Electromagnetismo FI2002-5 Primavera 2024

Profesor: Claudio Arenas

Auxiliares: Pablo Guglielmetti, Martín Leiva

Ayudante: Gerd Hartmann

Auxiliar 5: Potencial electrico

P1. .

En un día con buen tiempo, el campo eléctrico sobre la superficie de la tierra se puede describir aproximadamente por la expresión $\vec{E} = -\left(ae^{-\alpha z} + be^{-\beta z}\right)\hat{k}$ donde a, b, α y β son constantes con $(\alpha, \beta) > 0$. El eje z denota la altura sobre la superficie de la Tierra.

- a) Determine la densidad de carga ρ en todo el espacio.
- b) Calcule el potencial elctrico en todo el espacio.
- c) Cuanta energia debe poseer una particula de carga +q en la superficie de la tierra para escapar de su interaccion electrica.

P2.

Dos cilindros conc
 entricos conductores, uno de ellos macizo de radio R_1 y el otro un cascaron de radio
s R_4 y R_5 conectado a tierra como muestra la figura. Se coloca una densidad de carga volumetrica ρ_0 entre los cilindros de ancho $(R_3 \ R_2)$.

- a) Determine el campo el ectrico en todo el espacio y las densidades de carga inducidas en las superficies conductoras.
- b) Calcule la diferencia de potencial entre los conductores.

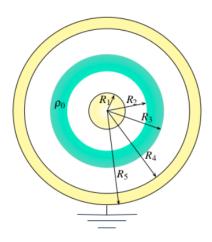


Figura 1