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Abstract Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling.
However, the term ‘‘sensitivity’’ has a clear definition, based in partial derivatives, only when specified
locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique defi-
nition exists for ‘‘global sensitivity’’ across the problem space, when considering one or more model
responses to different factors such as model parameters or forcings. A variety of approaches have been
proposed for global sensitivity analysis, based on different philosophies and theories, and each of these
formally characterizes a different ‘‘intuitive’’ understanding of sensitivity. These approaches focus on dif-
ferent properties of the model response at a fundamental level and may therefore lead to different (even
conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensi-
tivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate
their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved
in interpreting ‘‘global’’ interaction effects, which may undermine the value of existing interpretive
approaches. With this background, we identify several important properties of response surfaces that are
associated with the understanding and interpretation of sensitivities in the context of Earth and Environ-
mental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity
analysis that effectively characterizes all of the important sensitivity-related properties of model response
surfaces.

1. Introduction

Sensitivity analysis (SA) is an important paradigm in the context of model development and application.
There exist a variety of approaches toward SA that formally describe different ‘‘intuitive’’ understandings of
the sensitivity of one or more model responses to different factors such as model parameters or forcings.
Further, the objectives of SA can vary with application, and a survey of the literature reveals that it has been
used to explore a variety of aspects and questions pertaining to model development and application. For
example, some of the different (in cases complementary) objectives of SA include:

a. Assessment of Similarity: Diagnostic testing and evaluation of similarities between the functioning of the
model and the underlying system, so as to assess fidelity of the model structure and conceptualization
[e.g., Clark et al., 2011; Gupta et al., 2008; Saltelli et al., 2004; Spear and Hornberger, 1980].

b. Factor Importance and Function: Identification, prioritization, and screening of the factors that are more
influential and contribute most significantly to variability and other characteristics of model/system
response [e.g., Muleta and Nicklow, 2005; Ruano et al., 2012].

c. Regions of Sensitivity: Location and characterization of regions in the factor space where the model/system
presents the highest variability in response to variations in the factors [e.g., Rakovec et al., 2014]. This is
instrumental in model calibration.

d. Factor Interdependence: Investigation of the nature and strength of interactions between the factors, and
the degree to which factors intensify, cancel, or compensate for the effects of each other [e.g., Lid�en and
Harlin, 2000; Nossent et al., 2011; Ratto et al., 2001].
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e. Factor and Model Reduction:
Identification of the nonin-
fluential factors and/or
insensitive (possibly redun-
dant) components of model
structure, usually so they
can be constrained or
removed so as to simplify
the model/analysis [e.g.,
Degenring et al., 2004; Nos-
sent et al., 2011; van
Griensven et al., 2006].

f. Uncertainty Apportionment:
Quantitative attribution of
the uncertainty in model
response to different factors
(sources of uncertainty),

with the goal of identifying where best to focus efforts at improved factor characterization so as to
achieve reductions in total uncertainty [e.g., Chu-Agor et al., 2011; Crosetto et al., 2000].

Over the past two decades the interest in SA has increased considerably. A search (Figure 1) of Thomson
Reuters Web of Science for the topic ‘‘sensitivity analysis’’ shows the importance of SA in relation to the
related important topics of optimization and uncertainty in the field of ‘‘water resources.’’ Further, these
publications from the field of water resources constitute about 7%, 3%, and 1% respectively of the corre-
sponding publications on Optimization, Sensitivity Analysis, and Uncertainty Analysis found in the full body
of literature from all fields (according to Thomson Reuters Web of Science).

The significance of SA and the associated challenges in the context of Earth and Environmental Systems
modeling cannot be understated. Such models are rapidly becoming increasingly more complex and com-
putationally intensive, growing in dimensionality (both process and parameter), as they progressively and
more rigorously reflect our growing understanding (or hypotheses) about the underlying real-world systems
they are constructed to represent. However, while SA has become a critical tool in the development and
application of such models, its widespread applicability can be inhibited by computational expense. It
seems clear, therefore, that the development of strategies for SA that are both effective and efficient is of
paramount importance.

1.1. Challenges
Despite significant advancements in the development and application of SA techniques, two issues con-
tinue to pose major challenges:

1. Ambiguous Definition of Sensitivity – A variety of methods for SA have been presented in the literature,
based in different philosophies and theoretical definitions of sensitivity. The absence of a unique defini-
tion for sensitivity can result in different, even conflicting, conclusions regarding the underlying sensitiv-
ities for a given problem.

2. Computational Cost – The cost of carrying out SA varies significantly for different methods, where cost (or
‘‘efficiency’’) is commonly assessed in terms of the number of samples (model simulation runs) required
for the method to generate statistically robust and stable results. This cost can be large, even excessive,
for high-dimensional problems and/or computationally intensive models.

Further, because different SA methods focus on different characteristic properties of the model response
surface, their applicability and suitability in regards to the different objectives outlined above vary. There-
fore, a user must carefully consider at least three questions when selecting and applying a method of SA to
a given problem:

1. What is the objective of performing sensitivity analysis?

2. What is the intended definition for (meaning of) sensitivity in the current context?
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Figure 1. History of the number of publications with the topic ‘‘Sensitivity Analysis’’ within
the research area ‘‘Water Resources’’ based on a search in Thomson Reuters Web of Science
(August 2014). Also shown are results within the same domain for searches on ‘‘Optimiza-
tion’’ or ‘‘Optimisation,’’ and on ‘‘Uncertainty Analysis’’ or ‘‘Uncertainty Quantification.’’
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3. What is the computational budget available for sensitivity analysis?

Among these, the second question is perhaps the most important. It is clearly nontrivial, and will influence
the specification of the metric(s) to be used for evaluation of model behavior or performance [Gupta et al.,
1998, 2008, 2009; Rosolem et al., 2012]. In the literature regarding SA, the significance of this issue has been
largely ignored.

As outlined in section 1.2, the primary purpose of this paper is to address the first major challenge men-
tioned above. The second challenge (i.e., computational cost/efficiency) is only barely touched upon in this
paper, and while additional research to develop more efficient SA approaches is clearly necessary, one com-
mon way to circumvent the limiting computational costs associated with SA for computationally intensive
Earth and Environmental System Models (EESMs) is to utilize ‘‘surrogate modeling’’ approaches [Razavi et al.,
2012b], where the original model is replaced by a fast-to-run surrogate model (see Razavi et al. [2012a] for a
review of such approaches and a list of studies utilizing surrogates for sensitivity analysis of EESMs).

1.2. Objectives and Scope
The first part of this paper summarizes concepts and philosophies about SA in a range of fields. It then seeks
to establish a firmer theoretical and practical foundation for SA in the context of EESMs. Simple conceptual
examples are used to examine and illustrate the theoretical basis for SA, and to critically evaluate existing
approaches and discuss and demonstrate their strengths and shortcomings. Based on insights gained
through this analysis, we identify the different important properties of a response surface that relate to an
intuitive understanding of SA, thereby addressing the first major challenge mentioned above (i.e., the defini-
tion of sensitivity). We further discuss the difficulty of characterizing the interaction effect between factors
and how such interactions are quantified and interpreted via different approaches.

For purposes of this study, we will assume that the user has selected a metric that is both meaningful and
clearly reflective of the objectives of the analysis, and focus primarily on the aspect of properly extracting
information regarding the behavior of the selected metric in the factor space. In a subsequent paper, we
will examine the issue of metric selection in the specific context of SA. Further, we restrict our current atten-
tion to the univariate case, where model response is characterized by a single metric. Model and case-
study-specific problems related to SA (e.g., the impact of the length of an observation period in a study
area on the assessment of sensitivity of a rainfall-runoff model) are not within the scope of this paper. Of
course, such problems are also quite important and need to be analyzed on a case-by-case basis; for exam-
ple Shin et al. [2013] provide such an analysis for conceptual rainfall-runoff models.

2. The Conceptual Basis for Sensitivity Analysis

2.1. Characterization of Response Surfaces
A ‘‘response surface’’ of a model refers to a line, plane, or hyper-plane that represents the variation of a tar-
get response of the model (a state or output variable, or a performance metric) with respect to variations in
one or more factors of interest. Factors are features of the model (such as model parameters or forcings,
etc.), which may vary on continuous, discrete, or hybrid domains that define the ‘‘factor space.’’ Figure 2
shows a simple hypothetical example of a two-factor (x1 and x2) response surface, such as might be found
in a typical textbook; for example, the quantity y can be a model performance metric (such as a Likelihood
function) and the factors can correspond to two of the model parameters. Such a response surface
expresses important information regarding the underlying characteristics of the model, including about
sensitivities and factor interactions. However, effective characterization of the properties of a model
response surface is not trivial, especially when the surface is nonconvex and/or multimodal, and when the
computational cost of obtaining a representative sample of points across the factor space is large.

Optimization is perhaps the most common approach used to (partially) characterize the response surface of
a model performance metric. It does so by attempting to (efficiently) locate the point on the response sur-
face that maximizes the goodness-of-fit between the input-state-output behaviors of the model and the
real system [Duan et al., 1992]. More comprehensive characterization of response surfaces can be achieved
by an uncertainty analysis based in Bayesian inference, where instead of seeking a single (optimal) point in
the factor space, the approach identifies and characterizes the so-called ‘‘high probability region’’ of the fac-
tor space where model performance exceeds some specified threshold value [Vrugt et al., 2003]. However,
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the most comprehensive paradigm is SA, where ‘‘global’’ sensitivity analysis techniques seek to characterize
the properties of a response surface across the entire factor space.

Note that depicting the full shape of the response surfaces of EESMs with more than a few factors, and their
full characterization, is typically not possible. Only in the idealized case where we had a model with n nonin-
teracting factors (all factor effects were additive), the response surface of the model could be possibly
depicted (e.g., through n cross sections of the response surface along the n dimensions at any point in the
factor space). Therefore, efforts to do so have focused on simplified models with small numbers of factors
(mainly model parameters) through generating contour/3-D plots of pairs of factors [see e.g., Duan et al.,
1992; Kuczera and Parent, 1998]. Depicting and understanding such pseudo response surfaces of EESMs
have been extremely useful to explain model behavior and improve our capability in system identification
and model development.

To motivate the discussion that follows, and to show that our discussion is not purely academic or hypo-
thetical, Figure 3 shows several two-parameter response surfaces from a 45-parameter coupled land surface
scheme-hydrology model (the MESH model, introduced by Pietroniro et al., [2007]), illustrating a variety of
response surface forms, from relatively simple and smooth to highly complex. The responses of three differ-
ent model performance metrics to parameter variations are shown; the Nash Sutcliffe efficiency (NS), the
Nash Sutcliffe efficiency computed on the log transformed model output (NS_log), and the volume bias
(VBIAS). These plots help to illustrate three important points: (1) That the scale at which the response sur-
face is analyzed is important; (2) That the choice of target model response (here the performance metric)
affects the form of the response surface; and (3) That the form of response surface can be different in differ-
ent regions of the parameter space.

In regards to the first point (scale), Figure 3b demonstrates the occurrence of small-scale roughness (likely
due to numerical artefacts) that may not be easily visible at larger scales (Figure 3a). In regards to the sec-
ond point (target model response), Figures 3a, 3c, and 3d show that the NS_log, NS and VBIAS metric
response surfaces defined on the same parameter space are significantly different. Here we see that NS_log
and VBIAS show strong sensitivity to variations in parameter SAND11 (which partly controls the storage in
the catchment) but NS shows much less sensitivity. In contrast, NS is quite sensitive to parameter WF_R2
(which controls the timing of flows), but VBIAS shows no sensitivity at all. Similar behaviors can be seen in
Figures 3e–3g. In regards to the third point (region of the parameter space), Figures 3f and 3h show signifi-
cant differences in the NS response surfaces for parameters SAND22 and SAND12 when the remaining 43
parameters are fixed at different values; in Figure 3f, NS is more sensitive to variations in SAND22 than to
variations in SAND12, while in Figure 3h the situation is reversed. This illustrates the role of high-order
parameter interactions in EESM models, where any local/subspace sensitivity analysis can provide mislead-
ing information about global sensitivity.

Figure 2. Hypothetical response surface representing a model response, y, with respect to two factors, x1 and x2.
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The next section discusses the fundamental concepts of SA, and traces the transition from basic principles
(i.e., the definition of ‘‘local’’ sensitivity) into the more advanced concepts required for a ‘‘global’’ characteri-
zation of sensitivity.

2.2. Local (Point-Based) Sensitivity Analysis (LSA)
2.2.1. LSA of Model Response
The ‘‘sensitivity’’ of a model response y to a factor x is defined as the ‘‘rate of change (slope)’’ @y

@x of the
response y in the direction of increasing values of the factor x. Suppose that the response of the model is
represented by a function f as:

y5f x1; . . . ; xnð Þ (1)

where x1; . . . ; xn are factors of interest varying within a factor space defined by the n-dimensional hyper-
cube bounded between xmin

1 ; . . . ; xmin
n and xmax

1 ; . . . ; xmax
n . The rate of change, si , of response y with

respect to factor xi (1 � i � n) can be evaluated at a specific base point ðx�1 ; . . . ; x�nÞ in the factor space, as
the partial derivative of y with respect to xi at that location:

si5
@y
@xi

� �
x�1 ; . . . ; x�n
� � (2)

si is sometimes referred to as the ‘‘sensitivity coefficient,’’ and characterizes the independent effect of factor
xi , when all other factors are held constant.

The covarying effects of multiple factors (i.e., the sensitivity of the model response to ‘‘interactions’’ among
the factors) are defined using higher-order partial derivatives. For example, the two-factor interaction effect
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Figure 3. Metric response surfaces in two-parameter spaces (scaled on the range 0–1) for a 45-parameter coupled land surface scheme-hydrology model (with other parameters fixed at
nominal values). The vertical axes are Nash-Sutcliffe efficiency between observed and simulated flows (NS), Nash-Sutcliffe efficiency on log-transformed values of flows (NS_log), and vol-
ume bias (VBIAS). The model parameters include SAND11 (% of sand in soil layer 1 of grouped response unit 1 or GRU1), WF_RF (river roughness factor), SAND22 (% of sand in soil layer
2 of GRU2), SAND12 (% of sand in soil layer 2 of GRU1), ZSNL (limiting snow depth below which coverage is< 100%), ALI1 (near infrared Needle Leaf albedo), RSMN4 (minimum stomatal
resistance of Grass), MAXMASS4 (standing biomass density of Grass), and MANN(I,M) (the ‘‘Manning’s n’’ constant). In Figures 3a–3d, all other parameters are fixed at the same set of val-
ues. In Figures 3e–3g, all other parameters are fixed at the same set of values, but in Figure 3h, they are fixed at a different set of values.
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of xi and xj (where i 6¼ j and 1 � i; j � n) on the model response is represented using a second-order partial
derivative, and is interpreted as the rate of change of slope in the direction of xi as we move in the direction
of xj (and vice versa). Similarly, the sensitivity due to three-factor xi , xj , xk interactions, (where i 6¼ j 6¼ k and
1 � i; j; k � n) is defined using a third-order partial derivative and interpreted as the change in the two-
factor interaction of xi and xj as we move in the direction of xk . At a given point ðx�1 ; . . . ; x�nÞ, such two
and three-factor interactions, sij and sijk , are computed as:

sij5
@2y
@xj@xi

� �
x�1 ; . . . ; x�n
� � (3)

sijk5
@3y

@xk@xj@xi

� �
x�1 ; . . . ; x�n
� � (4)

At any given point in the n-dimensional factor space, a total of 2n21 sensitivity measures can be calculated

including n sensitivity coefficients,
n
2

� �
two-factor interactions,

n
3

� �
three-factor interactions, . . . , and

one n-factor interaction. This practice of deriving point-based sensitivity measures is typically called ‘‘local
sensitivity analysis,’’ because the resulting assessment of sensitivity will, in general, only be valid in the close
vicinity of the ‘‘base point’’ in the factor space; the exception is when the response surface is a linear func-
tion, in which case the values for the sensitivity measures remain constant across the factor space.

2.2.2. LSA of Model Performance
The majority of LSA applications compute only the first-order partial derivatives of model response. How-
ever, in the context of EESMs, we are also interested in the sensitivity of one or more metrics of model per-
formance to various factors, model parameters, boundary conditions, or modeling constraints etc. [e.g.,
Gupta et al., 1998, 2008, 2009].

In such cases, we have a function ‘‘optimization’’ problem, where the response surface (of the performance
metric) will typically contain one or more stationary points at which all of the first-order partial derivatives
are zero. In such cases, sensitivity can instead be characterized in terms of the matrix of second-order partial
derivatives (the so-called Hessian matrix) evaluated at the stationary point where, for example @2y

@xi
2 quantifies

the curvature of the response surface in direction of the ith factor and @2y
@xi @xj

, quantifies the interaction
effects. Importantly, the Hessian matrix plays a critical role in the context of ‘‘gradient-based’’ optimization
[Bard, 1974] and can be related to the precision of the ‘‘optimal’’ parameter estimates (confidence intervals)
in the context of Likelihood Theory [Edwards, 1972].

2.2.3. Numerical Approximations of the Derivatives
In a significant fraction of EESMs, their complexity makes it difficult (and expensive) to program and analyti-
cally compute the required derivatives, so it is common to estimate their values numerically via finite differ-
ence methods that approximate @xi by Dxi over some small distance. For example, the first-order sensitivity
coefficient si in equation (2) can be numerically approximated as:

ŝ i5
y x�1 ; . . . ; x�i 1Dxi ; . . . ; x�n
� �

2 y x�1 ; . . . ; x�i ; . . . ; x�n
� �

Dxi

� �
(5)

In practice, the size of Dxi is usually selected in an ad hoc manner. However, for significantly nonlinear
responses the resulting estimate of sensitivity can depend significantly on the size of Dxi . Further, numerical
derivation of second and higher-order partial derivatives can require large numbers of model runs. In cer-
tain cases (including model calibration using performance metrics such as Mean Squared Error), the Hessian
matrix can be approximated using computations involving only first-order partial derivatives [see Bard,
1974], resulting in significant computational savings.

2.3. Global (Population Sample-Based) Sensitivity Analysis (GSA)
Local (point-based) SA has a unique definition and theoretical basis, but typically provides only a limited
view of model sensitivity because the results (and hence interpretation) can vary with location in the factor
space. Methods of so-called ‘‘global’’ sensitivity analysis (GSA) attempt to provide more general results by
characterizing the nature of response sensitivity over the entire factor space. However, this problem of
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generalizing local sensitivity measures to represent ‘‘global’’ properties (i.e., to somehow reflect the broader
characteristics of sensitivity over a domain of interest) is not trivial and, so far, no unique and definitive defi-
nition for global sensitivity exists.

For example, Sobol’ [2001] states that global sensitivity analysis ‘‘. . .considers the model inside the box [i.e.,
factor space hypercube]’’ and ‘‘. . .should be regarded as a tool for studying the mathematical model rather
than its specified solution [i.e, a base point].’’ Morris [1991] describes (global) sensitivity analysis as an exper-
imental activity for ‘‘. . .the discovery of which inputs are important – that is, which have a substantial influ-
ence on the outputs.’’ Saltelli et al. [2008] present a formal definition for (global) sensitivity analysis as ‘‘the
study of how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different
sources of uncertainty in the model input.’’ Hamby [1994] in his review of sensitivity analysis methods states
that ‘‘many authors, when referring to the degree to which an input parameter affects the model output,
use the terms ’sensitive’, ’important’, ’most influential’, ’major contributor’, ’effective’, or ’correlated’ inter-
changeably.’’ Hamby [1994] also points out that of more than a dozen sensitivity analysis techniques
reviewed, each provided a different sensitivity ranking; this can, of course, be traced to the lack of a unique
definition for what global sensitivity actually means.

In general, methods for GSA compute their indicators of sensitivity using ‘‘values’’ (of something) com-
puted at a number of different points sampled across the domain of interest (i.e., a population sample),
where the sample locations are selected (in some way) to be ‘‘representative’’ of the entire domain; for
example in Sobol Analysis, the ‘‘something’’ is typically a metric of model performance (a function value
such as ‘‘Mean Squared Error’’) and a variety of strategies for generating representative samples have been
proposed [Saltelli et al., 2008]. Therefore, GSA is to some extent rooted in the ‘‘design of experiments’’
(DOE), which is a broad family of statistical methods originally developed in the early 20th century [Fisher,
1951] for designing efficient experiments to acquire representative information when working in the con-
text of costly, noise-prone environments. DOE has since been extended to the ‘‘design and analysis of
computer experiments’’ (DACE), which are typically ‘‘noise-free’’ (also called ‘‘deterministic’’) in the sense
that replicating a computer experiment with the same input factors results in identical model responses
[Sacks et al., 1989]. Consistent with the GSA paradigm, DOE provides a set of tools including factorial
designs and regression strategies that facilitate study of the individual and combined effects of factors on
the response variable, while accounting for interaction effects [Montgomery, 2008]. As such, the terms
‘‘main effect’’ and ‘‘interaction’’ common in the GSA literature originate from DOE where the ‘‘main effect’’
of a factor is defined as the change in response due to the change in the factor when averaged across all
levels of the other factors.

In general, the concept of GSA seems rather intuitive, although it can be interpreted differently with context
and application. Broadly speaking, GSA attempts to study and quantify ‘‘how’’ and ‘‘to what extent’’ the
model response across the factor space is influenced by a particular factor or combination of factors, either
individually and/or through interactions with other factors. Since absolute sensitivity can be difficult to
quantify (given that it can vary with scaling or transformation of the factor space), it is usual to focus on the
relative sensitivity of factors with respect to each other. In section 3, different philosophies and techniques
to quantify global sensitivity are discussed.

As an aside, the sparsity-of-effects principle indicates that most systems or processes are usually sensitive to
only a subset of factors and their low-order (e.g., second-order) interactions, and that high-order interac-
tions are typically insignificant or negligible [Myers et al., 2011]. While this may not be true for some models,
or for all points in the factor space, the principle (particularly the assumption regarding absence of high-
order interactions) has significant implications for GSA, these being increased efficiency and improved
(more understandable) representation of sensitivity. Further, even if high-order effects exist, they can be dif-
ficult to interpret [Kleijnen, 2005], and in many cases may not have any actual physical relevance (i.e., they
may be spurious artefacts of the modeling and/or system identification process).

2.4. Some Simple Motivational Examples
In any modeling application, the ‘‘type’’ of model response of interest can influence the characteristics of
the associated response surface, and thereby the interpretation of a sensitivity analysis. In EESMs, meth-
ods of SA are most commonly used to investigate the effects of different factors (parameters, inputs,
boundary conditions, etc.) on some model performance metric that measures goodness-of-fit between
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the simulated value(s) of some system variable and corresponding observations (in some cases the metric
can represent an integration over several model responses). Duan et al. [1992] demonstrated that this can
result in (highly) nonconvex and nonsmooth response surfaces having multiple modes (i.e., ‘‘regions of attrac-
tion’’ in the optimization sense). In general, analysis of a complex problem of this kind will tend to focus on
the region in the factor space where the model best fits the observations. In simpler cases, such as when
investigating a single model response (e.g., peak flow in a rainfall-runoff model) to a small number of varia-
bles, the response surface tends to be smoother and more convex, and sensitivity over the entire factor space
may be of interest.

To motivate further discussion of the conceptual basis for SA it is useful to work with some simple illustra-
tive examples specifically designed to illustrate different issues. Accordingly, five sets of examples of one-
factor response functions and their first-order derivatives over the factor range are depicted in Figures 4–6.

Figure 4. Example 1 (Monotonic Functions) and Example 2 (Uni-Modal Functions): (a) and (b) response surfaces, (c) and (d) derivative functions of the response surfaces, and (e) and (f)
probability density functions of the response values.
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For each figure, we can ask the seemingly simple question ‘‘which response functions are more (or less) sen-
sitive to variations over the range of factor x.’’ These examples will be used to illustrate concepts of SA, and
illuminate the strengths and shortcomings of existing SA approaches, thereby providing an understanding
of different features and properties of response surfaces that relate to the analysis of sensitivity.

2.4.1. Example 1—Monotonic Functions
Figure 4a presents three response functions that vary monotonically over the same output range. These
functions have been constructed so that, although each has a different value for local sensitivity (@y=@x) at
any given x (see Figure 4c), all have the same average value for @y=@x over the factor range. The three
functions also have different probability density functions (PDFs, see Figure 4e); the PDF of a response sur-
face represents the distribution of the response value when the factor values are assumed to be random
variables with uniform distribution in their range. Note that it is not at all clear how to rank these three
functions with regards to ‘‘overall sensitivity,’’ and use of the average local sensitivity as an indicator of

Figure 5. Example 3 (Functions Covering Different Ranges) and Example 4 (More Complex Functions): (a) and (b) response surfaces, (c) and (d) derivative functions of the response surfa-
ces, and (e) and (f) probability density functions of the response values.
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‘‘global sensitivity,’’ would deem all the
functions to be equally sensitive (aver-
age local sensitivity over the
range 5 1).

2.4.2. Example 2—Uni-Modal
Functions
Figure 4b presents three uni-modal
functions (each having a single unique
minimum) of the kind shown in opti-
mization textbooks (response surfaces
encountered in EESM calibration will
typically be more complex than these).
These are idealized depictions, and the
discontinuous derivative at x 5 0 for
functions f2 and f3 may not actually
occur in modeling practice. They serve
to illustrate the point that if y repre-
sents how a model performance met-
ric varies over the range of factor x, we
would intuitively deem f3 to indicate
the most sensitive response since it is
associated with steeper gradients in
the vicinity of the function ‘‘optimum’’
at x50. Similarly, we would identify f1

as representing the least sensitive
case, with f2 being somewhere in
between. Again, use of average local
sensitivity as an indicator of ‘‘global
sensitivity,’’ would deem all three func-
tions to be equally sensitive (average
local sensitivity over the range 5 0).
Further, the PDFs of f1, f2, and f3 in
Example 2 (Figure 4f) are identical to
those of functions f1, f2, and f3 in
Example 1 (Figure 4e), respectively,
despite significant differences in the
shape of the functions.

2.4.3. Example 3—Functions Cover-
ing Different Ranges
Figure 5a presents three functions that
cover radically different output ranges,
while having constant and identical
values for absolute values of the local
sensitivities across the factor range

(except at singular points where the derivatives change sign). So all three cases have average absolute
local sensitivity 5 1 (Figure 5c) with significantly different response surface PDFs (Figure 5e). One possible
intuitive interpretation is that f1 represents the situation with highest sensitivity of the response y to varia-
tions in factor x, because changes in x control a larger range of the output. However, in some situations,
periodicities (multimodalities) in the response surface may be very important in evaluating the impact of a
factor. From the perspective of model calibration, the function f2 (characterized by two distinct regions of
attraction) might be deemed quite ‘‘sensitive’’ to x. Meanwhile f3 is characterized by significant periodicity
and has the exact same average absolute local sensitivity as the other two functions, but may simply repre-
sent an insensitive but nonsmooth (noisy) model response—nonsmoothness of this kind can be common
in EESMs due to numerical artefacts [Duan et al., 1992; Kavetski and Clark, 2010].

Figure 6. Example 5 (A Periodic Multi-Modal Function): This example demonstrates
the ‘‘scale issue’’ in sensitivity analysis — (a) response surface and its constituent
modes, (b) the derivative function of the response surface when Dx 5 dx!0, and
(c) example derivative functions for larger Dx values.
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2.4.4. Example 4—More Complex Functions
In a more realistic example, Figure 5b presents two functions having the same average absolute local
sensitivity 5 0 (Figure 5d). Despite having very different response surface PDFs (Figure 5f), they also have
identical variance of response y. In this case, one might intuitively deem f2 to represent the situation of
higher factor sensitivity because it demonstrates both significant periodicity and variation in local sensitivity
values across the x range. To understand this, ask yourself the question ‘‘which function represents the sit-
uation where the value of y changes more rapidly as x is varied over its range?’’ If one is concerned with the
local stability of the response to small changes in factor x then clearly function f2 represents the situation of
higher sensitivity, but if one is concerned mainly with the broad overall change in y over the total range of
x, then both functions can be deemed to be fairly similar in that respect.

2.4.5. Example 5—A Periodic Multimodal Function
To conclude our motivational illustration of the difficulty of defining what is meant by sensitivity, our final
example is based on the fact that any periodic (multimodal) response surface can be decomposed (e.g., via
Fourier series analysis) into a set of simpler periodic functions having different amplitudes and frequencies.
Figure 6a shows a periodic function f xð Þ, and its decomposition into four constituent modes:

f xð Þ51:332sin
2px
40

� �
20:3 sin

2px
11

� �
20:05 sin

2px
2

� �
20:02 sin

2px
0:5

� �
(6)

where the sinusoidal terms correspond respectively to functions g1 xð Þ, g2 xð Þ, g3 xð Þ, and g4 xð Þ. Figure 6b
shows the analytical derivative of f xð Þ with respect to factor x. Clearly, the component function g4 xð Þ domi-
nates the contribution to local sensitivity (slope) across the factor range, and could lead an analyst to infer a
very large sensitivity. However, if g4 xð Þ primarily represents noise due to data errors or numerical artefacts,
such an interpretation can be highly misleading.

In practice, partial derivatives (and associated sensitivity measures) are typically calculated by finite differ-
ence procedures on the basis of some (often arbitrarily chosen) step size Dx, as shown in equation (5). In
such situations, the selection of larger Dx values will cause the analysis to be less sensitive to high-
frequency roughness in the response surface—a fact exploited by the Shuffled Complex Evolution optimiza-
tion method of Duan et al. [1992]. Figure 6c illustrates this for Dx equals 0.5 and 2 (corresponding to
the periods of the g4 xð Þ and g3 xð Þ waves) and for which the derivative functions are then equivalent to
d g1 xð Þ1g2 xð Þ1g3 xð Þð Þ=dx and d g1 xð Þ1g2 xð Þð Þ=dx, respectively (when Dx511, the derivate function is
close to d g1 xð Þð Þ=dx shown in Figure 6c). Clearly, interpretation of the sensitivity of f xð Þ with respect to var-
iations in x can be very different for different Dx values. While this issue has not attracted much attention in
the SA literature, it is clearly of relevance and concern since the response surfaces of typical simulation
models in the Earth and Environmental Sciences have similar characteristics [Duan et al., 1992]. In our subse-
quent discussion, we will refer to this as the ‘‘scale issue.’’

3. Historical Evolution of GSA Methods

The earliest approaches to SA were based largely in the use of partial derivatives (see section 2.2) and the
concept of a Taylor series expansion around a base point [Hamby, 1994; Rabitz et al., 1983], while derivative-
based LSA methods also have roots in optimization theory. Over the past several decades, attempts to rep-
resent the more ‘‘global’’ nature (over the factor domain as opposed to at a specific point) of the sensitivity
of model response have been made. Early attempts were based in concepts developed for the statistical
design of experiments, including the one-factor-at-a-time (OAT) method, factorial design, and regression
and correlation analysis. These classic methods, referred to as model-based methods in the following,
assume a particular model form (typically linear or polynomial) for the underlying response surface. Model-
free GSA methods, however, are more general and have evolved in the context of computer experiments.

3.1. Model-based Methods
3.1.1. One-Factor-At-a-Time Method (OAT)
The OAT method (probably the simplest of classic techniques) computes a finite difference approximation
of the local slope of the response surface around a base point in the factor space. In practice, because the
size Dx of the factor change in OAT is typically some fraction (e.g., 1–10%) of the factor range, the method
actually detects larger-scale trends (lower frequency variations) in the response surface. Further, OAT does
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not detect and measure factor interactions. Nonetheless, the approach is computationally efficient, requir-
ing only n11 model runs for an n-dimensional factor space. Saltelli and Annoni [2010] note that use of OAT
is very common in the modeling community, and raise fundamental concerns regarding the validity of sen-
sitivity results based on it.

3.1.2. Factorial Design
In ‘‘full factorial’’ designs, the factor space is discretized into a certain number of levels (i.e., grid points)
along the direction of each factor and the model response is computed for each combination of factor lev-
els. These points are then used to estimate the ‘‘main effects’’ of each factor (providing a global measure of
first-order sensitivity) and also the ‘‘interaction effects’’ between various combinations of factors (providing
global measures of second and higher-order sensitivities). The degree to which this approach properly rep-
resents global sensitivity depends on a number of things, including the selected grid spacing (number of
levels for each factor) and the degree of nonlinearity in the underlying response. Because an m-level full fac-
torial design in an n-dimensional factor space requires mn model runs, the approach is subject to the curse
of dimensionality and computational cost can become prohibitive as problem dimension increases. To miti-
gate this latter issue, fractional factorial designs that rely on the sparsity-of-effects principle have been pro-
posed; these use carefully selected subsamples of the full factorial design to estimate only the main and
low-order interaction effects (see Kleijnen [2005] for a comprehensive review).

3.1.3. Response Surface Approximation via Regression
A variety of regression techniques have been used to approximate response surfaces for the purpose of
SA, generally using either linear (with or without second-order interaction terms) or quadratic polyno-
mials; such approaches are sometimes called ‘‘response surface methods.’’ Once a regression model is fit
to a set of points sampled in the factor space (note the connection to factorial design), the coefficients of
the regression equation can be interpreted as indices of factor sensitivity—the coefficients of linear and
second-order interaction terms correspond to the main and interaction effects respectively, while
second-order terms can be used to detect nonlinearities in the response. To sample the factor space,
both deterministic and random sampling techniques (e.g., factorial design and Latin hypercube) have
been used.

A major drawback of the regression-based approach is its heavy reliance on the prior assumption regarding
model form (i.e., regression equation), and if the regression equation does not fit the underlying response
surface well, the sensitivity estimates can be seriously incorrect. Rank transformation is a common way to
partially address the nonlinearity of response surfaces [Iman and Conover, 1979]; however, such an
approach may only be useful in case of monotonic response surfaces and fail in the presence of multimo-
dality. For a comprehensive review of regression techniques for GSA see Kleijnen [1995].

3.2. Model-Free Methods
Historically, the methods described above were originally developed for analysis of physical experiments. In
the context of computer-based modeling, it became affordable to conduct simulation experiments, and led
to development of methods requiring large numbers of samples. Such methods were also motivated by the
fact that the degree of convexity of the underlying response surface of a complex model cannot generally
be known a priori, raising the need for ‘‘model-free’’ methods that make minimal assumptions regarding
the functional form of the response surface. The rest of this section is dedicated to a brief summary of such
methods.

3.2.1. Regional Sensitivity Analysis (RSA)
A heuristic, but commonly used approach is to partition the marginal distribution of samples obtained for
each factor (typically a bounded uniform distribution) into two (or more) distributions based on empirically
selected threshold values for model response. The idea is that if the factor does not have a significant
impact on model response throughout the factor space, the two distributions should not be statistically
distinguishable. Formal statistical tests (such as the Smirnov test) can be used to quantify the extent to
which two distributions are significantly different, and provide a level of significance used for factor rank-
ing. In the literature, this procedure is variously referred to as ‘‘regional sensitivity analysis’’ [Spear et al.,
1994], ‘‘sensitivity tests involving segmented input distributions’’ [Hamby, 1994], or ‘‘Monte-Carlo filtering’’
[Saltelli et al., 2008]. For a review of the approach and different methods for statistical testing see Hamby
[1994].
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3.2.2. Variance-Based Methods
Perhaps the most sophisticated approach developed to-date, for defining and quantifying ‘‘global’’ sensitiv-
ity, is ‘‘variance-based’’ SA, based on the idea that the variability of model response in each factor direction
can be used as a direct indicator of factor sensitivity. The contribution of each factor (main or first-order
effect), and each possible two or higher-order interaction (interaction effect), to the total variance of the
model response is quantified, and the ratio of each contribution to the total variance is interpreted as the
measure of sensitivity.

3.2.2.1. Theoretical Basis
Given the model response function presented in equation (1), the variance V yð Þ of the model response can
be theoretically decomposed to 2n21 components as follows:

V yð Þ5
Xn

i51

Vi1
Xn21

i51

Xn

j5i11

Vij1
Xn22

i51

Xn21

j5i11

Xn

k5j11

Vijk1 . . . 1V1...n (7)

where Vi is the contribution of the ith factor to the total variance excluding its interactions with other fac-
tors, Vij is the contribution of the two-factor interaction of the ith and jth factors to the total variance, Vijk is
the contribution of the three-factor interaction of the ith, jth, and kth factors to the total variance, and so on.

These components can be computed as Vi5V E yjxið Þð Þ, Vij5V E yjxi; xj
� �� �

2Vi2Vj , and Vijk5V E yjxi; xj; xk
� �� �

2Vi2Vj2Vk2Vij2Vik2Vjk , where E yjxið Þ indicates the expected value of y given xi, and so on. Accordingly,
the associated first, second, and third-order sensitivity indices are defined as Si5

Vi
V yð Þ, Sij5

Vij

V yð Þ, and Sijk5
Vijk

V yð Þ.

Of particular interest in variance-based SA is the ‘‘total-order effect’’ sensitivity index, STi , which sums over
the first-order effect of the ith factor and its interactions of any order with any other factors. To circumvent
having to compute all the related terms, the total-effect sensitivity index can be efficiently calculated as
follows:

STi512
V E yjx1; x2; . . . ; xi21; xi11 . . . ; xnð Þð Þ

V yð Þ (8)

where the numerator consists of all the terms of any order that do not include the ith factor. A thorough
description of the variance-based approach is available in Saltelli et al. [2008].

A very appealing feature of variance-based methods is their ability to explicitly differentiate between inter-
action and main effects. Whereas EESMs may contain factors (e.g., parameters) that are significantly corre-
lated, GSA approaches commonly assume the prior distributions of factors to be uncorrelated (i.e.,
orthogonal). The variance-based methods facilitate a posterior assessment of the extent and strength of
correlations (i.e., interaction effects) between different factors. The prior assumption of an orthogonal factor
space is consistent with the common practice of Bayesian uncertainty analysis for EESMs. Combined with
this assumption, equation (7) indicates that the total-order effect of a factor is always equal to or greater
than the main effect of that factor – which runs contrary to suggestions in the literature that correlation
effects can cause the total-order effects in a variance-based analysis to become smaller than main effects
[e.g., Pappenberger et al., 2008].

For completeness, we note that multiple-criteria extensions of the variance-based GSA approach have also
been reported [see Bastidas et al., 2006; Gupta et al., 1999; Rosolem et al., 2012]. However, we will not discuss
these approaches further here.

3.2.2.2. Computational Implementation
For simple, analytically tractable functions, variance-based sensitivity indices can be calculated analytically.
The Fourier Amplitude Sensitivity Test (FAST), developed by Cukier et al. [1973] and promoted by Saltelli and
Bolado [1998], provides an efficient way to numerically compute variance-based sensitivity indices. How-
ever, FAST can provide only first-order sensitivity indices, and a later development called the ‘‘extended
FAST’’ (EFAST) allows computation of total effects [Saltelli et al., 1999].

Perhaps the most popular implementation of variance-based SA is the so-called ‘‘Sobol method,’’ named
after Ilya M. Sobol’ [Sobol’, 1990], which provides numerical estimates of first, higher-order, and total-effect
sensitivity indices in a relatively efficient manner based on Monte-Carlo sampling [Homma and Saltelli,
1996]. For a detailed description, see Saltelli et al. [2008].
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3.2.2.3. Entropy-Based Methods
Given that the second-order moment (i.e., variance) of a response surface may not be sufficient to
adequately characterize the distributional properties (and uncertainty) of the model response, there have
also been efforts to utilize ‘‘entropy-based’’ criteria that quantify the extent to which a response distribution
differs from a uniform distribution. Like variance-based methods, this approach is based on a criterion that
characterizes the distributional properties of a response surface, and so can be thought of as an extension
(or refinement) of the variance-based approach. The first report on this approach seems to be Krzykacz-
Hausmann [2001]. A review is provided by Liu et al. [2006].

3.2.3. Globally Aggregated Measures of Local Sensitivities
Methods for globalized evaluation of local sensitivities (i.e., first-order partial derivatives – see equation (2))
have also been developed. Such methods evaluate the local sensitivity coefficients for each factor at multi-
ple points across the factor space, and analyze the distributional properties of these values to assess the
global sensitivities of model response to individual factors. The seminal paper by Morris [1991] proposed
evaluation of the following terms with respect to factor xi (i 5 1, . . ., n):

li5E
@y
@xi

� �
(9)

ri
25V

@y
@xi

� �
(10)

and proposed an experimental design for numerically evaluating the distribution of local sensitivities (which
he referred to as ‘‘elementary effects’’) across the factor space. For any given problem, larger values of li

and ri generally indicate higher sensitivities to the associated factor. Campolongo et al. [2007] pointed out
the limitations of this approach when the response surface is nonmonotonic, and proposed the use of l�i
instead of (or along with) li as defined below:

l�i 5E

����� @y
@xi

����
�

(11)

Campolongo et al. [2007] further tried to empirically demonstrate a direct relationship between l�i and STi ,
the total-order effect sensitivity index defined in equation (8). Sobol and Kucherenko [2009] showed that the
interpretation of global sensitivities can be improved by using the squared partial derivatives rather than
their absolute values, as defined by:

mi5E
@y
@xi

� �2
 !

(12)

and established a theoretical relationship between mi and STi , which identifies an upper bound for STi as a
function of mi . Rakovec et al. [2014] recently proposed a similar criterion (in the DELSA method) which is
effectively the same as equation (12).

So in these approaches, global sensitivity analysis is based on the numerical evaluation and interpretation
of these criteria, which are ‘‘variations’’ of the Morris method, and are sometimes considered as efficient
proxies for variance-based sensitivity analysis [Campolongo et al., 2007; Sobol and Kucherenko, 2009]. How-
ever, Sobol and Kucherenko [2009] demonstrate that ranking of influential variables based on these criteria
may result in false conclusions (provided one assumes that the variance-based total-effect sensitivity index
provides a correct assessment). They also demonstrate that when the ‘‘characteristic length of function vari-
ation’’ is smaller than the discretization step size used for numerical evaluation of local sensitivities, the
resulting assessment can be inaccurate – a reference to the ‘‘scale issue’’ raised in section 2.4.5.

3.3. Methods Quantifying ‘‘Global’’ Interaction Effects
Originating in the design of experiments and regression analysis, the concept of factor interaction indicates
a situation where the simultaneous effects of two or more factors (independent variables) on a response
(dependent variable) are nonadditive. When defined at a single point on the response surface, the interac-
tion effects between any subset of factors can be directly quantified and interpreted through second and
higher-order partial derivatives (see section 2.2). However, generalizing these local (point-based) measures
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of interaction to a global measure that characterizes the entire factor space is nontrivial and, to our knowl-
edge, no attempts to directly extend the local interaction measures to global scale have been reported
(whereas extensions to first-order sensitivities have been developed, as discussed in section 3.2.3). This lack
may be partly due to the large computational demands required to numerically calculate higher-order par-
tial derivatives.

The classic techniques of factorial design (see section 3.1.2) and regression analysis (see section 3.1.3) are
relatively simple ways to obtain approximate information about the ‘‘global interaction effects’’ (hereafter
referred to as ‘‘interaction effects’’) across the factor space. For (almost) linear response surfaces, these
methods provide (approximate) assessments of second and higher-order partial derivatives. Variance-based
methods, which are conceptually different at a fundamental level, are perhaps the most advanced techni-
ques to quantify interaction effects (in some sense), by calculating the portion of the total variance of the
response surface that is due to the interaction effect of interest (see section 3.2.2). Nonetheless, the calcula-
tion of interaction effects can be computationally challenging.

Beyond the computational issue, there exists the more significant challenge of interpreting the resulting
interaction effects. This problem can be nontrivial, even for simple two-factor response surfaces,
y5f ðx1; x2Þ. To illustrate the difficulty of interpreting interaction effects, we analyze six example two-factor
response surfaces in section 4.2. These examples provide insight into the challenges involved in interpreting
the results of different methods for estimating interaction effects in real multidimensional EESMs.

4. Shortcomings of Existing Approaches

4.1. Response Surfaces With No Interactions
The Sobol and Morris methods for evaluating sensitivity have received much attention from the community.
Using the simple examples presented in section 2.4, we demonstrate that these methods suffer from serious
shortcomings and do not always provide results that are consistent with an intuitive understanding of sensi-
tivity; note that for each of these examples, the variance V yð Þ of the response surface can be computed ana-

lytically, as can the Morris indices Eðj @y
@xjÞ and V @y

@x

� �
, and the variation E @y

@x

� �2
� �

presented above. Table 1

reports results for the response surfaces of Examples 1–5 (Figures 4–6).

4.1.1. Example 1
The three monotonically increasing functions f1ðxÞ, f2ðxÞ and f3ðxÞ shown in Figure 4a have different shapes.
However, all of the measures suggest that f1ðxÞ and f3ðxÞ are equally sensitive to factor x, while the linear

function f2ðxÞ is equally sensitive according to measure Eðj @y
@xjÞ, and slightly less sensitive according to

measures V yð Þ and E @y
@x

� �2
� �

.

Table 1. Performance of the Conventional Sensitivity Measures on Examples 1–5

Hypothetical Response Surfaces

Sensitivity Measures

V yð Þ
Eðj @y

@xjÞ E @y
@x

� �2
� �

V @y
@x

� �

Example 1* Example 2** f1ðxÞ 4a2

45 a 4a2

3
a2

3 * and 4a2

3 **

f2ðxÞ a2

12 a a2 0* and a2**

f3ðxÞ 4a2

45 a 4a2

3
a2

3 * and 4a2

3 **

Example 3 f1ðxÞ a2

12 a a2 0

f2ðxÞ a2

192 a a2 a2

f3ðxÞ a2

12288 a a2 a2

Example 4 f1ðxÞ 0.11 1.11 1.64 1.64
f2ðxÞ 0.11 3.01 11.80 11.80

Example 5 f ðxÞ 0.141 0.22 0.08 0.08
f xð Þ2 g4ðxÞ 0.141 0.17a 0.04a 0.04a

f xð Þ2 g3 xð Þ2 g4ðxÞ 0.139 0.15b 0.03b 0.03b

aEquivalent to the numerical analysis of f ðxÞ with discretization of Dx50:5.
bEquivalent to the numerical analysis of f ðxÞ with discretization of Dx52.
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4.1.2. Example 2
Results for the functions f1ðxÞ, f2ðxÞ and f3ðxÞ having single global minima shown in Figure 4b are identical
to those reported for the monotonic functions in Figure 4a. From a model calibration perspective, we would
intuitively consider f1ðxÞ to represent the least sensitive, and f3ðxÞ to represent the most sensitive, of the
three cases. Because the PDFs of f1ðxÞ, f2ðxÞ, and f3 xð Þ in Example 2 are respectively the same as the PDFs
of f1ðxÞ, f2ðxÞ, and f3 xð Þ in Example 1, no PDF-based sensitivity approach, including an entropy-based
approach, can differentiate between them.

4.1.3. Example 3
For the response surfaces illustrated in Figure 5a, the measure V yð Þ assesses function f1ðxÞ as being 16 and
1026 times more sensitive to factor x than functions f2ðxÞ and f3ðxÞ, respectively. However, measures Eðj @y

@xjÞ

and E @y
@x

� �2
� �

suggest that all functions are equally sensitive, while measure V @y
@x

� �
does not distinguish

between f2ðxÞ and f3ðxÞ. If these functions were to represent problems of function minimization, the results
provided by V yð Þ would be more consistent with intuition.

4.1.4. Example 4
Although the two response surfaces shown in Figure 5b have different length scales of variation, they have
identical variances V yð Þ, which runs counter to our intuitive notion of sensitivity. This happens because the
variance approach measures overall variability of the response but is not sensitive to the structure of the sur-
face—i.e., how the values of the response surface are organized in the factor space. Consequently, variance-
based methods are unable to take into account important structural information such as multimodality. In
contrast, the Morris type methods indicate that f2ðxÞ is significantly more sensitive to factor x than is f1ðxÞ.

4.1.5. Example 5
The function shown in Figure 6a is constructed to illustrate the impact of roughness (high-frequency low-
amplitude noise) on the performance of sensitivity metrics. The variance V yð Þ of f ðxÞ, is almost identical to
that of f xð Þ2 g4ðxÞ and f xð Þ2 g3 xð Þ2 g4ðxÞ, which are basically f ðxÞ with the high-frequency periodicities
removed, showing that variance-based approach to be robust in the presence of roughness (high frequency
and low amplitude noise). Conversely, the Morris type methods indicate significantly different sensitivities
for the three cases. However, the Morris methods provide identical results for f xð Þ and f xð Þ2 g4ðxÞ when
the derivatives are computed numerically using Dx 5 0.5, and for f xð Þ and f xð Þ2 g3 xð Þ2 g4ðxÞ when the
derivatives are computed numerically using Dx 5 2, illustrating lack of robustness to choice of discretization
step size, and hence to the scale issue raised in section 2.4.5.

4.2. Response Surfaces With Interactions
As for the global sensitivity indices obtained through benchmark GSA methods, the interpretation of global
interaction effects can be challenging and counter-intuitive. This is true even for simple two-factor response

Table 2. Performance of Direct and Interaction Effects Sensitivity Measures on Examples 6–11

Hypothetical Response Surfaces

Mean Local Measures Mean Squared Local Measures Variance-Based Measuresa

E @y
@x1

� �
E @y

@x2

� �
E @2 y

@x1@x2

� �
E @y

@x1

� �2
� �

E @y
@x2

� �2
� �

E @2 y
@x1@x2

� �2
� �

V1 V2 V1;2

Example 6:
y 5 ax1 1 bx2 1 cx1x2 x1 & x2 2 ½0; 1�

a1c=2 b1c=2 c a21ac1c2=3 b21bc1c2=3 c2 a1c=2ð Þ2=12 b1c=2ð Þ2=12 c2=144

Example 7:
y 5 cx1x2 x1 & x2 2 ½21; 1�

0 0 c c2=3 c2=3 c2 0 0 c2=9

Example 8:
y5ax1

21bx2
21cx1x2 x1 & x2 2 ½21; 1�

0 0 c 4a2=31c2 4b2=31c2 c2 4a2=45 4b2=45 c2=9

Example 9:
y5ax1

21bx2
21cx1

2x2 x1 & x2 2 ½21; 1�
0 c=3 0 4a2=314c2=9 4b2=31c2=5 4c2=3 4a2=45 4b2=451c2=27 4c2=135

Example 10b:
Uncorrelated normal distribution with
r2

x1
50:075 and r2

x2
50:05

0 0 0 0:32 0:48 3:17 0:010 0:014 0:014

Example 11b:
Correlated normal distribution with
q50:33 r2

x1
50:075 and r2

x2
50:05

0 0 1026 0:33 0:50 4:56 0:009 0:013 0:015

aThe total variance of y, V yð Þ, equals V11V21V1;2. Total-order effects of x1 and x2 are V11V1;2 and V21V1;2, respectively.
bThe response surface is scaled to the y range [0–1].
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surfaces, y5f ðx1; x2Þ, as demonstrated below using six simple examples (Table 2 and Figures 7–10) that
help illustrate how different methods quantify the interactions between factors (as well as the ‘‘direct effect’’
of each factor). As before, we are interested in whether the results of different methods are consistent with
our intuitive understanding of interaction.

Table 2 presents the results of three methods used to characterize the direct and interaction effects across
the factor space. The first method averages @y

@x1
, @y
@x2

, and @2y
@x1@x2

over the entire factor space (i.e., expectations
of the local measures). The second method is similar but averages the squared values (i.e., expectations of
the squared local measures). The third method is the variance-based approach explained in section 3.2.2.

4.2.1. Example 6
Figure 7a shows a linear function augmented by a constant interaction term cx1x2. In this case, the second-
order derivative is constant across the factor space (i.e., @2y

@x1@x2
5c), see Figure 7g, and provides an intuitively

justified measure of the interaction effect. Note that the significance of an interaction effect is evident
when benchmarked in a relative sense against the direct effects. The two other measures provide a different
assessment. To highlight the difference, consider the case where a50, when the ratio of the interaction

Figure 7. Examples 6 and 7 – Linear and constant response surfaces augmented with constant interaction term: (a) and (b) response surfaces, (c) and (d) surfaces representing partial
derivatives with respect to x1, (e) and (f) surfaces representing partial derivatives with respect to x2, (g) and (h) surfaces representing second-order derivatives. Example 6 follows equa-
tion y 5 ax1 1 bx2 1 cx1x2 where a 5 4, b 5 2, and c 5 1. Example 7 follows equation y 5 cx1x2 where c 5 1.
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effect to the direct effect of x1 is 2 for the first measure and 3 for the second and third measures. For a 6¼ 0,
the ratios for the three measures are different.

4.2.2. Example 7
Figure 7b shows a function having only a constant interaction term, with x1 and x2 varying on the range
[21 to 11]. The direct effects of x1 and x2 assessed by the first and third methods are zero, and as such, all
variation in the response surface is attributed to the interaction effect. This is despite the fact that the local
sensitivity with respect to x1 or x2 is nonzero at any given point. In this example, if x1 and x2 were varied on
the range [0 to 11], then all the three methods would provide nonzero assessments for the direct and inter-
action effects.

Figure 8 further demonstrates how the variance-based method works when applied to Examples 6 and 7.
For Example 6, Figure 8a shows the PDF of y, labeled p(y), when x1 and x2 are assumed to be uniformly dis-
tributed across the factor space, as well as the conditional PDFs of y, labeled p(y|x1), when x1 is fixed at cer-
tain values in its range. The change in conditional PDF p(y|x1) from that obtained by fixing x1 at its true
value can be thought of as characterizing the sensitivity of y with respect to x1.

Let V(y) represent the variance of the response surface computed from p(y). Figure 8b shows the conditional
variances V(y|x1) and V(y|x2) when x1 and x2 are fixed at different values. When x1 is fixed at 0.75, the reduction
of variance due to this fixing is given by V(y) - V(y|x150.75). Since the true value of x1 is unknown, the
variance-based approach computes instead the average reduction in variance for any possible value of x1,
given by V(y) – E[V(y|x1)], and uses this to represent the first-order sensitivity (main effect) of y to factor x1.

Now according to the law of total variance V(y) 5 E[V(y|x1)] 1 V[E(y|x1)], and so an alternative way to com-
pute the main effect of factor x1 is given by V1 5 V[E(y|x1)] (as used in section 3.2.2). Similarly the main effect
of factor x2 is given by V2 5 E[V(y|x2)]. Knowing these, the portion of the total variance attributable to the
interaction effect, called V1,2, is obtained as V(y) – V1 – V2.

Figure 8. Example illustrations of how the variance-based method works on Examples 6 and 7. Example 6: (a) unconditional and conditional probability density functions of y,
(b) unconditional and conditional variance of y. Example 7: (c) unconditional and conditional probability density functions of y, (d) unconditional and conditional variance of y.
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Similarly, Figure 8c shows the unconditional and conditional PDFs of y for Example 7, and Figure 8d shows
the corresponding conditional variance of y. In this case, fixing x1 at any value between 20.58 and 0.58
causes V(y|x1) to be smaller than V(y), whereas fixing x1 at any value beyond this range causes V(y|x1) to be
larger than V(y). This means knowledge of the true value of x1 can either decrease or increase the total
uncertainty, depending on what the value actually is. However, if we average across the full ranges of x1

and x2, we find that V(y) 5 E[V(y|x1)] 5 E[V(y|x2)], so that all of the variance in y can seem to be caused by the
interaction effect.

4.2.3. Example 8
Figure 9a shows a quadratic function augmented by a constant interaction term, resulting in a parabolic
surface rotated around the y axis due to the interaction term. The interaction effect is constant across the
factor space (Figure 9g). Method one indicates no direct effect, the direct effects computed by the second
method include the impact of the interaction coefficient, while the direct effects computed by the third
method do not depend on the interaction coefficient. It is interesting to note that the interaction term, in
most of these examples, does contribute to the direct effects.

Figure 9. Examples 8 and 9 – Quadratic response surfaces augmented with constant and variable interaction terms: (a) and (b) response surfaces, (c) and (d) surfaces representing partial
derivatives with respect to x1, (e) and (f) surfaces representing partial derivatives with respect to x2, (g) and (h) surfaces representing second-order derivatives. Example 8 follows equa-
tion y 5 ax1

21bx2
21cx1x2 where a 5 1, b 5 2, and c 5 21. Example 9 follows equation y 5 ax1

21bx2
21cx1

2x2 where a 5 1, b 5 2, and c 5 22.
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4.2.4. Example 9
Figure 9b shows a quadratic function augmented by a variable (nonconstant) interaction term. The local
interaction effect follows a linear function (see Figure 9h), and although nonzero across the factor space, its
average value is zero. Method one assesses the direct effect of x1 as being zero, while the direct effect of x2

depends on c. With method two, the direct effects of both of the factors depend on c, whereas with method
three, only the direct effect of x2 depends on c.

4.2.5. Examples 10 and 11
Figures 10a and 10b show two response surfaces having the forms of bivariate normal distributions with
r2

x1
and r2

x2
equal to 0.075 and 0.05, respectively. Example 10 (Figure 10) has no factor correlation while

Example 11 (Figure 10b) has a factor correlation coefficient of 0.33. The density functions of these nor-
mal distributions have been multiplied by 0.385 and 0.364, respectively, to scale the range of the y
response surfaces to [0,1]. Such response surfaces are commonly encountered in model calibration, par-
ticularly in the vicinity of the main region of attraction in the factor space. In the model calibration con-
text, the interaction effect in Example 10 would be considered to be zero, while Example 11
corresponds to an interaction effect defined and quantified by the correlation coefficient of the normal
distribution. However, counter to intuition, the three methods report interaction effects that are

Figure 10. Examples 10 and 11 – Response surfaces in the forms of uncorrelated and correlated normal distributions: (a) and (b) response surfaces, (c) and (d) surfaces representing par-
tial derivatives with respect to x1, (e) and (f) surfaces representing partial derivatives with respect to x2, (g) and (h) surfaces representing second-order derivatives.
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significant and relatively similar for both cases; for example, the variance-based method reports 37% of
the total variance in Example 10 and 40% of the total variance in Example 11 to be due to the interaction
effect between the two factors.

These examples show that, even in simple cases where explicit analytical equations are available, the attri-
bution and assessment of direct and interaction effects is not trivial, and that the (supposed) ‘‘interaction’’
terms in the equations can also contribute to the direct effects. As with the direct effects, the interaction
effects can vary (linearly or nonlinearly, and even multimodally) across the factor space, further complicat-
ing the interpretation of interaction effects, particularly in high-dimensional problems.

5. Final Remarks: The Need for Comprehensive Characterization of ‘‘Global’’
Sensitivity

The literature reports a variety of SA approaches that characterize different intuitive understandings of
‘‘sensitivity’’ in the context of model development and application. Each approach focuses on somewhat
different characteristic properties of the underlying response surfaces, leading to differences, even con-
flicts, in the assessment of sensitivity. To-date, the Sobol and Morris approaches, and their extensions, pro-
vide the most rigorous ‘‘model-free’’ approaches to global sensitivity analysis. However, their utility is
limited as follows:

1. The variance-based Sobol approach is based entirely on characterizing the global variance of model
response, and its decomposition into components associated with individual contributing factors. As
such, it is unable to distinguish between response surface structures that have identical global variance
of model response but different distributions and spatial organizations (response surface structures) of
the model response and its derivatives. In general, any approach that relies only on the distributional
moments of model responses completely ignores the structure of the underlying response surface.

2. The Morris approach and its extensions attempt to globally aggregate local sensitivity information (first-
order partial derivatives) across the factor space. This approach can characterize the structure of an
underlying response surface to only a limited extent. However, all implementations of this approach are
prone to the scale issue, and the step size of the analysis can have a significant impact on the conclusions
about underlying sensitivities.

Our analysis indicates that at least four important characteristics must be considered when investigating and
interpreting the sensitivity of a response surface (e.g., a metric of model performance) to its parameters/factors:

a. Local sensitivities (i.e., first-order derivatives)

b. The global distribution of local sensitivities (characterized, for example, by mean and variance)

c. The global distribution of model responses (characterized, for example, by variance)

d. The structural organization of the response surface (including, for example, its shape, multimodality, and
degree of nonsmoothness/roughness).

Through illustrative examples, we have shown that existing GSA approaches typically focus on only one or
a few of these characteristics while ignoring others. It seems evident that a comprehensive approach to
GSA is required that can incorporate the information represented by all the above-mentioned characteris-
tics within a single framework. In a separate paper, we propose such a framework that seeks to encapsulate
all of these characteristics into a unified assessment of local and global sensitivity.

We have also discussed and illustrated the nontrivial nature of the problem of quantifying and interpreting
interaction effects between different factors, even for low-dimensional problems. Analogous to local sensitiv-
ity, the local interaction effect can be quantified and interpreted through second and higher-order derivatives.
However, the generalization of such local effects to global measures of interaction is not straightforward, and
the variance-based approach remains the only existing approach that provides a meaningful global measure
of interaction effects. In spite of this, the interpretation of interaction effects is not always easy, even in simple
two-factor problems, and variance-based assessments can run counter to intuition.

Note that this paper is not intended to argue that existing GSA methods are not useful. Rather, we believe it is
necessary to improve our understanding of the functionality of different existing methods, and to deepen the
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conversation of what we, as the modeling community, intend when we conduct an analysis of sensitivity. This
paper summarizes the fundamental differences between existing GSA methods, and helps explain why many
published numerical comparisons of different methods have reported inconsistent and even conflicting
assessments of sensitivity. We hope our analysis will provoke further conversation and research toward an
improved understanding of sensitivity in the important context of EESMs development and application.

Overall, given the growing importance of sensitivity analysis to Earth and Environmental Systems modeling,
it seems advisable to develop and utilize GSA techniques that effectively quantify a meaningful/intuitive
sense of the manner in which a model response varies with changes in individual factors, and which incor-
porates all relevant sensitivity-related characteristics of a response surface. Further, there is a need to better
understand what kinds of (model performance) response metrics are able to properly characterize the
important aspects of behavior of an EESM (i.e., the model output response trajectory may be quite sensitive
to a factor, but poorly chosen metrics can dampen or even remove this information). Only when these
issues are properly addressed for the univariate case (single model response) can we consider the further,
more complex, multivariate case involving multiple model responses (i.e., as in multiflux/multicriteria model
calibration). As always, we invite discussion and collaboration with others interested in these and related
issues of system identification and model development.
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