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Effective and Efficient Global Optimization
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The successful application of a conceptual rainfall-runoff (CRR) model depends on how well it is
calibrated. Despite the popularity of CRR models, reports in the literature indicate that it is typically
difficult, if not impossible, to obtain unique optimal values for their parameters using automatic
calibration methods. Unless the best set of parameters associated with a given calibration data set can
be found, it is difficult to determine how sensitive the parameter estimates (and hence the model
forecasts) are to factors such as input and output data error, model error, quantity and quality of data.
objective function used, and so on. Results are presented that establish clearly the nature of the
multiple optima problem for the research CRR model SIXPAR. These results suggest that the CRR
mode! optimization problem is more difficult than had been previously thought and that currently used
local search procedures have a very low probability of successfully finding the optimal parameter sets.
Next, the performance of three existing global search procedures are evaluated on the model SIXPAR.
Finally, a powerful new global optimization procedure is presented, entitled the shuffled complex
evolution (SCE-UA) method, which was able to consistently locate the global optimum of the SIXPAR
model, and appears to be capable of efficiently and effectively solving the CRR model optimization

problem.

1. INTRODUCTION

Conceptual rainfall-runoff (CRR) models are designed to
approximate within their structures the general physical
mechanisms which govern the hydrologic cycle. For this
reason, CRR models have found favor with many practicing
hydrologists and engineers. Among the more widely used
and studied CRR models are the soil moisture accounting
portion (SAC-SMA) of the National Weather Service River
Forecast System (NWSRFS) [Burnash et al., 1973; Brazil
and Hudlow, 1981], and the various versions of the Stanford
Watershed Model (SWM) [Crawford and Linsley, 1966].

CRR models generally represent the soil moisture ac-
counting phase of the hydrologic cycle as several intercon-
nected subsystems, each representing a certain component
in the processing of a hydrologic event. Empirically or
heuristically determined, but physically realistic functions
are used to describe the internal operation of these pro-
cesses. The types of functions and the amount of detail used
to represent a watershed system determine the degree of
realism and sophistication of a CRR model. For any CRR
model to have practical utility, it is important to be able to
identify proper values for the parameters which govern these
functions; the procedure for doing this is called model
calibration.

The successful application of a CRR model depends on
how well the model is calibrated. In recent years, automated
approaches to calibration have received much attention, and
several difficulties in the application of such methods have
been reported {e.g., Ibbitt, 1970; Johnston and Pilgrim,
1976, Pickup, 1977; Larimore, 1981; Sorooshian and Gupta,
1983; Gan and Burges, 1990a, b). These reports indicate
that it is typically difficult, if not impossible, to obtain a
unique set of optimal parameters for a CRR model using
automatic calibration methods. While such problems may be
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partially attributable to limitations inherent in the calibration
and verification data, the nonlinear structural characteristics
typical of CRR models also lead to the existence of multiple
optima (i.e., more than one solution). However. the auto-
matic calibration procedures in current use are incapable of
finding the globally optimal parameter estimates with any
reasonable degree of confidence. This translates into uncer-
tainty regarding the accuracy of the model forecasts. Fur-
thermore, unless the best set of parameters associated with
a given calibration data set can be found, it is difficult to
determine how sensitive the parameter estimates (and hence
the model forecasts) are to factors such as input and output
data error, model error, quantity and quality of data, objec-
tive function used, and so on.

Most attempts at automatic calibration of CRR models
have used local-type direct search optimization methods
{e.g., Dawdy and O'Donnell, 1965; Nash and Sutcliffe, 1970,
Chapman, 1970; Ibbitt, 1970, Monro, 1971; Johnston and
Pilgrim, 1976; Pickup, 1977; Sorooshian, 1978 Sorooshian
et al., 1983; Gupta and Sorooshian, 1985; Hendrickson et
al., 1988]. Such procedures are not designed to handle the
presence of multilocal optima, discontinuous derivatives,
and other problems encountered in the calibration of CRR
models. The convergence problems encountered by local
search algorithms have been well documented in the litera-
ture and therefore will not be repeated here. For a historical
perspective, we refer the reader to Gupta and Sorooshian
[1985]) and Hendrickson et al. [1988).

To our knowledge, there have been only three published
reports of the use of globally based optimization methods for
CRR model calibration [Ibbitt, 1970; Brazil and Krajewski,
1987; Wang, 1991}. Ibbirr [1970] reported that a random
search method [Karnopp, 1963] was unable to obtain good
estimates of the global optimum of the SWM model, but
could (in some cases) provide parameter values which were
good starting points for a subsequent local search. Brazil und
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Fig. 1. The research CRR model SIXPAR.

[Masri et al., 1978; Pronzato et al., 1984] for fine-tuning of
the parameters of the SAC-SMA model (as part of a three-
stage calibration process) and concluded that the ARS
method was ‘‘an attractive alternative to nonrandom search
techniques’’ (see also Brazil [1988]). Wang [1991) reported
that the genetic algorithm [Holland, 1975) with further tuning
by a standard local search method can provide an “‘efficient
and robust means for calibration of the Xinanjiang mode."”’

The theory and practice of global optimization has pro-
gressed rapidly during the last decade, and a wide variety of
different algorithms are available {e.g., Torn and Zilinskas,
1989; Rinnooy Kan and Timmer, 1989]. The major reason
that more research into the use of global optimization
methods for CRR model calibration has not been conducted
is the demand that such methods place on computational
resources. However, computer technologies have now im-
proved to the point that computationally intensive methods
are practical and affordable and have made it feasible for us
to conduct the investigations reported in this paper.

2. Score

There is a clear need to have an effective and efficient
optimization procedure that can help in the automatic iden-
tification of a unique and realistic set of optimal parameters
for a CRR model. Such a procedure should (1) reflect the
state of the art in global optimization, and (2) be carefully
designed to handle the specific difficulties encountered in
CRR model calibration. This paper has three main topics. In
section 4 we use two computationally intensive techniques
to establish clearly the nature of the problem of multiple
optima for the research CRR model SIXPAR. In section 5
we test the performance of three existing global search
optimization procedures. In section 6 we present a new
global optimization procedure, entitled the shuffled complex
evolution (SCE-UA) method, and show that it is capable of
efficiently and effectively identifying the optimal values for
the model parameters.

3. THE MobpEL USeD IN THiIS STUDY

The CRR model used throughout this study is the SIXPAR
model, which is a simplified research version of the SAC-
SMA model. SIXPAR is a representation of some of the
major modeling concepts of the SAC-SMA model, duplicat-

iup the tvrw layer structure and the pereclation foaturo of thoe

SAC-SMA, while deleting some components such as evapo-
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transpiration and tension water reservoirs (see Figure 1).
The parameters UM and BM (units of length) act as thresh-
olds that limit the sizes of upper and lower zone storages,
respectively. The parameters UK and BK (units of time ™)
control the rates of the recession. The parameters A and X
(dimensionless) relate to the nonlinear percolation process.
This model was first introduced by Gupta {1982] and has
been presented by Gupta and Sorooshian [1983].

For the model SIXPAR, a 200-day synthetic sequence of
daily rainfall and streamflow data associated with a specified
“‘true’’ parameter set (UM = 10, BM = 20, UK = 0.5, BK
=02, 4 = 0.31, X = 3) was constructed (Figure 2). In
choosing the rainfall data, we have ensured that all modes of
model operation were activated. If desired, synthetic ‘‘mea-
surement’’ noise can be introduced into the data. The lower
and upper parameter bounds used to define the feasible
parameter space are UM = (0, 50), BM = (0, 50), UK = (0,
1), BK = 0, 1), 4 = (0, 1), X = (0, 10). Note that
evapotranspiration data are not required as SIXPAR has no
evapotranspiration component, and that the streamflow out-
put was not routed.

To prevent confusion, we wish to emphasize that the
SIXPAR model is not intended for use in an operational
setting, but was developed as a tool for the study of
problems that arise in the implementation of fully automatic
calibration methodologies. This simple model retains some
of the important characteristics of the more complex SAC-
SMA model, and we have used it to gain very useful insights
into problems associated with the full-scale model. We
believe that if a proposed procedure is incapable of success-
fully solving the problem of calibrating the SIXPAR model,
it is unlikely to perform well on the full-scale model.

4. THE ProBLEM OF MULTIPLE OPTIMA
IN CRR MODELS

The numerous difficulties that have been reported with
CRR model calibration suggest that these problems may
have their own peculiar characteristics. Therefore, the aim
of this section is to establish clearly what the features of the
problem are, how difficult the problem is, and why current
procedures cannot solve the problem. This understanding
will be helpful in designing a successful solution strategy.
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Uniform random sampling demonstrated on the Hosaki function. (a) Contour plot of the Hosaki function.

(b) NORD plot for the Hosaki function. (¢) Parameter X1 PARYV plot for the Hosaki function. (d) Parameter X2 PARV

plot for the Hosaki function.

Our objective is to determine what can be learned about
the structural identifiability properties of CRR models. In
particular, we are interested in (1) detecting the location and
number of multiple optima; and (2) obtaining global informa-
tion about parameter sensitivity and the structure of the
objective function response surface.

Because of the highly complex and nonlinear nature of
CRR models, a theoretical analysis of the model equations to
obtain the information we require is difficult, if not impossi-
ble. Therefore, we have chosen to use computational meth-
odologies that employ information sampled from the entire
parameter space, taking care to adequately span the space
and provide a sufficient density of coverage. The two pro-
cedures we have used are: (1) uniform random sampling
(URS) of the parameter space; and (2) exhaustive gridding
(EG) of the parameter space.

Uniform Random Sampling (URS) Method

The method of uniform random sampling (URS) is a
primitive probabilistic approach to global optimization. In
this method, a prespecified number of points, N (say N =
1000), is sampled at random from the feasible parameter
space using a uniform probability distribution. The objective
function value is computed at each point, and the point with
the best (we shall use minimum) objective function value is
taken as an estimate of the optimum. In addition, however,

tha A/ cammnlad painte rAantain impnrtant infarmatinn ahant

the nature and structure of the objective function response

surface. This information can be extracted using appropriate
analysis procedures. One such procedure is to construct
graphical projections of the sampled points after having
arranged them in order of increasing objective function
value. The two graphical projections we investigated were
(1) X-Y plot of the distance of each point from the optimum
normalized by the parameter range (NORD), versus objec-
tive function value; and (2) X-Y plot of parameter value
(PARV), versus objective function value.

To illustrate how these plots are useful, two simple
examples are presented. First, consider the simple two-
dimensional nonconvex Hosaki function (Figure 3a) having
two optima, a global minimum at (X, = 4.0, X, = 2.0) and
a local minimum at (X; = 1.0, X, = 2.0). The equation for
this function is

2 7 3 1 4 2 -X
ﬂX],X2)= 1"8X|+7X;_§Xi+ZX| XZ-F :
(N

The NORD and PARYV plots for the Hosaki function are
shown in Figures 3b-3d. When the sampled points are close
to the global optimum (small normalized distance), the
NORD measure (Figure 3b) increases smoothly in a banded
fashion characteristic of an elliptical-type response surface.
After a certain number of points have been plotted, the
ordered set will begin to contain points from the local

Aptimitm raginn whicrh hava cimilar fiinatinn valioe ta tho

ones around the global optimum. For such points, the
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Fig. 4. The simple reservoir model TWOPAR.

normalized distance is larger, so that they cluster in a
different region of the graph. In this way, the existence of the
local optimum is clearly identified. In a similar manner, the
local optimum and its location are identifiable on the PARV
plots (Figures 3¢ and 3d).

Next, consider the simple two-parameter reservoir model
(TWOPAR; see Figure 4) which has an extended valley on
its simple least squares (SLS) function response surface
(Figure Sa). An extended valley (extended line or area of
equal function values in the parameter space) can be viewed
as a special case of the multiple optimum problem. Such
features have been detected in response surface studies of
CRR models [Sorooshian er al., 1983]. The URS method
plots identify clearly both the region of the optimum and the
presence of the extended valley (Figures 5b-5d). The ex-
tended valley is identified in Figures 5b and Sc as a sudden
increase in the spread of the points, at a function value equal
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Fig. 6. NORD plot for the SIXPAR model.

to 1.5. Figure 5c¢ indicates that the valley is oriented in the
direction of parameterd, while Figure 5d indicates that the
response surface in the region of the valley has a quadratic
shape along parameter K.

The URS method was used to study the SLS response
surface of the SIXPAR model by sampling 10,000 points
from the feasible parameter space (roughly 4.5 points per
parameter direction for this six-dimensional problem). The
results (see Figures 6 and 7a-7f) are both interesting and
disturbing. The plots all show a broad spread of points from
the very beginning of the ordered data set, indicating very
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poor sensitivity of the objective function to parameter vari-
ation over the entire feasible parameter space. The PARV
plots for parameters UM and UK (Figures 7a and 7b) barely
hint at the existence of a local optimum in the UM-UK
subspace, located near (UM, UK) = (20, 0.25). However,
the PARY plots for BM and BK (Figures 7¢ and 7d) seem to
indicate the presence of a major local optimum in the
BM-BK subspace near (BM, BK) = (50, 0.7). The PARV
plots for A and X (Figures 7¢ and 7f) display no detectable
patterns. Perhaps most disturbing is that of the two “‘best™
points obtained from the sample, the second point (UM =
30, BM = 0.56, UK = 0.23, BK = 0.75,4 = 0.76, X = 9.3)
is far from the “‘true’’ values (UM = 10, BM = 20, UK =

0.5.BK = 0.2. A = 0.31. X = 3). while havine a function
value virtually indistinguishable from the first. It is not clear

if this result is due to insufficient coverage of the feasible
space, model structural factors, the characteristics of the
data set, or some combination of the three. Further investi-
gation of this result is desirable, but beyond the scope of this
paper. However, because it is known that the sensitivity of
the model output to the percolation parameters is small
relative to that of the other parameters of the model, and that
a significant degree of parameter interdependence exists
[Gupta and Soroashian, 1983], the study was repeated with
the percolation parameters A and X fixed at their true
values. There was no significant change in the results.

Exhaustive Gridding (EG) Method

The method of exhaustive gridding is a primitive. deter-
ministic approach to global optimization. In this method, the
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TABLE 1. Number of Local Optima in Two-Dimensional Subspace of the SIXPAR Model
No Noise 25% Homoscedastic Error 25% Heteroscedastic Error

Parameters SLS HMLE SLS HMLE SLS HMLE
UM-UK 1 2 i 1 4 2
UM-BM 2 2 7 4 11 7
UM-BK 6 2 13 31 36 3
UM-A 9 33 16 14 33 61
UM-X 42 55 62 58 77 109
UK-BM | 1 i 1 5 5
UK-BK 3 i 1 3 2 2
UK-A 3 4 7 9 9 13
UK-X 1 1 2 4 4 1
BM-BK 2 2 6 8 1 3
BK-A 3 4 7 4 5 5
BM-X i t 4 5 2 5
BK-A 8 3 108 100 105 5
BK-X 2 1 102 94 101 3
A-X 11 11 113 71 127 71

number of discretization units for each parameter range is
chosen, thereby specifying the number of grid points and
their location, and the function value is computed at each
grid point. The function value at each point is compared with
those of all immediate neighboring points. The location and
function value of those points for which the function value is
less than or equal to that of all its neighbors are recorded.
These points are part of either a global or a local optimum.

The EG method is computationally very intensive. For
example, a two-dimensional problem with a grid size of
100 X 100 requires 10,000 function evaiuations and 78,804
function comparisons; the method is clearly not an efficient
procedure for finding the global minimum. The EG method
was applied to the SIXPAR model in two- and three-
dimensional subspaces only. Higher-dimensional subspaces
were not studied because the computational burden became
too large, even for the Convex C240 used in this study.

The two-dimensional subspaces were examined first. For
each pair of parameters, a grid size of 100 x 100 was used.
In addition to the case of ‘‘perfect’’ data (no streamflow
error), the influence of two types of streamflow data error
was examined: homoscedastic error (error variance does not
change with the magnitude of streamflow) and heteroscedas-
tic error (error variance changes with the magnitude of
streamflow). The homoscedastic error variance value used
was 25% of the mean streamflow value, while the heterosce-
dastic error variance used was 25% of the true streamflow
value. In addition to the SLS objective function, the hetero-
scedastic maximum likelihood error (HMLE) objective func-
tion developed by Sorooshian [see Sorooshian et al., 1983]
was used so that the properties of the two objective func-
tions could be compared.

The number of local optima found in each parameter
subspace, for each objective function and for each error
case, is presented in Table 1. Some of the subspaces contain
quite a large number of local optima. In particular, the
percolation parameters A and X are associated with larger
numbers of local optima than the other four parameters.
There are many local optima present on the response surface
even when the data are not corrupted with errors; the
introduction of errors into the streamflow data generally

imoroacas tha mumhar af laral antima  Whan the errar ic

heteroscedastic, the choice of objective function influences

the number of optima in each subspace. The number of local
optima in the UM-BK subspace for 12 different random
sequences of homoscedastic streamflow data error is given
in Table 2. From these results it can be seen that the
randomness in the data error influences significantly the
behavior of the response function, with the number of local
optima varying between 25 and 62 for this case.

The objective function values obtained at each grid point
were used to construct mesh surface plots. These plots show
the comparative sensitivities of the parameters, the regions
of roughness of the response surface, and the locations of
abrupt changes in slope. Five selected surfaces are pre-
sented in Figures 8a—8d and Figure 9a. The locations of the
local optima are indicated by artificially introducing vertical
spikes on the surfaces. The plots show that the response
surface can be quite steep when far from the global optimum,
but is relatively insensitive to the parameters near the global
optimum. Many local optima appear near the edges of the
parameter bounds, while others are scattered in the general
region of the global optimum. A distinct major region of
attraction in the BM-BK subspace (this feature was also
detected in the URS study) is clearly shown in Figure 8c.
Note that, in addition to isolated stationary points, many of
the local optima appear in clusters. The response surface in
the UM-UK parameter subspace as well as three of the
derivative surfaces are illustrated in Figures 94-9d. The

TABLE 2. The Effect of Randomness on the Number of Local
Optima in UM-BK Parameter Subspace

Seed Number (Value) Number of Local Optima

1(117) 42
2 (128) 37
3 (240) 27
4 (281) 35
5 (290) 39
6 (304) 31
7 (570) 25
8 (574) 62
9 (615) 40
10 (679) 43
11 (741) 40
12 {/5Y) 33
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Fig. 8. Maesh surface plots for the SIXPAR model: («¢) parameter subspace UM-BK; () parameter subspace UM-X;
(¢) parameter subspace BM-BK: (d) parameter subspace A-X.

derivatives vary in a discontinuous manner over the feasible
space. This casts considerable doubt on the possibility of
successfully using derivative-based (Newton or quasi-
Newton type) search algorithms for parameter estimation.
The three-dimensional subspaces were examined next. A
grid size of 100 x 100 x 100 was used to search each
three-dimensional parameter space for local optima using the
SLS objective function. The results, presented in Table 3,
indicate that the number of local optima in the three-
dimensional subspaces reaches as many as 812. This clearly
does not bode well for local search optimization procedures.
The locations of the local optima in four of these three-
dimensional subspaces are displayed in Figures 10a-10d.
The large circles indicate the locations of the optima in the
three-dimensional space, while the small circles indicate
their projections into the respective two-dimensional sub-
spaces in which the parameter axes lie. The plots display a
mixture of the following three basic patterns to the distribu-
tion of local optima: (1) sparsely scattered local optima (see
Figure 10d); (2) dense clusters of local optima (see Figures
10a-10c¢); and (3) line optima (see Figures 10¢ and 10d).
A great many of the local optima are not located close to
the global optimum. In general, the subspaces associated
with parameter X contain the greatest number of local

ootima. Loneg ridees are also most often observed in the
direction of parameter X.

Discussion

The URS and EG studies demonstrate clearly the severity
of the optimization problem encountered when attempting to
calibrate the CRR type model SIXPAR using local search
procedures (e.g., simplex method, Rosenbrocks method,
Newton-Raphson method, etc.); we believe these problems
to be common to other CRR models such as the SAC-SMA.
In Table 4, five major characteristics that complicate the
optimization problem are identified. Perhaps the most im-
portant of these is that the structure of multiple optima exists
on at least two scales. At the ‘‘large’’ scale, we find that
there is more than one broad ‘‘region of attraction' into
which a search strategy may converge. Such regions show
up very clearly in the EG mesh surface plots, while the URS
method is able to detect such regions in multiple parameter
spaces. However, at the “*small’’ scale, each major region of
attraction contains numerous local minima (stationary points
where the first derivatives are zero and the Hessian matrices
are positive definite or positive semidefinite). These minor
optima occur both close to and at various distances from the
best solution. The minor local optima are not detectable
using the URS method. They are also not normally visible on
mesh surface and contour plots and can only be detected by

numerical analvses of the gridded data. This mav be whv
such phenomena have not been reported previously.
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Fig. 9. Derivative surfaces in the UM-UK parameter subspace: (a) function surface with optimum marked; (b) first
derivative with respect to UM; (¢) second derivative with respect to UM; (d) second derivative with respect to UM and
BK.

The large number of minor optima is the most probable
reason for the numerous reports in the literature of the
inability to find unique ‘‘optimal’’ parameter values. In a
local search procedure, when a line optimum or a stationary
point is encountered, the optimization procedure will gener-
ally stop. Small step size local searches will be unable to run
the maze of minor optima, inevitably failing to reach the
global optimum. Because many of the minor optima can be
found quite far from the global optimum, the search may
terminate without even finding an approximate solution.

TABLE 3. Number of Local Optima in Three-Dimensional
Subspaces of the SIXPAR Model
Parameters Number of Local Optima
UM-UK-BM 10
UM-UK-BK 354
UM-UK-A 122
UM-UK-X 812
UM-BM-BK 217
UM-BM-A 23
UM-BM-X 396
UM-BK-A 116
UM-BK-X 647
UM-A-X 525
UK-BM-BK 137
UK-BM-A 16
UK-BM-X 3
UK-BK-A 24
UK-BK-X 29
UK-A-X 20
BM-BK-A 72
BM-BK-X 107
-A- 12
BAR

In addition to the presence of optima at different scales,
the objective function surface in the multiparameter space is
not smooth and has discontinuous derivatives that vary in an
unpredictable manner through the parameter space. This
helps explain why derivative-based local optimization meth-
ods have not performed well. Furthermore, it indicates that,
for any global optimization to be successful, it must not
depend on smooth and continuous derivatives either. Fi-
nally, the response surface in the region of the global
optimum is not necessarily convex, exhibits widely varying
degrees of sensitivity to the model parameters, and indicates
the existence of a great deal of nonlinear parameter interac-
tion and compensation.

The combination of the five features mentioned above
makes the optimization problem difficult to solve. The task,
therefore, is to design an optimization procedure that is
capable of dealing with these various difficulties. To deal
with multiple regions of attraction, the algorithm must be
globally based and possess global convergence properties.
The algorithm must be able to avoid being trapped by minor
optima, and it must not require the availability of explicit
analytic expressions for the objective function in terms of its
parameters or for the derivatives. It must be robust in the
presence of parameter interaction and nonconvexity of the
objective function surface. Finally, because CRR models
usually involve a large number of parameters, the algorithm
must be efficient in the presence of high dimensionality.

5. EVALUATION OF THREE EXISTING
GLOBAL SEARCH PROCEDURES

Th Anta, Anly n faus mathade fav Anding the glakal colu
tions to multioptima problems have been developed [Rin-
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Locations of local optima in three-dimensional parameter subspaces: (a) parameter subspace UM-UK-BK;

(b) parameter subspace UM-BK-X; (¢) parameter subspace UM-A-X: (d) parameter subspace UM-BM-BK.

nooy Kan and Timmer, 1989] in comparison to the multitude
of methods that aim for a local optimum. In general, these
methods may be classified as deterministic or probabilistic.
A detailed review of the advantages and disadvantages of
various global strategies appears in the work by Duan [1992];
therefore only a brief summary is provided here.

In essence, deterministic methods can provide a rigid
guarantee of success, but they do so at the expense requiring
that the function satisfy certain restrictive conditions (e.g.,
continuity, differentiability to second order, Lipschitz con-
dition, etc.) that cannot be guaranteed for CRR models.
Further, they are typically inefficient [Torn and Zilinskas,
1989] and slow in converging to the optimum. Probabilistic
methods, on the other hand, involve the evaluation of the
function at a random sample of points in the feasible param-
eter space, followed by subsequent manipulations of the
sample using a combination of deterministic and probabilis-
tic rules. While probabilistic methods can guarantee conver-
gence only in a probabilistic sense, they are quite efficient in
practice and have the major advantage that they do not

necunllyy impnaca racteintivia nanditinne an tha naotiira AfF tha

function. Because many probabilistic methods can be em-

ployed when the function is discontinuous and when deriv-
ative information is difficult or impossible to obtain, this
makes them natural candidates for the optimization of CRR
models. Therefore, we chose not to investigate deterministic
global optimization methods for CRR model calibration, and
all the algorithms discussed in this paper belong to the class
of probabilistic global optimization methods.

Evaluation of the Adaptive Random Search Method

As mentioned in section 4, the uniform random sampling
approach is a primitive probabilistic optimization method.
The URS approach does not use any of the information
(regarding the nature of the response surface) gained during
sampling to direct the search in a logical fashion. For this
reason, several strategies have been proposed to guide the
random search adaptively toward the region of the global
optimum. One such strategy is the ‘‘adaptive random search
(ARS)” method proposed by Masri et al. [1978] and modi-
fied by Pronzato et al. [1984], which was used by Brazil and

Funioucli [1007] far paramatar fina frining ~f tha QA QRAA
model as part of a multilevel calibration strategy. To imple-
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TABLE 4. Summary of the Five Major Characteristics
Complicating the Optimization Problem in CRR Model
Calibration

Characteristic Reason for Complication

more than one main convergence
region

many small *‘pits’’ in each region

rough response surface with
discontinuous derivatives

poor and varying sensitivity of
response surface in region of
optimum, and nonlinear parameter
interaction

nonconvex response surface with
long curved ridges

1. Regions of attraction

2. Minor local optima
3. Roughness

4. Sensitivity

5. Shape

ment the ARS method it is first required that the user select
a portion of the parameter space in which the automatic
search is to be conducted; we shall call this the ‘‘feasible
space.”” For instance, the feasible space may be defined by
specifying upper and lower bounds on each of the parame-
ters. Such bounds can be estimated by analysis of the
hydrologic data, from knowledge of the physiographic char-
acteristics of the watershed and by manual calibration pro-
cedures; Brazil [1988) describes some procedures that have
been developed for the SAC-SMA model. The ARS strategy
is as follows:

1. Choose a focal point (for example, this can be the
*‘best’’ point obtained in the preliminary process of defining
the parameter space, or it can be some arbitrary point such
as the centroid of the feasible space).

2. Generate a set of N points randomly distributed in the
entire feasible space (for example, according to a uniform or
normal distribution) and centered on the focal point. Store
the location of the point with the best function value.

3. Repeat step 2 a prespecified number of times, on the
ith time using the initial parameter range divided by 10¢ and
centered on the focal point (Figure 11) to restrict the search
space. Each time, store the location of the point with the
best function value.

4. Compare all the stored points and determine the point
with the best function value. Redefine this point to be the
new focal point. Record in which range level this point was
found.

5. Repeat steps 2-4 until the best point is found in the
smallest range level a user-specified successive number of
times (say three). This point is chosen as the optimal
parameter set.

Reports in the optimization literature indicate that the
ARS strategy works well in practice. We therefore con-
ducted detailed tests of the ARS strategy on the SIXPAR
model, using the following experimental approach. The
centroid of the feasible parameter space was used as the
initial focal point. One hundred independent optimization
runs were conducted using the ARS algorithm, each using a
different, randomly selected initial seed value; this consists
of 100 statistically independent trials of the algorithm. We
know from experience with the SIXPAR model that a
function value of 10 ~? guarantees that the ‘‘true’’ parameter
values have been found to within a few decimal places.

Thivivluiev, fur wll uf v stusdive

have defined an optimization run to be a success as soon as
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a function value of 1073 is achieved. The number of suc-
cesses out of 100 is a measure of the ‘‘effectiveness’’ of the
algorithm, and the average number of function evaluations
taken over all successes is a measure of the “‘efficiency’’ of
the algorithm. A uniform sampling distribution was used, the
number of range levels used was four, and the test was
repeated for N (number of sample points in each range level)
equal to 10, 100, and 200.

The best results were obtained for the smallest value of N
(N = 10; this is consistent with Masri’'s findings [Masri et
al., 1978)), and the results for this case are presented in
Figure 12. In this figure, a point closer to the origin indicates
one which is relatively more effective and more efficient than
one farther away. The solid line indicates how the perfor-
mance of the ARS algorithm varies with the maximum
possible number of function evaluations. The algorithm is
clearly neither effective nor efficient on this problem, with
the best result being an approximately 30% success rate (70
failures out of 100) at 25,000 function evaluations. The
manner in which the best function value improved during the
search for each of the 100 optimization runs is displayed in
Figure 13; the circles indicate the individual values, the solid
line indicates the average taken over all 100 values, the
dash-dot lines indicate the maximum and minimum values,
and the dotted line indicates the function convergence
criterion used. The corresponding parameter values are
displayed in a similar fashion in Figure 14 (the dotted line
indicates the ‘‘true”” parameter values). The plots indicate
that after about 1000-5000 function evaluations, the marginal
benefit of further sampling is quite small. This is not surpris-
ing, since the probability of finding a lower function value
diminishes as the search proceeds. The parameter value
plots show that the ARS algorithm is only successful at
improving the estimated range (in a statistical sense) of the
threshold parameters UM and BM while having little impact
on the others. Given what we now know about the nature of
the response surface (see the earlier section on the problem
of multiple optima), the poor performance of the ARS
algorithm is easy to understand.

Evaluation of a Combined ARSISimplex Method

It has been suggested by both Ibbitt [1970] and Brazil
[1988] that a random search strategy could be used to obtain

/lst reduced range

X2 2nd reduced range

AN

3rd reduced range
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algorithm.



DuUAN ET AL.: CONCEPTUAL RAINFALL-RUNOFF MODELS

lw * ‘. .. -
g |t i ARS
iR -
[%] ! . .
§ 60F s i i ARS/Simplex 1
.—a' Case2 |
e H
=) 40} Case 3 ]
2
4 20(
% 500010000 15000 30000 25000
Number of Function Evaluations
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simplex).

an initial point from which a local search procedure could
then be started. Hence, we tested three cases of a combined
global-local ARS/simplex search strategy. In the first case,
for each of the 100 independent runs of the ARS algorithm,
the best point obtained after 1000 function evaluations was
used as the starting point for the *‘simplex’’ local search
optimization method [Nelder and Mead, 1965]. Similarly,
cases 2 and 3 used the best points obtained after 3000 and
5000 function evaluations, respectively, of the ARS. The
simplex method was selected because of its abilities to
adaptively adjust its shape and size to the response surface
and to not be easily trapped by minor optima, and because it
has been used previously for CRR model calibration [see
Johnston and Pilgrim, 1976; Sorooshian and Dracup, 1980;
Sorooshian and Arfi, 1982). The procedure of the simplex
method has been described in the above references and will
not be repeated here. Each initial simplex used the ARS
point as one of its vertices, with the other points generated
using perturbations in each parameter direction of +5% of
the parameter range.
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Fig. 13, Dunstice colue plotted ngainet number of function eoola

ations for each of the 100 runs of the ARS algorithm.
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The results are presented in Figure 12; the solid line shows
the performance of the ARS method alone, and the dashed
lines show the performance of the three cases of the ARS/
simplex method. In each case the failure rate has reduced
considerably (from 100% to 62% for case 1, from 100% to
58% for case 2, and from 100% to 45% in case 3) with only
marginal increases in the average number of function evalu-
ations; however the failure rate is still high. Figure 15 shows
the beginning and ending parameter values for the 100
simplex searches started after 5000 ARS function evalua-
tions; while 55 of the 100 simplex local searches terminated
at the global optimum (horizontal dotted line), there has been
no significant reduction in the distribution of the parameter
values for the remaining 45 optimization runs.

Evaluation of a Multistart Simplex Procedure

A method for dealing with multiple optima that has been
suggested in the hydrologic literature [e.g., Johnston and
Pilgrim, 1976] is to run several trials of a local search
optimization method from different starting points in the
feasible space. The validity of such an approach can be
demonstrated by the following arguments. To have good
confidence in the results of any probabilistic optimization
procedure, we require that it have a relatively small failure
probability on the problem of interest. Let us say that we run
a procedure once on a problem beginning from some ran-
domly selected location in the feasible search space, and the
probability of failure is P, (out of 100 independent tests of
the method, we expect that 100 X P, of them will fail). If we
then rerun the procedure r times from r independent ran-
domly selected locations, the overall failure probability will
decrease according to the equation P(r) = P,(1)" and tend
to zero as r becomes large. If P, is 0.65 (65 failures out of
100), then r equal to 12 will give a failure rate of less than |
in 100. This simple global search strategy of repeating the
search from many different locations is called a **multistart’
procedure.

The efficiency of the multistart procedure varies nonlin-
earity with Py, so that the number of restarts r required to
achieve an overall failure probability of P,(r) is given by r =
In (P{(r))/In (P/(1)). The curve of r versus P(1) is plotted
in Figure 16 for the cases of P(r) equal to 0.01 (one failure
in 100) and 0.05 (five failures in 100). Clearly, for single-start
failure probabilities P (1) of less than approximately 0.8 (80
failures in 100), we do not require a very large number of
restarts. However, as P(1) increases above 0.8 toward 1.0,
the number of restarts required rapidly increases toward
infinity, making the procedure impractical.

We tested 100 independent optimization runs of a multi-
start strategy based on the simplex local search procedure,
on the SIXPAR model. The initial simplex for each run was
created by randomly selecting seven points (number of
parameters plus 1) in the feasible space. The results of the
multistart simplex (MSX), presented in Figure 17, show that
from a single-start failure probability of approximately 65%,
the failure rate with 12 restarts falls to 1 in 100. This result is
very encouraging, in view of the difficult nature of the
problem. However, the number of function evaluations
required to achieve this feat (approximately 10.500) is still
high. The more complex SAC-SMA model, when calibrated

ta several vears of data. reanires anite significant amounts of
computer time for even one function evaluation (approXi-
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mately 5 CPU seconds for 7 years of daily streamflow and
6-hourly precipitation calibration data on the Convex 240
supercomputer), and 10,000 evaluations would require con-
siderable computational resources. Moreover, due to the
fact that the SAC-SMA model has many more optimizable
parameters than the SIXPAR model, the initial failure prob-
ability P{1) is likely to be much higher than 0.6, so that the
number of restarts required would be much larger than 12. It
is, therefore, desirable that the efficiency of the search
procedure be improved.

No. of Function Evaluations x104

Parameter value plotted against number of function evaluations for the 100 runs of the ARS algorithm.

6. THE SHUFFLED CoMPLEX EvVOLUTION
GLOBAL OPTIMIZATION METHOD

A strategy based on the use of multiple simplexes started
from random locations of the search space has certain
desirable properties that enable it to overcome the various
difficulties encountered on the response surface of the SIX-
PAR model. However, it is easy to see that a source of
inefficiency in the method is that each simplex search
operates completely independently, with no sharing of infor-

1000 2000 3000
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BK

3000
Number of Function Evaluations

Number of Function Evaluations

<
1000 2000 3000 3000
Number of Function Evaluations Number of Punction Evaluations
>
1000 2000 3000 3000

Number of Function Evaluations

Fig. 15. Parameter value plotted against number of function evaluations for the 100 runs of the simplex algorithm
started after 5000 function evaluations of the ARS algorithm.
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em to 12 1dent1cally capable people and asking them to solve
it without conferring with each other. A more efficient
strategy would clearly be for them to spend some time
working independently or in small groups and to get together
now and then to share information about their progress.
Motivated by the nature of the CRR model optimization
problem, and based to some extent on this notion of sharing
information, and on concepts drawn from principles of
natural biological evolution, we have developed a global
optimization strategy called the *‘shuffled complex evolution
(SCE-UA)’ method [Duan et al., 1992] (computer code
available from the authors). The essence of the method is as
follows. We begin with a population of points sampled
randomly from the feasible space. The population is parti-
tioned into several communities, each containing 2n + 1
points where n is the dimension of the problem. Each
community is made to evolve based on a statistical *‘repro-
duction’ process that uses the ‘‘simplex’’ geometric shape
to direct the search in an improvement direction. At periodic
stages in the evolution, the entire population is shuffled and
points are reassigned to communities to ensure information
sharing. As the search progresses, the entire population
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Input: n=dimension, p=number of complexes
m=number of points in each complex
Compute: sample size s=pxm

Sample s points at random in Q.
Compute the function value at each point

!

Sort the s points in order of increasing
function value. Store them in D.

\ i
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Evoive each complex A*, k=1, ..., qu__. C(:sCeEe :Et?;hgl

v

Replace A* k=1, ...,

Convergence critaria
satisfied ?

Yes

m, into D

Fig. 18. Flowchart of the SCE-UA algorithm.

tends to converge toward the neighborhood of global opti-
mum, provided the initial population size is sufficiently large.
The algorithm is presented and discussed in more detail
below.

The Shuffled Complex Evolution Algorithm

The shuffled complex evolution (SCE-UA) method is a
new global optimization strategy designed to be effective and
efficient for a broad class of problems. The SCE-UA strategy
combines the strengths of the simplex procedure of Nelder
and Mead [1965] with the concepts of controlled random
search [Price, 1987], competitive evolution [Holland, 1975]
and the newly developed concept of complex shuffling. The
SCE-UA strategy is presented below and is illustrated in
Figure 18.

1. To initialize the process, selectp = landm = n + 1,
where p is the number of complexes, m is the number of
points in each complex, and n is the dimension of the
problem. Compute the sample size s = pm.

2. Then generate a sample as follows. Sample s points
Xy, "+, x; in the feasible space  C R". Compute the
function value f; at each point x;. In the absence of prior
information, use a uniform sampling distribution.

3. Rank the points as follows. Sort the s points in order
of increasing function value. Store them in an array D = {x,,
fioi=1,--+ s}, sothati = | represents the point with the
smallest function value.

4, Partition D into p complexes A',
containing m points, such that A‘L

Xivmis o £ = Foive i = 1. . m}.
5. Evolve each complex AX, l\

- . A”, each
S T
{"‘/'A’ filxj =

. p. according
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Clorom 508

Given dimension n, complex A, and number
of points mIn A. select g, o, p, where
2<=q<=m, a>=1,8>=1.Set 1=1,

Y

Assign a triangular probability distribution to A:

pn—ﬂ-?—*li-i)l- , b=1, .., m.

CTm{m+

Y

Select q points from A according to
pi .Store them in B and their relative
posiionsin AinL . Set]=1.

]

Sort B and L In order of increasing function
value. Compute the centroid of u,..., Ug1
and let uq be the worst point In B.

L]

r Compute r = 2g - uq (reflection step). |

Y
rSat Ugmr andfq = fr es
No

Generate a point z at
random in H. Setr = z.

Computec=(g+ug)/2andf

<>

No
Yes

Genesrate a point 2 at
random in H. Compute
fz. Setug=z and fq=tz.

Setug=c andfq=fc. I

Replace B into A according to L
and sort A in order of increasing
function value.

t=1+1

Yes
Return to SCE

Fig. 19. Flowchart of the CCE strategy of the SCE-UA algorithm.

to the competitive complex evolution (CCE) algorithm out-
lined separately.

6. Shuffie the complexes as follows. Replace A', « -,
AP into D, such that D = {A*, k =1, -+, p}. Sort D in
order of increasing function value.

7. Check convergence. If the convergence criteria are
satisfied, stop; otherwise, return to step 4.

Thoe scompatitivve aamplav avalutian (CCR) algarithm ra_

quired for the evolution of each complex in step 5 of the

shuffled complex evolution method is presented below and is
illustrated in Figure 19:
1. To initialize the process, select g, a, and 8, where
2=g=m,a=land B =1.
2. Assign weights as follows. Assign a trapezoidal prob-
ability distribution to A*, i.e.,
_2m+1-10)

Pi yI= 1,0, m

m(im+ 1) 4
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The point x{ has the highest probability p, = 2/m + 1. The
point xX has the lowest probability Pm = 2/Im(m + 1).

3. Select parents by randomly choosing ¢ distinct points
uy, *++, uy from A according to the probability distribu-
tion specified above (the g points define a ‘‘subcomplex’’).
Store them in array B = {u;, v;, i = 1, -+, q}, where v; is
the function value associated with point «;. Store in L the
locations of A* which are used to construct B.

4. Generate offspring according to the following proce-
dure: (a) Sort B and L so that the g points are arranged in
order of increasing function value and compute the centroid
g using the expression:

> 3)

(b) Compute the new point r = 2g — u,, (reflection step). (c)
If r is within the feasible space ), compute the function
value f, and go to step d; otherwise compute the smallest
hypercube H C R” that contains A¥, randomly generate a
point z within H, compute f,, set r = z and set f, = f,
(mutation step). (d) If f, < f,, replace «, by r, go to step f;
otherwise compute ¢ = (g + u,)/2 and f,. (contraction step).
) If f. < f,, replace u, by c, go to step f; otherwise
randomly generate a point z within H and compute f,
(mutation step). Replace u, by z. (f) Repeat steps a— «
times, where a = 1 is a user-specified parameter.

5. Replace parents by offspring as follows: Replace B
into A* using the original locations stored in L. Sort A* in
order of increasing function value.

6. Iterate by repeating steps 2-5 B times, where 8 = 1 is
a user-specified parameter which determines how many
offspring should be generated (how far each complex should
evolve).

The version of the SCE-UA algorithm used for the opti-
mization runs reported in this paper used the values m =
Rn+1),g=(n+1),a=1,and 8 = (2n + 1). Hence,
the only variable to be specified by the user is the number of
complexes p.

The SCE-UA approach treats the global search as a
process of natural evolution. The s sampled points constitute
a population. The population is partitioned into several
communities (complexes), each of which is permitted to
evolve independently (i.e., search the space in different
directions). After a certain number of generations, the com-
munities are mixed and new communities are formed
through a process of shuffling. This procedure enhances
survivability by a sharing of the information (about the
search space) gained independently by each community.

Each member of a community (complex) is a potential
parent with the ability to participate in a process of repro-
duction. A subcomplex selected from the complex is like a
pair of parents, except that a subcomplex may consist of
more than two members. To ensure that the evolution
process is competitive, we require that the probability that
“‘better’’ parents contribute to the generation of offspring is
higher than that of ‘‘worse’’ parents. The use of a triangular
probability distribution ensures this competitiveness. Nelder
and Mead’s [1965] procedure is applied to each subcomplex
to generate most of the offspring. This strategy uses the

infarmatinn cantained in tha cinnheamnleay ta direct the avas

lution in an improvement direction. In addition, offspring are
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introduced at random locations of the feasible space under
certain conditions to ensure that the process of evolution
does not get trapped by unpromising regions. This is analo-
gous to mutation in response to stress that can occur in
biological evolution. Each mutation also helps to increase
the amount of information stored in the sample. Finally,
each new offspring replaces the worst point of the current
subcomplex. This ensures that every parent gets at least one
chance to contribute to the reproduction process before
being replaced or discarded. Thus, none of the information
contained in the sample is ignored.

The processes of competitive evolution and complex
shuffling inherent in the SCE-UA algorithm help to ensure
that the information contained in the sample is efficiently and
thoroughly exploited. They also help to ensure that the
information set does not become degenerate. These proper-
ties endow the SCE-UA method with good global conver-
gence properties over a broad range of problems. In other
words, given a prespecified number of function evaluations
(fixed level of efficiency), the SCE-UA method should have
a high probability of succeeding in its objective of finding the
global optimum.

Experimental Results

The results of 100 independent optimization runs of the
SCE-UA method on the SIXPAR model are presented as the
solid line in Figure 20. For purposes of comparison, the
results from the other approaches (ARS, dashed line; MSX,
dash-dot line, ARS-simplex, dotted line) are also included.
The successive points from left to right on the SCE-UA line
indicate increasing numbers of complexes (from one to eight)
of 13 points. The SCE-UA method is three times more
efficient than the MSX method, achieving 1 failure in 100
with an average of only 3,300 function evaluations, for an
initial population size of 104 points (eight complexes of 13
points). If a 5% failure rate is considered acceptable, then
the required number of function evaluations reduces to less
than 2000 (using four complexes of 13 points). Figure 21

shows the beginning and ending best parameter values
(rannertad hy cenlid linec) far each of the 100 QCOF.ITA
optimization runs in relation to the global optimum (horizon-
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tal dotted line); 99 of the runs have terminated at the global
optimum and only one has failed.

7. SUMMARY

This paper has addressed the problem of obtaining the
globally optimal parameters for a simplified CRR model. In
section 4 we used two graphical techniques to show that the
severity of the problem of multiple optima in CRR models is
more difficult than had been previously thought. We identi-
fied five major characteristics that complicate the optimiza-
tion problem (Table 4). The most important of these is that
there are a large number of local minima located throughout
the feasible parameter space. These results indicate that
currently used local search optimization procedures have a
low probability of successfully finding the optimal parameter
sets. In section 5 we tested the performance of three existing
global search optimization procedures on the research CRR
model SIXPAR. One hundred independent trials of the ARS
method showed that it has an unacceptably low probability
of successfully finding the global optimum. The use of a local
search simplex procedure [Nelder und Mead, 1965] to aug-
ment the ARS global search yielded better results, but still
had a high probability of failure. In contrast, a multistart
procedure based on the simplex algorithm (MSX) was able to
achieve a success rate of 99 in 100, with 12 independent
restarts. While the effectiveness of the MSX algorithm is
high, it is not very efficient, requiring a large number of
function evaluations. Finally, in section 6 we presented a
new global optimization procedure, entitled the shuffled
complex evolution (SCE-UA) method, which appears to be
capable of efficiently and effectively identifying the optimal
values for the model parameters. The SCE-UA procedure
required only one third of the function evaluations needed by

W MIONX apprvaci: woavhivye v sauv privbability ol

success (99 in 100).
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Parameter value plotted against number of function evaluations for the 100 runs of the SCE-UA algorithm.

8. CONCLUSIONS

Attempts to calibrate CRR models, such as the SAC-SMA
portion of the National Weather Service River Forecast
System, have been typically unable to obtain unique optimal
parameter estimates using conventional automatic calibra-
tion procedures. The inability to place a reasonable degree of
confidence on the estimated parameter values translates into
uncertainty regarding the accuracy of the model forecasts.
Furthermore, unless the best set of parameters associated
with a given calibration data set can be found, it is difficult to
determine how sensitive the parameter estimates (and,
hence, the model forecasts) are to factors such as input and
streamflow data error, model error, quantity and quality of
data, objective function used, and so on.

The reason that unique optimal parameter estimates are
difficult to obtain is that the optimization procedures typi-
cally used are not powerful enough to do the job. The results
presented in this paper suggest that, in addition to the
previously known problems of parameter interaction, non-
convexity of the response surface, and discontinuous deriv-
atives, the problem of multiple optima occurs on at least two
scales. If large numbers of minor optima are indeed present
on the function response surface for the SAC-SMA and
other CRR models (as our experience leads us to believe), it
seems likely that conventional local search optimization
procedures will terminate prematurely (the simplex method
was found to have a 65% probability of failure on the
SIXPAR model in this study). Under such conditions, it
seems reasonable to also infer that random search-based
global optimization procedures such as the adaptive random
search method will also fail to locate the global optimum
with an acceptable probability of success.

Our results indicate that at least two optimization proce-
dures may be capable of finding the globally optimal param-

IOX, a 1uluowart

procedure based on the ‘*simplex’’ algorithm; and SCE-UA,
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the shuffled complex evolution procedure developed at the
University of Arizona by the authors. The MSX algorithm is
relatively easy to program and implement and can, there-
fore, be used when the initial failure probability P 1) is not
too large and when sufficient computer time is available.
However, in the case that large amounts of data are being
used in the calibration of a relatively complex CRR model,
the MSX procedure may not be feasible. The shuffled
complex evolution (SCE-UA) procedure appears to be about
3 times more efficient than the MSX procedure, while still
being relatively easy to program and implement.
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