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ABSTRACT

The concepts of model benchmarking, model agility, and large-sample hydrology are becoming more

prevalent in hydrologic and land surface modeling. As modeling systems become more sophisticated, these

concepts have the ability to help improve modeling capabilities and understanding. In this paper, their utility

is demonstrated with an application of the physically based Variable Infiltration Capacity model (VIC). The

authors implement VIC for a sample of 531 basins across the contiguousUnited States, incrementally increase

model agility, and perform comparisons to a benchmark. The use of a large-sample set allows for statistically

robust comparisons and subcategorization across hydroclimate conditions. Our benchmark is a calibrated,

time-stepping, conceptual hydrologic model. This model is constrained by physical relationships such as the

water balance, and it complements purely statistical benchmarks due to the increased physical realism and

permits physically motivated benchmarking using metrics that relate one variable to another (e.g., runoff

ratio). The authors find that increasing model agility along the parameter dimension, as measured by the

number of model parameters available for calibration, does increase model performance for calibration and

validation periods relative to less agile implementations. However, as agility increases, transferability de-

creases, even for a complex model such as VIC. The benchmark outperforms VIC in even the most agile case

when evaluated across the entire basin set. However, VICmeets or exceeds benchmark performance in basins

with high runoff ratios (greater than;0.8), highlighting the ability of large-sample comparative hydrology to

identify hydroclimatic performance variations.

1. Introduction

Hydrologic and land models typically evolve through

an iterative process of model refinement, evaluation,

and diagnosis. This process necessarily requires testing

these models against data. Traditionally, we compare

the performance of a set of models at reproducing the

observations; for example, via likelihood ratios or

Bayesian model selection methods, or less rigorously by

calculating error statistics across several competing

models (e.g., Henderson-Sellers et al. 1993, 1995; Duan

et al. 2006; Schlosser et al. 2000; Koster et al. 2004).

Recently, the hydrology and land modeling communi-

ties have made greater use of the scientific method in

model evaluation to reject amodel as inappropriate given

the available observational data (Peters et al. 2003; Vaché
and McDonnell 2006; Abramowitz et al. 2008; Best et al.

2015). The hydrology and land model evaluation com-

munities refer to this process as ‘‘model benchmarking’’

(e.g., Abramowitz 2005; Abramowitz et al. 2008; Luo et

al. 2012; Best et al. 2015; Nearing et al. 2016). A bench-

mark consists of the a priori data, the model, and derived

expectation of performance against which we test other

models. Benchmarking differs from other types of model

evaluation because we use the a priori model to define
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our expectations of performance, yet it is similar to tra-

ditional model evaluation in that we are still comparing

models across metrics based on observations.

This paper uses the benchmarking perspective to

evaluate a commonly used hydrologic model, the Vari-

able Infiltration Capacity model (VIC; Liang et al.

1994). The choice of the particular model is not espe-

cially important, outside of our requirement that it be

physically motivated. We are interested in un-

derstanding the extent to which a physically motivated

model uses available information and to identify op-

portunities for model improvement. We evaluate if VIC

is sufficiently agile to reproduce the observations, as

recent work has shown that physically motivated hy-

drologic models are too inflexible and thus limit their

performance capabilities (Mendoza et al. 2015; Cuntz

et al. 2016). We do this in two ways:

1) We systematically increase the agility of VIC by

providing flexibility in model parameters that are

typically neglected in VIC calibration efforts. The

ability of a model to simulate a variety of different

systems is referred to as ‘‘model agility’’ (Mendoza

et al. 2015).

2) We conduct analyses across the contiguous United

States (CONUS) covering a broad range of hydro-

climatic regimes using many watersheds (Newman

et al. 2014, 2015). Use of many basins allows for

robust statistical comparisons and identification of

systematic model performance issues (e.g., Duan

et al. 2006; Newman et al. 2015). Such effort in

comparative hydrology usingmany basins (e.g., more

than 30) is coined ‘‘large-sample hydrology’’ (Gupta

et al. 2014).

For our benchmark, we calibrated a parsimonious

bucket-style hydrologic model across many watersheds.

This model has fewer constraints in the form of physical

process descriptions than VIC, and therefore pre-

sumably has more flexibility in reproducing observed

behavior through parameter estimation. Bucket-style

hydrologic models are a useful benchmark because

they include some physical understanding of hydrologic

systems, and, unlike many statistical benchmarks,

bucket-style models include balance constraints.

Bucket-style hydrologic models are also typically low

dimensional (in terms of model states, parameters, and

input data), and there has been much research into the

calibration of this type of model (e.g., Duan et al. 1992;

Yapo et al. 1998). Bucket-style models therefore

provide a useful benchmark because they are easily

applied and widely understood and can provide a prac-

tical prior that includes the basic hypothesis of conti-

nuity (water balance).

The central question that we are asking here is, ‘‘Do

the physical parameterizations in the more complex

model improve our ability to simulate a variety of wa-

tersheds under a variety of conditions?’’ We ask this

question to evaluate the ability of large-sample hydrol-

ogy and benchmarking to provide useful insights on

model performance.

The remainder of the paper is organized as follows. In

the next section we briefly describe the input dataset,

basins, and the a priori conceptual hydrologic model,

and then we describe VIC and experimental design. We

then step through an iterative calibration and evaluation

of VIC, examining multiple calibration configurations

affording increasing model agility, each of which is

compared to the benchmark using several illustrative

metrics.

2. Watershed dataset and benchmark

It is advantageous to develop benchmarks for as

wide a range of hydroclimatic conditions as possible.

Large-sample hydrologic studies enable benchmark-

ing of models across a wide range of hydroclimatic

conditions, creating opportunities for more robust

hypothesis testing and identifying satisfactory or un-

satisfactory model systems or components. We use the

term ‘‘large sample’’ to indicate a collection of basins

greater than 30 that would ideally span as large a

range of basin characteristics as possible. These large

samples of basins allow for statistically meaningful

statements to be made using comparative hydrology

(Gupta et al. 2014). Modelers are increasingly able to

perform such studies because growing computational

resources have enabled so-called large-sample and

large-domain hydrologic modeling studies and data-

sets. These began with macroscale regional and con-

tinental hydrologic modeling efforts of the early 2000s

(e.g., Maurer et al. 2002; Lohman et al. 2004), and

more recently have yielded several large collections of

individual watersheds (e.g., Gupta et al. 2014, and

references therein; Chaney et al. 2015; Rakovec

et al. 2016).

In this study, we achieve broad and varied spatial

coverage using a large-sample, basin-scale hydro-

meteorology dataset developed by Newman et al.

(2014, 2015). This dataset comprises daily time step,

basin-mean forcing data, calibrated conceptual wa-

tershed models and their daily model output, and

observed streamflow observations for 671 basins

across the CONUS. We use the dataset to define the

basins used, their spatial extent, meteorological

forcing data, and observed streamflow data for cali-

bration and validation for all experiments. Figure 1
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highlights the basin locations and their aridity index.

More details regarding specific usage of components

of this dataset are given in the experimental design

(section 3).

The Snow-17 temperature index snow accumulation

and melt model (Anderson 1973), the Sacramento Soil

Moisture Accounting (SAC-SMA) model (Burnash

et al. 1973; Burnash 1995), and a unit hydrograph rout-

ing scheme are combined into a complete conceptual

hydrologic modeling system, hereafter referred to as the

River Forecast System (RFS). The RFS modeling sys-

tem is our a priori model. We derived values of several

illustrative metrics [daily Nash–Sutcliffe efficiency

(NSE), volume bias, seasonality bias, and flow variabil-

ity; see section 4 for details] from the calibrated RFS to

define our benchmark performance metrics for ade-

quate VIC performance.

We argue that selecting a calibrated conceptual

hydrologic model as a benchmark is a useful practical

application of the concepts in Nearing and Gupta

(2015), that a benchmark should provide proper

context for testing a model. In our case, the system is

the RFS, but other simple conceptual modeling

schemes may equally serve this purpose. This type of

model is suitable for use in benchmarking because

1) a robust global optimization routine can extract a

large amount of information, meaning that the cali-

brated RFS is functionally similar to a purely statis-

tical reference model (e.g., Abramowitz 2012; Best

et al. 2015); 2) unlike many statistical models, the

RFS closes the water balance [P 5 ET 1Q 1 DS; for
precipitation P, evapotranspiration (ET), discharge

Q, and storage S] and preserves important in-

teractions between state variables and other ob-

served features of hydrologic systems; and 3) the RFS

has been and is still in wide use across the hydrologic

community, providing a familiar benchmark for the

hydrologic sciences community. The RFS is much

less complex and computationally intensive than

VIC, even in the greatly simplified VIC configuration

we use here. With water balance and state in-

teractions within the a priori model, we are also able

to perform physically motivated benchmarking using

metrics that relate one variable to another (e.g.,

runoff ratio).

3. Experimental design

Our experiment compares four implementations of

VIC, each with different parameter flexibility and cor-

responding agility, versus the RFS-derived metrics,

across the collection of watersheds. The objectives are

to determine the impact of parameter-related model

agility on VIC’s effectiveness in using information as

measured by common metrics and to identify deficits in

performance.

We adopt a split-sample calibration (water years

2000–08) and validation (water years 1990–99) ap-

proach using 10 years of continuous model warm up

prior to the calibration and validation phases. We

subset the complete Newman et al. (2014) basin list

to remove basins with nontrivial area discrepancies

between the geospatial fabric developed by the USGS

Modeling of Watersheds group (Viger and Bock 2014)

and the USGS Geospatial Attributes of Gages

for Evaluating Streamflow, version 2 (GAGES-II;

Falcone 2011), basin boundaries (Bock et al. 2016) as

well as basins larger than 2000 km2. Table S1.1 (see the

online supplemental material) contains a list of all 531

basins used. Additionally, we hold constant the snow

correction factor (SCF) and rain/snow threshold tem-

perature from the Snow-17 model (at 1 and 273.15K,

respectively), leaving 18 calibrated parameters in the

RFS in this configuration (Table S1.2). Fixing SCF

keeps the forcing input data consistent between VIC

and RFS (i.e., we impose the constraint that the RFS

cannot scale its precipitation input, as occurs in many

RFS applications).

Both the RFS and VIC parameters are optimized

via the shuffled complex evolution (SCE) algorithm

(Duan et al. 1992, 1993) to minimize the daily root-

mean-square error (RMSE) between simulated and

observed flows. For VIC, calibration uses the multi-

scale parameter regionalization (MPR) estimation

method described in Samaniego et al. (2010) for key

VIC soil parameters (Table 1). Vegetation and ele-

vation band parameter fields were created by merging

default gridded VIC vegetation parameters within

four elevation bands per basin. Elevation bands

within the basin allow subbasin heterogeneity in pre-

cipitation and temperature while keeping the basin-

mean values unchanged. This is considered a model

FIG. 1. The distribution of the 531 basins used in this study from

Newman et al. (2014, 2015) and their corresponding estimated

observed aridity indices.
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structural feature of VIC as it is a key component of

VIC design. Default VIC parameters were taken from

the Bureau of Reclamation/U.S. Army Corps of En-

gineers VIC CMIP5 climate projection simulations

(Brekke et al. 2014; Wood and Mizukami 2014). We

use basin-mean forcing derived from the 1/88 Maurer

et al. (2002) forcing dataset compiled in Newman et al.

(2014) for all experiments, allowing any performance

variations to be attributable to model structure and

physics.

VIC, version 4.1.2h, was calibrated four times, each

with an increasing number of model parameters, to

demonstrate the impact of the increasing model agility

afforded by the additional parameter flexibility. The

first case (Table 1, case 1) holds fixed the default

semicalibrated VIC parameters (inherited from prior

studies, many of which used earlier VIC versions) and

allows calibration of only the routing model via the

parameters for the shape and scale of the unit

hydrograph, a gamma function. This model configura-

tion is equivalent to saying our default physically mo-

tivated model (and its parameters) encode our

knowledge of the hydrologic systems in question. Case

2 allows calibration of case 1 parameters and nearly all

of the commonly calibrated VIC soil parameters (e.g.,

Nijssen et al. 2001; Demaria et al. 2007; Shi et al. 2008;

Troy et al. 2008; Elsner et al. 2014; Oubeidillah et al.

2014). Case 3 includes case 1 and 2 parameters as

well as soil porosity and saturated hydraulic conduc-

tivity. Finally, case 4 includes all previous case pa-

rameters as well as minimum stomatal resistance and

monthly varying LAI, which are vegetation parameters

that control evapotranspiration (for a total of 13

parameters).

These four cases were developed to explore VIC

performance and agility through the lens of historical

VIC (and other complex model) calibration efforts. For

context, in the past, the additional case 4 parameters

were not calibrated because they were considered more

directly observable, hence ‘‘constrained,’’ than the soil

parameters. However, the default values are from spe-

cific (and limited) observation periods and locations and

contain large uncertainties. Case 3 soil parameters were

not calibrated because they were considered mostly

duplicative of the effects of the case 2 parameters. Re-

gardless of the reasoning behind the selection of cali-

bration parameters, each of our successive cases

enlarges the envelope of potential model behavior (its

agility) given fixed forcing and a prescribed calibration

objective function. Adding case 4 parameters allows

substantially greater control over the water balance by

offering a direct influence on evapotranspiration rates.

Without case 4 parameters, ET is most commonly

influenced in VIC indirectly by altering soil depths,

which influences the amount and timing of soil water

availability for ET, and vertical drainage rates. How-

ever, soil depths affect other characteristics of the rain-

fall runoff responses as well, making them a more

complex model control than vegetation parameters. In

many LSMs, in contrast to the practice surrounding

VIC, soil depths are fixed, and vegetation parameters

controlling ET are more often altered (e.g., Noah-MP;

Niu et al. 2011). Finally, past practice has been to cali-

brate fewer parameters in higher-order complexity

models such as VIC than in conceptual models for two

main reasons. Model parameters were attributed phys-

ical meaning in the former class of models and their run

times are often many times slower.

TABLE 1. VIC and routing model parameters used in different calibration cases. In the ‘‘Estimation method’’ column, VIC parameters

estimated via MPR are denoted with MPR, parameters estimated via application of multiplier of basin-mean value are denoted with

MULT, and direct parameter calibration is denoted with DIR.

Case VIC parameter name Description Estimation method Data source

1 Unit hydrograph scale Scale of unit hydrograph gamma delay routing DIR —

Unit hydrograph shape Shape of unit hydrograph gamma delay routing DIR —

2 binfilt VIC infiltration parameter MPR STATSGOb

D1 First baseflow parametera MPR STATSGOb

D2 Second baseflow parametera MPR STATSGOb

D3 Third baseflow parametera MPR STATSGOb

Depth soil layer 2 Depth of second VIC soil layer MPR —

Depth soil layer 3 Depth of third VIC soil layer MPR —

Total soil depth Depth of total VIC soil column MPR STATSGOb

3 Ks Saturated hydrologic conductivity MPR STATSGOb

Bulk density Bulk density of soil (used in VIC estimation of porosity) MPR STATSGOb

4 Cmin Min stomatal resistance MULT Maurer et al. (2002)

LAI Leaf area index MULT Maurer et al. (2002)

a From Nijssen et al. (2001).
b From State Soil Geographic Database (Miller and White 1998).

2218 JOURNAL OF HYDROMETEOROLOGY VOLUME 18



4. Results

Here we discuss the impacts of VIC parameter agility

on model performance using four metrics derived from

daily observed streamflow, NSE (Nash and Sutcliffe

1970), volume bias, relative flow variability (using the

standard deviation ratio), and a flow seasonality metric

compared to each other using case 1 as the base model

implementation (section 4a). This evaluation of VIC

flexibility is followed by a comparison of VIC with the

benchmark based on the entire basin set [e.g., proba-

bility density functions (PDFs); section 4b(1)] along

with spatial comparisons [section 4b(2)]. Finally, we

highlight basins for which VIC has significant perfor-

mance deviations using the NSE metric [section 4b(3)].

Note that because SCE is a single calibration approach

and we calibrated to daily streamflow observations,

these results should not be generalized to other variables

(e.g., latent heat flux), as they are not well constrained

by this calibration approach (e.g., Mendoza et al. 2015;

Rakovec et al. 2016).

a. Model agility

Figure 2 shows the cumulative density function (CDF)

of the NSE scores for each of the VIC calibrations cases

for the 531 study watersheds for both the calibration

(dashed) and validation (solid) periods. As expected,

calibrating only the routing model parameters in case 1

yields inferior performance. However, one interesting

feature of case 1 is increased validation period perfor-

mance. Anecdotally, we believe this is at least partially

because some of the semicalibrated case 1 VIC param-

eters were developed in the 1990s and early 2000s and

used the 1990s and prior decades as their calibration

period. For this study, the 2000s are the calibration pe-

riod and the 1990s are the validation period, which im-

plies that we are likely using at least part of the

calibration period for the default VIC parameters in at

least some basins for our validation period when vali-

dating case 1.

Increasing model agility by increasing the number

of calibrated parameters progressively improves

model performance in both the calibration and vali-

dation periods (Fig. 2a). The colored lines are in-

crementally farther to the right in the plots for the

calibration and validation phases when comparing

more agile to less agile VIC configurations (e.g., case 4

to case 1). Each additional parameter provides less

improvement (Fig. 2b), which may be a result of in-

sensitive or poorly identifiable parameters being se-

lected for optimization (e.g., Demaria et al. 2007), or

there is less information available for extraction as the

model agility increases.

However, proper exploration of the order of param-

eters in the calibration cases, their value in calibration,

and which parameters are potentially identifiable re-

quires formal sensitivity analysis and many variations in

the calibration scenarios in Table 1. This is an area of

active research and will be explored in the future. It is

highly likely that changing the order of the cases and/or

VIC parameters in the calibrations will lead to slightly

different results and the appearance of different higher-

importance parameters. However, the primary subject

of the paper is to explore ability of large-sample hy-

drology and a conceptual model benchmark to provide

statistically robust statements on model performance

through the lens of model agility in physically motivated

hydrologic models. The order of calibration is not im-

portant to explore the general impact of increased

model agility. Thus, we will avoid making any addi-

tional statements on the significance of performance

FIG. 2. CDFs of NSE for theVIC (a) cases 1 and 2 and (b) all four

cases. The RFS benchmark NSE (black lines) is included in both

panels. Solid (dashed) lines indicate performance in validation

(calibration) time periods.
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differences between cases 2 and 4 to avoid implication

that one VIC parameter (or parameter set) is more

valuable than another.

The benefits of increased model agility are evident not

only in the CDFs of NSE scores (Fig. 2), but also across

other hydrograph-related metrics. Figure 3a shows the

PDFs of normalized total flow biases for the four VIC

cases, and Fig. 3b displays the relative flow variability using

the standard deviation ratio: s(model)/s(observations)

(e.g., Gupta et al. 2009). Improvement in both metrics

coincides with increased agility as evidenced by narrower

PDFs as well as median values that are closer to zero or

one for flow bias and the variability ratio, respectively.

Table 2 summarizes VIC performance for each case

during the validation period. We assess whether the

marginal parameter additions of each successive case

provide statistically significant improvements in per-

formance at the 90% confidence level by estimating four

median-based statistics: 1) the median NSE, 2) median

absolute flow volume bias, 3) median absolute flow

seasonality bias, and 4) median absolute relative flow

variability ratio (deviations from 1, smaller numbers

denote better model performance), with 90% confi-

dence intervals estimated via bootstrapping with 1000

samples. For NSE only, we also use the one-sided

Kolmogorov–Smirnov (KS) test to compare the VIC

NSE CDFs with each other. A one-sided KS test will

identify CDFs for which the shift toward higher values is

statistically significant (again at the 90% level) and

provides a distribution-based statistical test rather

than a simple comparison of changes in median values.

Increasing VIC agility improves the median perfor-

mance across the basin set. All cases that include VIC

parameters in the calibration (cases 2–4) are signifi-

cantly better than case 1 for all median metrics except

case 2 for seasonality bias. Additionally, case 4 is sig-

nificantly better than case 2 for NSE, implying that

further increases in model agility are resulting in clear

performance increases. Minimal changes in volume bias

and the absolute relative flow variability ratio are ex-

pected among cases 2–4 because the objective function

(daily RMSE) minimally constrains bias, and the opti-

mal RMSE calibration results in an underprediction of

the variance (Gupta et al. 2009). Thus, once VIC is agile

enough to obtain a reasonable solution, further im-

provement in absolute relative flow variability is limited.

Finally, the one-sided KS test indicates that cases 2–4

are significantly better than case 1 across the entire NSE

distributions.

b. VIC benchmarking

Section 4a clearly shows that increasing the agility of

VIC provides significant improvements across a large

basin set, even above the typical soil calibration (case 2).

However, model improvements are only demonstrated

relative to case 1. It is useful to assess how well these

VIC cases perform relative to a model in which fewer

physical relationships are encoded. Comparisons using

observed streamflow from the entire large-sample basin

set give general model performance characteristics,

while spatial and hydroclimatic comparisons more ro-

bustly identify characteristics of model deficiencies.

With this in mind, we compareVIC performance against

the RFS benchmark.

1) OVERVIEW COMPARISONS

Case 2 yields better results than the base case, but its

performance is clearly worse than the benchmark

(Fig. 2a). Evenwith the optimization of routing, soil, and

vegetation parameters (case 4), VIC is still inferior to

the benchmark across the basin set as a whole (Fig. 2b).

FIG. 3. PDFs of (a) normalized flow volume bias and (b) flow

variability ratio. The diamonds along the x axis indicate themedian

of each PDF. Solid (dashed) lines indicate performance in valida-

tion (calibration) time periods.
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The last row of Table 2 includes the RFS summary sta-

tistics. VIC case 4 significantly underperforms the RFS

across the basin set for median NSE and across the

distribution of NSE using the KS test, with non-

significant differences in median absolute seasonality

and relative flow variability ratio. Case 4 has better

performance for median absolute volume bias.

We note that there are larger NSE differences be-

tween the calibration and validation period as the agility

of a model increases, suggesting more overfitting to

noise as the agility increases. Figure 4 highlights the

PDFs for the NSE differences (calibration minus vali-

dation) for the four VIC configurations and the RFS.

TheNSE differences for VIC cases 2–4 (90% confidence

interval) are 0.010–0.022, 0.013–0.027, and 0.021–0.036,

respectively. Although the VIC cases are not signifi-

cantly different (excepting case 1), there is a clear trend

of increasing NSE differences with increasing agility.

Additionally, the median NSE difference for the RFS is

0.044–0.057, which is significantly larger than the VIC

cases 2–4 differences. This result hints at a trade-off that

increasing model agility may result in less robustness

(i.e., overfitting): parameter flexibility is being used to fit

themodel to noise in the input/output data sample in the

RFS benchmark, and even for complex models such as

VIC in which a smaller fraction of uncertain model

parameters are exposed to calibration.

2) SPATIAL COMPARISONS

Figure 5 shows the geographic variations in NSE for

VIC case 4 and the RFS. VIC and the RFS perfor-

mance varies in a spatially similar manner, with high

NSE (.0.7) across the windward Pacific Northwest

(PNW; upper-left portion of Fig. 5) and NSE . 0.5

across most of the eastern third of CONUS. Along the

drier high plains (strip of blue just west of the central

United States) and desert southwest (lower-left por-

tion of Fig. 5), both perform worse. Note that the

better performance of the RFS in Fig. 2 across all

quantiles of the CDF does not imply that VIC is worse

for all locations. The difference field between VIC

case 4 and the RFS (Fig. 5c) is consistent with the

CDFs in showing that VIC is generally under-

performing (Fig. 2, Table 2). From Fig. 5c, the dif-

ferences between VIC case 4 and the benchmark

appear to be randomly distributed throughout

CONUS, with some tendency for VIC to perform

worse in basins across the western half of the domain

outside of the windward basins along the PNW coast.

Basins in the PNWwith low VIC skill nearly all fall on

the lee of the two mountain ranges in the region,

which are much drier basins. The windward PNW

coastline is extremely wet, while the lee slopes of the

PNW and most of the rest of the western half of the

United States are arid to semiarid.

3) HYDROCLIMATIC COMPARISONS

Both models perform better as runoff ratio increases

(not shown). Figure 6 shows pairwise differences of

VIC case 4 minus the RFS NSE as a function of the

estimated observed runoff ratio (using the forcing

precipitation). It shows a tendency for VIC to perform

worse relative to the RFS for basins with a low runoff

ratio than for basins with higher runoff ratios. Binning

TABLE 2.Validation period summarymetrics from the fourVIC calibration cases and theRFS a priori (configuration). Ranges given are

the 90% confidence intervals estimated from bootstrapping with replacement (N5 1000). Results are rounded to two significant digits for

readability, while statistical tests are applied to full precision values.

Configuration NSE (median) Volume bias Seasonality bias Flow variability ratio

Case 1 0.35–0.39 0.20–0.23 0.43–0.52 0.70–0.74

Case 2 0.52–0.55 0.10–0.12 0.41–0.50 0.44–0.48

Case 3 0.54–0.57 0.09–0.11 0.34–0.41 0.43–0.47

Case 4 0.57–0.59 0.09–0.11 0.33–0.39 0.41–0.46

RFS 0.60–0.62 0.13–0.15 0.27–0.33 0.39–0.43

FIG. 4. PDFs of NSE differences (calibration minus validation)

from the four VIC cases and the RFS. The diamonds along the x

axis indicate the median of each PDF.
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the basins by runoff ratio (bin sizes of 0.1 runoff ratio)

and computing median NSE differences and 90%

confidence intervals for all basins in a given bin using

bootstrapping helps illustrate this tendency. There is a

significant difference in favor of the RFS for nearly all

bins with runoff ratios less than 0.7, and there is a clear

relationship between VIC performance and runoff ra-

tio. Finally, VIC outperforms the RFS for basins with

runoff ratios greater than 0.8 at the 90% level, although

the sample size of these basins is relatively small

(26 basins).

Most surface hydrological models perform worse

for runoff generation in arid basins, particularly in

daily time step and watershed-scale configurations.

The models may miss processes such as surface–

groundwater interactions and channel losses, but

more importantly, since runoff forms only a small

component of the water balance, small relative errors

in the simulation of evapotranspiration result in large

relative errors in the simulation of runoff. Both of the

models used here perform worse in more arid basins in

general (e.g., Nijssen et al. 1997; Anderson 2002;

Demaria et al. 2007; Newman et al. 2015). However,

VIC performing worse relative to the RFS across arid

basins highlights specific research avenues for VIC in

arid catchments discussed in previous literature (e.g.,

Abdulla and Lettenmaier 1997; Nijssen et al. 1997;

Demaria et al. 2007).

Figure 6 shows outliers in both directions. An outlier

can be due to hydrologic model deficiency, errors in

observation data, errors in model implementation

(human coding errors), or other factors. This empha-

sizes the need to use large-sample studies; single-basin

(or small sample) studies can be drastically impacted

by outliers and may have no ability to identify them,

especially when they are conducted without a bench-

mark. As an example of a human coding error, an

earlier implementation of the calibration routine was

incorrectly updating soil depth, resulting in reduced

performance for case 2 relative to the benchmark,

particularly for basins with calibrated NSE values less

than roughly 0.3. Relative to case 1, only this erroneous

case 2 still had improved performance across all basins.

The reduced case 2 performance in the low NSE

basin subset was only identified with the benchmark

comparison.

5. Summary and discussion

The concepts of model benchmarking, model agility,

and large-sample hydrology have received increasing

attention in the literature recently (Abramowitz 2012;

Gupta et al. 2014; Newman et al. 2015; Mendoza et al.

2015; Best et al. 2015; Nearing and Gupta 2015). As the

FIG. 5. (a) VIC case 4 NSE, (b) RFS NSE, (c) VIC case 4 minus

RFSNSE difference field. Gray lines denoteUSGS hydrologic unit

code level 2 boundaries.

FIG. 6. NSE difference (case 4 minus RFS) for all 531 basins (red

crosses) and median difference with 90% confidence intervals de-

rived from bootstrapping (blue dots are median values, confidence

interval given by vertical blue lines) for bins (width of 0.1) of basins

by runoff ratio.
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hydrologic modeling community’s questions and mod-

eling systems become more intricate, these concepts

should be used to help improve our modeling capabil-

ities. Before further discussion, we summarize key

messages from this study: 1) increasing model agility is

key to increase physicallymotivatedmodel performance

across a wide range of basin hydroclimatic conditions in

a significant manner; 2) increased model agility likely

results in decreased model transferability; 3) model

benchmarking using large-sample comparative hydrol-

ogy allows for many statistically robust comparisons;

4) a conceptual model benchmark allows us to ask if our

physical parameterizations in a more complex model

actually improve our ability to simulate a variety of

watersheds under a variety of different conditions; and

5) as an example for VIC, performance increases as

runoff ratio increases and actually surpasses the con-

ceptual model benchmark.

The ability of a model to simulate a variety of dif-

ferent hydroclimate regimes and phenomena is re-

ferred to as model agility (Mendoza et al. 2015; Cuntz

et al. 2016). This might include capabilities to modify

the spatial structure, process parameterizations, and

parameter values (Clark et al. 2011, 2015). A lack of

model agility, as seen in many existing physically based

hydrologic models, hinders model evaluation and

model performance (Mendoza et al. 2015). It is clear

that increased model flexibility or agility, meaning ex-

panding the parameters available for calibration in this

case, leads to increased model performance (Figs. 2, 3;

Table 2). This is a largely expected result that parallels

outcomes in statistical modeling, where increasing the

degrees of freedom should increase model perfor-

mance (Hawkins 2004). However, it may not be guar-

anteed in complex physical system modeling, where

parameter optimization routines may not find the ob-

jective function global minimum because of the ill-

posed nature of these optimization problems (e.g.,

Duan et al. 1992; McLaughlin and Townley 1996; Yapo

et al. 1998; Vrugt et al. 2003; Arsenault et al. 2014). An

interesting result from these agility experiments is that

as model agility increases, the stability of the model

performance appears to decrease [section 4b(1);

Fig. 4]. This trade-off will need to be considered in

regional model implementation or parameter estima-

tion activities. These results illustrate the need to un-

derstand exactly how different physical hypotheses,

approximations, parameterizations, and assumptions

that are embedded in our models enable versus restrict

our ability to apply these models to general classes of

systems (e.g., continental-scale hydrology), and to un-

derstand whether the ability of our models to make

accurate and reliable predictions really comes from our

understanding of hydrological systems versus primarily

from regression. What do our models really know

about the governing processes of watersheds, and how

useful is this information in making predictions?

Benchmarking is a critical component of model

evaluation work. When combined with large sample

sizes, benchmarking can support a statistically robust

evaluation of model performance, facilitating the

identification of implementation or numerical errors,

and stronger conclusions, leading to greater insight

into model deficiencies that may help guide future

research and development effort. This is a strong ar-

gument for using more formalized benchmarking ap-

proaches discussed by Nearing and Gupta (2015). It is

also advantageous to the community that we identify

missteps or failures in our modeling endeavors along

with the successes (e.g., Andréassian et al. 2010). For

example, here VIC is generally less skillful relative to

the RFS, but as runoff ratio increases, the skill of VIC

increases, even slightly surpassing the RFS for very

efficient basins (Fig. 6). This result agrees with past

small-sample basin studies (e.g., Nijssen et al. 1997;

Demaria et al. 2007) that show VIC performs worse in

arid regions, but highlights that VIC performs worse

relative to a benchmark that also has degraded per-

formance in arid basins [section 4b(3); Fig. 6]. This

could direct future studies to examine processes in

VIC that generate runoff in arid basins. Additional

studies could also examine the feasibility of compiling

other observations across many of these basins to

examine other important variables such as surface

heat fluxes, soil moisture, etc., in this type of bench-

marking framework.

Finally, we suggest that using a calibrated concep-

tual hydrologic model that is relatively low di-

mensional (in model parameters, states, and input

data requirements), even if constrained by physical

relationships, offers an easily applied and widely un-

derstood practical benchmark for the community. The

inclusion of balance constraints and time lags into

the a priori model allows us to ask whether the phys-

ical parameterizations in the more complex model

improve our ability to simulate a variety of watersheds

under a variety of different conditions. This is very

similar to using the simple physically based Penman–

Monteith or Manabe bucket models for estimating

surface fluxes in Best et al. (2015). Here a higher level

of information usage in the a priori model is obtained

because it is calibrated using a robust global optimi-

zation routine. Yet, we likely do not estimate the

maximum information extraction possible because

the conceptual model encodes a priori structural and

physical assumptions that may or may not optimally fit
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the data. These assumptions likely result in errors and

information loss (Gong et al. 2013; Nearing and Gupta

2015); thus, this benchmark does not represent the

ideal data-driven maximum information extraction

benchmark discussed in Nearing and Gupta (2015).

Pursuit of such an ideal is a topic for future work.
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