P1/ Nos damos una corriente I que come por el cable de la bobina.

a) El campo del solenoide lo han visto

B'= Mo n I 2 -> Campo den tro del solenoide.

Ahora, necesitamos do = dS n

$$\hat{n} = \sin \alpha \hat{x} + \cos \alpha \hat{x}$$

$$\hat{\gamma} = \sin \alpha \hat{x} + \cos \alpha \hat{x}$$

=)
$$\Phi = \iint \overline{B} \cdot d\overline{S} = \mu o n I \iint \sin \alpha dS = \mu o n I \sin \alpha = \int_{\overline{I}}^{2} \sin \alpha dS = \mu o n I \int_{\overline{I}}^{2} \sin \alpha dS = \int_{\overline{I}}^{2} \sin \alpha dS =$$

b) Si por la espira circula una corriente I(t)=Iosin(wt)

=)
$$\overline{\Phi} = M I(t) = \pi \mu b n b^2 I(t) \sin \alpha$$

=)
$$\mathcal{E} = -\partial \overline{\Phi} = -\mu_0 \pi b^2 n \dot{T}(t) \sin \alpha = -\mu_0 \pi b^2 n \dot{T}_0 w \cos(wt) \sin \alpha$$

Una vez que el circuito se cieme, podemos usar la ley de Voltajes de Kirchhoff, donde la fuente de poder y la inductancia son las subidas de voltaje.

$$V + V_L = V_R + V_C$$

$$=$$
 $V = V_c + \overline{\bot}L + \overline{\bot}R$

No conocernos la corriente que viaja por el circuito, pero sabemos que: $Q = V_c C$ y $\dot{Q} = \overline{L} =$ $J = C \dot{V}_c$

=)
$$V = V_c + |C\ddot{V}_c| + |R\dot{V}_c| = |V_c| + |R\dot{V}_c| + |R\dot{V}_$$

Tenemos una EDO, cuya solución es la combinación lineal de la solución homogénea y particular.

Veamos la homogénea: $V_c + \frac{R}{L} \dot{V}_c + \frac{1}{L} \dot{V}_c = 0$

Algo de la forma $V_c = A e^{\lambda t}$ soluciona: $\dot{V}_c = A \lambda e^{\lambda t}$ $\dot{V}_c = A \lambda^2 e^{\lambda t}$

$$= \lambda^{2} + \frac{2}{L} \lambda + \frac{1}{LC} = 0 ; \quad \omega_{o}^{2} = \frac{1}{LC}$$

$$\chi = \frac{1}{LC} \lambda + \frac{1}{LC} = 0$$

$$\chi = \frac{1}{LC} \lambda + \frac{1}{LC} + \frac{1}{LC} \lambda + \frac{1}{LC} + \frac{1}{LC} \lambda + \frac{1}{LC} \lambda$$

=) La solviión homogénea es: $V_c = A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t}$

La particular, se puede ver que Vc=V soluciona la EDO.

=> $V_c(t) = V + A_+ e^{\lambda_+ t} + A_- e^{\lambda_- t}$, con A_\pm ctes que se determinan de las condiciones iniciales: $V_c(0)$, $V_c(0)$.

El término que determina el comportamiento del sistema es

$$\sqrt{\gamma^2-\omega_o^2}$$

- Criticamente amortiguado: $\gamma = W_0$, $\lambda_+ = \lambda_-$ y son reales, por lo que no hay oscilaciones
- Sobre-amortiguado: 770% , $\lambda_{+} + \lambda_{-}$ y reales, por lo que no hay oscilaciones
- * Sub-amortiguado: $\gamma < W_o$ $\lambda_t \neq \lambda_-$ y son complejos, por lo que hay oscilaciones.

$$|\underline{P3}|$$
 a) Campo generado por toroide: $|\overline{B}_z| = |\underline{U}_0 N \underline{I}_z| (-\hat{\rho})$ (Ampère)

$$\Phi = \int \overline{B}_{2} \cdot d\overline{S} = \underbrace{\mu_{0} N I_{2}}_{Z_{11}} \int_{R}^{2\mu_{0}} d\rho \int_{R}^{b} dz = \underbrace{\mu_{0} N I_{2}}_{Z_{11}} b \ln \left(1 + \frac{\alpha}{R}\right)$$

$$= \sum_{R} \underbrace{\mu_{0} N b}_{Z_{11}} \ln \left(1 + \frac{\alpha}{R}\right)$$

b)
$$\Phi_z = M_{z_1} I_1$$
. Campo generado por el cable: $\overline{B}_x = \frac{M_0 I_1}{2 \pi \rho} (-\hat{\phi})$

Pero el campo que genera el toroide es sólo dentro de él

$$\Phi_{i} = \int_{0}^{\infty} \widehat{B}_{z} \cdot d\rho dz (-\hat{\rho}) = \mu_{0} N \underline{I}_{z} b \ln (1 + 9/R)$$

d)
$$\mathcal{E} = \mathbf{I}_{z} \mathcal{R}$$
, pero $\mathcal{E} = -\dot{\Phi} = -\mathbf{L}\dot{\mathbf{I}}_{z} - \mathbf{M}_{z}\dot{\mathbf{I}}$,

$$\dot{I}_{i} = -I_{o}\omega \sin(\omega t)$$

De la indicación, tenemos la sol particular, y la homogénea es $I_{z}(0)e^{-R_{z}t}$ $I_{z}(t) = I_{z}(0)e^{-R_{z}t} + I_{o}Mw(Rsin(wt) - Lwcos(wt))/(R^{2}+L^{2}w^{2})$