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[1] Ambiguities in the representation of environmental processes have manifested
themselves in a plethora of hydrological models, differing in almost every aspect of their
conceptualization and implementation. The current overabundance of models is
symptomatic of an insufficient scientific understanding of environmental dynamics at the
catchment scale, which can be attributed to difficulties in measuring and representing the
heterogeneity encountered in natural systems. This commentary advocates using the method
of multiple working hypotheses for systematic and stringent testing of model alternatives in
hydrology. We discuss how the multiple-hypothesis approach provides the flexibility to
formulate alternative representations (hypotheses) describing both individual processes and
the overall system. When combined with incisive diagnostics to scrutinize multiple model
representations against observed data, this provides hydrologists with a powerful and
systematic approach for model development and improvement. Multiple-hypothesis
frameworks also support a broader coverage of the model hypothesis space and hence
improve the quantification of predictive uncertainty arising from system and component
nonidentifiabilities. As part of discussing the advantages and limitations of multiple-
hypothesis frameworks, we critically review major contemporary challenges in hydrological
hypothesis-testing, including exploiting different types of data to investigate the fidelity of
alternative process representations, accounting for model structure ambiguities arising from
major uncertainties in environmental data, quantifying regional differences in dominant
hydrological processes, and the grander challenge of understanding the self-organization
and optimality principles that may functionally explain and describe the heterogeneities
evident in most environmental systems. We assess recent progress in these research
directions, and how new advances are possible using multiple-hypothesis methodologies.
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1. Introduction
1.1. Ambiguities in the Choice of Model Structure

[2] Building an environmental model requires making a
series of decisions regarding the appropriate representation
of natural processes. Some of these decisions can already
be based on well-established physical understanding. For
example, the snow component of a model can be designed
to explicitly simulate all energy and mass fluxes at the
snow–atmosphere interface (as opposed to ‘‘just’’ represent-
ing snowmelt as an empirical function of temperature).
However, gaps in our current understanding of environmen-
tal dynamics, combined with incomplete knowledge of the
properties and boundary conditions of most environmental

systems, make many important modeling decisions far
more ambiguous. For example, how should saturation-
excess runoff be represented? What about macropore flow:
is it significant or even dominant, and, if so, how should it
be represented? What is the best way to quantify the impact
of (unknown) bedrock topography/permeability on subsur-
face water retention? Other modeling decisions may be
driven by pragmatic considerations, such as the modeler’s
background, computer budget, and study objectives. How
can we represent the spatial variability in snow depth across
a hierarchy of scales? Is an application of Beer’s law to a
single canopy layer sufficient to simulate the transmission of
shortwave radiation through the forest canopy, or are more
sophisticated methods required? Finally, some decisions are
more ‘‘holistic’’ in nature. How do we represent the hetero-
geneity of flow paths through a catchment, and hydrological
controls such as topography and soil properties? From a
higher vantage point, can we account for the geomorpho-
logic and biological drivers that may have shaped the current
traits of a landscape of interest and its vegetation, or indeed,
entire classes of environmental systems? The point is that
there is currently little agreement regarding what a ‘‘correct’’
model structure is, especially at relatively larger spatial
scales such as catchments and beyond. In current practice,
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faced with such a range of decisions, different modelers will
generally make different modeling decisions, often in an ad
hoc manner, on the basis of their balancing of process under-
standing, the data available to evaluate the model, the pur-
pose of the modeling exercise, and other considerations.

[3] Whether directly or indirectly, ambiguities in the
choice of model structure have led to a plethora of hydro-
logical models (e.g., see the collections of models
described by Singh and Frevert [2002a, 2002b], and the
classification of models proposed by Kampf and Burges
[2007]). Faced with such remarkable overabundance, the
community has struggled to identify the ‘‘most appropri-
ate’’ models even in the relatively simple terms of ‘‘best
empirical performance,’’ let alone in terms of their scien-
tific validity. In several model intercomparison experiments
to date, participating models often produced similar levels
of accuracy with respect to streamflow predictions, despite
employing quite different conceptualizations of natural
processes [e.g., Reed et al., 2004; Duan et al., 2006].

1.2. Are We Failing?
[4] In our opinion, the apparent superfluity of catchment-

scale hydrological models is symptomatic of a current fail-
ure for the discipline of hydrology in its efforts to develop a
general model structure that is ‘‘physically realistic’’ (in the
sense of agreeing with experimental insights), operationally
adequate, and applicable in different environments and
climatic conditions. This failure is evident in the differences
among the ‘‘general’’ models described by Burnash et al.
[1973], Liang et al. [1994], Reggiani et al. [1998], Van-
derKwaak and Loague [2001], Maxwell and Miller [2005],
and Qu and Duffy [2007] and many other authors.

[5] The debates regarding appropriate methods to repre-
sent natural processes are particularly symptomatic of an
insufficient scientific understanding of environmental dy-
namics at the catchment scale. This lack of understanding
can be attributed to our current inability to adequately
quantify the impact of subcatchment heterogeneities on the
catchment’s hydrological response [McDonnell et al.,
2007; Kumar, 2011], or formulated more generally as a
failure to resolve the catchment-scale ‘‘closure’’ problem
[Reggiani et al., 1998, 1999; Beven, 2006b]. Several com-
mentators have also noted the lack of a unified theory of
hydrology at the catchment scale, and suggested that such a
theory should reflect the self-organization and optimality
principles that may functionally explain and describe the
heterogeneities evident in most environmental systems
[e.g., Sivapalan, 2005; McDonnell et al., 2007; Troch
et al., 2009].

[6] These challenges raise several important questions,
including: Does a single ‘‘correct’’ catchment-scale hydro-
logical model exist at all, or is the current glut of models a
consequence of poor identifiability from currently available
hydrological data? Do differences in hydrological function-
ing across diverse hydrological landscapes require region-
specific model structures? Do some (or all) catchment
systems inherently require spatially distributed representa-
tions? Or are we on the right track and ‘‘just haven’t made
it there yet’’? In this commentary, we contend not only that
these questions are currently poorly understood, but, more
concerningly for the discipline of hydrology, that we lack,

or sometimes are unwilling (or unable) to develop or apply,
the scientific tools to answer these questions.

1.3. Aims and Scope of Commentary
[7] This commentary advocates systematically adopting

the method of multiple working hypotheses [Chamberlin,
1890] for hydrological model development and evaluation.
We make two specific contributions. First, we frame major
contemporary challenges in catchment-scale hydrological
modeling (and their potential solutions) from a more uni-
fied perspective of hypothesis testing in hydrology. Second,
we propose a tractable research strategy that combines the
capabilities of modular (flexible) frameworks to isolate
individual model hypotheses, with the diagnostic approach
to model evaluation that exploits different types of
observed data and data signatures to scrutinize both indi-
vidual model components and their connectivity within the
complete system model. Our broader objective is to con-
tribute a powerful and systematic ‘‘multiple-hypothesis’’
approach for improving model representations of hydrolog-
ical processes, and for handling uncertainties arising from
model structural ambiguities and data errors. In addition to
tying together themes raised as key challenges in previous
commentaries [e.g., Beven, 2006a, 2008; Blöschl, 2006;
Dunn et al., 2008; Gupta et al., 2008; Kirchner, 2006;
McDonnell et al., 2007; Savenije, 2001, 2009; Sivapalan,
2009; Soulsby et al., 2008; Tetzlaff et al., 2008; Troch
et al., 2009], it is our express intent to promote several prac-
tical solutions, which, while still in their nascence, are al-
ready yielding encouraging progress and insights.

[8] The commentary is structured as follows. We begin
by posing model development decisions, both on overall
model structure as well as on individual components, as
testable hypotheses. We then review several widely used
strategies for hydrological model development and evalua-
tion, ranging from ad hoc considerations during model de-
velopment and refinement, to ‘‘top-down’’ and rejectionist
frameworks, to more systematic model intercomparison
experiments. These approaches are critiqued in the context
of hypothesis-testing, including their stringency in expos-
ing both entire models and individual internal components
to scrutiny, their breadth of coverage of the feasible model
hypothesis space, and, finally, their ability to support con-
trolled model evaluation and analysis. Multiple-hypothesis
frameworks are then proposed as a more systematic method
for model development that can address the shortcomings
of current techniques. We discuss the major functional
aspects of multiple-hypothesis approaches, highlighting
both similarities and contrasts to existing multimodel
frameworks. As part of our discussion of the advantages
and limitations of multiple-hypothesis frameworks, we tie
together several important challenges in hydrological hy-
pothesis-testing, including exploiting data from both exper-
imental watersheds and operational networks to carry out
incisive diagnostic tests of the model hypotheses, account-
ing for model structure ambiguities arising from the limited
availability and large uncertainty in environmental data,
the challenge of understanding regional differences in dom-
inant hydrological processes, and the challenge of repre-
senting heterogeneity at different spatial scales within the
model domain. While the presentation and example focuses
primarily on catchment-scale hydrological modeling, we
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contend that the flexible model approach has a great poten-
tial when applied for hypothesis testing in other fields of
environmental modeling, whether pursued using physically
based methods or using more conceptual perspectives.

2. Hydrological Models as Hypotheses of
Catchment Function and Behavior
2.1. Defining Models as Hypotheses

[9] We define an environmental model as the entire set
of coupled variables (states) and functional relationships
used to represent a catchment or environmental system. In
this definition, the functional relationships can be based on
theory (or, more generally, on process understanding) or
derived from data. This perspective provides a clear focus
on representing the system dynamics, patterns, and func-
tionality [e.g., McDonnell et al., 2007; Sivapalan, 2009;
Kumar, 2011]. This definition applies to all models, regard-
less of their form (e.g., deterministic versus stochastic) and
regardless of the model complexity.

[10] In the context of scientific hydrology, a model is a hy-
pothesis of catchment function: it encompasses a description
of dominant hydrological processes and predicts how those
processes combine to produce the catchment’s response to
external forcing. The general characteristics of a model, and
hence the types of hypotheses and assumptions embodied in
it, may depend on the broad perspectives taken during model
development. For example, the ‘‘bottom-up’’ perspective
focuses on hydrological theory at the small scale, and aggre-
gates the output to the scale of interest, such as the entire
catchment. This is the approach underlying the current
generation of physics-based distributed models [e.g., Van-
derKwaak and Loague, 2001; Ivanov et al., 2004; Maxwell
and Miller, 2005; Qu and Duffy, 2007]. Conversely, the
‘‘top-down’’ perspective attempts to describe the system
directly at the scale of interest [e.g., Kleme�s, 1983; Dooge,
1986; Sivapalan et al., 2003]. This can be pursued in several
ways, such as by analytically integrating the small-scale
equations [e.g., Reggiani et al., 1999], by imposing optimal-
ity constraints [Schymanski et al., 2007, 2009], by employing
system identification techniques [e.g., Young, 1998, 2003],
or by conceptualizing the overall system dynamics on the ba-
sis of experimental and other perceptions [e.g., Beven and
Kirkby, 1979; Lamb and Beven, 1997; Uhlenbrook et al.,
2004; Vaché and McDonnell, 2006; Birkel et al., 2010]. It is
not our intention here to debate the relative merits of each
approach nor are they necessarily mutually exclusive within
a given model application [e.g., see Butts et al., 2004].
Rather, our intention is to emphasize that all environmental
models represent simplified hypotheses of the real world,
and that these hypotheses require rigorous construction,
implementation, and testing. We then show how flexible
frameworks can help as hypothesis-testing tools within the
contexts of both the ‘‘bottom-up’’ and ‘‘top-down’’ model
development and application strategies.

2.2. Toward Testable Hypotheses
[11] Although hydrological models are often recognized

as hypotheses of catchment behavior [e.g., Beven, 2001;
Kuczera and Franks, 2002; Andréassian et al., 2009], a
model is more akin to an assemblage of coupled hypothe-
ses. The constituent hypotheses may include, for example,

descriptions of subsurface flows through the soil matrix,
hypotheses of surface runoff and base flow generation, and,
more generally, hypotheses regarding dominant processes
and the scale/resolution of their representation within the
overall system architecture. The hypothesis-testing process
must therefore seek to scrutinize (and perhaps reject) model
components, as well as models in their entirety. However,
the constituent hypotheses may not be testable at the inte-
grated system level because individual model subcompo-
nents interact in complex ways that are not distinguishable
using aggregate measures of model performance.

[12] Hypothesis-testing in catchment-scale hydrology
therefore requires both isolating and linking a myriad of
model decisions (i.e., hypotheses) of different types and at
different levels of conceptualization. Important model struc-
ture decisions include (1) delineating the system of interest,
including its initial and boundary conditions and its forcing
and response variables, (2) selecting the processes and state
variables to include in the model (e.g., explicitly modeling
nitrogen fluxes, canopy storage, and snowpack tempera-
ture), and (3) selecting among alternative representations of
a particular process (e.g., different model representations of
canopy interception). Decisions on model structure also
include the critical choice of the appropriate model archi-
tecture, which ties together the individual elements of a
model. Model architecture may include process separation
(e.g., base flow versus interflow in a ‘‘fully lumped’’ model),
spatial discretization into grid cells, subbasins, or land cover
types (in a spatially distributed model) and/or vertical dis-
cretization into layers representing the soil, vegetation can-
opy and snowpack (in a vertically resolved model), and the
model representation of subgrid heterogeneity. There are
usually strong interdependencies and implications between
modeling decisions at different levels. For example, repre-
senting infiltration using Richards’ equation implies using
(at least) a vertically resolved model.

[13] When approached from this perspective, hypothesis-
testing requires that hydrological models be decomposed into
a set of testable components (constituent hypotheses). Each
such hypothesis can then be subjected to independent scru-
tiny, minimizing, wherever possible, the confounding inter-
actions with other model hypotheses. For such hypothesis
testing to be scientifically meaningful, the decomposition of
a (hydrological) model into its constituent hypotheses must
be carried out in a systematic manner. This requires explicitly
identifying the (usually interrelated) individual decisions
regarding system and process conceptualization, selection,
and representation made during model development.

3. Scrutiny of Model Hypotheses: Are Current
Approaches Adequate?

[14] In view of the Scientific Method of Hypothesis Test-
ing [Popper, 1959], it has been recognized that the hydrolo-
gist often fails to rigorously scrutinize the constituent
hypotheses within their models [e.g., Mroczkowski et al.,
1997; Uhlenbrook et al., 1999; Kuczera and Franks, 2002;
Beven, 2005; Vaché and McDonnell, 2006; Sivakumar,
2008]. Model development and refinement is often ad hoc,
insufficiently documented, and, as noted by McDonnell
et al. [2007], is still failing to adequately reflect field-based
knowledge. Models are too often evaluated using subjective
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and highly aggregated performance metrics, such as dis-
crepancies between simulated and observed streamflows
expressed solely using the Nash-Sutcliffe criterion, which
do not directly test any individual hypothesis within the
overall model [e.g., Uhlenbrook et al., 1999; Gupta et al.,
2008]. Finally, in the absence of rigorous quantitative
accounting for the uncertainty in the observed data, mean-
ingful evaluation of a model is impossible: its failure can
then at best be merely attributed to a nebulous mix of data
and structural errors [e.g., as discussed by Renard et al.,
2010]. In our opinion, the absence of rigorous hypothesis
testing is impeding scientific progress and preventing opera-
tional improvements in many areas of hydrology. It also
necessarily reduces the confidence in the predictive abilities
of current models.

3.1. Hypothesis Selection as Part of Model
Development and Refinement

[15] The first opportunity to evaluate a model’s constitu-
ent hypotheses is during the initial stages of model develop-
ment. Ideally, a discerning model developer will carefully
scrutinize each modeling decision and thoughtfully evaluate
modeling alternatives (for example, on the basis of the liter-
ature and previous experience). However, although multiple
alternatives may be considered when a model is developed,
it is typical that only one approach is implemented and
tested. For example, Ivanov et al. [2004] construct a physi-
cally based model of catchment hydrology that combines
existing representations for the processes of rainfall inter-
ception, evapotranspiration, infiltration, groundwater flow,
and runoff routing, yet only a single approach was selected
for each model component, and experiments with alterna-
tive process representations were not reported. Omitting the
analysis of alternative model representations is arguably
quite common in hydrology; indeed, some of our own stud-
ies did not assess alternative process representations [e.g.,
Clark et al., 2008b]. However, the ubiquity of a problem is
no defense for neglect: lack of experimentation with alter-
native process representations can result in the model build-
ing and evaluation process being dominated by the
individual, potentially biased, perspective of the modeler.

[16] Opportunities for model evaluation also arise during
subsequent stages of model development and refinement,
and may involve the inclusion of missing processes and/or
refinement of existing representations. For example, when
incorporating missing groundwater processes into existing
land surface models, Liang et al. [2003] and Niu et al.
[2007] adopted different groundwater representations, yet
neither study evaluated possible alternatives and their
impacts on the predicted land-atmosphere interactions. It is
therefore difficult to judge whether the selected model
enhancements are the most appropriate. Similarly, Livneh
et al. [2010] address negative biases in land surface model
simulations of snow by modifying the model’s albedo for-
mulation and snowpack temperature estimation, and by
including a provision for the refreeze of liquid water in the
snowpack. However, as is too common in practice, experi-
ments with alternative representations of the processes they
modified were not reported, again making it difficult to
judge whether the model refinements are most appropriate.

[17] Even in cases where the developer experiments
extensively with different model representations to address

model deficiencies, the insights gained in these experiments
often remain hidden because model failures are rarely fully
reported in the peer-reviewed literature (with some notable
exceptions, such as the Hydrological Monsters workshop
described by Andréassian et al. [2010]). As a consequence,
we (as a community) have acquired only limited knowl-
edge of the comparative performance (and hence suitabil-
ity) of different system representations.

3.2. Model Evaluation Along the Axis of Complexity
[18] Model development can also be based on complex-

ity considerations [e.g., Desborough, 1999; Atkinson et al.,
2002]. For example, most applications of the ‘‘top-down’’
strategy for model improvement in hydrology [Kleme�s,
1983; Dooge, 1986; Sivapalan et al., 2003] progressively
increased model complexity to improve model performance
[e.g., Jothityangkoon et al., 2001; Atkinson et al., 2002;
Eder et al., 2003; Farmer et al., 2003; Bai et al., 2009].
This approach can produce parsimonious models that pro-
vide useful insights into catchment behavior. For example,
Bai et al. [2009] used eight models of increasing complex-
ity to evaluate the significance of subsurface flow routing
in drier basins. Another important recent development is
the process-based application of the top-down approach by
Son and Sivapalan [2007], where an initial model was
evolved along the axis of complexity using streamflow data
alone, followed by testing and refinement of its internal
structure using auxiliary data including observed ground-
water levels and deuterium concentrations in streamflow.
However, most practical applications of the top-down
approach tend to consider a limited number of alternatives,
and seldom consider competing process representations of
equivalent complexity [e.g., Jothityangkoon et al., 2001;
Atkinson et al., 2002; Eder et al., 2003; Farmer et al.,
2003; Bai et al., 2009]. This effectively restricts the inves-
tigation to the axis of complexity along a single branch of
the model development tree, which limits the coverage of
the model hypothesis space and may result in overlooking
more plausible alternative model structures. In addition, by
relying on the information content of catchment response
data alone, the models developed with this approach are of-
ten perceived as unrealistic, in particular, over simplistic,
by experimentalists [e.g., Kirchner, 2006].

3.3. Model Intercomparison Experiments
[19] Perhaps the closest we currently get to systematic

hypothesis-testing in hydrology is during model inter-com-
parison experiments [e.g., Wood et al., 1998; Slater et al.,
2001; Reed et al., 2004; Duan et al., 2006; Breuer et al.,
2009]. Surely they provide an extensive evaluation of mod-
eling alternatives, since one of their intended aims is to
understand inter-model differences [Pitman and Henderson-
Sellers, 1998]? Yet, in our opinion, multimodel experiments
to-date have been largely thwarted from fulfilling this objec-
tive for two main reasons. First, from a purely logistic
perspective, when comparing an ad hoc collection of partici-
pating models, as is typical in current intercomparison
studies, there are simply too many structural and implemen-
tation differences to meaningfully attribute the performance
differences between any two models to specific individual
components and hypotheses [Koster and Milly, 1997]. Sec-
ond, the output of multicomponent models conveys only
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limited information on the internal system states and fluxes.
Hence, in studies where models are evaluated solely on
the basis of aggregated output performance (e.g., goodness-
of-fit of streamflow time series alone), the individual con-
stituent hypotheses remain hidden from comparison and
scrutiny [Kuczera and Franks, 2002]. We therefore con-
clude that model comparison studies are still a long way
from reliably elucidating the appropriateness of different
model representations.

3.4. Rejectionist Frameworks: Generalized Likelihood
Uncertainty Estimation (GLUE)

[20] In recognition of the Popperian principle of falsifi-
cation of testable hypotheses [Popper, 1959], a number of
‘‘rejectionist’’ frameworks have been proposed in hydro-
logical sciences [e.g., Beven, 2002; Vaché and McDonnell,
2006]. Of these, the GLUE methodology [Beven and
Binley, 1992; Beven and Freer, 2001], a broader philoso-
phy that includes model inference, evaluation, and applica-
tion, has been widely adopted in environmental studies
(e.g., Beven [2006a] and references therein; see also
Stedinger et al. [2008] for a critique). GLUE involves clas-
sifying a model as ‘‘behavioral’’ or ‘‘nonbehavioral’’ on the
basis of summary statistics of model performance (e.g.,
behavioral models are those for which the sum of squared
errors between simulated and observed streamflow is below
a specified threshold). This is a form of hypothesis testing
because it facilitates the rejection of model hypotheses that
perform inadequately with respect to the evaluation criteria
employed. For example, Franks et al. [1998] employed
GLUE to scrutinize models using streamflow data and
remotely sensed estimates of saturated areas; Blazkova
et al. [2002] and Freer et al. [2004] used streamflow data
and distributed water table measurements. These studies
separated parameter sets into behavioral and nonbehavioral
groups based on streamflow data alone, and then additional
data on saturated areas and distributed water tables were
used to further reject some of the ‘‘behavioral’’ parameter
sets. Though in most applications of GLUE the different
models corresponded to different parameter sets within a
single model structure (e.g., uniformly sampled from the
feasible parameter space), multiple model structures could
also be evaluated using essentially the same approach
[Krueger et al., 2010].

[21] However, from our perspective, GLUE provides a
superficial approach to model evaluation. In our opinion, a
rejectionist framework is useful only inasmuch as it is based
on reasonable measures to separate ‘‘good’’ from ‘‘bad’’
hypotheses. Yet GLUE offers little new insights into the key
question of how to separate behavioral from nonbehavioral
models: it rejects models based on a subjectively defined
threshold in a subjectively defined pseudo-likelihood func-
tion. Furthermore, typical applications of GLUE do not
even attempt to specify or infer any distinction between data
and model errors. Instead, they lump a multitude of model
and data problems into an inflated parametric uncertainty
[Beven, 2006a], and, at least in applications to date, appear
exempt from posterior scrutiny (e.g., on grounds of difficul-
ties in deriving adequate rainfall uncertainty models [e.g.,
Beven et al., 2008], and/or difficulties in representing episte-
mic uncertainties in the hydrological model structure using
probability theory [e.g., Beven, 2008]). In doing so, rather

than exposing model hypotheses to scrutiny, GLUE effec-
tively justifies leaving them hidden behind a cloak of unre-
solved data and model errors.

[22] The original motivation for GLUE included the
need for better hypothesis testing [Beven, 2001], and recent
work has aimed to extend the GLUE methodology in this
respect [Beven, 2006a]. For example, Krueger et al. [2010]
consider a number of potentially testable hypotheses within
the GLUE inference and, importantly, consider data errors
when discriminating among competing hydrological mod-
els: Their trapezoidal penalty function for the residuals rep-
resents an assumed error model that combines streamflow
and structural errors, while their rainfall input ensemble
represents an assumed rainfall error model (albeit quite
simplistic, using a six-member ensemble to characterize the
uncertainty in 6 months of hourly data). These GLUE
enhancements largely mimic the standard specification of
error models within theoretically based statistical inference
methods, and reflect the general trend in the broader envi-
ronmental sciences toward a more careful treatment of
uncertainties in environmental data since the original
GLUE method was proposed 20 years ago. However, the
GLUE extensions themselves still do not address the key
issue of isolating constituent model hypotheses and subject-
ing them to independent scrutiny: any new techniques for
model decomposition, evaluation, and improvement must
be developed separately from GLUE and, as such, could be
applied in other, more theoretically grounded, inference
frameworks. Moreover, to the extent that the GLUE likeli-
hood function components and rejection thresholds are not
subjected to scrutiny and improvement (e.g., as required
within a more formal application of Bayesian principles), it
is our opinion that the GLUE approach does not adequately
address the quest for rigorous evaluation of hydrological
hypotheses.

4. Construction and Use of Multiple-hypothesis
Approaches
4.1. From Single Models to Multiple-hypothesis
Frameworks

[23] We introduce the term ‘‘multiple-hypothesis frame-
work’’ to describe any modeling framework that facilitates
experimenting with different ways to represent the behavior
of a system. Note that this includes model frameworks
developed primarily to evaluate model representations of
increasing complexity [e.g., Desborough, 1999; Fenicia
et al., 2008b; Bai et al., 2009; Krueger et al., 2010; Buy-
taert and Beven, 2011], as well as model frameworks used
to evaluate competing hypotheses of comparable complex-
ity [Moore and Clarke, 1981; Wagener et al., 2002; Clark
et al., 2008a; Smith and Marshall, 2010]. More broadly, we
consider the multiple-hypothesis framework as an umbrella
category, which includes ‘‘multiphysics’’ models used in
the numerical weather prediction and land-surface model-
ing communities [Jankov et al., 2005; Niu et al., 2011], as
well as frameworks designed to integrate model compo-
nents or entire models [Leavesley et al., 2002; Kumar
et al., 2006; Pomeroy et al., 2007]. Provided multiple
options are available for individual components and/or for
the connectivity of the components, all of these modeling
frameworks can be used for particular hypothesis testing

W09301 CLARK ET AL.: HYPOTHESIS TESTING IN HYDROLOGY W09301

5 of 16



applications. Sections 4.2 through 4.5 elaborate on the
requirements of multiple-hypothesis framework and on
their practical limitations.

4.2. Key Requirements of a Multiple-hypothesis
Framework

[24] The hypothesis-decomposition requirements out-
lined in section 2.2 can be accommodated within model
frameworks that are flexible (and extensible) in their selec-
tion and representation of hydrological processes, including
their overall connectivity within the model architecture.
The following key aspects are of significance:

[25] 1. Support multiple alternative decisions regarding
process selection and representation, e.g., based on a litera-
ture review, established theory, discussion with experimen-
talists, or on other prior perceptions. Consider the case of a
physics-based snow model developed for streamflow fore-
casting applications. Relevant modeling decisions include,
but are not limited to: (1) What stability function is used to
compute turbulent heat fluxes?; (2) What method is used
to represent snow albedo (function of time since last snow-
fall, or explicitly simulating grain growth)?; and (3) What
method is used to represent interception and unloading of
snow from the forest canopy? Allowing for empirical com-
ponents, snow melt may also be represented as an empirical
function of temperature. More generally, the number and
complexity of decisions will depend on the size and com-
plexity of the modeled system, and, in engineering con-
texts, also on the purpose of the model.

[26] 2. Accommodate different options for the model
architecture, representing the connectivity between differ-
ent model components. A key architectural consideration is
the representation of heterogeneities, which can affect
many different hydrological processes. For example, sub-
grid heterogeneity in land-surface models is commonly rep-
resented using a ‘‘mosaic’’ approach, by disaggregating a
grid cell into a number of different vegetation types [e.g.,
Koster and Suarez, 1992; Liang et al., 1994]. The mosaic
approach accounts for the impact of subgrid heterogeneities
in vegetation on fluxes such as canopy throughfall/drip,
canopy evaporation, and transpiration, but does not typi-
cally consider horizontal fluxes of water within a grid cell,
which may be important in order to account for the connec-
tions between vegetation type and water availability [e.g.,
Tromp-van Meerveld and McDonnell, 2006a]. Allowing for
multiple architectural options enables a comparison of the
mosaic approach with other model architectures, such as
those where multiple vegetation types can coexist in a one-
dimensional column [Oleson et al., 2010], and those that
allow for subgrid variability in soil moisture [e.g., Fami-
glietti and Wood, 1994].

[27] 3. The ability to separate the hypothesized model
equations from their solutions, especially if the latter require
numerical approximations. For example, for a continuous-
simulation rainfall-runoff model, the governing equations
should be formulated and reported in continuous-time state-
space form, and only then approximated in discrete time
[e.g., Kavetski et al., 2003; Young and Garnier, 2006;
Clark and Kavetski, 2010, and references therein]. Distin-
guishing between a hypothesis of hydrological behavior and
its practical implementation (which may require additional
approximations, linearizations, or smoothing) allows for a

clearer physically oriented analysis unobscured by mathe-
matical solution aspects. It also facilitates upgrading the
model as more accurate and/or efficient solution techniques
become available. In our opinion, the distinction between
posing a hypothesis and implementing that hypothesis in a
model appears all too often confused. This can seriously,
and unnecessarily, compromise model development, analy-
sis, and application [Kavetski and Clark, 2010, 2011].

[28] The modular approach to model development is con-
sistent with the philosophy employed by Beven and Kirkby
[1979] in TOPMODEL, which is presented as a set of con-
cepts, rather than a fixed structure, based on the hypothesis
that topographic indices control saturated areas and base
flow. For example, Ambroise et al. [1996] explored linear
versus power forms of the topographic index function sug-
gested by a priori recession analysis. It also parallels the
‘‘multiphysics’’ options available in numerical weather pre-
diction models and land-surface models [e.g., Jankov et al.,
2005; Niu et al., 2011]. A key issue is the granularity of the
decision tree. For example, as discussed next, a single
model component could be used to represent the entire ‘‘soil
zone’’ or, alternatively, distinct components could be used
to characterize associated subprocesses, e.g., saturation-
excess runoff or vertical drainage. Though some personal-
and context-specific subjectivity in the granularity of model
components is unavoidable, ideally we should strive to iso-
late as many modeling decisions as possible.

4.3. Relationship to General Modular Frameworks
[29] The multiple-hypothesis approach can be imple-

mented within a modular framework (and, eventually,
software) that provides the ability to mix and match differ-
ent model components, and to select multiple options for
each modeling decision. The implementation must also
support the interdependencies that will often be encoun-
tered between different modeling decisions (e.g., as illus-
trated in section 5.4).

[30] Noting the key requirement of isolating individual
model hypotheses, it is important to distinguish the aim of
providing multiple representations of different physical
processes from other possible aims of modular frameworks,
such as the integration of existing models to simulate
larger-scale systems. In a general modular modeling sys-
tem, the different models or model components (e.g., com-
ponents that represent hydrological processes in the soil
zone, or components that represent the below-canopy
snowpack) may have widely different philosophies with
respect to key aspects such as degree of process conceptu-
alization, spatial/temporal discretization, numerical approx-
imation, and software implementation [e.g., Leavesley
et al., 2002; Kumar et al., 2006; Pomeroy et al., 2007].
The multiple and often significant differences between dif-
ferent models (and between model components) make it
difficult to test hypotheses in a controlled fashion. From
this perspective, the individual components used in many
modular modeling systems are often too coarse: e.g., the
inclusion of a submodel representing the entire soil zone
lumps together several important modeling decisions.
Hence, in order to maximize their utility for hypothesis
testing, modular modeling frameworks should be designed
with much finer granularity, and allow for multiple options
for different modeling decisions.
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4.4. Use of Multiple-hypothesis Frameworks for
Systematic Scrutiny of Model Decisions

[31] There are several recent examples in the literature
where multiple fine-grain hypotheses were compared. In a
land-surface modeling study, Niu et al. [2011] used a multiple-
hypothesis framework to compare different physically based
options for representing turbulent heat transfer, soil mois-
ture stress, and snow processes. The ability to isolate and
compare individual modeling options allowed Niu et al.
[2011] to attribute differences in overall model perform-
ance to specific modeling decisions. In a catchment hydrol-
ogy study, Clark et al. [2011] evaluated alternative model
representations of evapotranspiration, vertical drainage,
surface runoff, and base flow in an experimental basin
where several data sources where available. Clark et al.
[2011] only used five model structures, with these struc-
tures carefully selected to isolate differences in model com-
ponents. Also consider in this context the study of Kavetski
et al. [2011], where several rainfall-runoff models were
analyzed across a range of time scales: the analysis consid-
ered model hypotheses of different structure and complex-
ity, implemented using different numerical methods, and
calibrated using different inference schemes. The analysis
was conducted in a controlled way, so as to disentangle the
effects of model complexity, data resolution, and numerical
time stepping schemes on the models’ ability to reproduce
hydrological signatures of interest. These examples provide
an initial demonstration of the effectiveness of multiple-
hypothesis frameworks for model evaluation, and we antici-
pate future studies along these lines will further advance our
understanding of various modeling options.

[32] More generally, the flexibility in the selection of
model architecture and components can be exploited to
design various strategies for a controlled and thorough ex-
ploration of the hypothesis space. For example, multiple
options for a single model component could be evaluated
against observed data using multifaceted model diagnos-
tics while keeping the rest of the model fixed. Next, multi-
ple options for a single model component could be trialed
within different model architectures. Interactions between
multiple model decisions can be examined next, under the
same overall approach. This multistage model evaluation
strategy is analogous to the Sobol strategy for parameter
sensitivity analysis [Saltelli, 2002] applied using multiple
sensitivity metrics. Restricting the variations to one (or
few) components at a time provides a more controlled
model evaluation, whereas evaluating variants of one
model component within multiple parent model structures
provides a more comprehensive evaluation of model alter-
natives. In many cases, the range of model alternatives
can be narrowed down based on process understanding,
whereas in other cases a wider range of options must be
considered.

4.5. Practical Limitations
[33] Especially in the earlier stages, practical implemen-

tations of multiple-hypothesis frameworks necessarily
requires trade-offs between model flexibility, complexity,
comprehensiveness, and computational cost. For example,
current applications of the FUSE approach remain quite
limited in scope because they include only comparatively
simple representations of the soil zone and do not directly

resolve spatial variability [Clark et al., 2008a]. Such limita-
tions often arise for pragmatic reasons: resource constraints
inevitably reduce the number and complexity of modeling
decisions (hypotheses) that are included and/or considered
within a particular application. At least initially, it may also
be necessary to nest the new multiple-hypothesis configura-
tions within one or more parent models.

[34] Computational costs impose another important con-
straint on the exploration of different model representations
of environmental behavior, requiring explicit or implicit
trade-offs between the range of modeling decisions consid-
ered and the spatial resolution and size of the model do-
main. For example, given a practical set of resources and
computational budgets, should a modeler reduce the num-
ber of competing hypotheses under investigation in order to
use higher spatial resolution? Or use coarser discretization
in order to simulate a larger domain size?

[35] While practical constraints necessarily affect all
applied sciences, the multiple-hypothesis approach is
entirely general and offers solid prospects for rigorous hy-
pothesis testing in increasingly realistic environmental
modeling contexts [e.g., Niu et al., 2011]. Though still in
its nascence, this progress gives us confidence that the abil-
ity of multiple-hypothesis frameworks to isolate individual
model hypotheses, when combined with increased avail-
ability and more intelligent use of data, will lead to more
scientifically defensible environmental models.

5. Requirements for Meaningful Hypothesis
Testing

[36] At its core, hypothesis testing aims to scrutinize the
consistency of the predictions of a hypothesis against em-
pirical observations [Popper, 1959]. In disciplines such as
physics, where the experimental conditions can be carefully
controlled, it is often possible to rigorously apply concepts
of statistical significance [e.g., Lehmann and Romano,
2005]. In hydrology and many other environmental disci-
plines, events of interest may be infrequent or nonrepeat-
able, and the uncertainty in the observations is seldom fully
characterized. In these common cases, it may be preferable
to use Bayesian approaches, where model hypotheses are
evaluated more subjectively in light of both the plausibility
of the model hypothesis (which could be expressed on the
basis of prior process understanding) and of the data used
in a particular evaluation. This section outlines more spe-
cific requirements for carrying out informative hypothesis
testing, and surveys some of the recent developments and
applications in this direction.

5.1. The Need for Stringent Model Diagnostics and
Clever Use of Data

[37] Crafting a model as a set of testable hypotheses
must proceed hand-in-hand with the development and
application of stringent model diagnostics that challenge
both individual constituent hypotheses and the overall
model architecture. As discussed by Kuczera and Franks
[2002], a major challenge ‘‘is to expose internal variables
to scrutiny. This is not a trivial challenge, but one that must
be vigorously pursued if conceptual catchment modeling is
to avoid degenerating into a sterile curve-fitting exercise.’’
Similarly, Gupta et al. [2008] outline the limitations of
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traditional aggregate metrics (such as the sum of squared
differences between model simulations and observations of
the overall system response), and highlight the need for in-
cisive model diagnostics that can scrutinize different sub-
components of a model. This lesson has been repeatedly
highlighted by experimentalists, who show that scrutiny of
multivariate data collected in experimental basins not only
exposes major model deficiencies, but may be indispensable
for improving model realism [e.g., Seibert and McDonnell,
2002; Uhlenbrook et al., 2004; Weiler and McDonnell,
2004; Vaché and McDonnell, 2006; McGuire et al., 2007;
Sayama and McDonnell, 2009; Birkel et al., 2010]. Two
main categories of model diagnostics (hypothesis-testing
tools) can be employed:

[38] 1. The improved use of traditional data, in a way
that focuses hypothesis testing on reproducing hydrological
behavior rather than merely matching data with model sim-
ulations. For example, streamflow measurements can sup-
port a richer set of diagnostics than traditional time series
analysis alone. Hydrographs can be separated into reces-
sion periods versus periods that are actively ‘‘driven’’ by
rainfall [e.g., Boyle et al., 2000], or used to generate a set
of indices (diagnostic signatures) that have explanatory
power for different processes within a model [Gupta et al.,
2008]. For example, Yilmaz et al. [2008] use the slope of the
flow duration curve to evaluate the model representation of
vertical drainage. Note that the application of some model
diagnostic measures may require additional hypotheses.

[39] 2. Using new types of data. In many locales, hydro-
logical investigations remain thwarted by a dearth of data.
In particular, much of the data needed for better model de-
velopment is only available in a small set of experimental
catchments, and, even then, scrutinizing certain model
hypotheses may require data for which measurement tech-
nologies are still unreliable, or not yet available. One of the
major challenges in catchment-scale hydrology is therefore
to design effective methods to measure fluxes and storages
at the relevant spatial scales [e.g., Beven, 2006b].

[40] Yet, at least in experimental catchments, notable pro-
gress is already apparent in collecting and utilizing inde-
pendent data on internal hydrological processes. For
example, Western et al. [2004] explored the spatial variabili-
ty of soil moisture to understand the dominant processes
controlling soil moisture patterns, Tromp van-Meerveld and
McDonnell [2006b, 2006c] measured the spatial variability
of water table depth to diagnose the controls of bedrock to-
pography on hydrological connectivity and storm runoff,
and Vaché and McDonnell [2006] used isotopic estimates of
residence time to diagnose the heterogeneity of flow paths
within a catchment. In land-surface modeling, it is common
to evaluate models using eddy-covariance measurements of
sensible and latent heat [e.g., Abramowitz et al., 2008].
Advances are also evident in the development of techniques
for measuring hydrological processes over larger spatial
scales, including the use of cosmic ray sensors for soil mois-
ture estimation [Zreda et al., 2008], the use of GPS for soil
moisture and snow monitoring [Larson et al., 2009, 2010],
the use of terrestrial scanning lidar for snow monitoring
[Prokop, 2008; Hood and Hayashi, 2010], and the use of
fiber optics for distributed temperature sensing [e.g., Selker
et al., 2006; Tyler et al., 2009]. Limitations notwithstanding,
new sources of information are clearly beneficial, if not

critical, for model development and testing. Experimental
endeavors must therefore be vociferously encouraged and
generously funded.

5.2. Accounting for Both Prior Information and Data
Uncertainty Within Hypothesis Testing

[41] The issue of exploiting traditional and new types of
data for model analysis brings us to the thorny issue of bal-
ancing prior expectations with the uncertainty in the data.
Practical issues such as data availability and data quality
necessarily affect the insights that can be gained in a partic-
ular hydrological system. Put simply, data uncertainty con-
strains our ability to discriminate among competing
hydrological hypotheses. If there is a strong prior confi-
dence in a particular model hypothesis (e.g., from theory,
or from data collected earlier, or from data collected in
other basins), strong new evidence will be needed to reject
that model hypothesis. Addressing this critical issue
requires a careful analysis of the sampling and measure-
ment errors of observational systems and carefully reflect-
ing this observational uncertainty in model inference,
analysis, and prediction. For example, Rodriguez-Iturbe
and Meija [1974], Morrissey et al. [1995], Krajewski et al.
[2003], and Villarini et al. [2008] present approaches to
rain gage error analysis; Di Baldassarre and Montanari
[2009] and McMillan et al. [2010] discuss rating curve
errors ; and Kavetski et al. [2006] and Renard et al. [2010]
formulate methods for incorporating data error models into
model analysis.

5.3. Avoiding Simplistic Descriptions of Complex
Systems

[42] When contemplating the identifiable complexity of a
system given limited quantitative data [e.g., Jakeman and
Hornberger, 1993; Perrin et al., 2001, 2003; Schoups
et al., 2008; Pande et al., 2009; van Dijk, 2010], it is cus-
tomary to refer to Occam’s razor to shear unwarranted com-
plexity from a model [e.g., Young et al., 1996; Perrin et al.,
2001]. However, this must be done thoughtfully, without
imposing simplistic solutions on complex problems. Indeed,
developing a model that ‘‘works for the right reasons’’
[Kirchner, 2006] is likely to require the philosophy purport-
edly attributed to Albert Einstein that ‘‘everything should
be as simple as possible, but not one bit simpler’’ (italics
added). For example, the apparent structural simplicity sug-
gested in the absence of accurate quantitative (‘‘hard’’) data
in a particular application should be judged against inde-
pendent knowledge available from general hydrological
theory and/or any qualitative (‘‘soft’’) fieldwork evidence.
In other words, model evaluation requires a mix of qualita-
tive and quantitative insights [e.g., Seibert and McDonnell,
2002; Young and Ratto, 2009; McMillan et al., 2011;
Clark et al., 2011; Kavetski et al., 2011].

[43] While a modeler will generally strive to construct a
model that is a ‘‘complete’’ representation of the system of
interest, evaluation of this model is limited by inevitable
practicalities such as data limitations (see section 5.2). We
may therefore question if inference drawn solely from lim-
ited and highly uncertain hydrological data justifies the sci-
entific acceptance of models that appear simplistic when
judged against fieldwork evidence (e.g., Jakeman and
Hornberger [1993] indicate that rainfall-runoff data alone
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supports the inference of models with 4–5 parameters at
most, in the case studies they examined). Or we may ques-
tion if high resolution data from a densely gaged experi-
mental catchment can support the inference of a more
complex model [Kavetski et al., 2011]. Hence, iterative
model improvement, which aims to take advantage of new
information, generally leads to new hypotheses being pro-
posed in response to new data and/or other new independ-
ent insights and theories [e.g., Son and Sivapalan, 2007;
Fenicia et al., 2008]. These and other questions can be
approached using a multiple-hypothesis framework, and
are relevant if we are to overcome the fragmented status
quo and move toward more unified catchment-scale model-
ing theories [Sivapalan, 2009].

5.4. Recognizing Interactions Between Process
Descriptions and Model Architecture

[44] Hypothesizing individual process descriptions
requires considering not only the choice of representation
method, but also how the method is implemented within
the overall model architecture. Understanding how differ-
ent model development decisions interact is therefore im-
portant in order to both isolate key modeling decisions and
to design experiments and diagnostics that evaluate their
impact on the overall system response. For example, at the
integrated model level we may question if the spatial vari-
ability in transpiration matches observations, e.g., does the
model adequately represent the dominance of transpiration
in riparian areas? We may then question if the model cap-
tures the relative controls of catchment-average transpira-
tion by soil moisture and depth to the water table, and if the
model suitably represents hillslope–riparian interactions.

[45] As another example, consider alternative model
representations of surface runoff at the catchment scale.
TOPMODEL and VIC surface runoff representations are
analogous in terms of the functional dependence of contrib-
uting areas on storage [e.g., Sivapalan et al., 1987; Kavetski
et al., 2003], but can behave very differently depending on
how they are incorporated into a multicomponent model
[Clark et al., 2008a]. For example, runoff-generating areas
in TOPMODEL are conceptualized as dependent on satu-
rated zone storage (i.e., the depth to the water table), whereas
in VIC they are formulated as dependent on unsaturated
zone storage. These differences affect the expansion and
contraction of runoff-generating areas and hence the stream-
flow response dynamics of the catchment [Clark et al.,
2008a]. Therefore, the hypothesized overall model architec-
ture within which individual process representations are em-
bedded must also be subjected to scrutiny and evaluation.

[46] Note that the fidelity of model simulations depends
both on the appropriate choice of the model equations as
well as on the choice of model parameter values. In prac-
tice, the distinction between the model ‘‘structure’’ (the
model equations) and the model ‘‘parameters’’ (the adjusta-
ble coefficients in the model equations) is often rather sub-
jective and imprecise. As a contrived example, the
‘‘different’’ structural equations q ¼ kx and q ¼ kx� are
identical when � ¼ 1. But more generally, ‘‘different’’
algebraic expressions, such as cos(kx), xk, exp(kx), ‘‘differ-
ent’’ systems of differential equations, and other mathemat-
ical constructs, can behave functionally very similarly
depending on the range of application and parameter val-

ues. The appropriate choice of model equations and the
appropriate values of model parameters are therefore both
hypotheses that should be subject to careful scrutiny.

6. Benefits of Multiple-hypothesis Methods
6.1. Guidance for Model Selection and Improvement

[47] Multiple-hypothesis frameworks facilitate controlled
and comprehensive model comparisons, which provide
guidance for model improvement. In the standard approach
to model development (in which only one approach is
implemented and tested) the model developer may believe
their approach is suitable, but they often have little informa-
tion and capabilities to investigate if alternative approaches
are more suitable for their intended purpose. Multiple-
hypothesis approaches provide a systematic framework for
generating and comparing competing hypotheses, and
hence significantly facilitate model improvement, both in
general and site-specific contexts (for example, where inde-
pendent evidence may favor a particular modeling decision
on the basis of additional data or previous investigations).
Moreover, by comparing model representations at the level
of model subcomponents it becomes possible to select the
best component hypotheses from different models, thereby
avoiding the need to reject entire models (this makes better
use of insights gained during model development).

[48] Multiple-hypothesis frameworks also facilitate exam-
ining trade-offs between complexity and practicality more
systematically, in particular, with respect to the computa-
tional costs associated with mathematical representations of
specific processes. For example, modeling unsaturated flows
using Richards’ equation at the scale of its constitutive func-
tions may require resolution beyond the current data and
computational resources. Hence, one-dimensional models of
infiltration over depths of several meters are typically imple-
mented using only 5–10 soil layers [e.g., Boone and Wetzel,
1996]. In a practical context, where it may be reasonable to
assign computational budgets to model components depend-
ing on their relative importance, multiple-hypothesis frame-
works can also be used to isolate individual decisions (such
as the number of soil layers) and facilitate more informed
pragmatic trade-offs between model complexity and compu-
tational expense.

[49] Multiple-hypothesis model approaches may also
reduce biases in model selection arising from the understand-
able subjectivity in human judgment. A century earlier,
Chamberlin [1890] suggested that scientists develop ‘‘paren-
tal affection’’ for their theories, and advocated the method of
multiple working hypotheses where ‘‘the effort is to bring up
into view every rational explanation of new phenomena . . .
the investigator then becomes parent of a family of hypothe-
ses, and, by his parental relation to all, he is forbidden
to fasten his affections unduly upon any one.’’ Employing
multiple-hypothesis approaches in a rigorous and quantitative
manner can reduce undue favoritism arising from individual
perspectives [see also Holländer et al., 2009].

6.2. Confronting Ambiguities in the Apparent/
identifiable System Structure

[50] The term ‘‘equifinality’’ is often used in hydrology to
describe situations where multiple parameter sets and/or
entire model structures appear equally plausible. For example,
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different models may generate near-identical predictions,
or have near-identical indices of model performance [e.g.,
see Beven and Freer, 2001; Beven, 2006a]. This is a mani-
festation of ‘‘nonidentifiability,’’ a key statistical inference
limitation encountered in many scientific fields, especially
in data-scarce contexts [e.g., Tarantola, 2005; Renard
et al., 2010].

[51] In the majority of current hydrological analyses,
model nonidentifiability should not be surprising. Given
the potential interactions between the different components
of a catchment model, the behavior of many different con-
figurations and parameter values may be indistinguishable
when evaluated against a single (and uncertain) response
time series ‘‘unless the detailed characteristics of these
components can be specified independently’’ (italics added)
[Beven and Freer, 2001], or unless additional types of data
are available [e.g., Freer et al., 2004; Fenicia et al.,
2008a]. The key word from Beven and Freer [2001] is
‘‘unless’’; the challenge for the community is to identify
ways to independently estimate internal storages and fluxes
of water in a catchment (and importantly, associated uncer-
tainties), and exploit these estimates either as qualitative or
quantitative diagnostic tools [e.g., Gupta et al., 2008;
Kollet and Maxwell, 2008a; Lawrence et al., 2011], or
directly build them into the inference [e.g., Seibert, 2000;
Fenicia et al., 2008a]. Recent progress notwithstanding,
certain model identification ambiguities are likely to persist
in the foreseeable future, especially in describing opera-
tional, let alone ungaged, catchments.

[52] Multiple-hypothesis frameworks may help quantify
the predictive uncertainty stemming from system noniden-
tifiability by generating ensembles of competing model
representations, both of equal and varying complexity. For
example, available data can be used to hypothesize a set of
reasonable model architectures and components for a given
catchment, and the corresponding ensemble of models then
used to represent structural uncertainty because of system
nonidentifiability. A major unresolved challenge for the en-
semble method to work is to ensure that the ensemble
includes at least one hypothesis that approximates ‘‘reality’’
within the range of data uncertainty or, more leniently,
within the design requirements of an application. It is also
necessary to avoid cases where all model representations
are wrong for the same reasons (e.g., in view of the argu-
ments of section 5.4, making an artificial distinction
between ‘‘structures’’ and ‘‘parameters’’ can result in degen-
erate model ensembles). By formulating the multiple work-
ing hypotheses at levels ranging from system architecture
down to process subcomponents, a multiple-hypothesis
framework can offer a much broader coverage of the model
space than current multimodel approaches [e.g., Marshall
et al., 2007; Hsu et al., 2009; Bohn et al., 2010], in which a
small number of individual models of varying complexity
are included, often on ad hoc considerations (see also sec-
tion 3.2 on the axis-of-complexity).

6.3. Understanding Regional Differences in
Catchment Behavior

[53] Another important challenge is understanding
‘‘uniqueness of place’’ [Beven, 2000]. In a recent opinion
paper, Andréassian et al. [2009] follow up on the seminal
work by Kleme�s [1986] and suggest that, in addition to

transposability in time, hydrological models should also be
transposable in space, in particular, under ‘‘very different
climatic conditions’’ and, presumably, in basins with (very)
different geology. However, efforts to identify a ‘‘univer-
sal’’ catchment-scale model have arguably been generally
unsuccessful to date, as suggested by the results of calibrat-
ing single models across hundreds of catchments [Le Moine
et al., 2007], and by attempts to estimate model parameters
a priori from spatial data on soils and vegetation [Reed
et al., 2004; Duan et al., 2006]. While a spatially transpos-
able model may yet be achieved (indeed, Andréassian et al.
urge pursuing this quest more vigorously) it may be that a
unique set of equations for catchment-scale dynamics ap-
plicable over the entire range of environmental systems
simply does not exist. For example, spatially distributed
models developed on the basis of Darcy’s law for porous
media may not be appropriate to simulate vertical water
movement in mountainous scree slopes, or to simulate
groundwater flow in Karst catchments. Alternatively, it
may be that a unique set of equations for catchment-scale
dynamics is not identifiable from the kind of data currently
used in model development and evaluation [e.g., Reed
et al., 2004; Duan et al., 2006]. Answering these questions
hinges critically on addressing the challenges listed earlier.

[54] While there are clearly several distinct perspectives
for exploring ‘‘uniqueness of place’’ (e.g., identifying dif-
ferent model structures to describe different dominant proc-
esses in different hydrological landscapes, or continuing
the pursuit of the hitherto elusive universal model at the
catchment scale), a common consideration is to ensure that
the model architecture reflects the connectivity between
small-scale processes and the system scale response. In par-
ticular, it is important that models represent the influence
of the landscape on the partitioning, storage and release of
water at the catchment scale [Wagener et al., 2007; Kumar,
2011]. Multiple-hypothesis frameworks may hence be used
to test hypotheses on intercatchment differences in hydro-
logical behavior arising from differences in climate, vegeta-
tion, topography and soils, as well as differences in the
evolutionary history of the landscape and human activities
[e.g., Savenije, 2009; Sivapalan, 2009]. Catchment-scale
signatures, such as flow duration curves, provide insights
into catchment-scale function [e.g., Farmer et al., 2003;
Wagener et al., 2007; Kavetski et al., 2011], and these sig-
natures are indispensible in evaluating the mapping between
model architecture and landscape architecture. Experiment-
ing with different model configurations in multiple catch-
ments is therefore an informative learning exercise that
helps us understand the hydrological functioning at the
catchment scale across different hydrological landscapes.

6.4. Combining A Priori and Data-Based Hypotheses
of Model Structure

[55] So far, we have focused on methods for essentially a
priori formulation of model hypotheses (e.g., from theory,
or using perceptual insights, or prior fieldwork evidence),
followed by posterior diagnostics and improvement strat-
egies. Yet a number of important techniques approach
model development from a different perspective. They
make fewer a priori assumptions regarding model structure
and instead try to let the data generate and/or refine the
constituent hypotheses describing system behavior. In
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hydrology, these include recession curve analysis [Lamb
and Beven, 1997; Clark et al., 2009; Kirchner, 2009],
data-based mechanistic (DBM) modeling [Young, 1998,
2003], and, more recently, a Bayesian approach [Bulygina
and Gupta, 2009]. As we argue next, though not without
their own set of limitations, these methods are not only
well suited to hypothesis testing in hydrology [e.g., Young,
2003; Young et al., 1996], but can be readily exploited
within multiple-hypothesis frameworks such as those we
propose here.

[56] For example, consider recession analysis, which
focuses on empirical identification of the base flow func-
tion from data periods where quick flow processes are
assumed dormant [Lamb and Beven, 1997; Kirchner,
2009]. In its simplest form, it uses a single-state variable to
describe base flow processes, which may overlook base
flow generation from different storage units and landscape
types. The combination of insights from recession analysis
with more traditional modeling approaches can be power-
ful. For example, it can be used to specify the form of the
base flow function of a more complex multicomponent
model [Atkinson et al., 2003; Fenicia et al., 2006]. Yet
care must be taken: e.g., seemingly nonlinear reservoir
behavior could instead be a manifestation of a linear reser-
voir with inflow [Fenicia et al., 2006] or several linear res-
ervoirs [Clark et al., 2009; Harman et al., 2009].

[57] The data-based mechanistic (DBM) modeling
framework [Young, 1998, 2003] is another, more formal,
technique that aims to let the data, rather than prior hypoth-
eses, dictate the mathematical structure of the model. The
model structure in the DBM scheme is formulated using
transfer functions. The nonlinearity of hydrological systems
is then approximated either using a nonlinear transforma-
tion of streamflow to obtain ‘‘effective rainfall’’ (and
assuming the remaining routing system is linear), or using
time- and state-dependent parameters in the transfer func-
tion model [Young, 2003]. While this can be restrictive in
general modeling contexts [Reichert and Mieleitner, 2009],
the DBM method has been useful not only in hydrology,
but also across broader environmental sciences [Young,
1998]. Furthermore, there is scope to use the DBM method
to combine ‘‘data-based’’ techniques with ‘‘reductionist’’
approaches on the basis of the prior hypotheses of the sys-
tem [e.g., Young and Ratto, 2009].

[58] More recently, Bulygina and Gupta [2009, 2010]
proposed a nonparametric Bayesian approach to more
directly explore the probabilistic mapping between rainfall
and runoff using mixtures of Gaussian distributions, condi-
tioning the inference on (1) some prior analysis of the over-
all system structure (e.g., the number of state variables
which can be estimated using the false neighbor method
[Bulygina and Gupta, 2009], or taken from an existing
model [Bulygina and Gupta, 2010]) and (2) on assumed
data error models (a current limitation that could be rem-
edied using observational network analysis e.g., Willems
[2001]; see Renard et al. [2010], for further discussion).

[59] In our opinion, the Bayesian paradigm is particu-
larly attractive for hypothesis testing in environmental sci-
ences, offering the capability to directly describe system
nonlinearities and data uncertainties [e.g., Kavetski et al.,
2002; Vrugt et al., 2008; Cressie et al., 2009; Hsu et al.,
2009; Renard et al., 2010; and many others], while

exploiting independent process understanding as prior
knowledge [e.g., Bulygina and Gupta, 2009]. The use of
nonparametric probabilistic techniques to approximate
epistemic structural uncertainties [e.g., as shown by Buly-
gina and Gupta, 2010] is an encouraging advance: it facili-
tates the development of models that are more consistent
with the functional view of catchment dynamics advocated
in section 2.1, with fewer constraints arising from the math-
ematically convenient yet often restrictive forms of particu-
lar parametric relationships. There is also scope to exploit
control-theory identification techniques such as dominant
mode analysis [e.g., Young and Ratto, 2009] to help
hypothesize the overall model architecture. Outstanding
challenges in the development of Bayesian structural infer-
ence include its extension to more complex multistate mod-
els (including spatially distributed contexts), the independent
derivation of reliable and precise data uncertainty models
(e.g., using observational network analysis), as well as the
use of more probing, physically oriented hypothesis-testing
methods and independent information to cope with remain-
ing nonidentifiabilities and ambiguities in the model infer-
ence and interpretation.

6.5. Looking for ‘‘New’’ Laws and Addressing the
Closure Problem

[60] Hypothesis testing using multiple-hypothesis frame-
works can advance not only process representations in the
current suite of hydrological models, but be used to rigor-
ously implement and evaluate new hydrological theories.
In particular, our current inability to adequately quantify
the impact of subcatchment heterogeneities on the catch-
ment’s hydrological response can be related to the problem
of ‘‘closure’’ (here, quantifying the relationships between
water, energy, and momentum fluxes) at the catchment
scale [Reggiani et al., 1998, 1999]. Catchment-scale clo-
sure has remained an elusive challenge, recently referred to
as ‘‘The Holy Grail’’ of catchment-scale hydrology [Beven,
2006b]. A key difficulty has been ensuring that flux calcu-
lations based on space-time averaged properties of a me-
dium (the catchment) are sufficiently representative of
aggregated behavior over potentially highly heterogeneous
smaller scales. For example, using Richards’ equation to
represent the unsaturated zone within a hydrological model
with spatial resolution on the scale of hundreds of meters
necessarily assumes that the governing equations, identified
at the ‘‘lab’’ scale, remain valid even when applied using
‘‘effective’’ parameters that implicitly represent the hetero-
geneity of the subsurface at the scale of the model discreti-
zation (e.g., see Nordbotten et al. [2007] for an illustration
using the Darcy equation).

[61] Changing the scale at which a process is described
requires alternative modeling methodologies. ‘‘Physically
based’’ distributed models derived a priori from smaller-
scale physical laws could, at least in principle, close the
scale gap by directly aggregating small-scale heterogene-
ous behavior to larger scales. This can be done numerically,
e.g., Kollet et al. [2010] use supercomputing resources to
demonstrate a proof-of-concept variably saturated ground-
water model configured at hydrological resolution, with bil-
lions of grid cells. Alternatively, changing the scale at
which a process is described may require changing the
form of the governing equations and constitutive relations
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(e.g., see the analytical work by Reggiani et al. [1998,
1999]; and the discussion of principles by Kirchner [2006]).
It is also possible that upscaling hydrological dynamics
to entire catchments and beyond will require abandoning
the mathematical convenience of deterministic models and
mandate a more fundamental shift toward stochastic descrip-
tions. For example, subscale variability in catchment proper-
ties and forcings may inherently prevent a deterministic
prediction of the system response given coarsely aggregated
forcing data (e.g., Kuczera et al. [2006]; see also the
use of random fields to parameterize subsurface hydraulic
properties, e.g., Kollet and Maxwell [2008b]). Multiple-
hypothesis methodologies can help understand the differen-
ces among different modeling paradigms.

7. Final Perspectives
[62] The hypothesis-based method is entirely general and

can be applied to search for and evaluate ‘‘new’’ hydrologi-
cal laws [Dooge, 1986], identify the dominance of different
hydrological processes [Sivakumar, 2008], explore the
impact of hydrological connectivity on catchment response
[Western et al., 2004], and other endeavors. New modeling
approaches are motivated by the lure of novel theories of
hydrological functioning at the catchment scale. For exam-
ple, McDonnell et al. [2007] suggest moving beyond a
mere description of heterogeneities to a broader analysis of
the self-organizing and optimality principles that may be
responsible for the emergence and maintenance of hydro-
logical and larger environmental systems. Disciplines such
as geomorphology, soil science, biogeochemistry, and ecol-
ogy can provide useful insights into how hydrological sys-
tems have evolved and why certain patterns and functions,
such as the Budyko curve, emerge over increasing space
and time scales [e.g., Sivapalan, 2005; Schymanski et al.,
2007, 2009; Troch et al., 2009]. Looking at the problem
through a different lens, such as optimality, provides addi-
tional metrics that can be used to falsify model hypotheses
[Schymanski et al., 2007, 2008, 2009; Schaefli et al.,
2011]. A multiple-hypothesis methodology, where compet-
ing hypotheses can be systematically constructed and eval-
uated within a single robust numerical framework, holds as
much promise for testing new hydrological theories as for
testing competing model representations within a ‘‘tradi-
tional’’ catchment model. The novel perspectives and new
sources of information being uncovered through interdisci-
plinary collaboration introduce exciting opportunities to
advance hydrological science.

[63] In conclusion, we argue that the ongoing quest for
physically realistic catchment-scale models, including more
appropriate representations of heterogeneous hydrological
processes, needs to be embedded in a hypothesis-testing
framework that rigorously scrutinizes hypotheses against
observed data. It is our proposition that this is best achieved
using multiple-hypothesis frameworks, where different pro-
cess representations and overall system hypotheses can be
evaluated in a controlled and relatively independent way.
We are optimistic that, when model hypotheses are strin-
gently tested using available data from both experimental
watersheds and operational observing networks, multiple-
hypothesis approaches can become useful learning tools

and lead to considerably more scientifically defensible and
operationally reliable hydrological models.
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