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[1] This paper presents a hybrid local-global sensitivity analysis method termed the
Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to
identify important and unimportant parameters and evaluate how model parameter
importance changes as parameter values change. DELSA uses derivative-based “local”
methods to obtain the distribution of parameter sensitivity across the parameter space,
which promotes consideration of sensitivity analysis results in the context of simulated

dynamics. This work presents DELSA, discusses how it relates to existing methods,
and uses two hydrologic test cases to compare its performance with the popular
global, variance-based Sobol’ method. The first test case is a simple nonlinear
reservoir model with two parameters. The second test case involves five alternative
“bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized
catchment (200 km?) in the Belgian Ardennes. Results show that in both examples,
Sobol” and DELSA identify similar important and unimportant parameters, with
DELSA enabling more detailed insight at much lower computational cost. For
example, in the real-world problem the time delay in runoff is the most important
parameter in all models, but DELSA shows that for about 20% of parameter sets it is
not important at all and alternative mechanisms and parameters dominate. Moreover,
the time delay was identified as important in regions producing poor model fits,
whereas other parameters were identified as more important in regions of

the parameter space producing better model fits. The ability to understand how
parameter importance varies through parameter space is critical to inform decisions
about, for example, additional data collection and model development. The ability to
perform such analyses with modest computational requirements provides exciting
opportunities to evaluate complicated models as well as many alternative models.
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1. Introduction

[2] The primary aim of sensitivity analysis is to identify
how different components of a model affect model output.
Results can affect model calibration, uncertainty evalua-
tion, and risk assessment [e.g., Katz, 1999; Oakley and
O’Hagan, 2004; Saltelli et al., 2008 ; Kucherenko et al.,
2009; Ohler et al., 2013 ; Plischke et al., 2013]. Sensitiv-
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ity analyses can be conducted to evaluate model structure
and forcing [e.g., Doherty and Welter, 2010; Gupta et al.,
2012; Foglia et al., 2013], yet most commonly, and in
this work, the analysis is focused on evaluating how
model parameters (also called factors) affect model output.
Focusing on parameter sensitivity analysis is less limiting
than it might seem because parameters can be defined to
control many aspects of a model, and thus parameter sen-
sitivity analysis methods can be used to understand the
role played by, for example, model structure and forcing.
Once parameters are defined, parameter sensitivity analy-
sis is used to identify parameters important and unimpor-
tant to simulated processes, inverse modeling metrics,
predictions, and quantified uncertainty and risk [e.g., Van
Werkhoven et al., 2008; Saltelli et al., 2008; Plischke
et al., 2013]. Within these broad goals, parameter sensitiv-
ity analysis can be used to (a) detect when increasing
model complexity can no longer be supported by observa-
tions and whether it is likely to affect predictions of inter-
est [e.g., Saltelli et al., 1999; Van Werkhoven et al., 2008
Rosolem et al., 2012; Gupta et al., 2012], (b) reduce the
time of model calibration by focusing estimation efforts
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on parameters important to calibration metrics and predic-
tions [e.g., Anderman et al., 1996; Hamm et al., 2006,
Zambrano-Bigiarini and Rojas, 2013], (c) determine prior-
ities for theoretical and site-specific model development
[e.g., Hill and Tiedeman, 2007; Saltelli et al., 2008;
Kavetski and Clark, 2010], and (d) identify advantageous
placement and timing of new measurements [e.g., Musters
and Bouten, 2000; Weerts et al., 2001 ; Vrugt et al., 2001,
Tiedeman et al., 2003, 2004 ; Tonkin et al., 2007 ; Fienen
et al., 2010]. Sensitivity analysis evaluated for different
periods has been considered by, e.g., Wagener et al.
[2003], Cloke et al. [2007], and Herman et al. [2013a].

[3] The considerable potential utility of sensitivity anal-
ysis methods is sometimes difficult to attain in practice
because many sensitivity analysis methods currently popu-
lar in environmental modeling require considerable compu-
tational effort. To discuss this issue, we use the common
classification of sensitivity analysis methods: global and
local.

[4] Global methods calculate sensitivity measures using
parameter samples obtained from a defined parameter
space. For each parameter sample, the model is run one or
more times to obtain simulated results. Global methods
provide stable results because they produce measures of
parameter importance that are averaged over the range of
the parameter space from which samples are obtained.
However, of interest is that different global sensitivity
analysis methods can lead to completely different impor-
tance rankings, as shown, for example, by Pappenberger
et al. [2008].

[s] When considered from the perspective of uncertainty
analysis, global methods can be moment independent [e.g.,
Park and Ahn, 1994 ; Chun et al., 2000; Borgonovo, 2007]
or based on decomposition of the variance of the model
output into variance contributions from individual parame-
ters and parameter combinations [Saltelli et al., 2008]. The
latter are considered in this work. Many global methods
account for the effect of nonlinearity, including the effect
of parameter interactions of predictions [e.g., Box and
Tiao, 1992 ; Saltelli, 2002; Van Werkhoven et al., 2008
Rosolem et al., 2012].

[6] A popular variance-based global method is the
Sobol” method [e.g., Sobol’, 2001; Saltelli, 2002], which
has been applied in many environmental studies [e.g.,
Hamm et al., 2006; Pappenberger et al., 2006; Cloke
et al., 2007; Tang et al., 2007 ; Pappenberger et al., 2008 ;
Van Werkhoven et al., 2008 ; Saltelli et al., 2008 ; Kavetski
and Clark, 2010; Nossent et al., 2011; Massmann and
Holzmann, 2012 ; Herman et al., 2013a, 2013b] and is often
used in method comparisons [e.g., Borgonovo, 2006;
Cloke et al., 2007; Pappenberger et al., 2008]. Thus,
Sobol’ can be used as a standard for comparison that allows
alternative methods to be indirectly compared to each
other. Many global methods, and especially the Sobol’
method, require a large number of model runs (often
10,000 or more) and thus can be computationally demand-
ing or prohibitive.

[7] Alternative global methods such as Fourier ampli-
tude sensitivity testing (FAST) [Cukier et al., 1973, 1975,
1978; Saltelli et al., 1999], the method of Morris (MoM)
[Morris, 1991; Zhan et al., 2013; Herman et al., 2013b],
regional sensitivity analysis (RSA) [Hornberger and Spear,

1981; Freer et al., 1996], and the delta method [Borgo-
novo, 2007] provide more frugal alternatives, but often
remain a computational challenge: for example, FAST and
the delta method require at least one solution at each sam-
pling point and convergence properties are such that the
number of sampling points is large; MoM is often con-
ducted with multiple parameter increments for each param-
eter at each sampling point.

[8] Local sensitivity analysis methods are typically based
on the gradients (derivatives) of the model output with
respect to parameter values evaluated at a single location in
the parameter space [e.g., Hill and Tiedeman, 2007 ; Oliver
et al., 2008]. Parameter interactions on predictions can be
accounted for using, for example, the method described by
Sobol’ and Kucherenko [2010]. The convenience of local
methods has resulted in their considerable use [e.g.,
D’Agnese et al., 1999; Kunstmann et al., 2002]. However,
their applicability to nonlinear models, including models
with spurious results, is of concern [Saltelli et al., 2008]
because single-point application of local methods can iden-
tify dramatically different important and unimportant
parameters in different parts of the parameter space, and
results could mislead modelers and users of model results.
Comparisons of global and local methods, including Helton
[1993], Tang et al. [2007], Foglia et al. [2007], Kucherenko
et al. [2009], Sobol’ and Kucherenko [2009, 2010], Delenne
et al. [2012], and Li et al. [2013] provide mixed results. For
example, Foglia et al. [2007] used a hydrologic model and
the nonlocal cross-validation method to show that local
methods provided useful information on the sensitivities of
35 parameters. Tang et al. [2007] compared multiple sensi-
tivity analysis methods applied to the lumped Sacramento
soil moisture accounting model and found that local meth-
ods provided very different results from the global meth-
ods—however, the local methods were not scaled to be
dimensionless, which potentially explains the different
model sensitivities. Delenne et al. [2012] showed that
despite the nonlinearity of river flow processes simulated
with a one-dimensional hydrodynamic model, a local
approach yielded similar results to a global approach, even
in cases of large parameter uncertainty. Hamm et al. [2006]
compared global and local approaches to evaluate the effect
of parameter values on the probability of hydrologically
induced slope stability. They highlighted the robustness of
the Sobol’ method, and demonstrated that it accounted for
parameter interactions neglected by the local method they
used. To the extent that such irregularities are uncharacteris-
tic of the system involved, code changes that reduce the
solution irregularities may be advantageous. To the extent
that they are realistic or numerically unavoidable, they pres-
ent a serious problem for the use of local sensitivity analysis
methods.

[9] An unresolved problem in sensitivity analysis is
whether the averaging over parameter space inherent in
global methods can obscure important aspects of parameter
sensitivity. If sensitivity analysis results vary across param-
eter space, the robustness of decisions and measures based
on sensitivity analysis becomes an issue. For example, data
collection strategy decisions and uncertainty quantification
may change significantly if different parameter ranges were
used in a global analysis. Considerable variability would
suggest the importance of identifying the most relevant
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sensitivity analysis results. In some cases more relevant
results might be thought to be associated with models that
fit measurements better.

[10] To reveal how sensitivity analysis measures vary as
parameter values change, we present and evaluate the hybrid
local-global Distributed Evaluation of Local Sensitivity
Analysis (DELSA) method, in which multiple evaluations of
local parameter sensitivity are distributed throughout param-
eter space. DELSA integrates methodological features from
three existing sensitivity analysis methods: the Method of
Morris (MoM) [Morris, 1991; Zhan et al., 2013; Herman
et al., 2013b], the Sobol’ method [Sobol’, 2001 ; Van Werk-
hoven et al., 2008], and regional sensitivity analysis (RSA)
[Hornberger and Spear, 1981; Freer et al., 1996]. We are
not the first to consider the distribution of sensitivities across
parameter space; Saltelli et al. [2008] call it “factor map-
ping,” but expressly exclude derivative-based “local” meth-
ods as a useful tool. Our work suggests the potential utility
of local methods in the context of this “multiscale” evalua-
tion of parameter sensitivity.

[11] Our evaluation includes comparisons with the global
variance-based Sobol” method using first-order sensitivity
analysis, though DELSA is broadly applicable. To enable
comparison, the Sobol’ method is sometimes applied at a
smaller than normal scale; and sometimes local DELSA
measures are averaged over large-scale parameter space.
Computational costs are also compared.

[12] We begin by briefly presenting the Sobol’ method,
before introducing DELSA. We compare the methods
using two examples. The first example is a simple two-
parameter reservoir model. The second example involves
five alternative bucket-style hydrologic models applied to
the Lasnenville catchment in the Belgian Ardennes (West-
ern Europe).

2. Sensitivity Analysis Methods

2.1. Global Variance-Based Approach

[13] The global Sobol’ method [Sobol’, 2001; Saltelli,
2002; Sobol’ and Kucherenko, 2010] decomposes the var-
iance of a metric describing model output (in this work,
mean simulated reservoir storage or root-mean-square-
error between the simulated and observed streamflow) into
contributions from individual parameters. Briefly, consider
a model fand a vector 6 of k model parameters, which yield
a metric ¥ describing model output:

W=1(0)=1(01,0s,....00). )
where the range of each parameter 0, is defined as 0, ,,,, to
0 max- Equation (1) can be decomposed as described by
Sobol’ and Kucherenko [2010] to obtain the general var-
iance decomposition scheme

VE)=D VA S Vint o +Via s 2)
J

Joom>j

where V('P) is the total prior (unconditional) variance of ‘¥,
V; are the first-order terms, V, are the second-order terms,
etc. The Sobol’ sensitivity indices are calculated as the
ratio between partial variances and the total variance and

are conveniently scaled within [0,1]. In this work, we use
the first-order Sobol’ sensitivity index (S)) calculated as

Y
$i=5 (ily)' ?3)

[14] It represents the main effect of a parameter 0; on the
total variance V(') and considers no parameter interactions
relative to the predictions. Following Homma and Saltelli
[1996] and Saltelli [2002], the first-order variance term V;
can be estimated using the following equations:

Vi=U;—E" (), (4)

(¥, X¥), ©)
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where U ; is the “perturbed variance,” o (\P) is the squared
mean, and Ny is the number of parameter samples used in
the Sobol’ procedure, which should not be confused with
the number of model parameters, k. ¥, and V. are the
model performance indices of the rth parameter set:
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[15] ‘I”; in equation (8) is constructed from equation (7)
in such a way that all parameters except the jth parameter
are perturbed by inserting the value of the parameters gen-
erated in another randomly selected Sobol” set of parame-
ters. Finally, the total variance V(') is estimated by V' (¥):

. . 2 71 Ns 1 Ns 2
V(W)=E(W*)—E (¥) —NSZIWZ—(NSZT‘\P> )

[16] The calculation cost for the first-order Sobol’ index,
in terms of the number of model runs, is Ng (k+ 1). The
ranges are the only parameter information used. The
parameters are sampled using the quasi-random Sobol’
sequence, which draws realizations from the least visited
locations relative to previous samples in the parameter
space [Bratley and Fox, 1988] and represents an alternative
to Latin hypercube sampling.

[17] If ¥ is a purely additive function of the parameters,
so that each additive term is a function of at most one
parameter, the sum of the first-order Sobol’ sensitivity indi-

koo . .
ces equals one (Zj:l S’lzl). The sampling uncertainty

of S{ is evaluated by bootstrapping with resampling [e.g.,
Efron and Tibshirani, 1993; Archer et al., 1997]. In this
study, the number of bootstrap samples is 1000.

2.2. Distributed Evaluation of Local Sensitivity
Analysis (DELSA)

[18] The local sensitivity analysis application, upon
which DELSA expands, is based on the sensitivity (gradi-
ent) of model output or performance index ¥ with respect
to the jth parameter value
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oY
a0; |, (10)
where [ defines the set of parameter values at which the
derivative is calculated. Equation (10) is estimated using a
forward difference approach using 1% change in the
parameter value [¥(0,+0.010;)—F(0,)]/[0.010;]. The
choice of the 1% parameter change was also compared
with 0.1% and 10% parameter change, but had a marginal
effect (not shown).
[19] Here we use the DELSA concept with a local sensi-
tivity statistic to provide a clear comparison with Sobol’.
[20] The local equation for total variance comparable to
equations (2) and (9) is the prediction variance V; (V)
(Seber and Wild [1989, p. 191]; Draper and Smith [1998,
p. 129-130]; Aster et al. [2013, p. 224]; Lu et al. [2012]
discuss the relation between frequentist and Bayesian cal-
culation of variance). V; (W) is calculated as
)7 an
1

where X and o are discussed below and in Appendix A.
Appendix A also includes derivation of equation (11).

[21] Equation (11) produces a linear propagation
(accomplished using the derivatives 9'\¥/00) of the parame-
ter uncertainty expressed by (X7@X)~' to obtain the var-
iance of . Equation (11) produces values identical to the
Sobol’ variance in equation (9) under ideal conditions,
including linearity of ¥ with respect to the parameters in
the range of parameters defined, and use of consistent infor-
mation on parameters in the two methods. Linearity is gen-
erally more nearly approached as the range of parameter
values becomes smaller.

[22] For comparison with Sobol’, X and @ of equation
(11) need to include only terms associated with prior infor-
mation on each parameter (see explanation in Appendix
A). In this circumstance, X is a £ X k identity matrix. In
addition, for the prior information to be consistent with the
parameter ranges defined for Sobol’ and the even distribu-
tion of sampling points produced by a uniform or Sobol’
sampling, each diagonal of w needs to equal the reciprocal
of the variance of a uniform distribution defined using 0, ,,,;,
and 0; 4y [.8., Mood et al., 1974] (see also Appendix B).
Under these conditions, the equation for the variance for a
three-parameter problem would equal:

n)=(%
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with s3, 53, and s? a priori parameter variances. The first-
order sensitivity measure for the jth parameter is then cal-
culated at each sample point as [e.g., Helton, 1993 ; Borgo-
novo, 2007 ; Saltelli et al., 2008, and others]:

(13)

[23] Defining the parameter variance s> to be consistent
with a uniform distribution with limits 0;,,, and 0, ,,,, makes

equation (13) equivalent to an equation presented by Sobol’
and Kucherenko [2010, proof of theorem 1] if their parameter
normalization to an interval of 0—1 is considered. Equation
(11) does not include terms such as presented by Sobol” and
Kucherenko [2010] that could be used to approximate param-
eter interactions relative to the performance criteria.

[24] The cost for calculating S), at N; sample points
(parameter sets) is N; (k + 1). N; = 1 provides results at one
location, and commonly local statistics are considered only
to be calculated for N;=1. For DELSA, we consider
opportunities provided by N, > 1, where we either distribute
the samples uniformly or using the quasi-random Sobol’
sequence. For either sampling method, in DELSA the local
sensitivity indices are calculated throughout parameter
space. Generally, the full frequency distribution of the sen-
sitivity measures is reported. However, for some compari-
sons to Sobol’ measures the median value is reported. In
addition, sets of individual local values for each parameter
are evaluated for the field case.

2.3. Connection Between DELSA, Method of Morris,
and RSA

[25] In the Method of Morris (MoM) [Morris, 1991] and
the closely related Elementary Effects (EE)) [Saltelli et al.,
2008] and Latin Hypercube variant One-At-Time (LH-OAT)
method of van Griensven et al. [2006], model runs are con-
ducted for a base set of parameter values and for a sequence
of sets for which each has one parameter value changed at a
time. The fundamental difference is that MoM, EE; and LH-
OAT focus on providing global sensitivity measures.

[26] MoM produces two global statistics: one measures
the overall parameter importance and the other provides an
overall global measure of importance variability [see Saltelli
et al., 2008, p. 117]. One would expect the first MoM statistic
to identify the same important and unimportant parameters as
the mean or median of the DELSA first-order statistics. How-
ever, unlike the DELSA first-order statistic, the MoM statistic
is not expected to have values that are numerically identical
to Sobol” values under any condition. The MoM parameter
importance variability measure would tend to be large when
the standard deviation of the DELSA distribution is large, but
MoM does not reveal the distribution of local importance
across parameter space, for which DELSA was developed.
This is consistent with the general use of large parameter
value changes in MoM instead of the small values used to
evaluate the derivatives of equation (10). Also, in MoM and
EE; the sequence of one-at-a-time parameter values is some-
times cumulative instead of starting each parameter value
change at the same point in parameter space. That is, in
MoM first one parameter changes value. From that new loca-
tion, another changes value, and so on. One parameter may
be changed many times before proceeding to the next param-
eter. In contrast, in DELSA the goal of obtaining local deriv-
atives means that each one-at-a-time parameter value change
occurs from the same point in the parameter space, the
changes are intentionally small, and typically one change
occurs. In this regard, DELSA is similar to LH-OAT, but the
latter was used to produce global measures.

[27] Distributions of sensitivities like those produced by
DELSA have to our knowledge not been produced in appli-
cations of the other methods. [Saltelli et al., 2008, p. 128]
suggests that MoM “overcomes the limitations of a local
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derivative-based approach in that it attempts to explore the
whole parameter space.” DELSA seeks to accomplish this
same goal using a different approach that provides more
detail at the local scale. Experience will be needed to better
understand the relative insights and utility of these two
methods.

[28] DELSA also has some similarities to regional sensi-
tivity analysis (RSA) [Hornberger and Spear, 1981 ; Freer
et al., 1996]: RSA evaluates the frequency distribution of a
model prediction metric across the parameter space,
whereas DELSA evaluates the frequency distribution of the
gradient of a model prediction metric with respect to the
parameter values.

3. Experiments for a Synthetic Test Case

3.1. Simple Nonlinear Reservoir Model

[29] The Sobol” and DELSA sensitivity analysis methods
are first applied to the following simple nonlinear reservoir
model with two model parameters

ds

G =P0-a(). (14)

where S (mm) is model storage, ¢ (day) is time, p(f) (mm
d™") is precipitation (model input), which is kept zero in
this case, and ¢(¢) (mm d ") is drainage (model output).

c=1.15, S;,,=1000

600
950.05
500 850.15
— 4004 750.25
g 650.35
& 300 550.45
450.55
“2 200 350.65
100 250.75
150.85
0- 50.95
T I T I T I I
0 100 300 500 K [mm d7']
Time [h]
c=3.85, S;.=1000
600
950.05
500 850.15
— 4004 750.25
g 650.35
& 300 550.45
450.55
“2 200 350.65
100 250.75
150.85
0 50.95
T T T I T T I
0 100 300 500 K [mm d7']
Time [h]
Figure 1.

ious values of parameters K and c.

[30] Drainage is calculated as

e (S@\°
q(t)—K( SSC) :

[31] This can be seen as the flux resulting from gravita-
tional drainage when the Clapp-Hornberger model of unsatu-
rated hydraulic conductivity [Clapp and Hornberger, 1978]
is used in Richards’ equation. K (mm d~ ") and ¢ (—) are two
model parameters for which sensitivity indices are analyzed.
The scaling parameter S,. (mm) is a constant and is assigned
an arbitrary value of 1000 mm. The initial model storage
S(t=1) is set to 600 mm and the model simulation is com-
posed of six hundred 1 h time steps (25 days long). The
parameter range for K is defined as [1,1000] and for ¢ as
[1,4]. Finally, the performance index ¥ is defined as the
mean storage S over time for most results, though results for
10 hourly averaged storages are also presented. The parame-
ter ranges and initial conditions are defined such that the
mean storage has a wide spectrum of possible values.

[32] Equation (14) is solved using a fixed-time step,
implicit Euler numerical scheme by implementing the
Newton-Rapshon method. This numerical implementation
is unconditionally stable and avoids numerical artifacts
[Clark and Kavetski, 2010].

[33] The time series of simulated model storage S for dif-
ferent combinations of parameters K and ¢ with the scaling
parameter S;. kept constant are shown in Figure 1. The

(15)

K=50.95, S,.=1000

600
3.85
500 3.55
3.25
— 400
g 2.95
§3oo— 2.65
235
“2 200 205
100 175
1.45
0 1.15
I I I I I I I
0 100 300 500 ¢ [
Time [h]
K=950.05, S;.=1000
600
\ 3.85
3.25
— 400 :
g 2.95
300+ 2.65
2.35
“2 200 2.05
100 175
1.45
0 115
I I I I I I I
0 100 300 500 c [-]
Time [h]

Results of dry down experiment with the simple nonlinear model. Colored lines indicate var-
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dynamics of this simple model form part of the more com-
plex conceptual hydrological models (further presented in
section 4): drydown from “field capacity,” which is a typi-
cal saturation degree for the Lasnenville catchment (section
4.2). Figure 1 shows that higher values of K yield propor-
tionally higher outflow and model storage decreases faster.
Additionally, when the parameter ¢ also has lower values,
the reservoir storage empties completely in 600 h. In con-
trast, for lower values of K and higher values of ¢, model
storage slowly decreases.

[34] The time-averaged model storage, which is used as
a model performance index W (equation (1)), is shown in
Figure 2 on a regular grid for 100 parameter combinations
of K and ¢, in which the storage behavior corresponds with
the simulations in Figure 1. For the defined parameter
ranges of K and ¢, ¥ values range between 32 and 534 mm.

3.2. Comparison of Sobol’ and DELSA Total
Variances

[35] To compare the Sobol’ and DELSA standard devia-
tions (the square root of the total variances), values are cal-
culated for the 100 points of the 2-D parameter space, for
which W values are reported in Figure 2. For DELSA, this
is accomplished by calculating the local /¥, (W) of equa-
tion (11) at the midpoints at each location. For Sobol’,

\/V(¥) (equation (2)) is calculated for the 100 parameter
subdomains that surround the 100 locations. The resulting
DELSA and Sobol’ standard deviations are shown in Fig-
ures 3 (top) and 4; results produced by the two methods are
very similar. Sobol’ values are slightly larger, as expected
given that the local methods used here do not account for
parameter interactions related to . As mentioned in the
methods section, Sobol’ and Kucherenko [2010] suggest
terms for including these interactions, but they have not
been included in this work. For this situation, the small dif-
ference between Figures 3 (top) and 4 suggests this omis-
sion has little consequence.

[36] Using Sobol’ to calculate subdomain values is very
computationally expensive: 2,000,000 model runs are
needed to produce Figure 4, since the computation costs for
the Sobol’ variance in equation (9) require Ngk model runs.

38—1@® & ¢ ¢ + + + + + + 534
3551 @ o & 484
3.25—{® © +| 434
295—-1® © +| 383

1 2.65-® 4| 333

e

o 2.35—® 4| 283
2.05-® e & 233
1.75- @ TREE X 18;
1.45— % [ 3 N BN BN BN BN J 22
1151+ + & ¢ & & & & & & 30

| T T | T T | T T |
50.95 350.65 650.3;5 950.05 ¥ [mm)]
K [mm d ']
Figure 2. Sensitivity of performance index ¥ (mean stor-

age S) of the simple nonlinear model to parameters K and
c. Plusses indicate parameter combinations for which time
series are shown in Figure 1.

Such a large number of model runs is usually possible only
for simplified problems such as presented here and the sub-
domain Sobol’ runs are only attempted to demonstrate the
similarity between local and global variance estimates
under close to ideal conditions.

[37] Comparison of the local standard deviations of Fig-
ure 3 (top) to the local gradients (equation (10)) used by
DELSA (Figure 3, bottom) shows how the patterns of the
derivatives mirror the patterns of the standard deviations.
The magnitudes of the local gradients differ, because of the
defined parameter ranges. Derivatives are generally smaller
for K, because the K values are relatively large (derivatives
range from 0.0 to 3.0; K values range from 50.95 to
950.95). Derivatives are generally larger for ¢, because the
¢ values are relatively small (derivatives range from about
25 to 175; c ranges from 1.15 to 3.85). Therefore, the local
values need to be scaled to obtain comparable measures. In
equation (11), the derivatives in d¥/d@ are scaled by the
prior parameter variances in @ to obtain standard devia-
tions plotted in Figure 3 (top).

[38] For DELSA, the matrix @ of equation (11) was
defined to be consistent with the parameter value ranges
used by Sobol’. DELSA values comparable to Sobol’ val-
ues calculated for 10 X 10 parameter subdomains require
that the prior parameter variances used in DELSA be deter-
mined using a uniform distribution, yielding s3=28.839
and s2=0.087 (see Appendix B).

3.3. Comparison of Sobol’ and DELSA First-Order
Sensitivity Indices

[39] Sobol” and DELSA first-order sensitivity indices are
calculated for the 100 subdomains for which the perform-
ance index and standard deviations are shown in Figures 2—
4. For Sobol’, equation (3) is applied to each parameter
subdomain; for DELSA, equation (13) is applied at the
middle point of each subdomain. The results are shown in
Figure 5, and suggest that the methods provide similar sensi-
tivity indices across the defined parameter space. Similar to
the Sobol’ calculation of the total variance, these simulations
suggest that calculation of the Sobol’ sensitivity measure
distributed in parameter space is computationally expensive.
Here, the calculation costs for the Sobol’ first-order index
are Ng (k+ 1) times 100 subdomains (=3,000,000), while
for the local equivalent this is &, (k + 1) (=300). This sug-
gests that if the distributions produced by DELSA are of
interest, obtaining them using Sobol’ is likely to be impracti-
cal for most problems.

[40] The traditional approach in the Sobol’ method is to
calculate one sensitivity measure for each parameter for the
whole parameter space. The Sobol’ S| indices for K and ¢
are shown in Figure 6 (top) and they have approximately
the same sensitivity of 0.50 and 0.48, respectively. Figure 6
(middle) presents the results of Figure 5 (top) showing the
cumulative frequency distributions of the Sobol’ indices
for the 100 parameter subdomains. Of interest is that the
central values differ from the Sobol’ global values: the
median values are S; = 0.33 for K and S; = 0.81 for c.

[41] To understand differences between the traditional
way of calculating the Sobol’ method (Figure 6, top) and
the local application of the Sobol” method (Figure 6, mid-
dle), we decompose the total variance V' (V) into its constit-
uents for each of the 100 parameter subdomains. These are
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Figure 3. (top) Prior model prediction standard deviation (/¥ (W)) calculated for values of parame-

ters K and ¢ at 100 points across the parameter space as indicated in Figure 2. (bottom) Local gradients
of the parameters K and ¢ to model prediction ‘¥ calculated for values of parameters K and ¢ at the same

(

) are related to the sensitivities.

labeled (W;—¥)* in Figure 7, where i indicates individual
parameter locations and W is the average over the entire
parameter space. Note that calculating the mean of all
(¥;—¥)? terms approximately equals the total variance of
P, which is 17,091 mm. It is clear that different parts of the
parameter domain produce different contributions to V' (\¥).
For example, regions with higher ¢ and lower K values pro-
duce large contributions to V' (V) and lower ¢ and higher K
values also have significant contributions. Over half of the
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Figure 4.

100 points. These two graphs plot the same 100 values in two ways to show how the standard deviations
V()

parameter domain contributes little to the variance. These
results indicate that while the first-order Sobol’ sensitivity
indices are calculated across the whole parameter domain,
only certain subregions significantly contribute to the sensi-
tivity indices. This explains why the results between the
traditional (global) and the distributed Sobol’ indices
differ.

[42] The sample size needed for reliable results is impor-
tant because it governs the computational demands of any
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Standard deviation of the model prediction ¥ across the parameter space calculated using

the Sobol’ variance for 100 parameter subdomains with 10,000 sample size each. Delineated parameter

subdomains are shown in top plot of Figure 5.
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Figure 5. Comparison of first-order sensitivity statistics of (top) the global method with Sobol’ sam-
pling (S;) and (bottom) the DELSA method (S;,) for 100 parameter subdomains with 10,000 sample

size each.

method. The DELSA cumulative frequency distributions of
the local first-order sensitivity index (Sy;) for different
sample sizes are shown in Figure 6 (bottom). Sampling on
a regular grid as in Figure 5 does not generalize easily
when considering different sample sizes. Thus, the quasi-
random Sobol’ sequence is used to define the samples used
for Figure 6 (bottom). The DELSA approach provides a
full distribution of the first-order indices and we can easily
obtain a number of different statistical properties. For
example, the results in Figure 6 (bottom) suggest that
parameter ¢ is more influential in much of the parameter
space (with median of S;; equal to 0.75) than the parameter
K (with median of Sy equal to 0.25). DELSA attains stable
results with only 300 model runs (&; = 100), with no signif-
icant advantage obtained from using a higher N,.

[43] Finally, the effect of sampling uncertainty on the
first-order sensitivity indices S7; and S; is presented in Fig-

ure 8, where the sampling variability is obtained from 1000
bootstrap samples. The median values for Ng= 10000 in
Figure 8 are the indices presented in Figure 6 (top). When
compared with the DELSA method, the Sobol’ method
required much larger Ng (>1000) to provide meaningful
results within the expected interval [0,1]. The sensitivity
values of Sobol’ and DELSA are not expected to converge
to the same value because of the averaging effects in the
global methods, as discussed using the total variance
decomposition (Figure 7).

3.4. Time Varying DELSA

[44] For transient problems, DELSA can be plotted over
time for sampled parameter sets to understand changes in
dominant model controls as suggested, e.g., by Cloke et al.
[2007] and Herman et al. [2013a]. For the synthetic test
case, consider mean storage calculated over 60 consecutive
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Figure 6. Sensitivity indices for the simple nonlinear model with two parameters K and c. (top) Bar
chart of the first-order Sobol’ global sensitivity indices (S;) for K and ¢ across the whole parameter
space. (middle) Cumulative frequency distributions of the distributed Sobol’ indices for 100 subdomains.
The arrows show the difference from the global Sobol’ index presented in the top plot, which are thought
to result from model nonlinearity. The nonlinearity is apparent in the distribution of the DELSA statistic;
for linear models the same value would be expected throughout parameter space. (bottom) Cumulative
frequency distributions of the DELSA method (S;;) obtained for different sample sizes (V) derived
using the quasi-random Sobol’ sequence, showing that only 100 samples provide accurate results for this

problem.

10 h periods. We illustrate this in Figure 9 for the simple
model using five combinations of parameters K and c: the
four corner points and center point of Figure 2.

[4s] DELSA values are time invariant for the lower
K values and temporally variable for higher K values.
For some parts of the parameter space (e.g.,
K =450.55 and ¢ =2.65), the ranking of the parameter
importance changes over time from one parameter to the
other. In a given problem, observed transient system per-
formance could likely be used to identify which DELSA
results are most relevant, in a similar manner as dynamic
identifiability analysis (DYNIA) proposed by Wagener
et al. [2003].

4. Experiments for Real-World Case Studies

4.1.

[46] To understand the performance of DELSA in realis-
tic problems, we consider a set of conceptual hydrological
models within the Framework for Understanding Structural
Errors (FUSE) [Clark et al., 2008]. Multiple models are
considered because of their utility in practice [e.g., Ye
et al., 2010; Clark et al., 2011; Foglia et al., 2013]. Alter-
native models allow evaluation of alternative hypotheses
about system dynamics, and these alternatives can affect
which parameters are important and unimportant. For one
model a parameter may be insensitive over most of the

Alternative Hydrologic Model Structures
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Figure 7. Decomposition of the total variance of the
model performance index P into its constituents at the 100
parameter space locations. Each constituent is divided by
the global variance calculated using Sobol’ for combina-
tions of parameters K and c.

parameter space, while in another the same parameter can
be sensitive over much of the parameter space. The less
computationally demanding DELSA makes evaluation of
many models more convenient.

[47] In this study, we implement five FUSE models
(FUSE-016, FUSE-014, FUSE-160, FUSE-072, and FUSE-
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Figure 8. Sampling uncertainty for the nonlinear model
with two parameters K and c. (top) Effect of the sample
size (Ns) on the Sobol’ sensitivity index (S;). (bottom)
Effect of the sample size (V;) on the median of the DELSA
method (S;;). The uncertainty estimates are obtained by
bootstrapping (resampled 1000 times). The vertical bold
line in the boxplot is the median, the body of a boxplot
shows the interquantile range (Q75-Q25) and the whiskers
represent the sample minima and sample maxima, unless
the extreme value occurs further than 1.5 times the inter-
quartile range from the box, in which case the outlier is
shown by a dot.
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170) analyzed by Clark et al. [2011]. These models repre-
sent different modeling decisions, which include: (1) the
choice of state variable in the unsaturated and saturated
zones and (2) the choice of flux equations describing the
surface runoff, vertical drainage between soil layers, base
flow, and evapotranspiration. For a detailed description of
the hydrological models and their model equations, we
refer to Clark et al. [2008, 2011]. Here, we provide a brief
description.

[48] The models FUSE-016, FUSE-014, and FUSE-160
evaluate the choice of state variables used to represent the
unsaturated zone and different parameterizations of evapo-
transpiration. FUSE-016 has a single reservoir; FUSE-014
and FUSE-160 use two cascading reservoirs. With respect
to evapotranspiration, FUSE-016 implements a “single-
layer” parameterization, FUSE-014 implements a “sequen-
tial” parameterization, and FUSE-160 implements a “root
weighting” parameterization. All other model components
are kept constant, including a single nonlinear groundwater
reservoir of unlimited size, the “ARNO/VIC (Variable
Infiltration Capacity)” parameterization of surface runoff,
and time delay routing using a gamma distribution.

[49] The FUSE-072 model is used to evaluate different
vertical drainage parameterizations. FUSE-016, FUSE-014,
and FUSE-160 do not allow any vertical drainage when sat-
uration is below field capacity. The vertical drainage in the
FUSE-072 model is a nonlinear function of total storage in
the unsaturated zone and for the rest FUSE-072 is identical
to FUSE-016. The FUSE-170 model is used to evaluate dif-
ferent base flow parameterizations. It uses two parallel lin-
ear reservoirs to represent base flow.

[50] The parameters used in the five models are described
in Table 1. The effective ranges applied in this study were
slightly adjusted from Clark et al. [2011] based on our prior
knowledge about the Lasnenville catchment (section 4.2).
The FUSE parameters PERCRTE, PERCEXP, and MAX-
WATR_1 can be seen as the equivalent of the simple non-
linear reservoir model (section 3.1) with parameters K, c,
and S;., respectively (equation (15)). Like the simple non-
linear model, the FUSE simulations have an hourly time
step, and fixed-step implicit Euler numerical approximation.

[51] The model performance index ¥ (equation (1)) for
this problem is defined as the root-mean-square-error
(RMSE) between the observed streamflow (g,,;,) and FUSE
streamflow simulations (¢;,):

T

Z (CIobs‘t _qsim‘t)z-

t=1

1
‘P—RMSE—$T (16)

[s2] This measure tends to emphasize high flows. Sensi-
tivity analysis results can change when using different per-
formance indices.

4.2. Data

[s3] The sensitivity analyses using the FUSE models are
carried out for a 10 year period from 1 October 1998 to 30
September 2008 for the Lasnenville catchment located in
the Belgian Ardennes (Western Europe). The Lasnenville
catchment is a medium-sized catchment (200 km?) located
upstream of the Lasnenville streamflow gauge, which is
operated by the Hydrological Service of the Walloon
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Figure 9. Changes in DELSA sensitivity over time for the drydown experiment. DELSA sensitivity
(S;,) is calculated for 60 consecutive 10 h periods at five combinations of the K[mm d~']-c parameter

space.

Region of Belgium (MET-SETHY). The meteorological
data are obtained from the Vielsalm FLUXNET site
[Aubinet et al., 2001 ; Papale et al., 2006; Reichstein et al.,
2005], which is located at the border of the Lasnenville
catchment. The cumulative annual precipitation is about
1000 mm and mean annual temperature 7.5°C. The land
use is approximately half mixed-forest and half agriculture.
The climate conditions can be classified as rain fed with
ephemeral snow in winter and the runoff regime is highly
variable with low summer discharges and high winter dis-
charges [e.g., Driessen et al., 2010; Hazenberg et al.,
2011; Rakovec et al., 2012].

4.3. Comparison of Sobol’ and DELSA

[54] The sensitivity indices of all model parameters are
shown in Figure 10 for sample sizes Ng= 1000 and
N; = 1000, respectively. The same sample size was used
for both Sobol” and DELSA so that use of different sample
sizes would not confuse intercomparison of results.
Because the FUSE models have between 11 and 14 param-
eters and the calculation costs are Ng (k+ 1) and N, (kK + 1),
respectively, the number of model runs is between 12,000
and 15,000, depending on a model structure. For DELSA,
the distribution of median values is shown.

[s5] Results suggest that, for all models for DELSA
and Sobol’, parameters TIMEDELAY and AXV_BEXP
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are the most important (see Table 1 for a description of
each parameter). This makes sense, because these two
parameters significantly affect the magnitude and timing
of the simulated streamflow in the RMSE. Other parame-
ters are moderately important to one or more models. For
example, FRACTEN is the third most sensitive parameter
for FUSE-016 according to both methods, which is con-
sistent with how evaporation and unsaturated zone are
simulated [Clark et al., 2011]. For the FUSE-072 model,
PERCEXP is somewhat important because vertical drain-
age from the unsaturated zone to the saturated zone is
simulated even when the upper zone storage falls below
field capacity. FUSE-160 uses two parallel linear reser-
voirs to represent base flow, in contrast to the single non-
linear reservoir used in all other FUSE models, and there
are three other sensitive parameters: MAXWATR_I,
PERCFRAC, and QBRATE_2B (see Table 1 for parame-
ter description).

[s6] For all five models, the DELSA approach provides
sensitivity indices, which correspond well to the global
Sobol” method.

[571 The DELSA method yields much smaller sampling
uncertainty than the global Sobol’ method for the same
number of model runs. This is shown in Figure 10 by the
error bars accounting for the 95% confidence interval: for a
sample size of 1000, the DELSA error bars are much
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Table 1. Parameters of the FUSE Models Used in This Work

Parameter Name Description Units Lower Limit Upper Limit
MAXWATR_1 Maximum storage in the unsaturated zone mm 50 500
MAXWATR_2 Maximum storage in the saturated zone mm 25 250
FRACTEN Fraction total storage as tension storage - 0.05 0.95
FRCHZNE Fraction of tension storage in the primary zone (unsaturated zone) - 0.05 0.95
FPRIMQB Fraction of free storage in the primary reservoir (saturated zone) - 0.05 0.95
RTFRACI Fraction of roots in the upper soil layer - 0.05 0.95
PERCRTE Vertical drainage rate mmd™’ 0.01 1000
PERCEXP Vertical drainage exponent - 1 20
PERCFRAC Fraction of drainage to tension storage in the lower layer - 0.05 0.95
FRACLOWZ Fraction of soil excess to lower zone - 0.05 0.95
BASERTE Base flow depletion rate for the single reservoir mmd ! 0.001 1000
QB_POWR Base flow exponent - 1 10
QBRATE_2A Base flow depletion rate for the primary reservoir day ™! 0.001 0.25
QBRATE_2B Base flow depletion rate for the secondary reservoir day ™! 0.001 0.25
AXV_BEXP ARNO/VIC “b” exponent for the surface runoff - 0.001 3
LOGLAMB Mean of the log-transformed topographic index distribution m 5 10
TISHAPE Shape parameter defining the topographic index distribution - 2 5
TIMEDELAY Routing parameter equal to the time delay in runoff day 0.01 2

narrower. This was also analyzed for the two most sensitive
parameters TIMEDELAY and AVX_BEXP using sample
sizes of 100, 1000, and 10,000 (not shown). While 100
model runs provided consistent sensitivity indices using the
DELSA method, Sobol’ required many more model runs
(preferably Ng> 1000) to provide sensitivity indices with
equivalently low sampling uncertainty.

[s8] In Figure 10, the Sobol’ values and median DELSA
values are sometimes different, though the same important
and unimportant parameters are identified. Such differences
are expected and are discussed in section 3 of this work.

[59] Figure 11 compares the full distribution of parame-
ter sensitivity provided by the DELSA method to the global
Sobol” model. Results are shown for seven parameters
common to all five FUSE models. While Figure 10 shows
only the median sensitivity values for DELSA, Figure 11
shows the full empirical frequency distribution. Sensitivity
indices at the cumulative frequency of 0.5 correspond to
the values shown in Figure 10. The DELSA results allow
for more detailed evaluation. For example, consider two
parameters: FRACTEN in FUSE-016 and PERCEXP in
FUSE-072. Both have a first sensitivity index of 0.1 esti-
mated by the global Sobol” method, but inspection of the
DELSA results shows that parameter PERCEXP in FUSE-
072 has a sensitivity index >0.75 for about 20% of the
sampling locations. This means that for about 20% of the
parameter value samples, PERCEXP is nearly as important
as the two most important parameters, TIMEDELAY and
AVX_BEXP. On the other hand, the FRACTEN parameter
in FUSE-016 hardly ever exceeds a DELSA sensitivity of
0.5, even though the median shows a sensitivity of 0.1.
Inspection of the DELSA results also suggests that each
parameter is insensitive for about 20% of the parameter
sets. Inspection of some model runs (not shown) for which
the sensitivity of the TIMEDELAY and AVX_EXP param-
eters equals zero showed that the FRACTEN parameter
became very important. For these models, the simulated
response was either much more or much less flashy than
the data suggested. Further evaluation is beyond the scope
of the present work, but even these initial results suggest
the insight available through multiscale evaluations of sen-
sitivity such as that provided by DELSA.
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[60] One interesting question is how global sensitivity
measures are affected by results in regions of parameter
space for which the model provides a poor representation
of actual conditions. Pappenberger et al. [2008] and others
have approached this issue by only performing global
sensitivity analysis on the model simulations with
“acceptable” model performance—simulations that Pap-
penberger et al. [2008] considered to be “behavioral.”
Figure 12 illustrates values of the DELSA statistic for each
parameter value for model FUSE-016, plotted against the
RMSE performance metric. Here, we make two observa-
tions. First, there is a small number of outlier parameter
sets, denoted as triangles in Figure 12, for which there is
high sensitivity for FRACTEN, AXV_BEXP, and lower
sensitivity for parameter TIMEDELAY. These parameter
sets may provide unrealistic simulations, as indicated by
the high RMSE statistic. These parameters sets all have
values of TIMEDELAY that are less than 0.05; the range
of TIMEDELAY was defined as 0.01-2, and the small
values would not be expected for a basin this large
(200 km?). These results could be used to understand why
model performance is so anomalous, or to omit such unre-
alistic results from the analysis. Second, parameter sets that
have the highest values of sensitivity in the TIMEDELAY
also tend to have poor model performance. To the extent
that large values of RMSE indicate an unrealistic model,
this may suggest that for models of most interest the domi-
nance of parameter TIMEDELAY may be exaggerated by
the global approach. Figure 12 also shows the difficulties
faced by using traditional N;=1 sensitivity analysis for
these models. Such analyses are likely to identify
MAXWATR\ 2, PERCRTE, and perhaps PERCEXP as
insensitive, but results for other parameters are likely to
be erratic. Investigation of whether spurious or realistic
results account for this is an interesting question not pur-
sued here.

5. Discussion

[61] The results of the simple (synthetic) and complex
(real world) problem suggest potential utility of the
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Figure 10. Comparison of the DELSA (S;;) and Sobol’
(S7) sensitivity indices for five FUSE model structures
using Ng= 1000 and N, = 1000. The sampling uncertainty
(bootstrapping with 1000 times resampling) is indicated by
boxplots.

DELSA method. Advantages include convergence with rel-
atively small values of N, and detailed characterization of
variations in sensitivity over the defined range of parameter
values.

[62] The local methods considered in this work are
expected to perform well when performance metrics are
smooth functions of the parameters. Simulated results can
be nonsmooth for a number of reasons. These include spu-
rious solutions of the type discussed by Clark and Kavetski
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[2010] and Kavetski and Clark [2010], and can also include
small oscillations produced by otherwise valid solution
schemes (for example, random walk and method of charac-
teristic solutions for transport often produce small oscilla-
tions) [Mehl and Hill, 2001]. In the presence of
irregularities and small oscillations, the small parameter
change used to calculate derivatives in local methods can
produce sensitivity measures that indicate greater parame-
ter importance than actually occurs (also noted by, for
example, Kleijnen and Helton [1999] and Sobol’ and
Kucherenko [2010]). This is likely the reason that in
Li et al. [2013] local methods indicated greater importance
for some parameters than did the global methods
considered.

[63] In DELSA, such difficulties will not dominate a
parameter importance measure as long as the irregular-
ities occupy little of the parameter space. A few large
values will clearly be exceptional when the DELSA dis-
tributions are plotted, as for example Figure 11 (bottom)
or in Figure 12, and can be suitably ignored. Indeed,
DELSA provides an opportunity to identify and possibly
fix such model irregularities if they are deemed to be
unrealistic.

[64] If the irregularities are pervasive and oscillate
around a valid solution, DELSA will perform poorly and
function smoothing or use of global methods is advised.
Often, such irregularities are known to be typical of a mod-
eling method, as is the case for random walk and the
method of characteristics (MOC) transport solutions [see
Mehl and Hill, 2001]. For many reasons besides sensitivity
analysis, it is advisable for modelers to be cognizant of
solution characteristics such as small oscillations and other
irregularities; such knowledge is needed to determine the
utility of model results as well as suitable methods for
model development and analysis.

[65] The DELSA method provides a number of intrigu-
ing opportunities that we do not pursue in this first paper on
DELSA. Here, we briefly mention selected opportunities
and significant related literature and issues.

[66] Equation (11) is presented in its general form
and Appendix A discusses how observations can be
included in X and ® to emphasize that DELSA has
close ties to local sensitivity theory [Cook and Weis-
berg, 1982; Foglia et al., 2009]. The DELSA method
appears to provide rich possibilities for using a full parame-
ter variance-covariance matrix as required to include obser-
vations and thus allow sensitivity analysis on a posteriori
distributions, as indicated in Figure 13. In global methods,
full matrices were considered by Saltelli et al. [2004] but
Sobol’ evaluations were found to depend on the order of
the parameters [Bedford, 1998]. Xu and Gertner [2011],
Zuniga et al. [2013], and Kucherenko et al. [2012] present
methods for accounting for parameter correlation in the con-
text of global methods. To our knowledge, numerically
equivalent local methods have not been identified and their
development is an interesting topic beyond the scope of the
present work.

[67] In this work, we focus on the first-order sensitivity
measure. Sobol’ statistics of higher order, including total-
order statistics, could perhaps be included in DELSA by
using the local derivatives [e.g., see Sobol’ and Kucher-
enko, 2010].
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Figure 11. Sensitivity indices for the seven common parameters of the five FUSE model structures

using Ng= 1000 and N, = 1000. (top) Global Sobol’ sensitivity indices (S). (bottom) Cumulative fre-
quency distributions of the variability across the parameter space using the DELSA method (S ;).

6. Conclusions

[68] We investigated parameter sensitivity and how it is
affected by hydrologic model structure using two very dif-
ferent techniques: a global variance-based method (Sobol’)
and the proposed Distributed Evaluation of Local Sensitiv-
ity Analysis (DELSA) method. In DELSA, parameter sen-
sitivity evaluation is based on gradients of the model
performance index with respect to model parameters at
multiple points throughout the parameter space and sensi-
tivity metrics are formulated in terms of the distribution of
values across the parameter space. Additionally, DELSA is
constructed in a way that allows direct comparison to
global variance decompositions of Sobol’. The results

show that the Sobol’ and DELSA methods yield similar
results for the problems considered, although the DELSA
method provides the full distribution of sensitivity through-
out the parameter space at lower calculation costs than is
incurred to obtain a single summary measure of sensitivity
using Sobol’. For example, in the real-world problem the
time delay in runoff is the most important parameter in all
models, but DELSA shows that for about 20% of parameter
sets it is not important at all and alternative mechanisms
and parameters dominate. Moreover, the time delay was
identified as important in regions producing poor model
fits, whereas other parameters were identified as more
important in regions producing better model fits. The
detailed information produced by DELSA about model

MAXWATR_1 MAXWATR 2 FRACTEN PERCRTE PERCEXP AXV_BEXP TIMEDELAY
o sy
|
o - — o
E T T A%ﬁ
E S N
2 7 B
_ ® o ]
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DELSA results for first—order sensitivity [—]
Figure 12. Scatterplot of first-order statistic (S;,) used for DELSA, related to the RMSE performance

metric for the FUSE-016 model showing the same parameters as depicted in Figure 11 for N, = 1000.
Triangles indicate 15 parameter sets, which are discussed in the text as outliers. Note that simulations
with high RMSE are of low hydrological significance. Both AXV_BEXP and TIMEDELAY have high
sensitivities, but only in the case of AXV_BEXP do these correspond to low RMSE values.
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Analysis of a model
constrained using
observations has

important potential.

Sobol’ equivalent

results reported in

this work use only
parameter information.

Include M, observa-
tions and M), parameter
information equations.
0 <= M, < infinity.

\/

X matrix with dimen-
sions (Mops + Mp) X k.
off diagonals are zero. w may be a full matrix.

\ \d

Calculate DELSA statistics using equations (11)
to (13) for N sets of parameter values. Sim-
ple test case (figures 5-9): The N; sets of pa-
rameter values are on a regular grid. Field case
(figures 10-12): Use of the N; parameter sets

sampled with the quasi-random Sobol’ sequence.

Include indepen-
dent information for
all k parameters.

\

X is an identity matrix.
w: diagonals are
reciprocal of variances,

Figure 13. Flowchart showing definition of X and e used
to calculate DELSA for situations comparable to Sobol’
variance analysis (in yellow), as considered in this work.
Also shown is how X and w are defined in the important sit-
uation of having observations with which to constrain the
simulation (in gray).

sensitivity provided important insights about how parame-
ter sensitivity varied throughout the parameter space.

[69] This study focuses on introducing the DELSA
method and applying the method to reproducible test prob-
lems. DELSA is ideally suited to analyze multiple metrics
of model behavior [e.g., Rosolem et al., 2012] and environ-
mental models with lengthy execution times. The advant-
age of the multiscale, hybrid local-global DELSA method
is that application at multiple points across the parameter
space can reveal important parameter subregions, generally
undetected by global methods. We anticipate that the
DELSA method will become a powerful approach to pro-
vide insight about model parameter sensitivity at very low
computational cost. We look forward to working with
others in the community to apply the DELSA methodology
to challenging modeling problems.

Appendix A: Definition of X and w and Derivation
of DELSA Equation (11)

[70] Equation (11) is the prediction total variance,
Vi (W), and is composed of two parts.

[71] The first part is the variance-covariance matrix of
the parameter vector 0, or ¥ (0)=02(X"wX)™", a standard
expression stated in many texts, including Seber and Wild
[1989, p. 191], Menke [1989, p. 58], Draper and Smith
[1998, pp. 129-130], Tarantola [2005, p. 36], and Aster
etal. [2013, p. 224].

[72] X is a matrix with M rows and k columns and o is a
matrix with M rows and M columns. & is the number of
parameters. M depends on the type of problem considered.
For model calibration problems with no prior information,
M equals the number of observations. If each observation is
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represented by y;, the elements of X equal dy;/90;. & would
equal the weight matrix of the observations. If the model
calibration problem includes prior information, M =
Mps + M, where M, equals the number of observations
and M, equals the number of prior information equations.
The additional M, rows of the X matrix often have zeros
except for one which identifies the parameter associated
with the prior information. However, alternative forms are
used to define, for example, first-order Tikhonov regulari-
zation. For comparison with Sobol’, no observations are
used and M =N,. X is a k X k identify matrix, and o is
diagonal and contains the reciprocal of the variances of the
parameters (see Appendix B). The structure of the X and
matrices is described and illustrated by Hill and Tiedeman
[2007, p. 384]. In equation (11), the assumption has been
made that the sample common error variance ¢ =1,
hence, it does not explicitly appear in equation (11). This
assumption is discussed toward the end of this appendix.

[73] For equation (11), as presented in this work, the
terms for prior information are included in the matrices X
and o. Separation of X and o into the parts for observa-
tions and prior information produces the following alterna-
tive forms of equation (11):

VL(0)=5*(X 1) 005X s+ C, ) !
=Cp—CpX pps(@,,) +X 1 C, X

obs

. (A1)
obs

) X s G-

[74] The equivalence of the two expressions is discussed
by Oliver et al. [2008, p. 142].

[75] The expression, ¥(0)=6*(X"wX)™", is derived in
detail by Hill and Tiedeman [2007, pp. 396-398], and a
condensed version of that derivations follows.

[76] Start with the standard expression of variance
applied to 0,

V(0)=E[(0—E(0))(0—E(0))"]. (A2)

[77] The expression for parameter values optimized
using linear regression is

0=X"0X) "X wy, (A3)

where y is a vector of observations. Substitution of equation
(A3) into equation (A2) for 0 (not for E(0)); expansion of
terms using matrix algebra; application of the matrix prop-
erty AB"=B7A”; recognition that (X”®wX)™' and o are
symmetric so that the transpose equals the original matrix;
substituting the first-order (linear) expression for y,
y=A0+¢€; and taking the expected value noting that only €
is stochastic yields:
V. (0)=X"0X) ' X oElee’ | oX(XToX) . (A4)
[78] The subscript L indicates linearity has been
assumed. Consider defining the weight matrix  such that

Elee’|=V(e)=c*a". (AS)

[79] Substituting equation (AS5) into equation (A4),
canceling terms, and assuming ¢® =1 yields ()
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(XToXx )71, the expression used in equation (Al). Assum-
ing ¢>=1 is not significant for the DELSA statistics
defined in this work because as a constant it divides out in
the calculation of equation (13).

[s0] The second part of equation (11) is the pre and post
multiplication of V;(0) by the derivatives of the prediction
with respect to the parameters. This multiplication is a linear
propagation of the parameter error as represented by V;(6)
to the prediction. Error propagation of this type is standard
in regression theory, and is presented in the references cited
for equation (11) at the beginning of this appendix.

[81] Equation (11) calculates the variances that appear in
the denominator of equation (13) for the local first-order
sensitivity indices. The numerator of equation (13) is
obtained by retaining one term in the expression for V;(6),
as described in the text.

Appendix B: Why the Variance of a Uniform
Distribution Is Expected to Yield Numerically
Equivalent DELSA and Sobol’ Sensitivity Index
Values Under Ideal Circumstances

[82] For the Sobol’ sampling used in this work, the prob-
ability for all parameter values within the range of parame-
ters is assumed to be equal. This is consistent with a
uniform probability distribution.

[83] For the DELSA statistics (equation (13)) to produce
numerically equivalent results to Sobol’, the parameter
range and distribution implied by the prior information var-
iance in ® needs to be consistent with that of the Sobol’
method. Thus, given a parameter 0; with ranges 0, ,,;,, and
0; max defined for Sobol’, the variance used in DELSA
needs to equal the variance of the uniform distribution,
which is 5 (0} = 0;in)” [e-g., Mood et al., 1974].
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