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Abstract. A traditional metric used in hydrology to sum-
marize model performance is the Nash–Sutcliffe efficiency
(NSE). Increasingly an alternative metric, the Kling–Gupta
efficiency (KGE), is used instead. When NSE is used,
NSE = 0 corresponds to using the mean flow as a benchmark
predictor. The same reasoning is applied in various studies
that use KGE as a metric: negative KGE values are viewed
as bad model performance, and only positive values are seen
as good model performance. Here we show that using the
mean flow as a predictor does not result in KGE= 0, but
instead KGE= 1−

√
2≈−0.41. Thus, KGE values greater

than −0.41 indicate that a model improves upon the mean
flow benchmark – even if the model’s KGE value is nega-
tive. NSE and KGE values cannot be directly compared, be-
cause their relationship is non-unique and depends in part
on the coefficient of variation of the observed time series.
Therefore, modellers who use the KGE metric should not let
their understanding of NSE values guide them in interpreting
KGE values and instead develop new understanding based on
the constitutive parts of the KGE metric and the explicit use
of benchmark values to compare KGE scores against. More
generally, a strong case can be made for moving away from
ad hoc use of aggregated efficiency metrics and towards a
framework based on purpose-dependent evaluation metrics
and benchmarks that allows for more robust model adequacy
assessment.

1 Introduction

Model performance criteria are often used during calibration
and evaluation of hydrological models, to express in a single
number the similarity between observed and simulated dis-
charge (Gupta et al., 2009). Traditionally, the Nash–Sutcliffe
efficiency (NSE, Nash and Sutcliffe, 1970) is an often-used
metric, in part because it normalizes model performance into
an interpretable scale (Eq. 1):

NSE= 1−
∑t=T
t=1 (Qsim (t)−Qobs(t))

2∑t=T
t=1

(
Qobs (t)−Qobs

)2 , (1)

where T is the total number of time steps, Qsim(t) the sim-
ulated discharge at time t , Qobs(t) the observed discharge at
time t , andQobs the mean observed discharge. NSE= 1 indi-
cates perfect correspondence between simulations and obser-
vations; NSE= 0 indicates that the model simulations have
the same explanatory power as the mean of the observations;
and NSE< 0 indicates that the model is a worse predictor
than the mean of the observations (e.g. Schaefli and Gupta,
2007). NSE= 0 is regularly used as a benchmark to distin-
guish “good” and “bad” models (e.g. Houska et al., 2014;
Moriasi et al., 2007; Schaefli and Gupta, 2007). However,
this threshold could be considered a low level of predictive
skill (i.e. it requires little understanding of the ongoing hy-
drologic processes to produce this benchmark). It is not an
equally representative benchmark for different flow regimes
(for example, the mean is not representative of very seasonal
regimes but it is a good approximation of regimes without a
strong seasonal component; Schaefli and Gupta, 2007), and
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it is also a relatively arbitrary choice (for example, Moriasi
et al., 2007, define several different NSE thresholds for dif-
ferent qualitative levels of model performance) that can in-
fluence the resultant prediction uncertainty bounds (see e.g.
Freer et al., 1996). However, using such a benchmark pro-
vides context for assessing model performance (Schaefli and
Gupta, 2007).

The Kling–Gupta efficiency (KGE; Eq. 2, Gupta et al.,
2009) is based on a decomposition of NSE into its constitu-
tive components (correlation, variability bias and mean bias),
addresses several perceived shortcomings in NSE (although
there are still opportunities to improve the KGE metric and to
explore alternative ways to quantify model performance) and
is increasingly used for model calibration and evaluation:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (2)

where r is the linear correlation between observations and
simulations, α a measure of the flow variability error, and β
a bias term (Eq. 3):

KGE= 1−

√
(r − 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (3)

where σobs is the standard deviation in observations, σsim the
standard deviation in simulations, µsim the simulation mean,
and µobs the observation mean (i.e. equivalent toQobs). Like
NSE, KGE= 1 indicates perfect agreement between simula-
tions and observations. Analogous to NSE= 0, certain au-
thors state that KGE< 0 indicates that the mean of observa-
tions provides better estimates than simulations (Castaneda-
Gonzalez et al., 2018; Koskinen et al., 2017), although oth-
ers state that this interpretation should not be attached to
KGE= 0 (Gelati et al., 2018; Mosier et al., 2016). Vari-
ous authors use positive KGE values as indicative of “good”
model simulations, whereas negative KGE values are con-
sidered “bad”, without explicitly indicating that they treat
KGE= 0 as their threshold between “good” and “bad” per-
formance. For example, Rogelis et al. (2016) consider model
performance to be “poor” for 0.5> KGE> 0, and negative
KGE values are not mentioned. Schönfelder et al. (2017)
consider negative KGE values “not satisfactory”. Andersson
et al. (2017) mention negative KGE values in the same sen-
tence as negative NSE values, implying that both are consid-
ered similarly unwanted. Fowler et al. (2018) consider reduc-
ing the number of occurrences of negative KGE values as de-
sirable. Knoben et al. (2018) cap figure legends at KGE= 0
and mask negative KGE values. Siqueira et al. (2018) con-
sider ensemble behaviour undesirable as long as it produces
negative KGE and NSE values. Sutanudjaja et al. (2018) only
count catchments where their model achieves KGE> 0 as
places where their model application was successful. Finally,
Towner et al. (2019) use KGE= 0 as the threshold to switch
from red to blue colour coding of model results, and only
positive KGE values are considered “skilful”. Naturally, au-

thors prefer higher efficiency values over lower values, be-
cause this indicates their model is closer to perfectly repro-
ducing observations (i.e. KGE= 1). Considering the tradi-
tional use of NSE and its inherent quality that the mean flow
results in NSE= 0, placing the threshold for “good” model
performance at KGE= 0 seems equally natural. We show in
this paper that this reasoning is generally correct – positive
KGE values do indicate improvements upon the mean flow
benchmark – but not complete. In KGE terms, negative val-
ues do not necessarily indicate a model that performs worse
than the mean flow benchmark. We first show this in mathe-
matical terms and then present results from a synthetic exper-
iment to highlight that NSE and KGE values are not directly
comparable and that understanding of the NSE metric does
not translate well into understanding of the KGE metric.

Note that a weighted KGE version exists that allows spec-
ification of the relative importance of the three KGE terms
(Gupta et al., 2009), as do a modified KGE (Kling et al.,
2012) and a non-parametric KGE (Pool et al., 2018). These
are not explicitly discussed here, because the issue we ad-
dress here (i.e. the lack of an inherent benchmark in the KGE
equation) applies to all these variants of KGE.

2 KGE value of the mean flow benchmark

Consider the case where Qsim(t)=Qobs for an arbitrary
number of time steps, and where Qobs is calculated from
an arbitrary observed hydrograph. In this particular case,
µobs = µsim, σobs 6= 0 but σsim = 0. Although the linear cor-
relation between observations and simulations is formally
undefined when σsim = 0, it makes intuitive sense to assign
r = 0 in this case, since there is no relationship between
the fluctuations of the observed and simulated hydrographs.
Equation (3) becomes (positive terms shown as symbols) the
following:

KGE= 1−

√
(0− 1)2+

(
0
σobs
− 1

)2

+

(
µobs

µobs
− 1

)2

, (4)

KGE= 1−
√
(0− 1)2+ (0− 1)2+ (1− 1)2, (5)

KGE= 1−
√

2. (6)

Thus, the KGE score for a mean flow benchmark is
KGE(Qobs)≈−0.41.

3 Consequences

3.1 NSE and KGE values cannot be directly compared
and should not be treated as approximately
equivalent

Through long use, hydrologic modellers have developed in-
tuitive assessments about which NSE values can be consid-
ered acceptable for their preferred model(s) and/or catch-
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ment(s); however, this interpretation of acceptable NSE val-
ues cannot easily be mapped onto corresponding KGE val-
ues. There is no unique relationship between NSE and KGE
values (Fig. 1a, note the scatter along both axes; see also Ap-
pendix 1), and where NSE values fall in the KGE component
space depends in part on the coefficient of variation (CV) of
the observations (see animated Fig. S1 in the Supplement for
a comparison of where NSE= 0 and KGE= 1−

√
2 fall in

the space described by KGE’s r , a and b components for dif-
ferent CVs, highlighting that many different combinations of
r , a and b can result in the same overall NSE or KGE value).

This has important implications when NSE or KGE thresh-
olds are used to distinguish between behavioural and non-
behavioural models (i.e. when a threshold is used to de-
cide between accepting or rejecting models). Figure 1b–g
are used to illustrate a synthetic experiment, where simu-
lated flows are generated from observations and a threshold
for behavioural models is set midway between the value for
the mean flow benchmark (NSE= 0 and KGE=−0.41) and
the value for a perfect simulation (NSE=KGE= 1): simula-
tions are considered behavioural if NSE> 0.5 or KGE> 0.3.
Each row shows flows from a different catchment, with in-
creasing coefficients of variations (i.e. 0.28, 2.06 and 5.00
respectively). In Fig. 1b, d and f, the simulated flow is calcu-
lated as the mean of observations. NSE values are constant at
NSE= 0 for all three catchments, and KGE values are con-
stant at KGE=−0.41. In Fig. 1c, e and g, the simulated flow
is the observed flow plus an offset, to demonstrate the vari-
ety of impacts that bias has on NSE and KGE (similar ex-
amples could be generated for other types of error relating to
correlation or variability, but these examples are sufficient to
make the point that NSE and KGE behave quite differently).
In Fig. 1c, simulated flows are calculated as observed flows
+0.45 mm d−1 (bias +39 %). With the specified thresholds,
this simulation would be considered behavioural when us-
ing KGE (0.61> 0.3), but not with NSE (−0.95< 0.5). In
Fig. 1e, simulated flows are calculated as observed flows
+0.5 mm d−1 (bias+40 %). In this case, however, these sim-
ulations are considered behavioural with both metrics (NSE:
0.96> 0.5; KGE: 0.60> 0.3). Figure 1g shows an exam-
ple where simulated flows are calculated as observations
+0.7 mm d−1 (bias+97 %), which is considered behavioural
when NSE is used (0.96> 0.5), but not when KGE is used
(0.03< 0.3).

These examples show that NSE values that are tradition-
ally interpreted as high do not necessarily translate into high
KGE values and that standards of acceptability developed
through extensive use of the NSE metric are not directly ap-
plicable to KGE values. Instead, hydrologists who choose to
use the KGE metric need to develop new understanding of
how this metric should be interpreted and not let themselves
be guided by their understanding of NSE.

3.2 Explicit statements about benchmark performance
are needed in modelling studies

The Nash–Sutcliffe efficiency has an inherent benchmark in
the form of the mean flow, giving NSE= 0. This benchmark
is not inherent in the definition of the Kling–Gupta efficiency,
which is instead an expression of distance away from the
point of ideal model performance in the space described by
its three components. When Qsim is Qobs, KGE≈−0.41,
but there is no direct reason to choose this benchmark over
other options (see e.g. Ding, 2019; Schaefli and Gupta, 2007;
Seibert, 2001; Seibert et al., 2018). Because KGE itself has
no inherent benchmark value to enable a distinction between
“good” and “bad” models, modellers using KGE must be ex-
plicit about the benchmark model or value they use to com-
pare the performance of their model against. As succinctly
stated in Schaefli and Gupta (2007),

Every modelling study should explain and justify
the choice of benchmark [that] should fulfil the ba-
sic requirement that every hydrologist can imme-
diately understand its explanatory power for the
given case study and, therefore, appreciate how
much better the actual hydrologic model is.

If the mean flow is chosen as a benchmark, model per-
formance in the range −0.41< KGE≤ 1 could be consid-
ered “reasonable” in the sense that the model outperforms
this benchmark. By artificially and consistently imposing a
threshold at KGE= 0 to distinguish between “good” and
“bad” models, modellers limit themselves in the models
and/or parameter sets they consider in a given study, with-
out rational justification of this choice and without taking
into account whether more catchment-appropriate or study-
appropriate thresholds could be defined.

3.3 On communicating model performance through
skill scores

If the benchmark is explicitly chosen, then a so-called skill
score can be defined, which is the performance of any model
compared to the pre-defined benchmark (e.g. Hirpa et al.,
2018; Towner et al., 2019):

KGEskill score =
KGEmodel−KGEbenchmark

1−KGEbenchmark
.

The skill score is scaled such that positive values indicate a
model that is better than the benchmark model and negative
values indicate a model that is worse than the benchmark
model. This has a clear benefit in communicating whether
a model improves on a given benchmark or not with an in-
tuitive threshold at KGEskill score = 0, where negative values
clearly indicate a model worse than the benchmark and pos-
itive values a model that outperforms the benchmark.

However, scaling the KGE metric might introduce a dif-
ferent communication issue. In absolute terms, it seems clear
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Figure 1. Overview of the relationship between NSE and KGE. (a) Comparison of KGE and NSE values based on random sampling of
the r , a and b components used in KGE and NSE, using six different values for the coefficient of variation of observations (see Appendix
for method and separate plots of each plane). Internal axes are drawn at KGE= 1−

√
2 and NSE= 0. The dashed diagonal is the 1 : 1 line.

Locations of panels (b)–(g) indicated in brackets. (b, d, f) Simulated flow Qsim is created from the mean of Qobs. (c) Qsim is created
as Qobs+ 0.45 mm d−1 on every time step, increasing the bias of observations. (e) Qsim is created as Qobs+ 0.5 mm d−1 on every time
step. (g) Qsim is created as Qobs+ 0.7 mm d−1 on every time step. The y axis is capped at 30 mm d−1 to better visualize the difference
between observations and synthetic simulations. (b)–(g) Flow observations are taken from the CAMELS data set (Addor et al., 2017a), using
catchments 04124000, 01613050 and 05507600 for the top, middle and lower plots respectively.

that improving on KGEbenchmark = 0.99 by using a model
might be difficult: the “potential for model improvement over
benchmark” is only 1−0.99= 0.01. With a scaled metric, the
“potential for model improvement over benchmark” always
has a range of [0,1], but information about how large this po-
tential was in the first place is lost and must be reported sep-
arately for proper context. If the benchmark is already very
close to perfect simulation, a KGEskill score of 0.5 might indi-
cate no real improvement in practical terms. In cases where
the benchmark constitutes a poor simulation, a KGEskill score
of 0.5 might indicate a large improvement through using the
model. This issue applies to any metric that is converted to a
skill score.

Similarly, a skill score reduces the ease of communica-
tion about model deficiencies. It is generally difficult to in-
terpret any score above the benchmark score but below the
perfect simulation (in case of the KGE metric, KGE= 1) be-
yond “higher is better”, but an absolute KGE score can at
least be interpreted in terms of deviation-from-perfect on its
a, b and r components. A score of KGE= 0.95 with r = 1,

a = 1 and b = 1.05 indicates simulations with 5 % bias. The
scaled KGEskill score = 0.95 cannot be so readily interpreted.

3.4 The way forward: new understanding based on
purpose-dependent metrics and benchmarks

The modelling community currently does not have a single
perfect model performance metric that is suitable for every
study purpose. Indeed, global metrics that attempt to lump
complex model behaviour and residual errors into a single
value may not be useful for exploring model deficiencies and
diagnostics into how models fail or lack certain processes.
If such metrics are used however, a modeller should make a
conscious and well-founded choice about which aspects of
the simulation they consider most important (if any), and in
which aspects of the simulation they are willing to accept
larger errors. The model’s performance score should then be
compared against an appropriate benchmark, which can in-
form to what extent the model is fit for purpose.

If the KGE metric is used, emphasizing certain aspects of
a simulation is straightforward by attaching weights to the
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individual KGE components to reduce or increase the impact
of certain errors on the overall KGE score, treating the cali-
bration as a multi-objective problem (e.g. Gupta et al., 1998)
with varying weights assigned to the three objectives. An ex-
ample of the necessity of such an approach can be found in
Fig. 1g. For a study focussing on flood peaks, an error of
only 0.7 mm d−1 for each peak might be considered skilful,
although the bias of these simulations is very large (+97 %).
Due to the small errors and the high coefficient of variation
in this catchment, the NSE score of these simulations reaches
a value that would traditionally be considered as very high
(NSE= 0.96). The standard formulation of KGE however is
heavily impacted by the large bias, and the simulations in
Fig. 1g result in a relatively low KGE score (KGE= 0.03).
If one relies on this aggregated KGE value only, the low
KGE score might lead a modeller to disqualify these simu-
lations from further analysis, even if the simulations are per-
forming very well for the purpose of peak flow simulation.
Investigation of the individual components of KGE would
show that this low value is only due to bias errors and not
due to an inability to simulate peak flows. The possibility to
attach different weights to specific components of the KGE
metric can allow a modeller to shift the metric’s focus: by
reducing the importance of bias in determining the overall
KGE score or emphasizing the importance of the flow vari-
ability error, the metric’s focus can be moved towards peak
flow accuracy (see Mizukami et al., 2019, for a discussion of
purpose-dependent KGE weights and a comparison between
(weighted) KGE and NSE for high-flow simulation). For ex-
ample, using weightings [1,5,1] for [r,a,b] to emphasize
peak flow simulation (following Mizukami et al., 2019), the
KGE score in Fig. 1g would increase to KGE= 0.81 This
purpose-dependent score should then be compared against
a purpose-dependent benchmark to determine whether the
model can be considered fit for purpose.

However, aggregated performance metrics with a statis-
tical nature, such as KGE, are not necessarily informative
about model deficiencies from a hydrologic point of view
(Gupta et al., 2008). While KGE improves upon the NSE
metric in certain ways, Gupta et al. (2009) explicitly state that
their intent with KGE was “not to design an improved mea-
sure of model performance” but only to use the metric to il-
lustrate that there are inherent problems with mean-squared-
error-based optimization approaches. They highlight an ob-
vious weakness of the KGE metric, namely that many hy-
drologically relevant aspects of model performance (such as
the shape of rising limbs and recessions, as well as timing
of peak flows) are all lumped into the single correlation com-
ponent. Future work could investigate alternative metrics that
separate the correlation component of KGE into multiple, hy-
drologically meaningful, aspects. There is no reason to limit
such a metric to only three components either, and alternative
metrics (or sets of metric components) can be used to expand
the multi-objective optimization from three components to as
many dimensions as are considered necessary or hydrologi-

cally informative. Similarly, there is no reason to use aggre-
gated metrics only, and investigating model behaviour on the
individual time-step level can provide increased insight into
where models fail (e.g. Beven et al., 2014).

Regardless of whether KGE or some other metric is used,
the final step in any modelling exercise would be comparing
the obtained efficiency score against a certain benchmark that
dictates which kind of model performance might be expected
(e.g. Seibert et al., 2018) and decide whether the model is
truly skilful. These benchmarks should not be specified in an
ad hoc manner (e.g. our earlier example where the thresholds
are arbitrarily set at NSE= 0.5 and KGE= 0.3 is decidedly
poor practice) but should be based on hydrologically mean-
ingful considerations. The explanatory power of the model
should be obvious from the comparison of benchmark and
model performance values (Schaefli and Gupta, 2007), such
that the modeller can make an informed choice on whether
to accept or reject the model and make an assessment of the
model’s strengths and where current model deficiencies are
present. Defining such benchmarks is not straightforward be-
cause it relies on the interplay between our current hydro-
logic understanding, the availability and quality of observa-
tions, the choice of model structure and parameter values,
and modelling objectives. However, explicitly defining such
well-informed benchmarks will allow more robust assess-
ments of model performance (see for example Abramowitz,
2012, for a discussion of this process in the land-surface
community). How to define a similar framework within hy-
drology is an open question to the hydrologic community.

4 Conclusions

There is a tendency in current literature to interpret Kling–
Gupta efficiency (KGE) values in the same way as Nash–
Sutcliffe efficiency (NSE) values: negative values indicate
“bad” model performance, whereas positive values indi-
cate “good” model performance. We show that the tradi-
tional mean flow benchmark that results in NSE= 0 and
the likely origin of this “bad/good” model distinction, re-
sults in KGE= 1−

√
2. Unlike NSE, KGE does not have an

inherent benchmark against which flows are compared and
there is no specific meaning attached to KGE= 0. Modellers
using KGE must be specific about the benchmark against
which they compare their model performance. If the mean
flow is used as a KGE benchmark, all model simulations
with −0.41< KGE≤ 1 exceeds this benchmark. Further-
more, modellers must take care to not let their interpretation
of KGE values be consciously or subconsciously guided by
their understanding of NSE values, because these two met-
rics cannot be compared in a straightforward manner. Instead
of relying on the overall KGE value, in-depth analysis of the
KGE components can allow a modeller to both better un-
derstand what the overall value means in terms of model
errors and to modify the metric through weighting of the
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components to better align with the study’s purpose. More
generally, a strong case can be made for moving away from
ad hoc use of aggregated efficiency metrics and towards a
framework based on purpose-dependent evaluation metrics
and benchmarks that allows for more robust model adequacy
assessment.

Data availability. The CAMELS catchment data can be accessed
as open-source data through the provided reference (Addor et al.,
2017b).
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Appendix A

The relation between possible KGE and NSE values shown
in Fig. 1a has been determined through random sampling of
1 000 000 different combinations of the components r , a and
b of KGE (Eq. 2), for six different coefficients of variation
(CVs; 0.1, 0.5, 1.0, 1.5, 2.0, 5.0 respectively). Values were
sampled in the following ranges: r = [−1,1]; a = [0,2];
b = [0,2]. The KGE value of each sample is found through
Eq. (2). The corresponding NSE value for each sampled com-
bination of r , a and b is found through

NSE= 2ar − a2
−
(b− 1)2

CV2
obs

. (A1)

Figure A1 shows the correspondence between KGE and NSE
values for the six different CVs. Axis limits have been capped
at [−1,1] for clarity. Equation (A1) can be found by start-
ing from Eq. (4) in Gupta et al. (2009) and expressing βn =
µs−µo
σo

in terms of b = µs
µo

, using CVobs =
σobs
µobs

.

Figure A1. Correspondence between synthetic KGE and NSE values based on 1× 106 random samples of components r , a and b, for
different coefficients of variation (CVs). Colour coding corresponds to the colours used in Fig. 1a.
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-23-4323-2019-supplement.
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