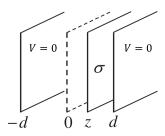

Auxiliar 6

Conductores

Profesor: Simón Riquelme Auxiliares: Gaspar De la Barrera, Isaac Rivera Ayudante: Valeria Pinochet

P1.


Considere dos conductores esféricos concéntricos. Uno sólido de radio a conectado a tierra, y el otro, un cascarón de radio interior b y radio exterior c sobre el cual se ha depositado una carga Q. Calcule la carga inducida sobre la esfera interior y el campo eléctrico en todo el espacio.

P2

Dos planos conductores infinitos son mantenidos a potencial cero en z=-d y z=d. Y una lámina infinita de densidad uniforme de carga por unidad de área σ se pone entremedio de los conductores en un punto arbitrario z.

- a) Encuentre la densidad de carga inducida en cada plano (conectado a tierra) y el potencial en la posición de la lámina cargada.
- b) Encuentre la fuerza por unidad de área que actúa sobre la lámina cargada

Auxiliar 6

P3.

Un condensador está formado por tres capas cilíndricas concéntricas conductoras, infinitamente largas, de radios a < b < c. Encuentre la capacitancia por unidad de largo en la estructura si un cable fino conecta la capa interna con la capa externa y el cilindro del medio tiene una densidad de carga lineal uniforme λ_b (por lo tanto, los otros dos cilindros tienen una carga libre $-\lambda_b$ entre ellos).

[HINT] Recuerde que puede calcular la capacitancia por unidad de área como $C = \lambda_1/(V_1 - V_2)$ donde λ es la densidad de carga de la placa positiva y V_1 es el potencial en la placa positiva]

Resumen

Los conductores son materiales que dentro de ellos $\vec{E}=0 \implies V=cte$. De esto también se deduce que toda la carga que tengan la deben tener en su superficie.

Auxiliar 6 2