

PROGRAMA DE CURSO

Código	Nombre					
FI6036	-					
Nombre	en In	ıglés				
		Introducti	on to Newtonia	an Physics		
créditos Unidades Horas de Cátedra Docencia Trab					Horas de Trabajo Personal	
6			3		3	
		Requisitos		Carácter	del Curso	
FI4001: Mecánica cuántica Electivo licenciatura, solo postgrado				ciatura, solo		
		Result	ados de Apren	dizaje		
_	Manejo de las herramientas topológicas en teorías modernas de materia condensada.					

Metodología Docente	Evaluación General		
Clases expositivas	Tareas quincenales, exposición final		

Unidades Temáticas

Número	Nombre	de la Unidad		uración en Semanas
1	Topología y física	a: una visión histórica		1
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
1.1 Introd 1.2 Topolo 1.2.1 Mo 1.2.2 Efe Bohm			rac rac rac así	
		2.2 Efecto Aharonov Bohm	-	
		Resultado de		

aprendizaje:

 El estudiante podrá explicar el efecto Aharonov-Bohm y su implicación en la mecánica cuántica, incluyendo cómo demuestra la importancia de los potenciales electromagnéticos en la descripción de la dinámica cuántica.

2.3 Topología en óptica

Resultado de aprendizaje:

 El estudiante será capaz de identificar y analizar las aplicaciones de la topología en el campo de la óptica, incluyendo la propagación de la luz en medios topológicamente no triviales y las propiedades de los cristales fotónicos topológicos.

•

	Nombre de la Unidad			uración en	
				Semanas	
2	Electromag	Electromagnetismo y óptica 1			
Contonidos		Resultados de		Referencias	
Contenidos		Aprendizajes de la Uni	dad	a la	

		Bibliografía
2.1 Campos	2.1 Campos	1
electromagnéticos	electromagnéticos	
2.2 Potenciales		
electromagnéticos e	Resultado de	
invariancia de gauge	aprendizaje:	
2.3 Polarización y la esfera de Poincaré	El estudiante será capaz de comprender y aplicar las ecuaciones de Maxwell en diversas situaciones físicas, describiendo cómo los campos eléctricos y magnéticos interactúan y se propagan en diferentes madias.	
	diferentes medios. 2.2 Potenciales electromagnéticos e invariancia de gauge	
	Resultado de aprendizaje:	
	El estudiante podrá explicar el concepto de potenciales electromagnéticos y su relación con los campos eléctricos y magnéticos, además de describir la importancia de la invariancia de gauge en la teoría electromagnética y la física cuántica.	
	2.3 Polarización y la esfera de Poincaré	

FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE		
	Resultado de aprendizaje:	
	El estudiante será capaz de analizar y describir el fenómeno de la polarización de la luz, utilizando la esfera de Poincaré para representar y comprender diferentes estados de polarización.	

Número	Nombre de la Unidad			Duración en Semanas	
3	Caracterizando es	pacios		3	
Contenidos		Resultados de Aprendizajes de la Uni	Resultados de rendizajes de la Unidad		
números d 3.2 Clases 3.3 Varied 3.4 Vector 3.5 Curvat	es y formas	3.1 Bucles, agujeros números de enrollamiento Resultado de aprendizaje: • El estudiante ser	á	Bibliografía 1,4	
más allá 3.6 Conexi covariante 3.7 Fibrado 3.8 Conexi en electror óptica	os ión y curvatura magnetismo y rado de Hopf y la	capaz de describ analizar los conceptos de bucles, agujeros números de enrollamiento en contexto de la topología, comprendiendo s relevancia en	y el		

diversas aplicaciones físicas.

3.2 Clases de homotopía

Resultado de aprendizaje:

 El estudiante podrá explicar las clases de homotopía y su importancia en la clasificación de espacios topológicos, aplicando estos conceptos en problemas específicos de física y matemáticas.

3.3 Variedades

Resultado de aprendizaje:

 El estudiante será capaz de identificar y caracterizar variedades, comprendiendo su estructura y propiedades fundamentales, así como su aplicación en contextos físicos y geométricos.

3.4 Vectores y formas

Resultado de aprendizaje:

 El estudiante podrá utilizar y manipular

campos vectoriales y formas diferenciales en diversos contextos, comprendiendo su importancia en la descripción de fenómenos físicos.

3.5 Curvatura

3.5.1 Una dimensión: curvas

Resultado de aprendizaje:

 El estudiante será capaz de analizar la curvatura en una dimensión, aplicando conceptos de geometría diferencial para describir curvas en el espacio.

3.5.2 Dos dimensiones y más allá

Resultado de aprendizaje:

 El estudiante podrá extender los conceptos de curvatura a dos dimensiones y más allá, describiendo superficies y su geometría intrínseca y extrínseca.

3.6 Conexiones y

derivadas covariantes

Resultado de aprendizaje:

 El estudiante será capaz de comprender y aplicar el concepto de conexiones y derivadas covariantes en el análisis de variedades, describiendo cómo estos conceptos son fundamentales en la física moderna.

3.7 Fibrados

Resultado de aprendizaje:

 El estudiante podrá explicar la teoría de los fibrados, identificando su estructura y aplicaciones en física, particularmente en la teoría de campos y geometría diferencial.

3.8 Conexión y curvatura en electromagnetismo y óptica

Resultado de aprendizaje:

• El estudiante será capaz de describir

UNIVERSIDAD DE CHILE		
	cómo los conceptos de conexión y curvatura se aplican en el electromagnetismo y la óptica, utilizando estos conceptos para analizar fenómenos físicos específicos.	
	la polarización	
	Resultado de aprendizaje:	
	El estudiante podrá explicar el concepto del fibrado de Hopf y su relación con la polarización de la luz, aplicando estos conceptos para resolver problemas en óptica y teoría de campos.	

	Nombre de la Unidad		D	uración en
				Semanas
4	Invariant	es topológicos		2
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
4.1 Característica de Euler 4.2 Número de vueltas 4.3 Índice de puntos cero		4.1 Característica de Euler	•	1,4
de campos vectoriales 4.4 Números de Chern		Resultado de		

- 4.5 Índice de Pontrjagin
- 4.6 Índice de Hopf
- 4.7 Número de enlace y otros invariantes

aprendizaje:

 El estudiante será capaz de explicar y calcular la característica de Euler de diversas superficies y complejos simpliciales, comprendiendo su relevancia en la topología algebraica.

4.2 Número de vueltas

Resultado de aprendizaje:

 El estudiante podrá definir y calcular el número de vueltas para curvas en el plano y en espacios de mayor dimensión, aplicando este concepto a problemas topológicos y geométricos.

4.3 Índice de puntos cero de campos vectoriales

Resultado de aprendizaje:

 El estudiante será capaz de determinar el índice de puntos cero de campos vectoriales en diferentes

superficies y variedades, comprendiendo su importancia en la teoría de campos y sistemas dinámicos.

4.4 Números de Chern

Resultado de aprendizaje:

 El estudiante podrá explicar los números de Chern y su aplicación en la clasificación de fibrados vectoriales, utilizando estos invariantes topológicos en la teoría de campos y la física de partículas.

4.5 Índice de Pontrjagin

Resultado de aprendizaje:

 El estudiante será capaz de describir el índice de Pontrjagin y su relevancia en la teoría de variedades y la topología diferencial, aplicando estos conceptos en contextos físicos y matemáticos.

4.6 Índice de Hopf

Resultado de aprendizaje:

 El estudiante podrá calcular el índice de Hopf y entender su significado en la teoría de campos y la topología de fibrados, aplicando este invariante en problemas específicos.

4.7 Número de enlace y otros invariantes

Resultado de aprendizaje:

 El estudiante será capaz de definir y calcular el número de enlace y otros invariantes topológicos, comprendiendo su importancia en la teoría de nudos y la topología de variedades tridimensionales y de mayor dimensión.

	Nombre de la Unidad	Duración en Semanas
5	Vórtices y dislocaciones: óptica singular	1

UNIVERSIDAD DE CHILE		Referencias
Contenidos	Resultados de	a la
Conteniaco	Aprendizajes de la Unidad	Bibliografía
5.1 Singularidades ópticas	5.1 Singularidades	1
5.2 Momento angular óptico	ópticas	_
5.3 Vórtices y dislocaciones	P 33 3 3 3 5	
5.4 Singularidades de	Resultado de	
polarización	aprendizaje:	
5.5 Líneas de vórtice		
anudadas	 El estudiante será 	
5.6 Creación y	capaz de identificar	
caracterización de vórtices	y analizar	
anudados	singularidades	
5.7 Variaciones y	ópticas,	
aplicaciones	comprendiendo su formación y	
	características en	
	diferentes contextos	
	físicos y	
	aplicaciones	
	tecnológicas.	
	3	
	5.2 Momento angular óptico	
	Resultado de aprendizaje:	
	 El estudiante podrá 	
	describir el	
	concepto de	
	momento angular	
	óptico y su	
	importancia en la	
	interacción de la luz	
	con la materia,	
	aplicando este	
	conocimiento en la manipulación de	
	partículas y otras	
	aplicaciones	
	ópticas.	
	5.3 Vórtices y	
	dislocaciones	

Resultado de aprendizaje:

 El estudiante será capaz de explicar la formación y propiedades de vórtices y dislocaciones en campos ópticos, utilizando estos conceptos para analizar y diseñar experimentos en óptica avanzada.

5.4 Singularidades de polarización

Resultado de aprendizaje:

 El estudiante podrá identificar y caracterizar singularidades de polarización en campos de luz, comprendiendo su importancia en la óptica moderna y sus aplicaciones en la comunicación y el procesamiento de imágenes.

5.5 Líneas de vórtice anudadas

Resultado de aprendizaje:

 El estudiante será capaz de describir la teoría y formación de líneas

de vórtice anudadas, aplicando estos conceptos en la comprensión de fenómenos topológicos en óptica y otros campos relacionados.

5.6 Creación y caracterización de vórtices anudados

Resultado de aprendizaje:

 El estudiante podrá crear y caracterizar vórtices anudados, comprendiendo su relevancia en la investigación actual.

5.7 Variaciones y aplicaciones

Resultado de aprendizaje:

 El estudiante será capaz de explorar variaciones de los conceptos de singularidades y vórtices en óptica, identificando sus aplicaciones potenciales en diferentes áreas de la ciencia y la tecnología.

	Nombre de la Unidad			uración en Semanas
6	Solitones ópticos			1
Contenidos		Resultados de Aprendizajes de la Uni		
6.1 Ondas solitarias 6.2 Ejemplo simple: ecuación Sine-Gordon		6.1 Ondas solitarias Resultado de aprendizaje:		1
6.3 Solitones en óptica		El estudiante será capaz de describir y analizar las propiedades de las ondas solitarias, comprendiendo su formación, estabilidad y relevancia en diferentes sistemas físicos.		
		6.2 Ejemplo simple: ecuación Sine-Gordo	n	
		Resultado de aprendizaje:		
		El estudiante pode explicar la ecuac Sine-Gordon y su importancia en la teoría de solitona resolviendo ejemplos simples aplicando este	ión u a es,	

UNIVERSIDAD DE CHILE	conocimiento a problemas específicos en física y matemáticas.	
----------------------	--	--

			uración en Semanas	
7	Fases geométricas	s y topológicas		3
Co	ontenidos	Resultados de Aprendizajes de la Uni	dad	Referencias a la Bibliografía
mecánica o 7.3 Fase g fibras óptio 7.4 Interp	nam e Berry en cuántica eométrica en cas retación de	7.1 La fase de Pancharatnam Resultado de aprendizaje: • El estudiante ser		2,3
7.6 Ejemp unidimens SSH 7.7 Fases estados de localizados 7.8 El pape discretas	to Hall cuántico lo ional: el modelo topológicas y e borde	capaz de explicación de la fa de Pancharatnan su aplicación en óptica, comprendiendo cómo se manifies en diferentes contextos físicos	nse n y la sta	
topológicos relacionad 10.6 Pur Majorana y	ntos de Dirac,	mecánica cuántica Resultado de aprendizaje: • El estudiante pod describir la fase		

Berry y su importancia en la mecánica cuántica, aplicando este conocimiento para resolver problemas relacionados con el transporte adiabático y la interferencia cuántica.

7.3 Fase geométrica en fibras ópticas

Resultado de aprendizaje:

 El estudiante será capaz de identificar y analizar la fase geométrica en fibras ópticas, comprendiendo su origen y aplicaciones prácticas en tecnologías de comunicación y sensores ópticos.

7.4 Interpretación de holonomía

Resultado de aprendizaje:

 El estudiante podrá interpretar y aplicar el concepto de holonomía en sistemas físicos, especialmente en el contexto de la teoría de campos y la mecánica

cuántica.

7.5 El efecto Hall cuántico

Resultado de aprendizaje:

 El estudiante será capaz de describir el efecto Hall cuántico y su relevancia en la física del estado sólido, comprendiendo su relación con las fases topológicas de la materia.

7.6 Ejemplo unidimensional: el modelo SSH

Resultado de aprendizaje:

 El estudiante podrá explicar el modelo SSH (Su-Schrieffer-Heeger) y su importancia como ejemplo de fase topológica en sistemas unidimensionales, aplicando este conocimiento en problemas de física de materiales.

7.7 Fases topológicas y estados de borde localizados

Resultado de

aprendizaje:

 El estudiante será capaz de identificar y analizar las fases topológicas y los estados de borde localizados, comprendiendo su relevancia en la física de materiales y las aplicaciones tecnológicas.

7.8 El papel de las simetrías discretas

Resultado de aprendizaje:

 El estudiante podrá describir el papel de las simetrías discretas en la clasificación de fases topológicas, aplicando este conocimiento en el análisis de sistemas físicos específicos.

7.9 Variedades de aislantes topológicos y sistemas relacionados

Resultado de aprendizaje:

 El estudiante será capaz de identificar y caracterizar diferentes variedades de aislantes topológicos y sistemas

relacionados, comprendiendo su relevancia en la física del estado sólido y las aplicaciones en electrónica y espintrónica.

10.6 Puntos de Dirac, Majorana y Weyl

Resultado de aprendizaje:

 El estudiante podrá explicar los conceptos de puntos de Dirac, Majorana y Weyl, comprendiendo su importancia en la teoría de campos y la física de partículas, así como sus aplicaciones en materiales cuánticos y computación cuántica.

			uración en Semanas	
8	Fotónica topológic	a		2
C	ontenidos	Resultados de Aprendizajes de la Uni	dad	Referencias a la Bibliografía
topológico fotónicos 8.2 Camin 8.3 Cristal guías de o resonantes 8.4 Gu protegidas	general: efectos s en sistemas atas fotónicas es fotónicos, nda y cavidades s acopladas ías de onda s topológicamente copológicos	8.1 Visión general: efectos topológicos esistemas fotónicos Resultado de aprendizaje: • El estudiante ser capaz de proporcionar una visión general de los efectos topológicos en sistemas fotónicos comprendiendo I principios básicos su importancia e investigación act y las aplicaciones tecnológicas. 8.2 Caminatas fotónicas Resultado de aprendizaje: • El estudiante poo describir el concepto de caminatas fotóni y su relevancia e la manipulación o la luz, aplicando este conocimiente en el diseño de experimentos y	rá os, os y n la drá cas en de	1,3

dispositivos fotónicos.

8.3 Cristales fotónicos, guías de onda y cavidades resonantes acopladas

Resultado de aprendizaje:

 El estudiante será capaz de explicar el funcionamiento de cristales fotónicos, guías de onda y cavidades resonantes acopladas, comprendiendo cómo se pueden utilizar para controlar y manipular la luz en diversas aplicaciones.

8.4 Guías de onda protegidas topológicamente y láseres topológicos

Resultado de aprendizaje:

 El estudiante podrá identificar y analizar guías de onda protegidas topológicamente y láseres topológicos, comprendiendo su diseño y las ventajas que ofrecen en comparación con los

dispositivos fotónicos convencionales.	

Bibliografía General

- 1. Simon, D. S. (2021). *Topology in Optics (Second Edition)* (2nd ed.). London, England: Institute of Physics Publishing.
- 2. Moessner, R., & Moore, J. E. (2021). *Topological phases of matter*. doi:10.1017/9781316226308
- 3. Shapere, A., & Wilczek, F. (Eds.). (1989). *Geometric Phases In Physics*. Singapore, Singapore: World Scientific Publishing.
- 4. Mikio Nakahara. (2003, June 4). *Geometry, Topology and Physics, Second Edition*. doi:10.1201/9781420056945.bmatt

Vigencia	20/06/2024
desde:	
Elaborado por:	ASNunez
Revisado por:	