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ABSTRACT

Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hy-

drology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions

across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale

hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested

across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are

evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-

scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native

resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is

able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical

characteristics. The model yields generally better results (with lower spread of model statistics) in basins with

higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of

seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by

total water storage anomaly, and the least for soil moisture. Results show that constraining the model against

streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary var-

iables. The study emphasizes the need to account for other complementary datasets besides streamflow during

parameter estimation to improve model skill with respect to ‘‘hidden’’ variables.

1. Introduction

Since the pioneering work of Crawford and Linsley

(1966), the efficiency of computational hydrologic models

has been evaluated against streamflow observations that

are available at determined locations within a river basin

(Dawdy and Lichty 1968; Sorooshian and Dracup 1980;

Duan et al. 1992; Bergström1995; Seibert 2000; Hundecha

and Bárdossy 2004; Troy et al. 2008; Yilmaz et al. 2008;

Samaniego et al. 2010; Kumar et al. 2013a). This kind of

continuous in situ measurement is essential for under-

standing the governing relationships between rainfall and

runoff in a particular drainage basin. The information

content of this time series fundamentally differs fromother

point measurements such as soil moisture and latent heat

in the sense that it represents the integral basin response

to a sequence of hydrometeorologic events under partic-

ular physiographic and climatic conditions that uniquely

characterizes a river basin. Because of this fundamental

characteristic, streamflow gauging has been and will be

part of the core of national hydrometeorologic monitoring

programs and the basis for sound water resources man-

agement. It is therefore not surprising that streamflow time

series has been the focus for seminal hydrologic work in

the past (Kuichling 1889; Sherman 1932; Horton 1935;

Hurst 1951; Nash 1958; SCS 1973; Rodriguez-Iturbe and

Valdes 1979).

In recent years, however, a tendency toward a more

comprehensive assessment of model structural ade-

quacy has taken shape, with an overall aim to improve

the representation of different hydrological processes

incorporated within a model (Clark et al. 2011; Gupta

et al. 2012; Shuttleworth 2012). The rationale behind this

assessment is the need to get the right answers for the

right reasons (Blöschl 2001; Kirchner 2006), which goes

beyond just assessing the model performance against

observed streamflow or associated signature measures

Corresponding author address: Luis Samaniego, Helmholtz

Centre for Environmental Research–UFZ, Permoserstrasse 15,

04318 Leipzig, Germany.

E-mail: luis.samaniego@ufz.de

JANUARY 2016 RAKOVEC ET AL . 287

DOI: 10.1175/JHM-D-15-0054.1

� 2016 American Meteorological Society

mailto:luis.samaniego@ufz.de


(Samaniego and Bárdossy 2007; Yilmaz et al. 2008;

Kumar et al. 2010; Pokhrel et al. 2012; Euser et al. 2013).

Additional motivation for such assessment is driven by

the growing need to simulate spatially distributed land

surface fluxes controlled by local soil moisture avail-

ability and land surface hydrology. Consequently, com-

plementary datasets representing internal hydrologic

states and fluxes, such as soil moisture and evapotrans-

piration, are required to achieve this goal. New kinds of

observations and/or proxy data obtained from remote

sensing and/or in situ measurement are becoming in-

creasingly available, although at different spatial and

temporal resolutions, for example, monthly total water

storage (TWS) anomaly from the Gravity Recovery and

Climate Experiment (GRACE) at 18 3 18, near-surface
soil moisture from the European Space Agency (ESA)

Climate Change Initiative (CCI) at 0.258 3 0.258, and
30-min eddy flux measurements of latent heat with a

footprint of hundreds of hectares.

Several recent studies have evaluated the capability of

hydrologic and/or land surface models to represent in-

ternalmodel fluxes and/or states (Li et al. 2012; Livneh and

Lettenmaier 2012; Sutanudjaja et al. 2014; Cai et al. 2014;

Xia et al. 2014, 2015). A common shortcoming in these

studies has been the incompatibility of the scales at which

simulated state variables and fluxes are compared with the

observations (i.e., data are measured at different spatial

scales from those at which models usually operate). The

scaling issue poses a major obstacle in performing a com-

prehensive model evaluation (Blöschl 2001; Samaniego

et al. 2010; Tetzlaff et al. 2010; Gentine et al. 2012). Often,

the in situ measurements of soil moisture or the evapo-

transpiration inferred at eddy covariance sites are com-

pared with much coarser griddedmodel outputs (Xia et al.

2014, 2015). In situmeasurements often exhibit much finer

support than the smallest representative elemental volume

of hydrologic models (Blöschl et al. 1995; Wood 1995;

Blöschl 1999).
This scale discrepancy problem is exaggerated when a

model is evaluated simultaneously against multiple data-

sets available at different spatial resolutions. In such a

case, different up- and downscaling rules have to be

employed to enable comparison between simulations and

observations. Alternatively, a quasi-scale-independent

model parameterization scheme that allows us to re-

liably represent processes at different spatial resolutions is

required to tackle this scaling problem. The latter has the

advantage that a process-basedmodeling approach can be

used to estimate hydrologic fluxes and states across mul-

tiple scales (Samaniego et al. 2010; Gentine et al. 2012;

Kumar et al. 2013b). Most of the existing modeling ap-

proaches, however, exhibit scale-dependent performance,

which means that the model parameterization obtained

at a given spatial resolution induces large bias in hydro-

logic fluxes and states when applied to other resolutions

(Haddeland et al. 2002; Boone et al. 2004; Stöckli et al.
2007; Troy et al. 2008; Samaniego et al. 2010; Kumar

et al. 2013b).

Recently, Samaniego et al. (2010) proposed amultiscale

parameter regionalization (MPR) method that allows one

to make hydrologic predictions at different scales using a

same set ofmodel (transfer) parameters but without losing

much of the model performance. The method explicitly

accounts for the subgrid variability of the essential aspects

of the physical processes that are embedded within model

parameters (e.g., soil porosity) and ensures that water

fluxes simulated at different scales are comparable. The

MPR method incorporated within the mesoscale hydro-

logicmodel (mHM; Samaniego et al. 2010) has been tested

across a variety of climate and land surface conditions at

different spatial resolutions ranging from 4 to 100km

(Kumar et al. 2010, 2013a,b; Samaniego et al. 2013). To

date, these scaling studies have mainly focused on

evaluating model performance against streamflow and

conducting flux-matching experiments using modeled

variables at multiple scales and locations.

In this study, we specifically evaluate the ability of the

MPR method to reproduce the spatiotemporal dynamics

of various water fluxes and states observed at multiple

resolutions. The model parameterization constrained us-

ing streamflow observations across 400 European river

basins is evaluated against complementary datasets that

include gridded upscaled in situ evapotranspiration (ET)

data, satellite-based soil moisture (SM), and TWS anom-

alies, as well as local-scale eddy covariance data and their

native resolutions. Alternative data fusion possibilities

(such as data assimilation) to mitigate the limitations of

models are beyond the scope of the present study and

require future investigation. The multiscale evaluation

approach followed here differs from previous hydrological

model assessment studies that have covered the European

domain using, for example, the LISFLOOD model

(Wanders et al. 2014), the PCRaster Global Water Bal-

ance (PCR-GLOBWB) model (Wada et al. 2010;

Sutanudjaja et al. 2014), or theWater–Global Assessment

and Prognosis (WaterGAP) model (Werth and Güntner
2010).Although these studies focused on evaluatingmodel

skill on multiple variables, they have been operated on a

limited number of basins and/or with little consideration of

the scaling discrepancy problem while verifying model

outputs against observations.

We hypothesize that parameter estimation based only

on streamflow-related metrics is a necessary but not

sufficient condition to warrant the proper partitioning of

incoming precipitation P into various spatially distrib-

uted water storage components (e.g., SM) and fluxes
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(e.g., ET). In the presented study, the multiscale and

multivariate verification of water fluxes and states is

carried out by executing mHM in a ‘‘seamless manner’’

(i.e., multiscale model simulation, in which each scale

realization can be run simultaneously using a same set of

model transfer parameters) at the native resolutions of

available datasets varying from 0.5 to 100 km.

2. Data and methods

a. Study area and datasets

The study is carried out in 400 European river basins

(Fig. 1a) with drainage areas varying from 102 to 106km2.

These basins span across distinct climate conditions

ranging from the dry summer subtropical (in the Medi-

terranean, southern Europe) to maritime temperate (in

western Europe) and warm summer continental (in

eastern Europe) climate types, according to the Köppen–
Geiger classification (Rubel and Kottek 2010). Figure 1a

shows the span of runoff ratio (Q/P) that represents the

long-term average partitioning of the precipitation P into

runoff Q and actual ET (ET). The runoff ratio is a

comprehensive measure of physiographic basin and re-

gional climate descriptors (Berger and Entekhabi 2001;

Sankarasubramanian and Vogel 2002) that ranges be-

tween 0 and 1. Basins with smaller Q/P values represent

relatively drier conditions with higher evaporative rates

(e.g., southern Spain), while largerQ/P represents humid

or mountainous basins with lower evaporation rates (e.g.,

alpine regions).

The physiographical datasets used to set up the model

mainly include digital elevation models, soil textural

properties, and land-cover states. An overview of these

datasets is provided in Table 1. Since these datasets

are available at different spatial resolutions, they are

mapped on a common spatial resolution of 500m 3
500m. These fine-resolution datasets then allow one to

account for subgrid variability of basin physical char-

acteristics in parameter regionalization, as described

further in section 2b.

The meteorological forcings for the mHM consist

of the daily gridded fields of precipitation and aver-

age, maximum, and minimum air temperatures at

0.258 3 0.258 resolution for the period 1950–2010.

These datasets are acquired from the European daily

high-resolution gridded dataset (E-OBS, version 8.0;

Haylock et al. 2008). These fields were created using the

external drift kriging interpolation technique fromground-

based observation networks. The potential evapotranspi-

ration is derived using the temperature-based method of

Hargreaves and Samani (1982) at the same spatial reso-

lution (0.258 3 0.258).
Streamflow records are commonly used to constrain

the model parameterization and to evaluate its perfor-

mance. Daily streamflow data between 1950 and 2010

were obtained from the Global Runoff Data Centre

(GRDC) for this purpose. The data availability varies

from station to station, with the median record length of

43 years. All basins used in this study have undertaken a

first-order data quality check so that they do not violate

the physical constraints imposed by the Budyko re-

lationship (Budyko 1974) and do not exhibit any obvious

unnatural behavior in the discharge time series. More

detailed analysis, particularly on the degree of regulation

of European river basins, is deemed beyond the scope of

the study because of the lack of support information.

Besides streamflow, model performance is evaluated

--
FIG. 1. (a) Spatial map of themodeling domain showing the runoff ratio (i.e., Q/P) for 400 European basins used in

this study. The smaller basins are overlaid on larger ones. (b) The 36 donor basins provide an ensemble of plausible

parameter sets (i.e., g) constrained using the observed streamflow (different colors are used to distinguish between

individual basins).
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against complementary datasets, namely, the TWS

anomaly, actual evapotranspiration, and soil moisture. A

brief overview of these datasets is given below.

1) TWS ANOMALY

The TWS anomaly represents an important measure

of seasonal and interannual variability of the terrestrial

water storage and is of critical interest for water re-

source management. The state of TWS affects in-

filtration rates, subsurface flows, groundwater recharge,

and runoff generation (Li et al. 2012). The remotely

sensed anomalies of Earth’s gravity field retrieved by

GRACE (release 05; Landerer and Swenson 2012) are

used in this study to evaluate the simulated TWS of

mHM. The global GRACE gridded dataset has 18 3 18
spatial and monthly temporal resolution. Although the

GRACE product is available at coarse spatial and

temporal resolutions, its application in hydrologic

studies is increasing (Andersen et al. 2005; Zaitchik et al.

2008; Su et al. 2010; Li et al. 2012; Forman et al. 2012;

Livneh and Lettenmaier 2012; Cai et al. 2014; Orth and

Seneviratne 2015). The TWS anomaly is analyzed

using a combined product composed of different so-

lutions obtained from three processing centers: the

GeoForschungsZentrum (GFZ; Potsdam, Germany),

the Center for Space Research at the University of

Texas at Austin (United States), and the Jet Propulsion

Laboratory (United States). The TWS anomaly is calcu-

lated via removing their corresponding long-term mean

estimates, which cover the baseline period from January

2004 to December 2009 (NASA 2015). The arithmetic

mean of these three products used here is the most ef-

fective way to reduce noise in the gravity field within the

available scatter of the three solutions (Sakumura et al.

2014). The evaluation period for the TWS anomaly

ranges between 2004 and 2012.

2) ACTUAL ET

Actual ET (latent heat flux) includes evaporation of

water from soil, surface water bodies, canopy inter-

ception, and transpiration from plants leaves. It repre-

sents the second-largest flux of the hydrologic cycle; on

average, 60% of terrestrial precipitation is returned back

to the atmosphere via ET (Oki and Kanae 2006). In this

study, the modeled ET is evaluated against data at two

distinct resolutions from 1) finescale eddy covariance

observations at 27 CarboEurope sites (Göckede et al.

2008; Mauder et al. 2008) and 2) the 0.58 gridded ET

dataset derived from the Flux Network (FLUXNET)

observations (Jung et al. 2011).

Basic information for the eddy covariance stations is

provided in Table A1 (in the appendix). The footprint of

the observations covers approximately 700m. Only

stations with an almost complete record for the years

TABLE 1. Description of input and evaluation datasets. Acronyms: ECAD, European Climate Assessment andDataset; SRTM, Shuttle

Radar Topography Mission; CGIAR-CSI, Consultative Group on International Agricultural Research–Consortium for Spatial In-

formation; EEA, European Environment Agency; ESD, European Soil Database; and HWSD, HarmonizedWorld Soil Database. Other

acronyms are defined in the text.

Variable Description Reference

Model setup

Meteorological forcing inputs

(precipitation, air temperature, and

potential ET)

Daily E-OBS product at 0.258 3 0.258
resolution

ECAD (http://www.ecad.eu; Haylock

et al. 2008)

Terrain characteristics (e.g., elev, slope,

aspect, flow direction, and flow

accumulation)

SRTM DEM data at 90m 3 90m

resolution

CGIAR-CSI (http://srtm.csi.cgiar.org;

Jarvis et al. 2008)

Land cover (e.g., major class: forest,

permeable, and impervious cover)

CORINE land-cover dataset at

100m 3 100m

EEA (http://www.eea.europa.eu)

Soil textural properties (sand and clay

content, bulk density, and horizon

depth)

30 arc-s raster based on ESD HWSD (FAO/IIASA/ISRIC/ISSCAS/

JRC 2012)

Model evaluation

Streamflow data Daily observed streamflow GRDC (http://www.bafg.de/GRDC;

French basins; Giuntoli et al. 2013)

TWS anomaly Gridded product at 18 3 18 resolution GRACE (Swenson and Wahr 2006;

Landerer and Swenson 2012)

Actual ET Gridded product at 0.58 3 0.58 resolution FLUXNET (Jung et al. 2011)

In situ observations Eddy covariance sites (http://gaia.agraria.

unitus.it)

SM Gridded product at 0.258 3 0.258
resolution

ESA CCI (http://www.esa-soilmoisture-

cci.org; Liu et al. 2011; Dorigo et al.

2014)
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2004–07 are chosen from the CarboEurope database.

Data are processed after Papale et al. (2006), and unit

imputation (gap filling) is done by marginal distribution

sampling (Reichstein et al. 2005). Observed latent heat

fluxes were corrected by authors for missing energy bal-

ance closures with a Bowen ratio approach similar to

Kessomkiat et al. (2013).

The gridded FLUXNET ET product is acquired

from the Department of Biogeochemical Integration

at the Max Planck Institute for Biogeochemistry,

Jena, Germany. The FLUXNET ET product is ob-

tained by upscaling observations of biosphere–atmosphere

fluxes of carbon and energy from eddy covariance

flux tower sites using model tree ensembles (MTE;

Jung et al. 2011). The global monthly ET product is

available at 0.58 3 0.58 for the period 1982–2011. We

refer to Jung et al. (2011) for a detailed description

of the processing algorithm used to generate this

dataset.

3) ESA CCI SURFACE SM

SM acts as a switch and integrator of various energy

and water fluxes between the land surface and the at-

mosphere and is the life-giving substance for vegetation.

Correctly estimating the degree of soil saturation is the

key point in hydrological modeling because it influences

the partitioning of precipitation into ET and runoff. It

also has a direct effect on society in terms of agriculture

management as well as flood and drought predictions.

Moreover, it integrates precipitation and evaporation

over periods of days to weeks, thus introducing memory

in the hydrological cycle.

The ESA CCI provides a global SM product based

on the retrievals from four passive (SMMR, SSM/I,

TMI, and AMSR-E) and two active [the ERS Active

Microwave Instrument (AMI) and Advanced Scat-

terometer (ASCAT)] coarse-resolution microwave

sensors. The interested reader may refer to Liu et al.

(2011) and Dorigo et al. (2014) for detailed de-

scriptions of this dataset. The ESA CCI dataset rep-

resents near-surface SM (0.5–2 cm) at 0.258 3 0.258
spatial resolution for the period 1978–2013. The re-

cent study by Dorigo et al. (2014) shows that the skill

of the merged product compared to the skill of the

individual input products of the passive–active sensors

with respect to in situ observation has a comparable

and/or better performance than the individual input

products in terms of the Spearman rank correlations.

We emphasize that the ESA CCI SM product is re-

scaled to the dynamic range of the GLDAS Noah

surface soil moisture fields, and therefore it could not

be considered as an independent dataset representing

absolute true soil moisture (ESA 2015).

b. The mHM and the MPR

The mHM used in this study is a grid-based distributed

model that is grounded on numerical approximations of

dominant hydrologic processes applied in known HMs

such as the Hydrologiska Byråns Vattenbalansavdelning

(HBV; Bergström 1995) model and the Variable In-

filtration Capacity model (VIC; Liang et al. 1994).

Specifically, the model accounts for the following pro-

cesses: canopy interception, snow accumulation and

melting, SM dynamics, infiltration and surface runoff,

ET, subsurface storage and discharge generation, deep

percolation and base flow, and flood routing. The snow

accumulation andmelting processes aremodeled using a

modified degree-day method that accounts for the en-

hanced snowmelt during the intense precipitation events

(Hundecha and Bárdossy 2004). The incoming pre-

cipitation and snowmelt is partitioned into root-zone

soil moisture and runoff components, depending on the

degree of soil saturation, using a power function similar

to the HBV model. The model uses three soil layers to

describe the root-zone soil moisture dynamics: the depth

of the first soil layer is 5 cm, the second one is 25 cm, and

the third layer is up to 100 cm. The soil moisture pro-

cesses in the first two soil layers account for the variation

in soil organic matter over time with changes according

to land-cover type. Actual ET from soil layers is esti-

mated as a fraction of potential evapotranspiration de-

pending on the soil moisture stress and fraction of roots

in each soil layer. The runoff generation process in

mHM accounts for surface, fast- and slow-interflow, and

baseflow components. The interflow component repre-

sents the fast reaction to weather signals while the base

flow represents the slow and permanent groundwater

flow. Finally, the total runoff produced at each grid cell

is routed to the neighboring downstream grid cell via the

Muskingum–Cunge flow routing algorithm. For a com-

plete model description, interested readers may refer to

Samaniego et al. (2010; the model code can be down-

loaded fromwww.ufz.de/mhm). To date, mHMhas been

applied over a large number of river basins across

Germany, Europe, and the United States (Samaniego

et al. 2010, 2013; Kumar et al. 2010, 2013a,b; Livneh

et al. 2015; Thober et al. 2015).

The model uses three distinct levels of information to

better account for spatial heterogeneities of input data,

hydrological processes, and meteorological forcings.

The lowest level ‘0 describes information on input data

related to physiographical and morphological charac-

teristics of a basin. The intermediate level ‘1 is used to

model the governing hydrological processes, while the

highest level ‘2 contains information on meteorological

datasets. Typically, the spatial resolution of ‘1 and ‘2 is
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the same, on the order of kilometers depending on the

availability of the forcing dataset (24 km ’ 0.258 in this

study). The resolution of ‘0 input data is much finer than

the other two, on the order of hectometers (500m ’
0.0048 in this study).

The MPR technique (Samaniego et al. 2010; Kumar

et al. 2013b) is used to efficiently incorporate the

subgrid-level (‘0) information within the modeling level

(‘1) using a two-step parameterization technique (see

Fig. 2). In the first step, model parameters b0 (e.g., po-

rosity) are linked to available basin physical character-

istics (e.g., terrain slope or sand and clay contents)

using a set of pedotransfer functions f and global pa-

rameters g. This linkage is established at the ‘0 spatial

resolution to account for the subgrid variability of input

data and b0. In the subsequent step, the ‘0 fields ofmodel

parameters are aggregated to generate the effective re-

gional parameter fields b1 at themodeling level (‘1). The

aggregation is performed using upscaling operators such

as the harmonic, geometric, or arithmetic means, which

satisfy flux-matching conditions, that is, minimal dis-

crepancy between aggregated water fluxes simulated

across multiple resolutions. A set of global parameters is

usually inferred via a suitable parameter estimation

technique. This two-step parameter regionalization tech-

nique allows the model to run efficiently in a seamless

manner at multiple resolutions using the same set of

global parameters (see Fig. 2).

According to Gupta et al. (2014, p. 471), the benefit

of a regionalization method such as MPR stems from

the fact that it ‘‘regularize[s] the optimization problem,

limiting the degrees of freedom to a small number of

regional transfer function coefficients.’’ The MPR

technique, in addition to regularizing the optimization

problem, takes into account the subgrid variability

of the essential aspects of the physical process that

represents a given model parameter (e.g., soil porosity,

wilting point, or hydraulic conductivity). Previous

studies have demonstrated the effectiveness of the

MPR approach over other existing parameterization

techniques based on hydrological response units, lum-

ped parameterizations, and standard regionalizations

that do not account for the subgrid variability of model

parameters (Kumar et al. 2010, 2013b; Samaniego et al.

2010, 2011).

c. Experimental design and model setup

The goal here is to comprehensively evaluate the

skill of mHM to represent the spatiotemporal variability

of modeled fluxes and states at multiple scales. The ex-

perimental design of model parameter estimation and

seamless verification is schematically shown in Fig. 2. In

the initial phase, the model parameters are constrained

against observed streamflow to obtain an ensemble of

plausible model parameters (i.e., g) with the following

procedure.

1) For each basin, the following steps must be taken:

(i) Prior to the parameter estimation of the model

parameters, a subset of ‘‘informative’’ param-

eters g* is identified using the sequential

screening method developed by Cuntz et al.

(2015). This screening method is an adaption

of theMorris method (Morris 1991). In the first

iteration, the model is evaluated at several

points along trajectories of the parameter

space and elementary effects are determined.

Parameters with an elementary effect above a

certain threshold are considered to be infor-

mative. The next iteration of the method only

takes into account ‘‘noninformative’’ parame-

ters to test whether they are sensitive at other

regions of the parameter space. This iterative

procedure is repeated until no additional pa-

rameters are marked to be informative.

(ii) Find an optimal set of ĝ identified in the first

step by maximizing the Kling–Gupta efficiency

(KGE; Gupta et al. 2009). The shuffled complex

evolution (SCE) algorithm (Duan et al. 1993) is

used to maximize

max
ĝ

KGE(r,a,b) , (1)

with

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 1)2 1 (a2 1)2 1 (b2 1)2

q
,

(2)

where r is the Pearson correlation coefficient

between observed Qobs and simulated Q(ĝ)

streamflow; a denotes the measure of relative

variability in the simulated and observed values

(ratio of the standard deviations); and b is the

ratio between the mean simulations and mean

observations, that is, bias. The parameter esti-

mation period varies from basin to basin and

ranges between 4 and 16 years of data, depend-

ing on the availability of the observed stream-

flow. Prior to the model parameter estimation, a

default run in the period from 1951 to 2010 is

conducted to ensure appropriate initializations

of internal model states and fluxes. Addition-

ally, 5 years of data prior to the parameter

estimation period are used to spinup the model.

The model is executed at a daily time step and

292 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



spatial resolution of 0.258 3 0.258. The optimal

set of ĝ inferred by this procedure corresponds

to the complete basin and not to individual grid

cells. This step is repeated 10 times with random

initialization of the parameter space to partially

account for the uncertainty of the SCE algo-

rithm, and the best-performing parameter set is

selected.

(iii) Transfer ĝ to all remaining basins for stream-

flow cross validation. Estimate KGE(ĝ) as a

measure of transfer efficiency.

2) Select the best parameter sets ĝbest from the pool of ĝ

based on a cross-validationmedianKGEvalue larger

than a threshold k.

Following this procedure, an ensemble of the best 36

parameter sets (i.e., ĝbest) satisfying the threshold k of

0.55 is selected to represent the cross-validation un-

certainty of model output. The k criterion of 0.55 is not

directly related to performance in an individual basin,

but rather, it represents the median KGE value in a

cross validation over 400 basins. The location of the

respective 36 basins spans over the entire study domain

(Fig. 1b), which indicates the representativeness of the

donor sample.

In the second phase (Fig. 2, right), the ensemble of 36

parameter sets is used to conduct model simulations at

the native scale of the complementary datasets using the

following procedure.

For each parameter set ĝbest, take the following steps:

1) Estimate effective model parameters (i.e., b0) at ‘0
using transfer functions (i.e., f ) applied to the basin’s

physical characteristics u0 (Fig. 2, left).

2) Aggregate b0 to b1 at multiple modeling levels

(i.e., ‘1) using upscaling operators (indicated by

angle brackets h�i). The spatial resolution of ‘1 varies

from 0.0048 to 18 depending on the variable of

interest (Fig. 2, right).

3) Run mHM using the b1 fields at multiple scales and

evaluate its performance for selected water fluxes

and states.

Following the aforementioned algorithm, the model

is executed 36 times at the spatial resolutions of 18 3
18, 0.58 3 0.58, and 0.258 3 0.258 over the entire domain

and at 0.0048 3 0.0048 across 27 eddy grid points (see

Fig. 2).

The streamflow evaluation is conducted on the entire

record of available streamflow observations within the

simulation period 1951–2010. The model skill for com-

plementary gridded datasets is evaluated during the

period of 2004–10 for the ESA CCI SM product, 1982–

2011 for the gridded LandFlux ET data, and 2004–12 for

the GRACE TWS anomaly. The ET evaluation at eddy

flux stations is limited to the period 2004–07 because

of data availability issues. Three Coordination of In-

formation on the Environment (CORINE) land-cover

scenes corresponding to the years 1990, 2000, and 2006

are taken into consideration. Model simulations prior to

1990 use the CORINE 1990 land-cover map.

FIG. 2. Schematic of the experimental setup of the multiscale and multivariable model

evaluation. (left) The two-step MPR scheme to incorporate the subgrid variability of basin

physical characteristics (i.e., u0) available at ‘0. Effective parameters (i.e., b1) at ‘1 are esti-

mated using a set of transfer functions (i.e., f ), global (estimation) parameters (i.e., g), and

upscaling operators (i.e., angle brackets h�i). (middle) The subsequent procedure to estimate

a best set of global parameters (i.e., ĝbest) calibrated against observed discharge (i.e., Q), and

upscaling operators using the water fluxes matching conditions across multiple ‘1 resolutions

[variables Wi and wj denote the fluxes estimated at the coarser and finer cells i and j, re-

spectively; for more details, see Samaniego et al. (2010)]. (right) Illustration of the seamless

(multiscale) verification approach for water fluxes and states at multiple modeling scales ‘1 5
0.0048, . . . , 18, using the same subgrid level information (b0) and ĝbest.
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The model performance is evaluated using multiple

statistical criteria that includes r, a, and b [Eq. (2)], which

quantifies a mismatch between model and observations

with respect to the temporal dynamics, variability, and

biases, respectively. Additionally, the model evaluation

results are presented using a Taylor diagram (Taylor

2001). This two-dimensional diagram quantifies concisely

how well model simulations match observations in terms

of r, a, and the root-mean-square difference.

Finally, a two-dimensional histogram of the marginal

distributions of the observed and simulated values (also

called empirical copula) is used to describe the statistical

dependency between the marginal distributions of two

random variables (Nelsen 2006). The copula can be

generally written as

P(x#X, y#Y)5C[F(x),G(y)] , (3)

where x is the observed quantity with distribution

function F, y is the simulated value with distribution

functionG, the left-hand side of the equation is the joint

probability P of x and y, and C is the copula between F

and G. The copula-based model evaluation allows us to

quantify the stochastic dependence of simulated vari-

ables with respect to observations along the entire range

of the variable.

3. Results and discussion

a. Model evaluation using observed streamflow

The mHM performance for the median KGE values

between observed and simulated Q is depicted in

Fig. 3a. The results indicate that mHM is capable of

simulating daily discharge well over the pan-European

domain considering that around 70% of the total area

exhibits amedianKGE value exceeding 0.5. It should be

noted that the KGE values at a given basin are not ob-

tained by means of onsite parameter estimation, but

rather by transferring global parameters (i.e., ĝ) from

other basins. This guarantees consistent representation

of hydrological processes at different locations, because

the goal here is to obtain parameter sets that represent

hydrological fluxes and states across the entire domain

applicable for making predictions in ungauged basins.

Onsite parameter estimations yield even better perfor-

mances but increase the dimensionality of the parame-

ter space for the entire domain since each basin in this

case requires a set of global parameters. Additionally,

Fig. 3b shows the ensemble of the cumulative frequency

distributions of model performance based on 36 sets of

global parameters (i.e., ĝbest). This figure illustrates a

considerably narrow variation of model performance

due to equally well-performing parameter sets with

KGE values higher than 0.55 for 50% of the basins.

The model performance in terms of KGE tends to be

homogeneously distributed over space (Fig. 3a). Hot

spots of poorer model performance occur in notably

human-influenced river basins such as those in southern

Spain, where the pressure on water resources is high and

observed Q is far from natural conditions because of ir-

rigation diversions, hydroelectric power generation, and

flood control (Batalla et al. 2004; Lorenzo-Lacruz et al.

2012). The mHM does not include human-influenced

processes, as themajority of other rainfall–runoffmodels;

FIG. 3. (a) Spatial maps of the modeling domain showing median KGE values between observed and simulated

discharge for 400 European basins based on the cross-validation analysis (spatial model resolution of 0.258 3 0.258;
daily time step). (b) Cumulative frequency of the KGE values for the cross-validation uncertainty based on 36

parameter sets (gray), and the median KGE value (black) shown in (a).
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thus, below-normal performance is expected in those

areas. We note that the basins that violate the physical

constraints of the Budyko curve are removed prior to the

analysis, as discussed earlier; however, this first-order

quality check may not be sufficient to filter basins with

significant anthropogenic activities. The mHM perfor-

mance to simulate naturalized streamflow dynamics in

other heavily human-influenced U.S. basins is adequate

and comparable to other existing models (Kumar et al.

2013a; Livneh et al. 2015). However, the lack of natu-

ralized streamflow dataset in the present study domain

limits such types of model evaluation. Another hot spot

can be found in eastern Europe (Romanian Carpathian

Mountains) where the model systematically under-

estimates snowmelt-driven floods (in spring). The same

behavior is observed by onsite parameter estimation (not

shown). In addition to the model conceptual error, the

poor performance in these areas can be related to ob-

servation errors, such as the precipitation undercatch

discussed in the following section.

b. Factors influencing Q predictability

The model performance of KGE and its three com-

ponents [see r, a, and b in Eq. (2)] is further evaluated

in Fig. 4 for basic basin characteristics such as area, rain

gauge density, and runoff ratio (i.e., Q/P). In general,

the spread in uncertainty decreases with increasing

basin area and the model performance also tends to be

improved: KGE and r increase, while a and b converge

toward their ideal value of one. This type of model

performance dependency indicates that smaller basins

are more susceptible to errors in model inputs than the

larger ones, which also stems from averaging and the

central limit theorem. The closer to the representative

elementary area (REA), the more difficult it is to

model because of the increased effect of small pro-

cesses considered neither in the model nor in the data.

Such kinds of model dependency are also reported in

previous studies (Reed et al. 2004; Merz et al. 2009;

Kumar et al. 2013b).

Additionally, Fig. 4 depicts the relation between

model performance and rain gauge density (number of

rain gauges per 1000km2) to investigate the effect of

forcing uncertainty. The model exhibits systematically

better performance in regions with relatively higher rain

gauge density, particularly in terms of variability. This

promotes the importance of having a dense observation

network for meaningful hydrological simulations, which

is in particular important for capturing small-scale fea-

tures such as convective cells (Alfieri et al. 2014). The

median rain gauge density is 0.4 gauges per 1000km2 and

does not meet the standard of theWorldMeteorological

Organization (WMO) in which the tolerable rain gauge

density in flat regions is around 1–2 gauges per 1000km2,

while it increases to 4–10 gauges per 1000km2 for

mountainous regions (Dingman 2004). Therefore, a

precipitation product based on sparsely distributed rain

gauge data can lead to higher modeling errors arising

from imperfect precipitation estimates. However, we

would like to emphasize that E-OBS used here is the

best possible freely available dataset that exists at the

moment with a relatively long temporal coverage, large

spatial extent, and fine spatial resolution (Hofstra

et al. 2009).

Moreover, Fig. 4 illustrates that the model perfor-

mance with respect to Q/P is usually superior in in-

termediate physiographic and climatic regimes (0.3 ,
Q/P , 0.7), whereas the performance deteriorates

toward both extremes. Generally, the model tends to

overestimate the observed mean and variability in

relatively moisture-limited (dry) basins. Note that

these basins contain areas with human-influenced ac-

tivities where the model performs poorly (as discussed

before). On the other hand, the extreme energy-

limited basins exhibit a large bias and a systemati-

cally underestimated variance. These shortcomings

can be related to several factors: precipitation un-

derestimation due to lower rain gauge density, in-

sufficient evaporation rates, and/or model deficiency

in capturing subgrid snow processes. In general, the

spread of model statistics (r, a, and b) is considerably

lower and the model yields better results in basins with

higher rain gauge density, which is observed regard-

less of the selected basin characteristics (cf. gray filled

circles with black crosses in Fig. 4 and their median

values).

c. Spatial evaluation using complementary data

The model is further evaluated against the following

complementary data (not being used to constrain the

model) at monthly temporal resolution and native spa-

tial resolution, namely, fields of the TWS anomaly from

GRACE (18 3 18), ET from FLUXNET (0.58 3 0.58),
and SM from ESA CCI (0.258 3 0.258). Figure 5 shows

the model performance in terms of median r of the

original data (Fig. 5, top), median r of standardized

anomalies (Fig. 5, middle), and corresponding copulas

of the latter one (Fig. 5, bottom).

Overall, the model represents the TWS anomaly and

the actual ET adequately well, while the performance

for SM is not satisfactory in terms of correlation for the

original time series (Figs. 5a–c). Presented hydrological

variables exhibit strong seasonality and the perfor-

mance criteria based on, for example, correlation co-

efficient for such variables is not adequate to show the

actual model skill. Therefore, standardized anomalies
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of both observations and simulations are estimated by

removing their respective monthly means and stan-

dard deviations. The correlation for the standardized

anomalies shows, in general, deterioration for TWS

and ET, but slight improvement in SM when compared

to the data with retained seasonality (Figs. 5d–f). The

mHM results are consistent in findings of the recent

study by Orth and Seneviratne (2015).

FIG. 4. Basin area, rain gauge density, and runoff ratio as factors influencing model predictability of discharge in

terms of KGE (see also Fig. 3a) and decompositions into the three components [r, a, and b in Eq. (2)]. Black plus

signs show basins that have at least one rain gauge per 1000 km2, gray filled circles show otherwise, andmedian values

of the y axis are provided in corresponding colors. Kernel regression is used to produce a smooth red line for the

whole sample (black and gray).

296 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



A reasonably good agreement is achieved for TWS

anomaly in a large part of the study domain. A relatively

larger error can be observed in theAlps and coastal areas.

This can be attributed to the fact that mHM lacks the

capability to explicitly represent the glacial and tidal

processes in these areas. Also, the GRACE data are not

suitable to accurately quantify icemass changes in glaciers

(Jacob et al. 2012) and there are relatively higher mea-

surement and leakage errors provided in the GRACE

dataset along the coastal line. The leakage error of

GRACE stands for the ‘‘residual errors after filtering

and rescaling’’ from the raw original product to estimate

the TWS anomaly (NASA 2015).

The temporal dynamics of modeled ET resembles

quite well the FLUXNET-derived ET product with the

majority (75%) of cells exceeding correlation co-

efficients (i.e., r) larger than 0.9 for the original time

series, and larger than 0.59 for the standardized anom-

alies. Poor model performance is noticed on the Iberian

Peninsula. Notably, in these areas the model perfor-

mance for observed Q is also poor (Fig. 3).

In comparison with the two aforementioned variables,

r for soil moisture exhibits the poorest performance;

however, overall correlation is quite comparable to those

obtained in other recent studies (Dorigo et al. 2014;

Lievens et al. 2015). Stripes in the model performance

FIG. 5. Model performance of mHM simulations and (left) TWS anomaly (GRACE), (middle) actual ET

(gridded FLUXNET), and (right) SM (ESA CCI) observations in terms of medians of the Pearson correlation

coefficient of the (a)–(c) original time series, (d)–(f) standardized anomalies, and (g)–(i) empirical copula densities

of the standardized anomalies. Term F(x) is a distribution function of an observed variable and G(y) is a distri-

bution function of a simulated variable [see Eq. (3)]. The Spearman rank correlations are 0.61 for TWS anomaly,

0.55 for ET, and 0.49 for SM.
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may correspond to an artifact of the retrieval algorithm,

which is a typical characteristic in the observation

through satellite microwave instruments (ESA 2015).

Notably, the comparison between satellite-derived soil

moisture and distributedmodels is challenging because of

data and modeling reasons. First, there is limited in-

formation on the exact depth of the soil layer that is used

for the ESA CCI satellite product besides other potential

retrieval problems such as vegetation coverage, snow,

and ice content. Second, the biases across the statistical

moments are very typical for surface soil moisture data

derived from satellite retrievals, ground measurements,

and models so that they need to be quantified and cor-

rected (Reichle and Koster 2004). Third, the top thin first

soil layer of most distributed models is not a good rep-

resentation of actual soil moisture. Water evaporates as

vapor from the soil surface. Soil water models that cal-

culate only liquid water flow have to compensate for the

missing process of vapor transport. Most of the models

therefore include a very thin upper layer that counteracts

the liquid water flow. Soil moisture products such as from

cosmic-ray sensors (Zreda et al. 2012) represent larger

soil volumes (Köhli et al. 2015) and could become more

feasible for model–data comparison in future studies.

The overall model evaluation using empirical cop-

ula densities of the standardized anomalies shows a

strong statistical dependency between observations

and simulations in particular for high and low quantiles

(Figs. 5g–i). This has strong implications for drought and

flood monitoring using satellite products alone. The

statistical dependency for values in between the ex-

tremes is close to the diagonal but with considerable

spread for the three variables analyzed. This is related to

grid cells exhibiting low correlation coefficients between

their simulated and observed anomalies (Figs. 5d–f).

Among the three variables, the relationship between the

observed and simulated TWS anomaly exhibits larger

scatter because of the reduced sample size due to a

coarser spatial resolution and limited temporal avail-

ability of datasets (Fig. 5g). Overall, the copula densities

indicate that the matching between observations and

simulations needs to be improved for normal conditions

as compared to the extremes. The Spearman rank cor-

relations estimated based on these copulas vary from

0.49 to 0.61.

d. Basin-scale evaluation of modeled fluxes and states

The quantitative evaluation of model performance at

basin scale is presented with Taylor diagrams (Fig. 6) for

monthly estimates of Q, TWS anomaly, ET, and SM.

The basins are further classified into three categories

based on runoff coefficients (i.e., Q/P) representing wet

and/or mountainous, intermediate, and dry climatic

regimes. In general, the model is able to represent the

temporal dynamics of observed Q adequately well with

correlations varying between 0.75 and 0.95 in the ma-

jority of the analyzed basins. The observed variability is

also well captured by the model regardless of the Q/P

characteristics with a median a value of around 1. On

the other hand, the variability in ET is systematically

underestimated (a , 1), while temporal dynamics are

well represented with r exceeding 0.8 in the majority of

basins. Furthermore, the performance of the model is

relatively low for the total water storage anomaly and

SM. This is observed independently of the runoff ratio.

The correlation for the TWS anomaly ranges mostly

between 0.6 and 0.9 with higher values being noticed for

basins lying in the water-limited regime, which is also

seen in Fig. 5. The poorest performance among all an-

alyzed variables is observed for simulating the soil

moisture dynamics with r less than 0.6 in the majority

of basins.

Themodel performance in terms of correlation for the

original time series (shown in Fig. 6) is contrasted

against their corresponding standardized values for

different variables in Fig. 7a. All variables exhibit lower

performance for their standardized estimates with the

exception of soil moisture. The largest deterioration is

noticed for the ET followed by the TWS anomaly and

the least for Q. The sequence of this deterioration cor-

responds to the degree of seasonality among the ana-

lyzed variables. The best model performance for Q can

be partly attributed to the fact that the model is con-

strained against this variable. Despite the lower model

performance for standardized variables, the majority of

basins have r values above 0.4, which is well beyond the

threshold limit of 0.2 to be statistically significant at the

95% confidence interval.

Based on the results shown in Fig. 7a, the test of dif-

ferences in mean skill scores between the standardized

distribution of Q and other modeled variables have p

values lower than 1025. This indicates that the null hy-

pothesis that Q alone can sufficiently constrain model

components responsible for internal fluxes and states in a

cross-validation mode can be safely rejected. To further

support the aforementioned hypothesis, Fig. 7b differ-

entiates the results of the standardized anomalies into

two equally sized groups based on the median KGE

cutoff value of 0.55 (as discussed in section 3a). On

average, a significant deterioration in model skill score

(p value ,0.01) is observed for other complementary

variables in comparison to discharge, with the exception

of TWS anomaly, for which no conclusive deterioration

in model skill can be noticed for the worse-performing

basins. The deterioration is more pronounced for the

group of basins yielding on average better model
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performance in terms of discharge, which to some degree

reflects the overfitting of model parameters during the

parameter estimation against the observed discharge.

This also indicates that other complementary data

are required to appropriately constrain the model in

well-performing basins. Such datasets are also of great

usage in data-scarce regions, where streamflow obser-

vations are not available to constrain the model.

Finally, Fig. 8 shows themonthly dynamics of observed

and simulated fluxes and states for three randomly se-

lected basins in dry, intermediate, and wet climatic con-

ditions based on the runoff coefficients. The magnitude

and timing of Q are well matched and observations are

mostly covered within the uncertainty bounds. Contrary

to Q, ET and TWS anomaly exhibit very regular in-

terannual variability. The model is able to follow this

behavior quite well, although it tends to underestimate

the gridded FLUXNET ET in the intermediate and wet

basins. The largest discrepancy between the model and

observation occurs for SM consistent with our previously

discussed results.

e. Model errors in relation to water balance closure

The aforementioned results of basin-scale model

performance for different variables illustrate the exis-

tence of potential errors between observations and

simulations (Figs. 5–8). They can be attributed to a

number of factors, which can be mainly related to model

and input data errors. The former constitutes errors due

to the improper model structure and/or parameteriza-

tions, whereas the latter represents errors due to im-

perfect forcings and/or response variables. An analysis is

FIG. 6. Evaluating model performance in terms of r and a for Q, actual ET, TWS anomaly, and standardized SM

observations at monthly time step using Taylor diagrams. Data are normalized by the std dev of the observations and

classified according to the runoff ratio coefficient (i.e., Q/P).
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carried out to understand the relationship between the

errors in input data and errors in individual variables.

The residuals in water balance closure (P2Q2ET)

based on 20 water years (1989–2008) of observed P, Q,

and the gridded FLUXNETET, are taken as a proxy for

the input data error. This error is analyzed across basins

with different climatic characteristics and contrasted

against errors in simulated Q and ET.

Overall, the errors in water balance closure are rather

independent from the physiographical characteristics

FIG. 8. Time series of monthlyQ, actual ET, TWS anomaly, and SM standardized anomaly for three randomly selected basins: (left) the

Duero River at Toro (basin area’ 42 000 km2; Q/P 5 0.18), (middle) the Danube River at Zimnicea (basin area’ 660 000 km2; Q/P 5
0.41), and (right) the Rhine River at Basel–Rheinhalle (basin area’ 36 000 km2;Q/P5 0.72). Observations are shown in blue and mHM

simulations are shown given the cross-validation uncertainty with its 95% confidence bounds (light gray) and interquartile range (dark

gray). Note the different scales for Q.

FIG. 7. Evaluating model performance for Q, actual ET, TWS anomaly, and SM at monthly time step using the

correlation coefficient. (a) Correlation is derived for the original time series (red; identical to values shown in

Fig. 6), and the time series with removed annual cycle normalized by long-term std dev from the monthly data

(blue). (b) Results of the standardized anomalies are differentiated into two equal-sized groups based on the KGE

values yielding better-performing basins (abovemedianKGE) andworse-performing basins (belowmedianKGE).
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with a majority of the basins having average annual

values between 2200 and 100mmyr21 (Fig. 9a). The

negative water balance errors are caused by either an

underestimated source term (P) or an overestimated

sink term (ET 1 Q). Note that ET is not directly mea-

sured but is rather estimated by upscaling observations

of biosphere–atmosphere fluxes of carbon and energy

from eddy covariance flux tower sites with its own un-

certainties (Jung et al. 2011). As noted by Velpuri et al.

(2013), the errors in ET can yield up to 50% of the mean

annual ET values in certain regions. The underestima-

tion of P is likely due to inadequate representation of

rain gauge coverage failing to capture the small-scale

convective events.

The model overestimates the observed discharge in

basins where the positive water balance closure errors

occur (bQ . 1.05; Fig. 9a), while underestimations are

observed in basins with negative closure errors (bQ ,
0.95; Fig. 9a). This is further supported in Fig. 9b, which

indicates that the water balance closure error follows a

close relation with the errors between observed and

simulated discharge, with a correlation coefficient of

around 0.96. The ET errors do not exhibit any de-

pendency to observed water balance errors, since the

correlation coefficient is 0.02. The simulated ET esti-

mates averaged across the investigated basins are con-

sistently underestimated by approximately 70mmyr21

with respect to observations. Furthermore, the slope of

the best-fitted line between water balance closure error

and Q error is nearly one, meaning that, on average, a

100-mm water balance closure error would translate to

around 100mmof simulated streamflow error. The slope

can also be interpreted as the elasticity of the fitted line

here illustrating the sensitivity of proportional changes

in modeling error (in case Q) to the changes in water

balance closure error. Results of this analysis indicate

that a substantial part of the error in modeled variables

can be safely attributed to the erroneous observational

datasets. These results highlight the need for better

quantification of model errors together with erroneous

observational data.

f. Local-scale evaluation of ET

The multiscale evaluation of mHM is further carried

out against daily ET estimated at eddy covariance sta-

tions with distinct vegetation cover. Results of this

analysis, summarized in Fig. 10a, indicate that themodel

is able to capture the temporal dynamics of ET with

correlations ranging between 0.6 and 0.9 across 27 eddy

covariance stations. In analogy to the gridded-scale ET

simulation results (see Fig. 6), the model systematically

underestimates the observed variability, indicating the

lack of the model to represent the observed range of ET

dynamics (i.e., from dry to wet phases). Figures 10b–10d

show the time series of observed and modeled ET at

three distinct locations. The temporal dynamics of ob-

servations is well represented by the model at the forest

and grassland sites with correlations of more than 0.88.

Relatively poor performance is observed at the semiarid

savanna site (r 5 0.74). However, the model is able to

FIG. 9. Analysis of water balance closure error for the 179 basins with full coverage of observed data for the water

years of 1989–2008: (a) scatterplot between the runoff ratio andmedian annual water balance closure error with 95%

confidence bounds estimated using the bootstrapping method using 1000 bootstrap samples (gray lines). Color in-

dicates discharge model performance in terms of bias. (b) Relation between median annual water balance closure

error and bias between model and observation for streamflow (black) and evapotranspiration (gray).
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capture the observed variability, including the sudden

jumps in ET values observed at this savanna site. Fur-

thermore, the observed magnitude and variability of ET

at the grassland site is strongly underestimated by the

model, particularly during summer. This is because the

potential ET that is used to force the model at a local

scale is generally lower than the observed actual ET.

Results of this analysis provide a first-order confi-

dence that the parameter estimates obtained at much

coarser scales can be transferred to finer ones. There is,

however, a number of factors that influence the model-

ing results at the local scale, mainly related to the rep-

resentation of hydrological processes as well as input

data. For example, constraining the model against the

local forcings instead of large-scale E-OBS meteoro-

logical forcings may improve its performance. Another

limiting factor could be due to the estimation of

temperature-based potential ET estimates (Hargreaves

and Samani 1982), which do not account for other en-

vironmental factors, such as wind speed or humidity

(Cristea et al. 2012). Finally, the current model version

does not account for lateral flows, particularly relevant

at the small scales.

4. Conclusions

The performance of the mesoscale hydrologic model

(mHM) parameterized with the multiscale parameter

regionalization (MPR) technique is comprehensively

evaluated against various in situ and satellite-based

observations over 400 European river basins. The mul-

tiscale evaluation of internal model fluxes and states is

FIG. 10. (a) Comparison of the daily actual ET between mHM and local-scale estimated ET derived at 27 eddy

stations (see TableA1 in the appendix) between 2004 and 2007 using Taylor diagrams. Three daily ET time series are

shown for (b) evergreen needleleaf forest (Tharandt–Anchor in Germany), (c) grassland (Monte Bondone in Italy),

and (d) savanna (Mitra II in Portugal). The mHM simulations are shown for 36 best parameter sets (black).
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carried out at the native resolution of available data

varying from 0.5 to 100 km using an ensemble of cross-

validated model parameters constrained only against

observed streamflow. Results show that the model is

able to perform well for simulating daily discharge

over a wide range of climatic and physiographic condi-

tions with KGE greater than 0.55 in more than 50% of

the basins. The streamflow predictability deteriorates in

basins with a poor rainfall gauge network and in heavily

regulated river basins (e.g., southern Spain). Besides the

improvement needed in observational networks, further

efforts are needed to incorporate large-scale reservoir

operations, irrigation, and other human-induced water

withdrawal and storage activities.

The multiscale evaluation for the complementary

datasets generally shows reasonable but lower per-

formance in comparison to streamflow, which is used

to constrain the model parameters. The model shows

the best agreement with the gridded FLUXNET

evapotranspiration (r . 0.8), followed by the GRACE

total water storage anomaly (0.6 , r , 0.9) and the

least for the ESA CCI merged soil moisture (r , 0.6).

This performance is strongly related to the degree of

seasonality that the selected variable exhibits. The skill

of the model deteriorates when the annual cycle is re-

moved from each variable except for the soil moisture,

with a majority of the basins exhibiting r . 0.4 for the

deseasonalized complementary datasets. The analysis

of water balance closure errors indicates that a part of

the error in modeled variables is due to erroneous

observational datasets. While the error between the

observed and simulated discharge is closely related to

the errors in the water balance closure estimates,

modeled ET is consistently underestimated with re-

spect to observations on average by a constant error of

70mmyr21.

The local-scale evaluation of evapotranspiration at

several eddy covariance sites further supports the

functionality of multiscale parameterization of mHM.

While the model is able to capture the temporal dy-

namics of observed evapotranspiration at most of the

sites, it consistently underestimates the observed vari-

ability regardless of the locations. Besides improvement

in the model parameterization to account for the local-

scale processes in detail (e.g., subgrid variability of snow

and runoff generation processes), future studies may

focus on further enhancement in model performance by

constraining the model with site-specific information.

This study provides first-order confidence on the

ability of the mHM to simulate fluxes and states

across a range of spatial scales and varying climatic and

physiographic conditions. Because of the implemented

MPR technique, it has been possible to run the model

at disparate scales native to the observational data,

without recalibrating the model. Although the model

yields good performance while conditioned on ob-

served discharge, further improvements are expected

by optimally exploiting other reliable complementary

datasets together with the streamflow. Results of this

study indicate that the null hypothesis, that streamflow

alone can sufficiently constrain model components

responsible for internal fluxes and states in a cross-

validation mode, can be safely rejected. Therefore,

further research should focus on multivariate param-

eter estimation or assimilation schemes for improving

the ability to predict the regional water fluxes and

states over large domains.
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