2). The final term in (2) is the loss
of hydrometeors associated with precipitation

P(x, y) 5 q (x, y)/t .s f (4)

To avoid the complexity of the full orographic precip-
itation problem, we have reduced the problem by deal-
ing only with vertically integrated quantities and two
‘‘lumped’’ categories of condensed water.

To clarify the properties of (1)–(4), we consider three
trivial solutions. First, in the absence of terrain h(x, y),
the uniform source S` will create constant values of
cloud water column density (qc 5 S`tc), hydrometeor
column density (qs 5 S`t f ), and precipitation (P` 5
S`). Because our equations are linear, the background
precipitation can be added to any orographic compo-
nent.

Second, in the special case of S` 5 0 and tc 5 `
(i.e., no conversion), (1) and (3) can be integrated to
give qc(x, y) 5 Cwh(x, y) and qs 5 0, indicating the
existence of cloud water over high terrain, but no pre-
cipitation. We call this the ‘‘lenticular’’ solution as
steady clouds exist over each mountain peak with equal
condensation and evaporation at their leading and trail-
ing edges.

Third, if S` 5 0 and t f 5 ` (i.e., no fallout), forward
and reverse conversion can occur but the total condensed
water behaves simply; that is, qc 1 qs 5 Cwh(x, y). Rain-
water can be created but then it is stored in the parcel
until, upon descent, negative S drives qc negative, which
in turn evaporates qs. See section 4 for further discussion
of evaporation.

To obtain the general solution for the orographic pre-
cipitation, we Fourier transform (1), (2) in the two hor-
izontal directions (S03). After some simple algebra, we
obtain an expression for the Fourier transform of the
precipitation distribution

Ŝ(k, l)
P̂(k, l) 5 (5)

(1 1 ist )(1 1 ist )c f

in terms of the specified source function. In (5), (k, l)
are the components of the horizontal wavenumber vec-
tor and s 5 Uk 1 Vl is the intrinsic frequency (see also
Smith 2003b for examples of solving the advection
equation with Fourier methods). The transform (5) can
be inverted to obtain the precipitation distribution P(x, y)
using

i(kx1ly)ˆP(x, y) 5 P(k, l)e dk dl. (6)EE

According to (5), (6), precipitation is distributed down-
wind of each source region over a distance given by the
product of wind speed and the cloud time constant. An
important property of (5), (6) is that, if S(x, y) is positive
definite, so is P(x, y). This property is proven in the
next subsection. In section 4, we extend the definition
of qc to include negative values. A second property of
(5), (6) is that, if tc 5 t f 5 0 (i.e., fast conversion and
fallout), then P̂(k, l) 5 Ŝ(k, l) and thus P(x, y) 5 S(x, y).

b. Response to a point source

The properties of (5) and (6) can be illustrated by
writing the solution to a point source of condensation
S(x, y) 5 Bd(x)d(y) in axis-parallel flow; for example,
U . 0, V 5 0. In applied mathematics, such a solution
is called the Green’s function. From (5), (6), using con-
tour integration and the residue theorem,

2x /Ut 2x /Utc fe 2 e
P(x, y) 5 Bd(y) . (7)[ ]U(t 2 t )c f

Formula (7) is a positive definite function that rises to
a maximum some distance downwind of the input pulse
and then decays farther downwind. If one of the time
constants is zero, (7) becomes

2x/UtP(x, y) 5 Bd(y)e /(Ut). (8)

If the two time constants are equal, using L’Hospital’s
rule, (7) becomes

2x/Ut 2P(x, y) 5 Bd(y)xe /(Ut) (9)

that peaks at a distance Ut downstream of the source.
While (3), (5) represents a convenient model for dis-
tributing precipitation downstream, it has two serious
disadvantages. First, if only positive values of S are
retained, every upslope source region causes a swath of
precipitation with perfect efficiency. Smith et al. (2003)
showed that, for complex terrain, this approach can se-
riously overestimate the precipitation. The same water
molecules are lifted repeatedly and, according to (3),
(5), every lifting event produces precipitation. With such
a model, reasonable total precipitation estimates can be
achieved only by smoothing the terrain to 30 km or
more so that multiple lifting is minimized.

The second problem with (3), (5) is that it takes no
account of airflow dynamics: including phenomena such
as lateral influence of terrain, upwind tilt of the forced
ascent, and the decay of forced ascent aloft.

3. Airflow dynamics and the condensed water
source term

In this section we examine the effect of airflow dy-
namics on the vertically integrated condensation rate.
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a. Formulation

To improve the calculation of the source term in (1),
we extend (3) by allowing the vertical velocity to vary
as a function of altitude. The vertical integral of the
condensation rate is, from (A8)

`Cw 2z /HwS(x, y) 5 w(x, y, z)e dz, (10)E1 2Hw 0

where Cw is the thermodynamics uplift sensitivity factor
(see appendix) and Hw is the depth of the moist layer.
To describe the dynamics of forced ascent, we use well-
known results from linear Boussinesq mountain wave
theory (e.g., Queney 1947; Sawyer 1962; Smith 1979,
2002; Wurtele et al. 1996). For each Fourier component
(k, l), the vertical velocity takes a complex exponential
form

imzŵ(k, l, z) 5 ŵ(k, l, 0)e , (11)

where the vertical wavenumber is given by
1/2

2 2N 2 sm 2 2m(k, l) 5 (k 1 l ) . (12)
21 2[ ]s

The use of moist stability has been widely discussed in
the literature (Lalas and Einaudi 1973; Fraser et al.
1973; Durran and Klemp 1982a), and recently quanti-
tatively supported by the calculations of Jiang (2003).

In (12), the proper root must be taken to satisfy a
decay or radiation condition. With weak stratification
( K s 2), the airflow is irrotational and m 52N m

i(k2 1 l2)1/2. In the hydrostatic limit ( k s 2), (12)2N m

reduces to
1/2

2Nm 2 2m(k, l) 5 (k 1 l ) sgn(s). (13)
21 2[ ]s

In the 2D hydrostatic case, l 5 0, and s 5 Uk so that
(13) reduces to

Nmm(k) 5 sgn(k). (14)
U

Substituting (11) into the transform of (10) gives

`Cw 2z /H imzˆ wS(k, l) 5 ŵ (k, l) e e dz0 E1 2Hw 0

C ŵ (k, l)w 05 . (15)
(1 2 imH )w

Using ŵ0(k, l) 5 ŵ(k, l, 0) 5 isĥ(k, l) from mountain
wave theory, (15) yields a transfer function relating the
transform of the terrain and the condensed water source
function

C isĥ(k, l)wŜ(k, l) 5 . (16)
(1 2 imH )w

In the denominator of (16), the square bracket con-

tains the effect of vertical velocity variations up through
the moist layer. If s 2 . in (12), m is positive imag-2N m

inary and the forced ascent decays with height. The
denominator of (16) is real, positive, and greater than
unity, reducing the amount of condensation. If the static
stability (N) is large or the intrinsic frequency s is small,
m will be real. In this case, the vertical structure oscil-
lates with height and partial cancellation occurs. The
denominator of (16) is complex with a magnitude ex-
ceeding unity. Again, the total condensation is reduced.
In both these cases, the depth of the moist layer (Hw)
plays a key role. Only if | mHw | K 1, will the vertical
motion penetrate through the moist layer without shift
or decay.

The effect of static stability enters several ways in
(16). For example, an increased static stability (i.e., a
smaller magnitude of g) increases the available water
vapor (Cw and Hw), but decreases the depth of the lifting
[i.e., an increased m from (A13) and (12)].

In the following subsections we examine five differ-
ent examples of how airflow dynamics influences cloud
water condensation.

b. Sinusoidal terrain

The properties of (16) can be illustrated in two di-
mensions by considering a sinusoidal terrain with wave-
length (l), specified by

ikxh(x) 5 Re(Ae ), (17)

where k 5 2p/l. If the coefficient A is real, (17) is h(x)
5 A cos(kx). Equation (17) can be used directly in (16),
using generalized functions, to give

ikxikAe
S(x) 5 C U Re . (18)w [ ]1 2 im(k)Hw

We now will examine specific values of m. In the
irrotational case (12) gives m 5 i | k | , so the vertically
integrated condensation is, from (18)

C kUw ikxS(x) 5 Re(Aie ). (19)
1 1 |k |Hw

According to (19), the condensation occurs directly over
the windward slope. Even though the terrain slope in-
creases by increasing k, the condensation rate does not
increase significantly as the increasing terrain slope is
cancelled by the decreasing penetration.

In the special case of Nm 5 Uk, the vertical wave-
number is m 5 0 [from (12)] and complete penetration
occurs; that is, from (18)

ikxS(x) 5 C kU Re(Aie )w (20)

in agreement with (3). If A is real, S(x) 5 2CwkUA
sin(kx).

With hydrostatic dynamics (15), the vertically inte-
grated condensation is
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FIG. 2. The influence of wave dynamics on vertically integrated
condensation. The cloud water source function S(x) (nondimensional
part) is shown for two values of nondimensional moist-layer depth;
Ĥ 5 0 (dashed) and Ĥ 5 1 (solid). (a) Monotonic rise to a plateau
(27). (b) Witch-of-Agnesi ridge (33). Wave dynamics reduces the
source function, shifts it upstream, and modifies its shape.

C kUw ikxˆS(x) 5 Re[Ai(1 1 iH )e ], (21)
2ˆ(1 1 H )

where Ĥ 5 NmHw/U is the nondimensional moist layer
depth. If the coefficient A is real, (21) can be written

2C kUAw ˆS(x) 5 [sin(kx) 1 H cos(kx)]. (22)
2ˆ(1 1 H )

The function (22) exhibits an upstream shift and a re-
duced amplitude compared to the simple upslope model
(20). If the moist layer depth is small, (22) reduces to
the upslope model (20).

We can define a dynamical precipitation efficiency as
the ratio of the actual source to the source assuming
complete penetration of the forced ascent through the
moist layer. Taking the magnitude of (21) and normal-
izing with (20)

|S |
2 21/2ˆPE 5 5 (1 1 H ) . (23)dyn |S |Ĥ50

The quantity Ĥ can be interpreted as the ratio of the
moist layer depth to the penetration depth of the forced
ascent d 5 U/Nm. A typical value for

21 21Ĥ 5 (0.005 s )(3000 m)/(15 m s ) 5 1.0

so that (23) gives PEdyn 5 221/2 5 71%. If Ĥ k 1,
the forced ascent is only felt by a small lower part of
the moist layer, and the net condensation is very small
(PEdyn K 1).

c. Rise to a plateau

In a second example, we consider a smooth rise in
terrain given by the inverse tangent function h(x) 5
(A/p) tan21(x/a), with total rise Dh 5 A. The vertical
velocity near the ground is

dh UAa
w (x) 5 U 5 , (24)0 2 2dx p(x 1 a )

so
`1 UA

2ikx 2 | k |aŵ (k) 5 w(x)e dx 5 e . (25)0 E2p 2p
2`

Using (6), (14), (15), and (25) in the hydrostatic 2D
limit, the source function can be computed from an in-
verse Fourier transform

` i | k |a ikxC UA e e dkwS(x) 5 E ˆ2p [1 2 iH sgn(k)]
2`

0 `ka ikx 2ka ikxC UA e e dk e e dkw5 1 . (26)E Eˆ ˆ1 2[ ]2p (1 1 iH ) (1 2 iH )
2` 0

As Ĥ is independent of k in (26), the denominators can
be brought outside the integrals. Evaluating (26) gives

2 ˆC UA a [1 2 (x/a)H ]wS(x) 5 , (27)
2 2 2ˆ1 2a p(a 1 x )(1 1 H )

where the square bracket carries the units of S(x). Ac-
cording to (27), see Fig. 2a, one effect of Ĥ is to shift
the condensation pattern upstream. The negative source
region in (27), located at x . a/Ĥ, is associated with a
region of descending air in the mountain wave. Equation
(27) satisfies (3) when Ĥ 5 0. The total source is

`

2ˆS 5 S(x) dx 5 C UA /(1 1 H ). (28)E w

2`

The second term in (27) makes no contribution to (28)
as it is an odd function. The horizontal integral of the
source function (28) is reduced from the raw value by
the ‘‘dynamic precipitation efficiency’’

S
2 21ˆPE 5 5 (1 1 H ) . (29)dyn SĤ50

Using Ĥ 5 1, (29) gives PEdyn 5 50%. It is interesting
that, even with permanent lifting to a plateau, the con-



1382 VOLUME 61J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

TABLE 1. Normalized upslope centerline condensation (36)
influenced by hydrostatic airflow dynamics over a Gaussian hill.

R

Ĥ

0 0.1 0.5 1 2 10

10 (wide)
2
1 (circular)
0.5
0.1 (narrow)

1
1
1
1
1

0.99
0.96
0.92
0.85
0.55

0.83
0.72
0.63
0.51
0.22

0.60
0.50
0.41
0.32
0.13

0.33
0.28
0.22
0.17
0.07

0.06
0.05
0.04
0.03
0.01

densation is significantly reduced due to the lack of
penetration of the vertical motion field aloft.

d. Witch-of-Agnesi ridge

A third example is the classical Witch-of-Agnesi
ridge shape

2Aa
h(x) 5 (30)

2 2x 1 a

with cross-section area pAa. Its Fourier transform is

Aa
2 | k |aĥ(k) 5 e . (31)

2

In the hydrostatic case (14), the source function can be
computed from (16)

` 2 | k |a ikxiC UAa ke e dkwS(x) 5 . (32)E ˆ2 [1 2 iH sgn(k)]
2`

Splitting the integral as before yields

2 2 2ˆC UA a [2ax 1 H(a 2 x )]wS(x) 5 2 , (33)
2 2 2 2ˆ1 25 6a (1 1 H )(a 1 x )

where the first pair of square bracket carries the units
of S(x). Equation (33) satisfies (3) when Ĥ 5 0. Com-
pared to the raw upslope function (i.e., Ĥ 5 0), this
formula shifts the condensation upstream and reduces
its magnitude (Fig. 2b). It crosses zero and becomes
negative, slightly upstream of the ridge peak. It also
generates a small positive source region downwind, as-
sociated with ascent in a mountain wave aloft. This
source function (33) has a zero net integral, but its up-
slope part can be isolated as

0 C UAwS 5 S(x) dx 5 (34)upslope E 2ˆ(1 1 H )
2`

to which the second term in (33) makes no contribution.
When the nondimensional moist-layer depth is small,
Supslope reduces to the expected raw upslope value. The
dynamical precipitation efficiency is again given by
(29).

e. Isolated Gaussian hill

A problem with simple upslope models that lack air-
flow dynamics is that they take into account only terrain
directly over or upwind of the test point. In fact, lateral
terrain also has a significant influence on the conden-
sation source function. The effect is captured in our
transfer function (16). To illustrate the influence of lat-
eral terrain, we consider an isolated elliptical Gaussian
hill

2 22[(x/a ) 1(y/a ) ]x yh(x, y) 5 Ae (35)

with volume pAaxay. The aspect ratio for southerly
winds is the ratio of the east–west width (ax) to the

north–south width (ay); that is, R 5 ax/ay. In the hy-
drostatic case, the source distribution generated by (13),
(16) is independent of scale, but dependent on R and
Ĥ. To describe the influence of aspect ratio, we examine
its influence on both the precipitation along the upwind
centerline and over the full upslope region.

For southerly flow (i.e., along the y axis) we define
the upslope centerline total source as

0

S 5 max[S(x 5 0, y), 0] dy. (36)CL E
2`

The upslope centerline value with no dynamics is CwVA.
Actual values of SCL, determined from (36) using fast
Fourier transform (FFT) evaluation of (13), (16), are
shown in Table 1, normalized by the reference value
(i.e., SCL/CwVA). From Table 1, we see that the circular
hill (R 5 1) and the wind-aligned ridge (R , 1) produce
much less condensation on the centerline than a cross-
wind ridge (R . 1) of the same height. This effect can
be explained by recalling how lateral structure in a
mountain wave field influences vertical scale. For a
wind-aligned ridge, the dominant terrain wavenumber
vectors have a large ratio of the lateral to the windward
components. According to (12) or (13), the role of the
lateral component is to increase m, decreasing the ver-
tical penetration of the forced ascent. Thus, the depth
of the ascending air is only a fraction of the nominal
depth (i.e., U/Nm). It follows that a crosswind ridge
produces ascent that penetrates well aloft, while a wind-
aligned ridge lifts only a shallow layer of air. If the
moist layer is very thin, this rapid decay of vertical
velocity (w) has little influence. For a typical value of
Ĥ 5 1, however, the reduction by 3D effect is quite
significant. For a circular hill (R 5 1), the condensation
over the upslope centerline is only 41% of the raw up-
slope value.

We now ask whether the reduction in centerline pre-
cipitation by dynamics (Table 1) might be compensated
by increased precipitation on the rest of the upslope
region. We define the total upslope condensation for
southerly flow

` 0

S 5 max[S(x, y), 0] dy dx, (37)upslope E E
2` 2`

which has the reference value CwUaA for a circularÏp
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TABLE 2. Normalized total upslope condensation (37) for a circular Gaussian hill (R 5 1).

Ĥ
Supslope /Ïp CwUaA

0
1

0.1
1.01

0.2
0.99

0.5
0.87

1.0
0.63

2.0
0.35

5.0
0.14

10.0
0.07

Gaussian hill (a 5 ax 5 ay) with Ĥ 5 0. The normalized
values of Supslope are given in Table 2 as a function of
nondimensional moist layer depth. With Ĥ 5 1, the total
upslope condensation has dropped to 63% of the raw
‘‘no-dynamics’’ value. Tables 1 and 2 show that both
centerline and total upstream condensation are reduced
by dynamics. The total upslope condensation is reduced
less due to lateral spreading of the forced ascent.

The effect of lateral spreading is also found when the
wind blows through a mountain pass. While the local
gap-forced ascent may be zero in such a case, the hills
on either side produce ascent above the gap. If the gap
is narrow and Ĥ is one or larger, the gap will experience
nearly as much precipitation as the adjacent hill slopes.

f. Influence of the Coriolis force

Until now we have neglected the influence of the
Coriolis force. This neglect is consistent with our focus
on relatively small horizontal scales from 100 m to 100
km. Other assumptions of our model break down at
scales of 200 km and larger, where the Coriolis force
begins to dominate the dynamics. For example, the as-
sumption of uniform background flow or the neglect of
surface evaporation would fail at synoptic scales. Fur-
thermore, the focus of our study, the dynamic and cloud-
delay controls on precipitation, are not very important
at the larger scales. The vertical penetration of broad-
scale uplift is substantial and the cloud processes are
relatively quick for very broad scale terrain.

The penetration of ascent can be estimated for large-
scale flows using the quasi-geostrophic expression for
the vertical wavenumber

iNm 2 2 1/2m 5 (k 1 l ) (38)
f

(Queney 1947; Smith 1979). According to this formula,
the penetration depth is approximately d 5 fa/Nm. If f
5 1024 s21, a 5 500 km, and Nm 5 0.005 s21, the
penetration depth is 10 km, well in excess of the typical
moist layer depth.

4. Downslope evaporation

In this section, we describe how the linear model
determines precipitation efficiency by treating down-
slope evaporation.

a. Formulation

We now consider the role of negative source regions
(i.e., evaporation) associated with descent. Negative

source regions were encountered in all the examples in
section 3, even when the terrain rises monotonically to
a plateau (24). Negative source regions in orographic
flow could only be avoided if the background conden-
sation rate (S`) were larger than the largest negative
orographic perturbation.

In S03 and in section 2, only positive values of the
source term were allowed, according to the truncation

S (x, y) 5 max(S, 0).trun (39)

The time-delay algorithm (5) spreads the condensed wa-
ter downwind, independent of local terrain there. The
influence of downslope regions is thereby neglected.
According to (39) an isolated ridge [e.g., (30)] gives the
same total precipitation as a long plateau [e.g., (24)] of
the same height. By neglecting downslope evaporation
in this way the upslope-time-delay model overpredicts
the precipitation in valleys and overpredicts the total
precipitation. If (39) is applied to the source function,
negative precipitation values never arise. Recall that the
delay algorithm (5) generates no negative values if the
source function is always positive.

A possible evaporation scenario is illustrated in Fig.
1. In Fig. 1a, the sum of the two uplifts exceeds the net
uplift (i.e., S1 1 S2 . S3). In cases with repeated uplift,
the sum of sources can even exceed the incoming flux
(i.e., S1 1 S2 . F). If the total condensate falls im-
mediately to the ground or drifts without evaporation,
the model precipitation can exceed the influx (i.e., P1

1 P2 . F)—an unphysical result. In reality, some frac-
tion of S1 must evaporate over the next downslope re-
gion to allow condensation on the next uplift. In Fig.
1b, smooth ascent guarantees S3 , F and P3 , F without
evaporation.

To give more realism to the model, we seek a way
to represent the effect of descent while avoiding neg-
ative values of precipitation. The simplest algorithm that
captures this effect is a truncation of negative precipi-
tation values, replacing (39) with

P (x, y) 5 max(P, 0),trun (40)

where P includes the orographic and the background
precipitation (P`). From (1), (2), and (4) we see that
negative values for P can arise where descent (S , 0)
has first driven qc negative. Then, through the conver-
sion term, qs goes negative also while qc is driven back
toward zero. This sequence represents the evaporation
of cloud water followed by the evaporation of hydro-
meteors. In cases when qc can change sign, it is better
to think of this quantity as the ‘‘degree of supersatu-
ration.’’ When positive, it represents the column density
of condensed cloud water. When negative, it represents
the degree of subsaturation, that is, the amount of rain-
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water that could be evaporated to return qc to zero. In
(1) and (2), we use the same time scale tc to represent
the conversion of cloud water to hydrometeors and the
evaporation of hydrometeors by subsaturated air.

In cases with weak P`, rapid conversion and fallout
and persistent descent and drying our linear ‘‘saturated’’
formulation becomes problematic. When qc , 0 and qs

# 0, the conversion term in (1) continues to remoisten
the air even though there are no hydrometeors to evap-
orate. The truncation (40) assigns P 5 0 to all such
scenarios.

The airflow formulation in section 3 is also problem-
atic in persistent dry descending flow, as we used the
moist stability in the wave dynamics (14). While Jiang
showed that dry leeside descent had little influence on
windward ascent on single hills, strongly dried air en-
countering a second hill will not be treated well by our
model.

b. Sinusoidal terrain

The effect of truncation (40) on total precipitation
can be illustrated in 2D with sinusoidal terrain (17) with
no airflow dynamics. Including cloud time delays (5)
and the source function (20), the precipitation pattern
can be written

ikxAie [(1 2 b b ) 2 i(b 1 b )]c f c fP(x) 5 C kU Rew 2 25 6(1 1 b )(1 1 b )c f

1 P , (41)`

where bc 5 Uktc and b f 5 Ukt f . This function is
shifted downstream compared to the source function
(20) and it has reduced amplitude. The truncation con-
dition (40) keeps only the positive parts of the sine wave
in (41). A cloud-physics precipitation efficiency can be
defined as the ratio of the positive areas of the precip-
itation and source sine waves. From (20) and (41), if
P` 5 0,

2 2 21/2PE 5 [(1 1 b )(1 1 b )] .cloud c f (42)

Consider an example where tc 5 t f 5 1000 s, U 5 10
m s21, l 5 20 km, and the terrain wavenumber k 5
2p/l 5 2p/20 000 so that bc 5 b f 5 3. The cloud
efficiency (42) is PEcloud 5 0.1. This reduction in effi-
ciency is due to the effect of downslope evaporation.

c. Triangle ridge

A better example of downslope evaporation using
truncation (40) is an isolated ridge. For the present, we
neglect the effect of airflow dynamics. We can compute
the precipitation by convolving the Green’s function
with the source distribution according to

x

P(x) 5 G(x, x9)S(x9) dx9, (43)E
2`

where G is given by (7). For simplicity, we consider a
triangle ridge of height A centered at x 5 0 with total
width 2d. The cross-sectional area of the ridge is Ad.
The reference source functions on the windward and
leeward slopes are

S 5 C Udh/dx 5 6c,ref w

respectively, where c 5 CwUA/d. For simplicity, we also
set one of the time constants equal to zero so that the
appropriate Green’s function is (8). Using (8), (43), the
sum of all the upwind sources gives an expression for
the precipitation on the windward slope

2(x1d)/UtP(x) 5 c[1 2 e ] for 2d , x , 0 (44)

while on the lee slope, summing positive and negative
sources gives

2x /Ut 2d /UtP(x) 5 c[e (2 2 e ) 2 1] for 0 , x , d. (45)

Upwind and downwind of the hill, P(x) 5 0. According
to (45), the precipitation spills over the peak, reaching
to the cutoff position

2d/Utx 5 Ut ln(2 2 e ) , d.c (46)

Integrating (44) from x 5 2d to 0 and (45) from x 5 0
to x 5 xc gives the area total precipitation ( ), whichP
we normalize with the windward condensation. After
some algebra

2d /UtP P x ln(2 2 e )cPE 5 5 5 1 2 5 1 2 . (47)cloud S cd d (d /Ut)ref

For broad mountains with fast cloud processes, d/Ut k
1 and (47) becomes

ln(2)
PE ø 1 2 ø 1.cloud (d /Ut)

In the opposite limit, d/Ut K 1, (47) gives

d
PE ø .cloud Ut

So (47) agrees quantitatively with the FFT solution (5)
under corresponding conditions; (47) also agrees qual-
itatively with the formula derived by Jiang and Smith
(2003) for a box model

PE 5 1/(1 1 Ut/d).cloud (48)

5. Combined airflow dynamics, advection, time
delays, and downslope evaporation

a. Mathematical properties and controlling
parameters

The key advantage of the linear model is that the
airflow dynamics and cloud time delays produce a sim-
ple multiplicative effect in Fourier space. Combining
(5) and (16) gives
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TABLE 3. Some symbols used in the model.

Name Symbol Typical range

Mountain width
Mountain height
Horizontal wind components
Moist stability frequency
Water vapor scale height
Conversion time
Fallout time
Lapse rate
Moist adiabatic lapse rate
Uplift sensitivity factor
Background precipitation rate
Intrinsic frequency
Vertical wavenumber
Precipitation efficiency
Drying ratio

a
A
U, V
Nm

Hw

t c

t f

g
Gm

Cw

P`

s
m
PE
DR

0.1 to 100 km
100 to 1000 m

1 to 100 m s21

0 to 0.01 s21

1 to 5 km
200 to 2000 s
200 to 2000 s
21 to 278C km21

25 to 298C km21

0.001 to 0.02 kg m23

0 to 5 mm h21

0.01 to 0.0001 s21

0.01 to 0.0001 m21

0 to 1
0 to 1

TABLE 4. Nondimensional control variables for orographic
precipitation.

Symbol Formula Description

B
Ĥ
Dc

Df

Nma /U
NmHw /U
Ut c /a
Ut f /a

Nondimensional mountain width
Nondimensional moist-layer depth
Nondimensional conversion drift distance
Nondimensional fallout drift distance

C isĥ(k, l)wP̂(k, l) 5 , (49)
(1 2 imH )(1 1 ist )(1 1 ist )w c f

that is, a ‘‘transfer function’’ relating the Fourier trans-
form of the terrain ĥ(k, l) and the precipitation field
P̂(k, l). As before, the coefficient Cw is given by (A9).
The first factor in the denominator of (49) describes
airflow dynamics. The second and third factors describe
cloud delays and advection. The reduction in precipi-
tation efficiency due to downslope evaporation is not
contained explicitly in (49), but is present when (40) is
applied after the inverse Fourier transform.

The combined theory (49) contains a number of di-
mensional parameters and variables (see Table 3) and
four nondimensional control parameters (Table 4). As
the model is linear, the mountain height (A) appears as
a coefficient rather than a control parameter.

An interesting property of (49) is that the dynamics
and cloud-delay factors in the denominator have a sim-
ilar form. The appearance of i 5 in each factorÏ21
causes a phase shift of the solution, in addition to the
amplitude change. The different sign in the dynamic
and cloud factors is significant. The negative sign in the
dynamics factor gives an upwind shift to the precipi-
tation pattern while the positive signs in the cloud fac-
tors cause a downstream shift. These factors also differ
significantly in the way that wavenumber enters the def-
initions of m(k, l) and s(k, l). Note that the two cloud
time scales, tc and t f , are mathematically analogous.
When m 5 tc 5 t f 5 0, (49) reduces to the standard
upslope model with no airflow dynamics and no con-
densed water advection.

Upon combining the dynamical and cloud physics
effects (49), the multiplicative property of precipitation
efficiency is retained only for flow over sinusoidal ter-
rain. For hydrostatic flow, the expression for the pre-
cipitation efficiency (42) becomes

ˆPE 5 P/P(H 5 b 5 b 5 0)c f

2 2 2 21/2ˆ5 [(1 1 H )(1 1 b )(1 1 b )] , (50)c f

taking into account the influence of airflow dynamics.
For other terrain shapes, the precipitation fields need to
be inverted and summed to obtain PE.

In the remainder of this section, we will apply (49)
to two idealized hill shapes to illustrate its properties:
that is, a triangle ridge and a 3D Gaussian hill.

b. Triangle ridge

The triangle ridge is a useful example, as the raw
upslope condensation rate is constant over the windward
slope. Thus, it is easy to see modification caused by
airflow dynamics. Some insight into the pure cloud
physics effect for a triangle ridge was given by (47).
The combined influence of full dynamics and cloud time
delays [(13) and (49)] is shown in Fig. 3, with param-
eters: T0 5 280 K, g 5 25.88C km21, U 5 15 m s21

so Gm 5 26.58C km21, Nm 5 0.005 s21, 5 7.4rSref

g m23, Hw 5 2500 m. Also A 5 500 m and tc 5 t f 5
1000 s.

In both parts of Fig. 3, the effect of airflow dynamics
is to reduce the total condensation and shift the maxi-
mum upwind, close to the ‘‘slope break’’ of the triangle
ridge. The source term turns negative slightly upstream
of the hill crest. The effect of cloud delay reduces the
precipitation further and shifts the precipitation peak
downstream. For the narrower ridge, the precipitation
maximum (2.96 mm h21) is close to the hilltop. For the
wider ridge, the maximum (2.33 mm h21) is on the
windward slope, about two-thirds of the way toward the
hill crest. For both ridges, there is downstream conden-
sation in a lee wave, but leeside descent and evaporation
prevent precipitation. Especially for the narrow ridge,
the ratio of total precipitation to total raw upslope con-
densation is quite small.

c. Isolated Gaussian hill

The isolated circular Gaussian hill (35 with ax 5 ay)
is useful for showing lateral spreading, downstream
drift, and the mountain wave contribution. Recall that
the pure role of airflow dynamics over the isolated
Gaussian hill was discussed in section 3e. Combined
effects are shown in Fig. 4.

In Fig. 4a, we see that the raw upslope precipitation
is confined to the windward slopes. With airflow dy-
namics (Fig. 4b), the condensation is much more wide-
spread in the upstream region. Strong negative conden-
sation values are seen in a butterfly pattern downstream.
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FIG. 3. Precipitation rates (mm h21) over a triangle ridge with three
different assumptions: precipitation patterns with no dynamics or
cloud delays (3) (solid); dynamics only (16) (dotted); dynamics and
cloud delays (49) (dashed). Two mountain half-widths are shown: (a)
a 5 15 km, (b) a 5 40 km. Parameters are U 5 15 m s21, Nm 5
0.005 s21, T0 5 280 K, Hw 5 2500 m, tc 5 t f 5 1000 s, A 5 500 m,
S` 5 0. Note the great reduction in total precipitation caused by
dynamics and cloud delays. The narrower hill has a precipitation
maximum close to the hilltop and a lower overall precipitation ef-
ficiency.

By far the strongest negative values are just downstream
of the peak due to mountain-wave-induced descent
there. Farther downstream, a significant positive region
of condensation is present associated with a wave cloud
aloft.

After the cloud advection and truncation have been
applied (Fig. 4c), the precipitation peak shifts to the
hilltop. Some spillover is seen. A dry region is main-
tained on the lee slopes. A modest region of precipi-
tation appears well downstream due to ascent in the
mountain wave above the lee slope. Most of this wave-
induced precipitation has been eliminated by the leeside
drying. In the real world, there is little evidence for lee

wave precipitation, so we have cause to question this
small remaining precipitation predicted by the linear
model (see Bruintjes et al. 1994).

6. Scale dependence

A goal of this paper is to understand how the dom-
inant processes and precipitation patterns and amounts
vary with the horizontal topographic scale. For the cur-
rent discussion, we examine full nonhydrostatic FFT
evaluations of (49) for a 2D flow over a Gaussian ridge.
In Fig. 5, we plot three ‘‘efficiency ratios’’ for fixed
values of U, Nm, Hw, tc, t f , as the mountain width (a)
varies from 100 m to 100 km. The ratios are

S PdynPE 5 , PE 5 ,dyn cloudS Sref dyn

P
PE 5 PE PE 5 , (51)dyn cloud S ref

where ref is an area integral computed from (3), (40);S
dyn and are area integrals computed from the inverseS P

FFT of (49) with (12) and (40). In the case of dyn weS
set tc 5 t f 5 0. The fixed parameters are U 5 15
m s21, Nm 5 0.005 s21, Hw 5 3000 m, tc 5 1000 s,
t f 5 1000 s. Unlike Table 1, the Sdyn in Fig. 5 includes
the lee wave contribution. Note that, unlike sinusoidal
terrain [e.g., (50)], the effects of pure airflow dynamics
and pure cloud delay are not multiplicative. The ratio
PEcloud in (51) describes the influence of cloud delays
in the presence of airflow dynamics.

In Fig. 5, the ratio PEdyn rises quickly as width in-
creases. For small-scale terrain, when s 2 . , the2N m

forced ascent decays quickly with height and little con-
densation occurs [see (12)]. At a 5 5 km, a significant
peak occurs associated with a near match between the
mountain width and the buoyancy scale; that is, a 5
U/Nm 5 3 km. This peak arises in part from good pen-
etration and in part from the positive source contribution
in a train of untrapped dispersive lee waves. These lee
wave source regions do not cause precipitation as the
condensed water from each cloud is advected quickly
into a region of evaporation. Essentially they are ‘‘lee-
wave lenticular clouds’’. This effect disappears and hy-
drostatic results obtain when the mountain width a ex-
ceeds 10 km for the chosen parameters, as orographic
forcing at the resonant wavelength is much reduced.

We now discuss the curve for PEcloud in Fig. 5. For
small-scale terrain, the precipitation efficiency from
cloud processes is small. Condensed water from the up-
slope region is advected quickly to the lee side and
evaporates before it has a chance to convert to hydro-
meteors and fall out (section 4). As the terrain scale
increases, the time spent by a parcel in the upslope
region increases. Progressively more of the condensed
water has a chance to precipitate. For wide terrain, the
value of PEcloud approaches unity as all the condensate
precipitates.
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FIG. 4. Planform patterns of condensation and/or precipitation
for a circular Gaussian hill: (a) condensation source (S) with no
dynamics or cloud delays (3); (b) condensation source with dy-
namics (16); (c) precipitation with dynamics and cloud time-
delays (49). The parameters of the calculation are the same as
in Fig. 3, but with a 5 15 km, Dx 5 Dy 5 750 m. The contour
intervals differ for the different parts: (a) 2 mm h21 from 0.025
to 12.025, (b) 2 mm h21 from 210 to 16, and (c) 0.4 mm h21

from 0.025 to 2.025. Note that the actual precipitation (c) is less
intense but more widespread than the raw upslope pattern (a).
The precipitation field has a maximum near the hilltop and a
weak region of wave cloud precipitation is located downwind
(x 5 75 km).

The combined effect of airflow dynamics and cloud
delay on PE is shown in Fig. 5; PE remains low until
PEcloud begins to grow. For wide hills, PEcloud ø 1 and
PE ø PEdyn, so PE can never exceed the value PEdyn set
by airflow dynamics. That is, if water does not condense,
it cannot precipitate.

Changing the time-delay values will influence the pre-
cipitation efficiency, as shown in Table 5. As only the
time constants are changed in the table, the quantity
PEdyn does not change. In general, as the time delays
are increased, the PEcloud decreases. More condensed wa-
ter is advected onto the lee slope where it evaporates.
In Table 5, note that the entry for tc 5 t f 5 1000 s
agrees with Fig. 5.

An additional measure of precipitation efficiency is
the ratio of precipitation to incoming water vapor flux,
defined as the drying ratio (DR) by Smith et al. (2003).
Using (51) and (A12),

P G AmDR 5 5 PE. (52)1 21 2F g Hw

For example, from row six in Table 5, if PE 5 0.61,
(Gm/g) 5 2, A 5 500 m, and Hw 5 3000 m, then DR
5 20%. For order of magnitude calculations, we can
roughly combine hydrostatic dynamics (29) and box
model advection (48) with (52) to obtain
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FIG. 5. Three efficiency ratios PEdyn (dashed), PEcloud (dotted), and
PE (solid) as a function of mountain half-width for a Gaussian ridge
according to the current linear model (12), (49). Parameters are the
same as in Figs. 3 and 4.

TABLE 5. Influence of time constants on precipitation efficiencies
for the Gaussian ridge (case U 5 15 m s21, N 5 0.005 s21, a 5 15
km, Hw 5 3 km, S` 5 0).

t c (s) t f (s)
PEdyn 5 S dyn/S ref

(%)
PEcloud 5 P /S dyn

(%)
PE 5 P /S ref

(%)

0
0
0
0

250
500

1000
2000

250
500

1000
2000

250
500

1000
2000

82
82
82
82
82
82
82
82

96
84
67
47
91
74
51
31

79
70
55
39
75
61
42
25

G Am1 21 2g HwP
DR 5 5 . (53)

F Ut Ut fc 2ˆ1 1 1 1 (1 1 H )1 21 2a a

The drying ratio is a convenient measure of the non-
linearity of the orographic precipitation system. A key
assumption in linear theory is that the air remains near
saturation everywhere. If the drying ratio is reasonably
small (perhaps less than 0.3) this assumption may be
useful. If DR exceeds 0.5 however, this assumption is
less appropriate.

7. An application of the linear model

To illustrate the properties of the linear model, we
present one example of a predicted precipitation pattern
over real terrain. We select the Olympic Range in Wash-
ington State as it is compact, complex, and relatively
well studied. It is one of the rainiest spots in North
America, but with a definite rain shadow on the north-
east side. Our intention in this section is not to test the
model, but only to exhibit its behavior.

For the example, we consider a southwest wind with
speed 15 m s21 and a moist stability of 0.005 s21. The
surface temperature and specific humidity are 280 K
and 6.2 g kg21. The moist layer depth is 2.5 km. The
cloud time delays are each 1000 s. The calculation was
done on a large 1024 by 1024 grid with one kilometer
resolution. The surrounding mountains were reduced
with a Gaussian weighting function centered on the
Olympics. Only a small portion of the computational
domain is shown in Fig. 6. The calculation took about
8 seconds on a small workstation. The same computa-
tion could be done on a 256 3 256 grid in about 1 s.

In Fig. 6, the terrain has been smoothed with a 3000-
m spectral filter for clarity of presentation, even though
the terrain was only smoothed to 800 m for the FFT
model run. The 6-h accumulated precipitation is shown
in millimeters with a maximum value of about 26 mm
just upwind of the highest peak, Mount Olympus (2428
m). Several features can be noted. Four tongues of high
precipitation are associated with four southwestward di-
rected ridges. Light precipitation is found well upstream

of the mountains, even over the sea. There is some
spillover, but mostly the northeast lee slopes are dry.
The model predicts that the high peaks in the northeast
part of the massif collect no precipitation.

The sensitivity of these results to the model param-
eters can be estimated from the previous sections. The
comparison with the raw upslope model (m 5 tc 5 t f

5 0) is the most striking (not shown). It gives strong
spikes of precipitation directly over each southwestern
facing slope including those in the northeast corner of
the range. Peak precipitation exceeds those in Fig. 6 by
an order of magnitude.

8. Conclusions

We have developed a linear model of orographic pre-
cipitation including airflow dynamics, cloud time scales
and advection, and downslope evaporation. The model
is easy to apply to complex terrain. Only four steps are
required: Fourier transform the terrain h(x, y) to obtain
ĥ(k, l), multiply by the transfer function (49), perform
an inverse Fourier transform, and apply the positive
cutoff (40). The input parameters are P`, U, V, T0, Nm,
tc, t f , and a measure of vertical structure, Nm or g.
There is no need to smooth the terrain. The model in-
cludes crude representations of physical processes that
provide the proper weights to the different scales, thus
providing a theory of precipitation efficiency.

Several strong assumptions were made in the model
formulation, for example, linear steady wave dynamics,
near saturation, constant wind and moist stability with
height and location, constant time delays, equal hy-
drometer growth and decay times, etc. The model only
treats the vertically integrated condensed water. These
simplifications could limit the accuracy and practical
application of the model. Also, the model is unsuitable
for unstable atmospheres.

Both the airflow and condensed water formulations
become problematic in situations with fast conversion
and fallout and persistent descent. The drying ratio (DR)
can be a useful indicator of this breakdown in the theory.

We examined the role of scale in orographic precip-
itation using the linear model. Four natural atmospheric
length scales appear: buoyancy scale, moist-layer thick-
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FIG. 6. A real-world application of the linear FFT model; the Olympic Mountains under a 15
m s21 southwesterly airflow. The 6-h accumulated precipitation is shown shaded with a 2.5-mm
contour interval. The maximum precipitation is 25.96 mm. The map projection is Lambert conformal.
The atmospheric parameters in the model calculation are the same as in Figs. 3 and 4. The terrain
is shown (dotted) with a 200-m contour interval. The coastline is shown with a dark solid line.

ness, and two drift distances. Both the pattern of pre-
cipitation and the total amount of precipitation are con-
trolled by the ratios of mountain width to these inherent
atmospheric scales.

The location of maximum precipitation is determined
by a competition between the upstream shift caused by
dynamics and the downstream shift caused by cloud
delays. As mountain width decreases, the location of
the maximum precipitation shifts from the windward
slope to the hilltop. For narrow mountains and high wind
speeds, spillover is possible.

The amount of precipitation is determined by the ver-
tical penetration of the forced ascent relative to the depth
of the moist layer and by the speed at which cloud
droplets can convert and fall. Small-scale hills produce
uplift that decays rapidly aloft, condensing little water.
The ascent from broader hills penetrates much more
using gravity wave dynamics. This penetration is also
limited, however, and the condensation rate can be well
below the raw upslope value.

The time delays from cloud processes also reduce
precipitation. Here there is competition between the
speed of conversion and fallout, and the time it takes
for air parcels to reach the descending air in the lee.
The cloud water or hydrometeors may drift to the lee

side of a hill and evaporate before they can convert and
fall to the ground. The combined effect of airflow dy-
namics and cloud delays may reduce precipitation by
as much as an order of magnitude below the raw upslope
model prediction.

We applied the linear FFT model to the Olympics
under a southwest wind. The model ran quickly, with
reasonable results. Quantitative testing of the linear
model is under way and will be presented separately.
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APPENDIX

Simple Thermodynamics

For use in the linear model, we need an approximate
form of the thermodynamic equation for water that ex-
presses the vertical profile with simple functions. The
saturation water vapor density is
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e (T )Sr 5 . (A1)S R Ty

We approximate the saturation vapor pressure according
to the Clausius–Clapeyron equation

2LDT/R Ty refe (T) 5 e e ,s Sref
(A2)

where e and Tref are the saturation vapor pressure andSref

the temperature at the ground, and DT is the difference
between the air temperature and reference temperature.
In (A2), the latent heat is L 5 2.5 3 106 J kg21 and
the gas constant for vapor is Ry 5 461 J kg21 K21. If
the environmental lapse rate is g, the value of DT 5
gz. The vertical distribution of water vapor is [approx-
imately, using (A1) and (A2) with (T ø Tref)]

2z/Hwr (z) 5 r e ,S Sref
(A3)

where 5 eS(Tref)/RTref andrSref

2R Ty refH 5 2 . (A4)w Lg

Using (A3) assuming that g , 0, the column-integrated
water vapor is r Hw and the horizontal flux of waterSref

vapor advected by a constant wind is

F 5 r H U,S wref
(A5)

with x-component Fx 5 r HwU. Note that, if the am-Sref

bient lapse rate approaches isothermal, the water vapor
scale height grows and so does the column water vapor
and flux, for a given surface value of vapor density.
Positive values of lapse rate g are not allowed here, as
the column density of water vapor is not bounded.

The rate of change of saturation vapor density with
temperature is [differentiating (A1) and using (A2)]

dr L 1 1 L 1S 5 r 2 ø r (A6)S S1 2 1 2[ ]dT R T T T R T Ty ref ref y ref ref

to a good approximation as L/(RyTref) ø 20 for typical
conditions: (A6) can be written as a function of height
using (A3)

2rdr L 1 SS ref2z /H 2z /Hw w5 r e 5 e . (A7)Sref1 2dT R T T gHy ref ref w

If the air is rising moist adiabatically at a rate w(z),
parcels cool at the rate wGm. The local condensation rate
is w(drS/dT)Gm. The column-integrated condensation
rate is

`rSref 2z /HwS 5 wG e dzref E mgHw 0

`Cw 2z /Hw5 we dz (A8)E1 2Hw 0

if the moist lapse rate is assumed to be constant. In
(A8),

C 5 r G /gw S mref
(A9)

is the coefficient relating condensation rate to vertical
motion. This coefficient captures the effect of environ-
mental lapse rate on the condensation rate. The ratio of
moist to environmental lapse rate is Gm/g . 1 if the
atmosphere is statically stable.

If the terrain-forced ascent, w 5 U(dh/dx), is constant
with altitude, (A8) gives

dh
S 5 C U . (A10)ref w dx

This formula agrees with Smith (1979) in the case of
moist neutral conditions (g 5 Gm). The total rate of con-
densation over the windward slope is, from (A10),

x top

S 5 S dx 5 C UA, (A11)ref E ref w

2`

where A is the mountain height and xtop is the location
of the hilltop. The ratio of the condensation rate to in-
coming vapor flux is [using (A5) and (A11)]

S G Aref m5 (A12)1 21 2F g Hx w

independent of g.
The wave dynamics in section 3 is controlled by the

effective moist static stability given approximately by
(Fraser et al. 1973):

g
2N 5 (g 2 G ), (A13)m mT

where Gm is an average moist adiabatic lapse rate. If we
average Gm over the first kilometer, surface temperature
of T0 5 253, 263, 273, 283, and 293 K give values of
about Gm 5 29, 28, 27, 26, 25 (8C km21), respec-
tively. If, for example, the environmental lapse rate is
g 5 248C km21 and T0 5 273 K, (A13) gives Nm 5
0.0104 s21. The ratio Gm/g 5 1.75. The water vapor
scale height (A4) in this case is Hw 5 3.4 km.
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