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a b s t r a c t 

Twelve actual evaporation datasets are evaluated for their ability to improve the performance of the fully 

distributed mesoscale Hydrologic Model (mHM). The datasets consist of satellite-based diagnostic models 

(MOD16A2, SSEBop, ALEXI, CMRSET, SEBS), satellite-based prognostic models (GLEAM v3.2a, GLEAM v3.3a, 

GLEAM v3.2b, GLEAM v3.3b), and reanalysis (ERA5, MERRA-2, JRA-55). Four distinct multivariate calibration 

strategies (basin-average, pixel-wise, spatial bias-accounting and spatial bias-insensitive) using actual evapora- 

tion and streamflow are implemented, resulting in 48 scenarios whose results are compared with a benchmark 

model calibrated solely with streamflow data. A process-diagnostic approach is adopted to evaluate the model 

responses with in-situ data of streamflow and independent remotely sensed data of soil moisture from ESA-CCI 

and terrestrial water storage from GRACE. The method is implemented in the Volta River basin, which is a data 

scarce region in West Africa, for the period from 2003 to 2012. 

Results show that the evaporation datasets have a good potential for improving model calibration, but this is 

dependent on the calibration strategy. All the multivariate calibration strategies outperform the streamflow- 

only calibration. The highest improvement in the overall model performance is obtained with the spatial bias- 

accounting strategy ( + 29%), followed by the spatial bias-insensitive strategy ( + 26%) and the pixel-wise strategy 

( + 24%), while the basin-average strategy ( + 20%) gives the lowest improvement. On average, using evaporation 

data in addition to streamflow for model calibration decreases the model performance for streamflow (-7%), 

which is counterbalance by the increase in the performance of the terrestrial water storage ( + 11%), temporal 

dynamics of soil moisture ( + 6%) and spatial patterns of soil moisture ( + 89%). In general, the top three best 

performing evaporation datasets are MERRA-2, GLEAM v3.3a and SSEBop, while the bottom three datasets are 

MOD16A2, SEBS and ERA5. However, performances of the evaporation products diverge according to model 

responses and across climatic zones. These findings open up avenues for improving process representation of 

hydrological models and advancing the spatiotemporal prediction of floods and droughts under climate and land 

use changes. 
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. Introduction 

Assessing the spatiotemporal variability of hydrological processes is

he crux of effective water resource management. Global warming is

xpected to intensify (i.e., accelerate) the hydrological cycle, thus in-

reasing or decreasing evaporation depending on places ( Donat et al.,

016 ; Famiglietti and Rodell, 2013 ; Huntington, 2006 ). 
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Evaporation is a dominant flux of the water cycle ( Martens et al.,

018 ; Oki and Kanae, 2006 ). It represents the exchange of water and

nergy between terrestrial ecosystems and the atmosphere. Therefore,

vaporation can be used as a proxy for moisture availability and its

onsumption rate ( He et al., 2019 ; Joiner et al., 2018 ; Van der Ent

t al., 2010 ). The basic theories and estimation methods of evaporation

re widely documented (e.g., Chen and Liu, 2020 ; Liou and Kar, 2014 ;

cMahon et al., 2013 ; Pan et al., 2019 ; Zhang et al., 2016 ). Accurate

epresentation of evaporation in hydrological models is important for

tudies that link climate and land use change because evaporation is

he central flux that defines land-atmosphere interactions ( Fisher et al.,

017 ; Mueller et al., 2011 ). Reliably modelling evaporation is essen-
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List of symbols 

Symbols description 

𝛼 Spatial location measure 

𝛽 Bias measure 

𝛾 Variability measure 

𝜆 Latent heat of vaporization of water 

ΦBA Objective function for case BA 

ΦE a Objective function for E a 
ΦPW 

Objective function for case PW 

ΦQ Objective function for case Q 

ΦSB Objective function for case SB 

ΦSP Objective function for case SP 

D E Euclidian distance 

E a Actual evaporation 

E KG Kling-Gupta efficiency 

E p Potential evaporation 

E ref Reference evaporation 

E RMS Root mean squared error 

E SP Spatial pattern efficiency 

F DS Dynamical scaling function 

I LA Leaf area index 

P Precipitation 

Q Streamflow 

r Pearson correlation coefficient 

R a Extraterrestrial radiation 

r s Spearman correlation coefficient 

S t Terrestrial water storage anomaly 

S u Soil moisture 

T avg Average air temperature 

T max Maximum air temperature 

T min Minimum air temperature 
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ial in (semi-)arid catchments, where evaporation represents the domi-

ant outgoing water flux. In such environments, a classical hydrological

odel calibration on streamflow alone could lead to important model

iases. More generally, for catchments with strong anthropogenic in-

uences on the water cycle (e.g., irrigation schemes, dams, etc.) or in

ata scarce regions, the inclusion of evaporation data in model calibra-

ion has the potential to better constrain a hydrological model rather

han streamflow alone ( Becker et al., 2019 ; Jiang and Wang, 2019 ). Ac-

ordingly, calibrating hydrological models solely based on streamflow

s not sufficient to guarantee an accurate representation of the hydrolog-

cal system because streamflow is the result of several inter-linked pro-

esses, thereby it masks spatial heterogeneity ( Tobin and Bennett, 2017 ;

ambura et al., 2018 ). This limitation in model implementation has

een overcome by the advent of multivariate calibration techniques us-

ng satellite-based datasets, which offers models a chance for better spa-

ial heterogeneity ( Efstratiadis and Koutsoyiannis, 2010 ; Rakovec et al.,

016 ). 

In the quest to improve process representation in hydrological mod-

ls, large scale distributed hydrological modelling faces the challeng-

ng requirement of spatially explicit observational datasets for model

etup and performance evaluation ( Clark et al., 2017 ; Fatichi et al.,

016 ; Hrachowitz and Clark, 2017 ). Correspondingly, Satellite Remote

ensing (SRS) and reanalysis datasets of various hydrological processes

ave been used as input data ( Beck et al., 2017 ; Maggioni and Mas-

ari, 2018 ) or as calibration and evaluation data for hydrological mod-

ls ( Koppa and Gebremichael, 2020 ; McCabe et al., 2017 ). Evaporation

stimates from SRS are increasingly used in multivariate calibration of

ydrological models. Because it is a key indicator of surface water avail-

bility, evaporation is an essential source of information for better con-

training the spatiotemporal representation of processes in hydrological
odels ( Bai and Liu, 2018 ; Cui et al., 2019 ; Talsma et al., 2018 ). The

ncreasing availability and diversity of gridded evaporation datasets has

riggered many evaluation and comparison studies ( Long et al., 2014 ;

inukollu et al., 2011b ), which highlight significant differences between

he datasets and thereby indicate underlying uncertainty in the evapo-

ation estimates ( Baik et al., 2018 ; López et al., 2017 ). The uncertainty

tems from the strong variability of bio-geophysical variables that drive

vaporation (e.g., albedo, net radiation, surface roughness and temper-

ture) and the diversity of the model structures, model parametrizations

nd input datasets used to estimate evaporation ( Badgley et al., 2015 ;

ang and Dickinson, 2012 ; Zhang et al., 2020 ). Therefore, the choice

nd use of SRS evaporation data in hydrological modelling should be

one cautiously, particularly in catchments with strong anthropogenic

nfluences ( Senkondo et al., 2019 ; Yang et al., 2016 ). Generally, the

ollowing four approaches are adopted to evaluate gridded evaporation

roducts: 

(i) analysis of the variance between several products (e.g.,

Jimenez et al., 2011 ; Khan et al., 2018 ; Mueller et al., 2011 ;

Senkondo et al., 2019 ; Trambauer et al., 2014 ); 

(ii) point-to-pixel comparison with ground-based measurements

(e.g., Chen et al., 2014 ; McCabe et al., 2015 ; Michel et al., 2016 ;

Ramoelo et al., 2014 ; Velpuri et al., 2013 ); 

(iii) hydrological consistency by water balance calculation (e.g.,

Liu et al., 2016 ; McCabe et al., 2008 ; Miralles et al., 2016 ;

Wang et al., 2018 ; Weerasinghe et al., 2020 ); and 

(iv) assessing the ability of evaporation datasets in improving the pa-

rameter estimation of hydrological models (e.g., Demirel et al.,

2018 ; Immerzeel and Droogers, 2008 ; Jiang et al., 2020 ;

Pomeon et al., 2018 ; Winsemius et al., 2008 ). 

Assessing the uncertainty of evaporation estimates at large-scale is

hallenging due to the limited availability of ground-based measure-

ents ( Bhattarai et al., 2019 ; Ceperley et al., 2017 ). The uncertainty in

vaporation varies in space and according to climate regions ( Blatchford

t al., 2020 ; Vinukollu et al., 2011a ). In evaluating the contribution of

ridded evaporation datasets to hydrological model calibration, some

imitations can be denoted in previous studies. Most previous studies

nly use or compare few evaporation datasets (e.g., Kunnath-Poovakka

t al., 2016 ; Vervoort et al., 2014 ), and rarely (if any) investigate the use

f reanalysis datasets (i.e., retrospective analysis; cf. Bosilovich et al.,

008 ), which are an important source of spatial evaporation estimates

 Feng et al., 2019 ). Usually, a lumped or semi-distributed model is used

e.g., Odusanya et al., 2019 ; Rientjes et al., 2013 ), which does not har-

ess the full potential of the gridded evaporation datasets that is their

patial patterns ( Armstrong et al., 2019 ; Stisen et al., 2018 ). Most studies

o not test different model calibration strategies, with some exceptions

hat use a semi-distributed model (e.g., Herman et al., 2018 ; Rajib et al.,

018 ). Finally, a few studies use a bias-insensitive metric to focus only

n the spatial patterns of gridded evaporation products ( Dembélé et al.,

020a ; Koch et al., 2018 ). 

This study aims to fill current knowledge gaps by evaluating the util-

ty of nine satellite-based (prognostic and diagnostic) and three reanal-

sis evaporation datasets in improving the performance of a distributed

ydrological model using four distinct calibration strategies. This study

oes not intend to quantify the intrinsic accuracy of the evaporation

roducts nor determine whether a product is better than the others in

erms of absolute values. Rather it strives to evaluate their ability to

mprove the simulations of a distributed hydrological model when used

s a calibration variable. Besides the high number and diversity of grid-

ed evaporation datasets evaluated, the novelty of this study is the im-

lementation of four distinct model calibration strategies with a fully

istributed hydrological model, the evaluation of the model responses

ith multiple variables (i.e., streamflow, soil moisture and terrestrial

ater storage) to test evaporation error propagation on other hydrolog-

cal processes, and the application of the experiment in a large basin

pread across four eco-climatic zones with considerable anthropogenic
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Fig. 1. Physical and hydroclimatic characteristics of the Volta River basin. 
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nfluence. This study strives to answer two inter-related research ques-

ions. Firstly, what is the ability of satellite and reanalysis evaporation

atasets to improve the overall predictive skill of a fully distributed

ydrological model? Secondly, how important is the model calibration

trategy in improving the representation of hydrological processes? The

roposed research is carried out in the Volta River basin located in West

frica, using the mesoscale Hydrologic Model (mHM) over a period of

en consecutive years (2003-2012). 

. Material and methods 

.1. Study area 

The transboundary Volta River Basin (VRB) is shared among six

ountries of West Africa (i.e., Burkina Faso, Ghana, Togo, Mali, Benin

nd Côte d’Ivoire) and covers approximately 415,600 km 

2 ( Fig. 1 ). Most

f the basin lies below 400 m a.s.l. with a predominantly flat topog-

aphy ( Fig. 1 b). The Volta River flows north-south over a distance of

,850 km and drains into the Atlantic Ocean at the Gulf of Guinea af-

er transiting through Lake Volta (8,502 km 

2 ) formed by the Akosombo

am (7.94 Mm 

3 ) ( Dembélé et al., 2019 ; Dembélé et al., 2020a ; Williams

t al., 2016 ). The basin area is composed of grassland interspersed with

hrubs and trees (75%), cropland (13%), forest (9%), water bodies (2%)

nd bare land and settlements (1%) ( Fig. 1 c). 

The VRB extends over four eco-climatic zones (i.e., Sahelian, Sudano-

ahelian, Sudanian and Guinean) characterized by increasing vegeta-

ion density and receiving increasing precipitation from north to south

 Fig. 1 a; Table 1 ). The information provided in Table 1 is obtained from

he global aridity index database ( Trabucco and Zomer, 2018 ), and the

FDEI meteorological data (see Table 2 ; Weedon et al., 2014 ) for the

eriod 1979-2016. Fig. 1 and Table 1 are adapted from Dembélé et al.

2020a) . 
The climate is driven by the Inter-Tropical Convergence Zone (ITCZ)

nd varies from sub-humid in the south to semi-arid in the north

 Dembélé et al., 2019 ; FAO/GIEWS, 1998 ; Mul et al., 2015 ). Actual

vaporation varies between 70% and 90% of annual rainfall in the basin.

.2. Distributed hydrological model 

The fully distributed mesoscale Hydrologic Model (mHM) is a con-

eptual model that simulates dominant hydrological processes (e.g.,

vaporation, soil moisture and discharge) per grid cell in the modelling

omain ( Kumar et al., 2013 ; Samaniego et al., 2010 ). Samaniego et al.

2011) provide a schematic representation of the processes accounted

or in mHM. A multiscale routing model based on the Muskingum-Cunge

ethod ( Cunge, 1969 ) is used for the routing of the total grid-generated

unoff through the river network ( Thober et al., 2019 ). The sub-grid

ariability of the basin physical characteristics (e.g., soil texture, land

over) is accounted for with a multiscale parameter regionalization tech-

ique ( Samaniego et al., 2017 ). The model parameters (e.g., hydraulic

onductivity, soil porosity) are linked to the basin physical characteris-

ics via pedo-transfer functions and global parameters. Thirty-six global

arameters (cf. Pokhrel et al., 2008 ) are tuned during model calibration

or this study (Table S6). mHM was found reliable for modelling hydro-

ogical processes in the VRB ( Dembélé et al., 2020a ). The version 5.9 of

HM is used in this study. 

Reference evaporation ( E ref ) is calculated following the method of

argreaves and Samani (1985) , which was found to be reliable for semi-

rid regions like the VRB ( Bai et al., 2016 ; Er-Raki et al., 2010 ; Gao et al.,

017 ). E ref is formulated as follows: 

 ref = 𝜅
𝑅 a 
𝜆

(
𝑇 avg + 17 . 8 

)(
𝑇 max − 𝑇 min 

)0 . 5 
(1) 

here R a (MJ/m 

2 /day) is the extraterrestrial radiation computed based

n the latitude of the location and the day of the year ( Allen et al., 1998 ),
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Table 1 

Characteristics of the four eco-climatic zones in the Volta River basin with the Aridity Index ( AI ). The annual mean 

value with the range ([min-max]) is provided for Precipitation ( P ) and average air Temperature ( T avg ). 

Eco-climatic zones Climate class AI (-) P (mm/year) T avg (°C) 

Sahelian zone Arid 0.16 [0.12-0.20] 570 [470-610] 29.3 [29.0-29.7] 

Sudano-Sahelian zone Semi-arid 0.29 [0.16-0.43] 790 [570-980] 28.6 [28.0-29.3] 

Sudanian zone Semi-arid/Dry sub-humid 0.47 [0.33-0.98] 1010 [890-1290] 28.1 [26.4-28.8] 

Guinean zone Dry sub-humid/Humid 0.70 [0.49-1.22] 1190 [1030-1420] 27.6 [26.0-28.6] 

Table 2 

Overview of the input datasets. CHIRPS: Climate Hazards Group InfraRed Precipitation with Station data; ESA CCI SM: European Space Agency Climate Change Ini- 

tiative Soil Moisture; GIMMS: Global Inventory Modelling and Mapping Studies; GLiM: Global Lithological Map; GMTED: Global Multi-resolution Terrain Elevation 

Data; GRACE: Gravity Recovery and Climate Experiment; WFDEI: WATCH Forcing Data methodology applied to ERA-Interim data 

Variables Products Spatial 

resolution 

Temporal 

resolution 

References 

Model setup 

Meteorological data 

Rainfall CHIRPS v2.0 0.05° daily Funk et al. (2015) 

http://chg.geog.ucsb.edu/data/chirps/ 

Temperature (average, minimum and 

maximum) 

WFDEI 0.5° hourly Weedon et al. (2014) 

http://www.eu-watch.org/data_availability 

Morphological data 

Terrain characteristics (elevation, slope, 

aspect, flow direction and flow accumulation) 

GMTED 2010 225 m 

(0.0021°) 

static Danielson and Gesch (2011) 

https://topotools.cr.usgs.gov/ 

Soil properties (horizon depth, bulk density, 

sand and clay content) 

SoilGrids 250 m 

(0.0023°) 

static Hengl et al. (2017) 

https://www.isric.org/explore/soilgrids 

Geology GLiM v1.0 0.5° static Hartmann and Moosdorf (2012) 

https://doi.pangaea.de/10.1594/PANGAEA.788537 

Land use land cover Globcover 

2009 

300 m 

(0.0028°) 

static Bontemps et al. (2011) 

http://due.esrin.esa.int/page_globcover.php 

Phenology (leaf area index) GIMMS 8 km (0.0833°) bimonthly Tucker et al. (2005) , Zhu et al. (2013) 

http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html 

Model calibration/evaluation 

In-situ data 

Streamflow ( Q ) - point daily Multiple organizations (see acknowledgements) 

Satellite data 

Terrestrial water storage anomaly ( S t ) GRACE TellUS 

v5.0 

1° monthly Tapley et al. (2004) , Swenson (2012) 

https://grace.jpl.nasa.gov/ 

Surface soil moisture ( S u ) ESA CCI SM 

v4.2 

0.25° daily Dorigo et al. (2017) 

https://www.esa-soilmoisture-cci.org/ 

Actual evaporation ( E a ) See Table 3 
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= 2.45 MJ/kg is the latent heat of vaporization of water. The unit

f radiation is converted into equivalent water evaporation in mm/day

ith the ratio R a / 𝜆. The differences in advection or vapor transfer effect

re compensated by the constant 𝜅 = 0.0023, and T avg , T max and T min 

epresent the daily average, maximum and minimum air temperature in

egrees Celcius (°C) at a given location. 

Potential evaporation ( E p ) is calculated by adjusting E ref with a dy-

amical scaling function ( F DS ) based on leaf area index ( Allen et al.,

998 ; Demirel et al., 2018 ), therefore accounting for vegetation-climate

nteractions ( Bai et al., 2018 ; Birhanu et al., 2019 ; Jiao et al., 2017 ). E p 
s formulated as follows: 

 p = 𝐹 DS ⋅ 𝐸 ref , with (2)

 DS = 𝑎 + 𝑏 

(
1 − 𝑒 ( 𝑐⋅𝐼 LA ) 

)
(3)

here a is the intercept term, b is the vegetation dependent component,

nd c represents the degree of nonlinearity of the leaf area index ( I LA ).

he coefficients a, b , and c are determined through model calibration. 

In this study, actual evaporation ( E a ) is defined as the sum of tran-

piration and evaporation from interception, land and water bodies

 Coenders-Gerrits et al., 2020 ; Shuttleworth, 1993 ). E a is calculated as

 fraction of E p from soil layers depending on soil moisture availability

nd the rooting depth ( Feddes et al., 1976 ). Soil moisture is estimated

y a multi-layer infiltration capacity approach adopting a three-layer

oil scheme (0-5, 5-30 and 30-100 cm depths). Terrestrial water storage

t each grid cell is the sum of the surface and subsurface water storage

i.e., lakes, wetlands, soil moisture reservoirs, interflow and baseflow).
ore information on the calculation of hydrological processes in mHM

an be found in the work of Kumar (2010) and Samaniego et al. (2010) .

.3. Input datasets 

The morphological datasets (i.e., elevation, slope, land cover, etc.)

nd meteorological datasets (i.e., rainfall and air temperature) used to

et up and run the distributed model are described in Table 2 . The me-

eorological datasets are selected based on their accuracy ( Dembélé and

wart, 2016 ), and their suitability to plausibly represent hydrological

rocesses in the VRB ( Dembélé et al., 2020b ). All morphological data

re resampled to a resolution of 1/512° (~200 m at the equator) using

he nearest neighbor technique, while the meteorological data are re-

ampled to 0.0625° (~7 km) using bilinear resampling. Due to the good

bility of mHM in parameter transferability across scales ( Dembélé et al.,

020a ), the model is run at daily time step with a spatial discretiza-

ion of 0.25° (~28 km) corresponding to 619 modelling grid cells in the

asin, which attenuate the computational demand. In-situ streamflow

ata and gridded datasets of evaporation are used for model calibration

 Section 2.4 ). The description of the evaporation datasets is provided in

ection 2.3 . 

The quality control and the gap-filling of the streamflow data are

escribed by Dembélé et al. (2019) . In addition to in-situ streamflow,

RS datasets of soil moisture and terrestrial water storage are used

o evaluate the model performance after calibration. The surface soil

oisture ( S u ) dataset is obtained from ESA CCI ( Dorigo et al., 2017 )

nd represents the first soil layer (i.e., 2-5 cm depth). The blended

http://chg.geog.ucsb.edu/data/chirps/
http://www.eu-watch.org/data_availability
https://topotools.cr.usgs.gov/
https://www.isric.org/explore/soilgrids
https://doi.pangaea.de/10.1594/PANGAEA.788537
http://due.esrin.esa.int/page_globcover.php
http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
https://grace.jpl.nasa.gov/
https://www.esa-soilmoisture-cci.org/
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Fig. 2. Mean monthly total actual evaporation ( E a ) of 12 gridded evaporation datasets averaged for the four climatic zones (sub-figures b-e) in the Volta River basin 

over the period 2003-2012. 
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roduct of both passive and active microwave products is used here

 Gruber et al., 2017 ; Liu et al., 2012 ; Wagner et al., 2012 ). The terrestrial

ater storage ( S t ) anomaly data (release RL05) is obtained from GRACE

 Landerer and Swenson, 2012 ; Swenson, 2012 ). The ensemble arith-

etic mean of different solutions from three processing centers (i.e.,

enter for Space Research at University of Texas, Geoforschungs Zen-

rum Potsdam and Jet Propulsion Laboratory) is used in this study be-

ause it has been shown to be more effective in reducing noise in the

arth’s gravity signal than the individual solutions ( Sakumura et al.,

014 ). 

.4. Evaporation datasets 

Twelve gridded actual evaporation datasets including nine SRS-

ased products (MOD16A2, SSEBop, ALEXI, CMRSET, SEBS, GLEAM

3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM v3.3b) and three reanal-

sis products (ERA5, MERRA-2, JRA-55) are evaluated in this study.

ased on evaporation modelling approaches ( Yilmaz et al., 2014 ), the

RS-based datasets can be further classified as diagnostic products

MOD16A2, SSEBop, ALEXI, CMRSET, SEBS) or prognostic products

GLEAM v3.2a, GLEAM v3.3a, GLEAM v3.2b, GLEAM v3.3b), while the

eanalysis datasets are all prognostic products. A summary of the evap-

ration datasets is provided in Table 3 , and more details on each dataset

an be found in the corresponding references. 

Four versions of the GLEAM product are evaluated. They differ in

erms of input data used for their production and in terms of their spa-

iotemporal coverage (cf. Table 1 in Martens et al., 2017 ). The version

3.3 differs from the v3.2 in the following forcing datasets: surface radi-

tion, near-surface air temperature and land cover maps. The versions

3.3a and v3.2a are produced with reanalysis, satellite and gauge-based

atasets, while the versions v3.3b and v3.2b are mainly produced with

atellite datasets. 
Considerable differences can be observed both in the temporal dy-

amics and the spatial patterns of the 12 gridded evaporation datasets

cross the climatic zones in the VRB ( Figs. 2 and 3 ). 

.5. Model calibration and evaluation 

The modelling period extends from 2000 to 2012 with 3 years of

odel warm-up (2000-2002), 6 years for calibration (2003-2008), and

 years for evaluation (2009-2012). Available daily in-situ streamflow

atasets from 11 gauging locations are used for model calibration and

valuation, while monthly datasets of E a ( Table 3 ) are used for model

alibration, and monthly datasets of S u (ESA CCI) and S t (GRACE) are

sed for model evaluation. All the E a datasets are rescaled to 0.25° us-

ng bilinear interpolation to match the modelling spatial resolution, and

ub-monthly data are aggregated to monthly resolution. Only the first

oil layer of mHM is compared to the ESA CCI data, which represents

he surface soil moisture. 

First, a streamflow-only calibration is adopted as benchmark. Then,

he contribution of evaporation datasets in improving hydrological

odel calibration is tested by simultaneously constraining the model

ith streamflow and each of the twelve gridded evaporation datasets

sing four calibration strategies for each (Fig. 4) . Therefore, 48 scenar-

os (i.e., 12 datasets times 4 calibration strategies) are developed and

ompared to the benchmark calibration to evaluate the impact of differ-

nt calibration strategies on model performance. The dynamically di-

ensioned search algorithm ( Tolson and Shoemaker, 2007 ) is used for

arameter estimation, using 5,000 iterations for each of the 48 scenarios

nd for the benchmark model calibration. The computational runtime is

bout 6 days for each of the 49 model simulations on a computer Intel

eon Processor E5-2697 v3 with 64 GB of RAM. 

.5.1. Calibration on streamflow data – benchmark 

The benchmark calibration (case Q) is elaborated by calibrating the

ydrological model solely with streamflow ( Q ) data. The objective func-
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Table 3 

Gridded actual evaporation datasets. The characteristics of the datasets are those used in this study although the same datasets can be available from the data providers with different versions and spatiotemporal 

resolutions. 

Datasets Name/ Data portal Spatial coverage Spatial resolution Temporal coverage Temporal resolution References 

MOD16A2 Moderate Resolution Imaging Spectroradiometer (MODIS) Global Terrestrial 

Evapotranspiration Algorithm version 5 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY. 

MERRA_GMAO_1kmALB/ 

Global 0,0085° (~1 km) 2001-2014 Monthly Mu et al. (2011) 

SSEBop Operational Simplified Surface Energy Balance 

https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/ 

Global 0.0083°(~1 km) 2003-2014 Monthly Senay et al. (2007) , 

Senay et al. (2013) 

ALEXI Atmosphere-Land Exchange Inverse ftp://ftp.wateraccounting.unesco- 

ihe.org/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/ 

70° N–60° S 0.05° (~5.6 km) 2003-2015 Monthly Anderson et al. (1997) , 

Anderson et al. (2007) 

CMRSET CSIRO MODIS Reflectance Scaling EvapoTranspiration 

http://remote-sensing.nci.org.au/u39/public/data/wirada/cmrset/ 

Global 0.05° (~5.6 km) 2001-2013 Monthly Guerschman et al. (2009) 

SEBS Surface Energy Balance System ftp://ftp.wateraccounting.unesco- 

ihe.org/WaterAccounting/Data_Satellite/Evaporation/SEBS/SEBS/ 

40° N–40° S 0.05° (~5.6 km) 2001-2012 Monthly Su (2002) 

GLEAM v3.2a Global Land Evaporation Amsterdam Model https://www.gleam.eu Global 0.25° (~28 km) 1980-present Daily Martens et al. (2017) , 

Miralles et al. (2011) GLEAM v3.3a 

GLEAM v3.2b 50° N–50° S 2003- present 

GLEAM v3.3b 

ERA5 European Centre for Medium-range Weather Forecasts ReAnalysis 5 (ERA5) 

hourly data on single levels https://cds.climate.copernicus.eu/ 

Global 0.25°(~28 km) 1979- present Hourly Hersbach et al. (2018) , 

Hersbach et al. (2020) 

MERRA-2 Modern-Era Retrospective Analysis for Research and Applications 2 

(Evaporation_land: M2TUNXLND_V5.12.4) 

https://disc.gsfc.nasa.gov/datasets/M2TUNXLND_V5.12.4/summary 

Global 0.5° x 0.625°(~56 

km) 

1980- present Hourly Gelaro et al. (2017) , 

Reichle et al. (2017) 

JRA-55 Japanese 55 year ReAnalysis (JRA-55); evaporation: fcst_phy2m125 

https://jra.kishou.go.jp/JRA-55/index_en.html 

Global 1.25°(~140 km) 1959- present 3-hourly Kobayashi et al. (2015) , 

Harada et al. (2016) 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/
https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/fews/web/
http://ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/ALEXI/World/
http://remote-sensing.nci.org.au/u39/public/data/wirada/cmrset/
http://ftp://ftp.wateraccounting.unesco-ihe.org/WaterAccounting/Data_Satellite/Evaporation/SEBS/SEBS/
https://www.gleam.eu
https://cds.climate.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/M2TUNXLND_V5.12.4/summary
https://jra.kishou.go.jp/JRA-55/index_en.html
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Fig. 3. Spatial distribution of total annual actual evaporation ( E a ) for 12 gridded evaporation datasets in the Volta River basin averaged for the period 2003-2012. 

A min-max normalization of the values allows rescaling them between 0 and 1 to facilitate the intercomparison of the spatial patterns among the datasets. 

Fig. 4. Overview of the modelling approach to evaluate the reanalysis and satellite-based evaporation datasets. 
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ion for case Q ( ΦQ ) to be minimized is obtained by calculating the av-

rage Kling-Gupta efficiency ( E KG ) over the 11 gauging points for Q in

he basin, and subtracting it from 1. ΦQ ranges from its optimal value

hat is 0 to positive infinity, and is formulated as follows: 

Q = 1 − 

[ 

1 
𝑔 

𝑔 ∑
i=1 

𝐸 KG , i 
(
𝑄 mod , i , 𝑄 obs , i 

)] 

, with (4)

 KG = 1 − 

√ 

( 𝑟 − 1 ) 2 + ( 𝛽 − 1 ) 2 + ( 𝛾 − 1 ) 2 (5)
here g is the total number of streamflow gauging stations in the basin,

 KG is the modified Kling-Gupta efficiency ( Kling et al., 2012 ) calcu-

ated for the observed ( Q obs,i ) and modelled ( Q mod,i ) streamflow of the

 

th gauging point. E KG is composed of the Pearson correlation coefficient

 r ), the bias term ( 𝛽, i.e., the ratio of the means) and the variability

erm ( 𝛾, i.e., the ratio of the coefficients of variation, cf. Eq. 8 ). E KG 

anges from negative infinity to its optimal value that is 1. A model

s better than the mean observed flow if E KG > -0.41 ( Knoben et al.,

019 ). 
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.5.2. Multivariate calibration with streamflow and evaporation 

.5.2.1. Spatial pattern efficiency metric. A bias-insensitive and multi-

omponent metric developed by Dembélé et al. (2020a) is used to quan-

ify the degree of reproduction of the spatial patterns of hydrological

rocesses. The proposed spatial pattern efficiency ( E SP ) metric only con-

iders the spatial pattern of the underlying variables and ignores their

bsolute values. E SP is an integrated measure of the dynamics, the spa-

ial variability, and the locational matching of grid cells between the

odelled ( X mod ) and observed ( X obs ) variables. With X obs and X mod com-

osed of n cells, E SP is defined as follows: 

 SP = 1 − 

√ (
𝑟 s − 1 

)2 + ( 𝛾 − 1 ) 2 + ( 𝛼 − 1 ) 2 , with (6)

 s = 1 − 

6 
∑𝑛 

1 𝑑 
2 
i 

𝑛 
(
𝑛 2 − 1 

) , (7)

= 

𝜎mod ∕ 𝜇mod 
𝜎obs ∕ 𝜇obs 

and (8)

= 1 − 𝐸 RMS 

(
𝑍 X mod 

, 𝑍 X obs 

)
(9)

here r s is the Spearman rank-order correlation coefficient with d i the

ifference between the ranks of the i th cell of X mod and X obs , 𝛾 is the

ariability ratio (i.e., the ratio of the coefficients of variation), and 𝛼

he spatial location matching term calculated as the root mean squared

rror ( E RMS ) of the standardized values (z-scores, Z X ) of X mod and X obs 

 Dembélé et al., 2020a ). E SP ranges from negative infinity to its optimal

alue that is unity. E SP = 0 when there is a moderate relationship be-

ween the ranks of the observed and modelled variables (i.e., r s = 0.55),

nd E SP = -0.67 when the ranks are not related (i.e., r s = 0). More details

n E SP are provided by Dembélé et al. (2020a) . 

.5.2.2. Multivariate calibration strategies. Four multivariate calibration

trategies with distinct objective functions are proposed to simultane-

usly consider Q and E a data as calibration variables. Each objective

unction ( Eqs. 11 , 15 , 17 and 19 ) is formulated based on the Euclidean

istance approach ( Eq. 10 ), in which all elements are equally weighted

 Khu and Madsen, 2005 ). The Euclidian distance ( D E ) between two

oints X and Y of coordinates ( x 1 , x 2 ,…, x n ) and ( y 1 , y 2 ,…, y n ) in an

 -dimensional space ( Upton and Cook, 2014 ) is given by: 

 E = 

√ √ √ √ 

𝑛 ∑
𝑖 =1 

(
𝑥 𝑖 − 𝑦 𝑖 

)2 
(10)

The four multivariate calibration strategies differ from each other

ased on the formulation of the sub-objective function for E a (i.e., ΦE a ),

hile ΦQ remains unchanged. The observed variable ( E a,obs ) and the

odelled variable ( E a,mod ) of actual evaporation are represented each

y a 3D array of dimension [ M x N x T ], with M the number of rows, N

he number of columns, and T the number of time steps ( Fig. 5 ). For this

tudy, M represents 40 latitude rows, N represents 36 longitude columns

nd T represents 72 months (i.e. calibration period). The modelling do-

ain has 1440 grid cells of which 619 are active (i.e. grid cells repre-

enting the basin area). The inactive grid cells are masked out during

he calculation of the performance metrics. 

In the following, 𝐄 

𝑡 
a is a 2D array of actual evaporation represented

y all cells ( i,j ) in the spatial domain Ω, and 𝐸 

𝑖𝑗 
a is the time series of actual

vaporation for a given cell at row i and column j . The four multivariate

alibration strategies are defined as follows: 

1- Temporal basin average (BA) : the matching of the observed and mod-

elled E a is done on basin-averaged time series. The sub-objective

function ( ΦE a _ BA ) to be minimized is obtained by calculating the E KG 

for the observed and modelled time series of basin average actual

evaporation ( 𝐸 a , obs and 𝐸 a , mod ) and subtracting it from 1. The objec-

tive function ( ΦBA ) is formulated as follows: 

ΦBA = 

√ 

ΦQ 
2 + ΦE a _ BA 

2 , with (11)
ΦE a _ BA = 1 − 𝐸 KG 

(
𝐸 a , mod , 𝐸 a , obs 

)
, where (12)

𝐸 a , mod ( 𝑡 ) = 

1 
𝑀 ×𝑁 

𝑇 ∑
𝑡 = 1 

∀ 𝑖, 𝑗 ∈ Ω

𝐄 

𝑡 
a , mod ( 𝑖, 𝑗 ) , and (13)

𝐸 a , obs ( 𝑡 ) = 

1 
𝑀 ×𝑁 

𝑇 ∑
𝑡 = 1 

∀ 𝑖, 𝑗 ∈ Ω

𝐄 

𝑡 
a , obs ( 𝑖, 𝑗 ) (14)

2- Temporal pixel-wise (PW) : the matching of the modelled and observed

E a is done individually on the time series of each grid cell in the

basin. The E KG is calculated for the observed and modelled time se-

ries of E a at each grid cell in the basin, and the sub-objective function

( ΦE a _ PW 

) to be minimized is the average of the E KG calculated for all

grids, subtracted from 1. The objective function ( ΦPW 

) is formulated

as follows: 

ΦPW 

= 

√ 

ΦQ 
2 + ΦE a _ PW 

2 , with (15)

ΦE a _ PW 

= 1 − 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
𝑀 ×𝑁 

∑
1 ≤ 𝑖 ≤ 𝑀 

1 ≤ 𝑗 ≤ 𝑁 

∀ 𝑡 ∈ 𝑇 

𝐸 KG 

(
𝐸 

𝑖𝑗 

a , mod , 𝐸 

𝑖𝑗 

a , obs 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16)

3- Spatial bias-accounting (SB) : the matching of the modelled and ob-

served E a is done for all pixels at each time step. The E KG is calcu-

lated at each time step between all the pixels of the observed and

modelled E a . The sub-objective function ( ΦE a _ SB ) to be minimized is

the average of the E KG calculated for all time steps, subtracted from

1. The objective function ( ΦSB ) is formulated as follows: 

ΦSB = 

√ 

ΦQ 
2 + ΦE a _ SB 

2 , with (17)

ΦE a _ SB = 1 − 

1 
𝑇 

𝑇 ∑
𝑡 = 1 

∀ 𝑖, 𝑗 ∈ Ω

𝐸 KG 

(
𝐄 

𝑡 
a , mod ( 𝑖, 𝑗 ) , 𝐄 

𝑡 
a , obs ( 𝑖, 𝑗 ) 

)
(18)

4- Spatial bias-insensitive (SP) : the sub-objective function ( ΦE a _ SP ) to be

minimized is similarly calculated as for the SB calibration except

that a bias-insensitive metric (i.e., E SP ) is used as skill score instead

of E KG . The objective function ( ΦSP ) is formulated as follows: 

ΦSP = 

√ 

ΦQ 
2 + ΦE a _ SP 

2 , with (19)

ΦE a _ SP = 1 − 

1 
𝑇 

𝑇 ∑
𝑡 = 1 

∀ 𝑖, 𝑗 ∈ Ω

𝐸 SP 

(
𝐄 

𝑡 
a , mod ( 𝑖, 𝑗 ) , 𝐄 

𝑡 
a , obs ( 𝑖, 𝑗 ) 

)
(20)

All the objective functions ( ΦBA , ΦPW 

, ΦSB and ΦSP ) vary between

heir optimal value that is 0 and positive infinity. Except case SP that

s a bias-insensitive approach, other calibration strategies consider the

bsolute values (i.e. raw data) of evaporation. 
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Fig. 5. Graphical and programming syntax description of the use of evaporation data in the four calibration strategies. The blue matrix represents the observed 

data while the brown matrix represents the modelled data. For the syntax, (i, j,:) means i th element of the first dimension (latitude), j th element of the second 

dimension (longitude) and all elements of the third dimension (time). Similarly, (:,:, t) means t th element of the third dimension and all elements of the first and 

second dimensions. The objective functions are calculated based on the Kling-Gupta efficiency ( E KG ) and the spatial pattern efficiency ( E SP ) metrics. 
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.6. Model output evaluation 

In addition to daily streamflow data, independent monthly datasets

f satellite-based soil moisture ( S u ) and terrestrial water storage ( S t )

 Table 2 ) are used for model evaluation. The temporal dynamics of

treamflow is evaluated with E KG . Both the temporal dynamics and the

patial patterns of modelled S u are evaluated using the Pearson correla-

ion coefficient ( r ) and the spatial pattern efficiency metric ( E SP ), while

nly the temporal dynamics of modelled S t is assessed using r , due to

he coarse spatial resolution of the GRACE data. The skill scores for the

emporal dynamics are calculated for each pixel (or gauging point) in

he basin, while spatial skill scores are calculated per time step. 

. Results 

In general, the trend of the model performance (high vs. low scores)

mong the scenarios (i.e., evaporation datasets vs. calibration strategies)

s conserved between the calibration and the evaluation periods for all

ariables. Therefore, the following results are presented for the entire

imulation period that comprises the calibration and evaluation periods

hose results are additionally provided in the supplementary materials.

.1. Model performance for multiple hydrological processes in the VRB 

The model performance for various hydrological processes in the

RB reveals the potential of SRS and reanalysis evaporation datasets

o improve the model responses if the appropriate calibration strategy
s used ( Fig. 6 ). Detailed results are provided in the supplementary ma-

erial (Figures S1-S2). 

For Q , the benchmark model (i.e., Q-only) yields a median E KG of

.69. In the multivariate calibration scenarios (i.e., Q + E a ), the E KG of Q

aries between 0.42 for SEBS with case PW to 0.73 for CMRSET with

ase SP. The best multivariate calibration strategy is the case SB with

n average E KG of 0.68 and 75% of the evaporation datasets producing

 higher model performance than the benchmark, followed by case SP

 E KG = 0.67), case PW ( E KG = 0.63) and case BA ( E KG = 0.60). The top 3

est evaporation datasets for the average E KG of Q over the calibration

trategies are GLEAM v3.2b ( E KG = 0.71), GLEAM v3.3b ( E KG = 0.71)

nd GLEAM v3.3a ( E KG = 0.70), while the worst are ALEXI ( E KG = 0.61),

EBS ( E KG = 0.56) and ERA5 ( E KG = 0.51). The decrease in the model

erformance for Q in the multivariate calibration might be an arti-

act caused by equifinality (i.e., non-uniqueness of model parameters;

even, 2006 ; Savenije, 2001 ) that occurred with the Q-only calibration,

hich gives more degrees of freedom for constraining the model pa-

ameter space Dembélé et al. (2020a) . In fact, Figures S68-S71 show

hat the high performance for Q achieved with the Q-only calibration is

btained at the expense of poor performance for other hydrological pro-

esses, while the multivariate calibrations with Q + E a result in parameter

ets that provide equivalent model performance for Q but higher model

erformance for S t and S u . These results support the findings of Dembélé

t al. (2020a) , thereby confirming the pitfalls of the Q-only calibration

 Bouaziz et al., 2020 ; Stisen et al., 2018 ). 

The evaporation datasets show a high potential to improve the tem-

oral dynamics of modelled S t as 79% of the multivariate calibration

cenarios outperform the case Q ( r = 0.73) with an average r of 0.81. The
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Fig. 6. Model performance in the entire simulation period (2003-2012) for the temporal dynamics (a, b, c) of streamflow ( Q ), terrestrial water storage ( S t ) and soil 

moisture ( S u ), and the spatial patterns (d) of S u in the Volta River basin. The x-axis gives the objective functions for different model calibration strategies. The y-axis 

indicates the variables used for the model calibration. Q-only is the benchmark calibration. Circle color represents the median model performance obtained with 11 

gauging points for Q , with 52 pixels for S t , with 619 pixels for S u (c) or with 120 months for S u (d). The color bars show the skill score (i.e., E KG , r, E SP ). Circle size 

represents model performance variability in terms of relative Interquartile Range (IQR) computed as (IQR – IQR min )/(IQR max – IQR min ). The IQR range for the 49 

scenarios is given in the subplot titles. The best model is the bluest and smallest circle, while the worst model is the reddest and largest circle. 
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owest average r of S t among the calibration strategies is given by case

P ( r = 0.79), but interestingly, it outperforms the case Q. The highest

erformances for median r of S t are obtained with MERRA-2 ( r = 0.87),

SEBop ( r = 0.87) and ALEXI ( r = 0.84) while lowest performances are

iven by SEBS ( r = 0.77), MOD16A2 ( r = 0.76) and ERA5 ( r = 0.74). 

The temporal dynamics of modelled S u show a higher model perfor-

ance than that of S t , with an average r of 0.91 and 98% of the mul-

ivariate calibration scenarios that outperform the case Q ( r = 0.86).

he case BA performs similarly to case PW and case SP with an aver-

ge r of 0.91 across evaporation datasets, and outperformed by case SB

 r = 0.93). The highest r of S u is 0.93, and it is obtained with GLEAM

3.3a, MERRA-2 and GLEAM v3.2a, while the weakest scores are ob-

ained with MOD16A2 ( r = 0.91), SEBS ( r = 0.89) and ERA5 ( r = 0.89).

The representation of the spatial patterns of S u improves for all the

ultivariate scenarios as compared to the case Q. However, case SB

 E SP = 0.0) has the highest average performance across the evaporation

atasets, while case BA ( E SP = -0.04) has the lowest performance. The

est evaporation datasets for the simulation of the spatial patterns of

 u considering all the calibration strategies are SSEBop ( E SP = 0.02),

ERRA-2 ( E SP = 0.01) and GLEAM v3.3a ( E SP = 0.01), while the worst

re MOD16A2 ( E SP = -0.04), SEBS ( E SP = -0.07) and ERA5 ( E SP = -0.09).

In general, it is observed that the model performances for S t and S u 
mprove for most of the multivariate calibration scenarios. Among the

ultivariate calibration strategies, case SB gives the best results consid-

ring the average model performance for all variables ( Q, S t and S u ). In

ig. 7 b, the highest average relative change in model performance by

ultivariate calibration strategies as compared to the Q-only calibration

s obtained with case SB is ( + 29%), followed by case SP ( + 26%), case PW

 + 24%) and case BA ( + 20%). Consequently, all grid-based model cal-

bration strategies outperform the basin-average calibration (case BA),

hich gives the lowest average model performance. These results high-

ight the value of calibrating hydrological models on the full extent of
ridded evaporation datasets. It is noted that, in most of the scenar-

os, calibrating the model only on the spatial patterns (case SP) of the

vaporation datasets, thereby ignoring their absolute values, improves

he predictive skill of the model with a higher performance than that of

ase Q and case BA ( Fig. 6 ). With these findings, case SP (i.e., only spa-

ial patterns of evaporation datasets) can be preferred to case SB (i.e.,

bsolute values of evaporation datasets) for the calibration of hydro-

ogical models because the propagation of the errors of the evaporation

stimates into the modelling process can be case specific and depends

n the model structure. This observation also draw attention on the ad-

quacy of the model for a given experiment ( Addor and Melsen, 2019 ).

oreover, for a given evaporation dataset, the spatial variation in bi-

ses in the estimates can lead to contrasting performance across regions

 Jung et al., 2019 ; Nicholson, 2000 ). 

The spatial patterns of ALEXI, followed by those of MOD16A2 and

MRSET, were the least informative for the model calibration in case

P ( Fig. 6 ). Considering all hydrological processes and model calibra-

ion strategies, the top three best performing evaporation datasets are

ERRA-2, GLEAM v3.3a and SSEBop, while the bottom three datasets

re MOD16A2, SEBS and ERA5 ( Figs. 6 and 7 a). However, it is note-

orthy that they outperform the Q-only calibration when used in case

P, meaning that only their spatial patterns improve the model perfor-

ance. In general, the versions 3.3 of GLEAM show a slightly higher

odel performance than the versions 3.2. 

.2. Impact of calibration strategies on spatial patterns 

Different model calibration strategies result in different spatial pat-

erns of modelled E a and S u , as shown for selected scenarios in Fig. 8 .

dditional maps of E a , S u and S t for other scenarios are provided in

he supplementary material (Figures S58-59, Figures S65-66 and Figures

38-39), along with those obtained with the Q-only calibration (Figure
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Fig. 7. Relative change in the hydrological model performance as compared to the Q-only calibration strategy when (a) adopting a multivariate calibration strategy 

( Q + E a ) with twelve evaporation datasets, or (b) using four different calibration strategies. The values on the line from each vertex to the center of the polygons give 

the relative difference in model performance as compared to the Q-only calibration. The change in model performance is given in percentage of the performance 

metrics (i.e., E KG , r, E SP ) for streamflow ( Q ), terrestrial water storage ( S t ), and soil moisture ( S u ). For instance in (a), using SSEbop in multivariate calibration increases 

E SP of S u by 110%, while in (b), the calibration strategy case BA decreases E KG of Q by -13%, as compared to the Q-only calibration. 

Fig. 8. Maps of long-term (2003-2012) average of annual (a) actual evaporation ( E a ) and (b) soil moisture ( S u ) obtained by calibrating the mHM model with two 

evaporation datasets (y-axis, blue font) and different calibration strategies (x-axis, red font). A min-max normalization of the values allows rescaling them between 

0 and 1 to emphasize the spatial patterns and use a unique color scale. 
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12). In general, the south to north gradient of increasing aridity ob-

erved with modelled E a and S u is well depicted for all the calibration

trategies. However, considerable mismatches in the variability of the

atterns are observed among the calibration strategies. Such discrepan-

ies in spatial patterns have implications for water resources assessment

ncluding water accounting, flood and drought monitoring and predic-

ion ( AghaKouchak et al., 2015 ; Klemas, 2014 ; Teng et al., 2017 ; West

t al., 2019 ). Knowing when flood or drought events occur is important,
ut knowing the spatial extent of the event is crucial for deploying ef-

cient adaptation and mitigation strategies ( Brunner et al., 2020 ; Diaz

t al., 2019 ; He et al., 2020 ). Consequently, improving the representa-

ion of the spatial patterns of hydrological processes should be a key

onsideration in modelling with spatially distributed models. The com-

arison of the maps of modelled E a ( Fig. 8 a) with the reference ALEXI

ataset ( Fig. 3 ) reveals that the spatial patterns of E a in the case BA

how the highest mismatch with the reference, thereby unveiling the
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Fig. 9. Model performance of streamflow ( Q ), terrestrial water storage ( S t ) and soil moisture ( S u ) using various evaporation datasets and model calibration strategies 

with the mHM model. The results are shown for the four climatic zones in the Volta River Basin (VRB) over the simulation period (2003-2012). Each score for a given 

evaporation product represents the average over the scores obtained with 4 calibration strategies, while the score is the average over scenarios with 12 evaporation 

datasets for each calibration strategy. The skill scores of the temporal dynamics are obtained with the Kling-Gupta efficiency ( E KG ) for Q and the Pearson’s correlation 

coefficient ( r ) for S t and S u . The spatial pattern efficiency ( E SP ) is used to assess the spatial representation of S u . The benchmark model performance is given for the 

Q-only calibration as a reference. The skill scores are ranked from the highest (bluest) to the lowest (reddest). 
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otential pitfalls of the basin-average calibration. The highest improve-

ent of the spatial patterns of S u is obtained with case SB ( + 101%), fol-

owed by case SP ( + 93%) and case PW ( + 85%), while case BA ( + 76%)

rovides the least improvement ( Fig. 7 b). 

.3. Analysis per climatic zone 

The analysis of the model performance according to climatic zones

s done for all hydrological processes except Q because of the few gaug-

ng stations, which are unevenly distributed across the VRB (cf. Fig. 1 ).

he results reveal contrasting model performances across climatic zones

 Fig. 9 ). Additional results are provided in the supplementary material

Figures S3-S11). 

In average, the model performance at predicting the temporal dy-

amics of S t and the spatial patterns of S u is higher in the intermedi-

te climatic regions (i.e., Sudano-Sahelian and Sudanian zones) than in

he driest and wettest regions (i.e., Sahelian and Guinean zones) of the

RB. In terms of the temporal dynamics of S u , the model performance

ecreases slightly from the driest to the wettest regions. 

In general, the multivariate calibration scenarios with evaporation

atasets lead to a higher model performance for all hydrological pro-

esses in all climatic zones, as compared to the Q-only calibration ( Fig. 9 ,

igure S13). Although the GLEAM products globally perform well, they

re the least effective at predicting the temporal dynamics of S t in the

ahelian zone. The top three best evaporation datasets for improving the

verage model performance across climatic zones are SSEBop, MERRA-

 and ALEXI for the temporal dynamics of S t , MERRA-2, GLEAM v3.3a

nd GLEAM v3.2a for the temporal dynamics of S u , and GLEAM v3.3b,

LEAM v3.3a and GLEAM v3.2a for the spatial patterns of S u . Similar to

esults obtained at the entire VRB scale ( Section 3.1 ), MOD16A2, SEBS

nd ERA5 still show the lowest contribution in improving the model per-

ormance across different climatic zones. More details on the ranking of

he evaporation datasets are provided in the supplementary material

Tables S1-S5; Figures S14, S21 and S40). 

Contrary to the basin scale analysis, case SP is the least efficient cal-

bration strategy per climatic zones. This result can be justified by the

act that the model calibration on the spatial patterns of evaporation

atasets is done at the scale of the VRB. Consequently, the spatial vari-

bility of hydrological processes at large scale is not representative of
he climatic zones where the patterns are more homogenous. For regions

ith strong spatial variability, sub-region model calibration on spatial

atterns can be a way forward in overcoming the pitfalls of domain-wide

alibration, thereby ultimately resulting in a higher model performance.

. Discussions 

The results presented are primarily valid for the VRB because er-

ors in evaporation estimates are known to vary according to region

 Hartanto et al., 2017 ; Sörensson and Ruscica, 2018 ). However, the

nnovative model evaluation approach proposed in this study is not

ocation-specific and can be applied to other regions using a grid-based

ydrological model. The robust evaluation approach for evaporation

atasets is based on multiple hydrological processes, and responds to

he recent call of the scientific community for process-oriented diagnos-

ics of earth system models ( Maloney et al., 2019 ; Melsen et al., 2016 ).

he same methodology can be deployed for the evaluation of other spa-

ial observational datasets such as gridded soil moisture estimates using

obust metrics ( Dong et al., 2019 ), and subsequently be used to estimate

heir value for hydrological modelling. Moreover, this study highlights

he potential of satellite and reanalysis evaporation datasets to improve

he representation of various hydrological processes, which might guide

odellers in choosing the adequate product for their applications, and

upport the data developers in their quest of improving global estimates

f evaporation ( McCabe et al., 2019 ). It must be noted that the overall

anking in Fig. 9 does not systematically determine whether a dataset

s good or bad, rather it shows which evaporation product provides the

ighest or lowest model performance for a given hydrological flux or

tate variable. Only the skill scores allow a judgement on the ability of

 given dataset to yield a good model performance. 

There might be uncertainties related to the rescaling of the evapo-

ation datasets from their native spatial resolutions to that of the hy-

rological modelling resolution. However, for a fair comparison, all the

atasets should be used at the same spatiotemporal resolution. The high

erformance of the GLEAM datasets is most likely due to the integra-

ion of soil moisture information in the calculation of actual evapora-

ion. Therefore, GLEAM is expected to perform well for hydrological

odelling. Surprisingly, MERRA-2 ranks among the best evaporation
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atasets notwithstanding its coarse spatial resolution. The high per-

ormance of MERRA-2 can be explained by its high temporal resolu-

ion, which might compensate its lower spatial resolution. In general,

here is no clear tendency of SRS datasets to outperform the reanal-

sis datasets, and vice versa. Thus, besides their use as forcing data,

eanalysis datasets represent a valuable source of information for the

alibration of hydrological models. Satellite data of soil moisture and

errestrial water storage used for model evaluation in this study are not

ree of errors. However, at large scale and in poorly gauged regions, they

re the only source of data that can be used for spatial model evaluation

 Peters-Lidard et al., 2019 ). 

Overall, this study strives to provide solutions to some of the cur-

ent challenges in hydrology (i.e., modelling methods, uncertainty and

patial variability; Blöschl et al., 2019 ). The proposed methodology rep-

esents an innovative way to use satellite and reanalysis datasets to

mprove process representation in hydrological models ( Clark et al.,

015 ; Peters-Lidard et al., 2017 ), develop hydrological water account-

ng ( Hunink et al., 2019 ) and advance prediction in ungauged basins

 Hrachowitz et al., 2013 ; Zhang et al., 2019 ). 

Future studies should test the advantages of a multi-scale calibra-

ion framework that accounts for both domain-wide and sub-domain

patial heterogeneity, which might lead to better prediction of spatial

atterns across climatic zones at large scale. Calibration strategies with

ultiple non-commensurable variables as well as spatial patterns is a

ay forward in advancing process representation in hydrological mod-

ls ( Dembélé et al., 2020a ; Nijzink et al., 2018 ; Zink et al., 2018 ). More

mportantly, the choice of the calibration strategy or the objective func-

ion is determinant for high model performance, mainly under a chang-

ng environment ( Fowler et al., 2018 ; Schaefli et al., 2010 ). Uncertain-

ies in the structure of the mHM model might influence the modelled

ydrological processes. For instance, the calculation of actual evapora-

ion ( Section 2.1 ) might be subject to a double accounting of stress from

oth the leaf area index and soil moisture. However, in such case, the

ources of stress can be proportionally adjusted by the model parame-

ers during the calibration. Further work should investigate the impact

f different model structures on the methodology proposed in this study,

nd assess the parameter sensitivity of mHM depending on calibration

trategies and variables, which is beyond the scope of the current study.

esides improving model calibration, satellite and reanalysis datasets

an play an important role in identifying deficiencies in model struc-

ures and contribute to model improvement ( Hulsman et al., 2020 ). As

he accuracy of the satellite and reanalysis datasets depends on the qual-

ty of the input meteorological datasets used for their production, it is

lso important to assess the impact of precipitation datasets on evapo-

ation modelling ( Dembélé et al., 2020b ; Mao and Wang, 2017 ; Or and

ehmann, 2019 ). 

Finally, an ensemble product that merges different evaporation

atasets is a potential way forward in reducing regional uncertainties

nd thereby improving global estimates (da Motta Paca et al., 2019 ;

iménez et al., 2018 ). Such advances in evaporation product develop-

ent can facilitate prediction in ungauged basins using earth observa-

ions. 

. Conclusion 

Four model calibration strategies are used to evaluate twelve satellite

nd reanalysis datasets in the large transboundary Volta River basin lo-

ated in West Africa. The experiment is done with the mHM model over

he period 2003-2012. The key findings can be summarized as follows: 

- Satellite and reanalysis datasets can improve the predictive skill

of the hydrological model if the appropriate calibration strategy is

used. 

- Overall, MERRA-2, GLEAM v3.3a and SSEBop individually provide

the highest contribution in improving the model performance. 
- Model calibration on the full extent of the gridded evaporation

datasets result in a higher model performance than calibration on

basin-average estimates. 

- Using only the spatial patterns of gridded evaporation data for model

calibration, and not their absolute values, yields higher model per-

formance than classical approaches based on basin average evapo-

ration signal or based only on streamflow. 

- Contrasting spatial patterns of soil moisture are obtained depending

on the modelling scenarios, with differences in the model perfor-

mances according to climatic zones. 

These findings contribute to solving current challenges related to

arge-scale hydrological modelling and provide avenues for improving

rocess representation with the use of increasingly available satellite

nd reanalysis datasets. Improving the representation of the spatial pat-

erns of hydrological processes should be a key consideration in mod-

lling with spatially distributed models, which would allow better pre-

icting floods and droughts. Moreover, the results provide insights to the

evelopers of the evaporation datasets and might serve of guidance for

uture developments. However, a replication of the proposed methodol-

gy to evaluate evaporation datasets should be applied in other regions

ith different hydro-climatic conditions, and with different hydrolog-

cal and land surface models. Future work should also investigate the

ossibility of prediction in ungauged basins solely from earth observa-

ion datasets, which are increasingly and readily becoming available. 
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