WATER RESOURCES RESEARCH, VOL. 43, W07401, doi:10.1029/2006WR005756, 2007

Click
Here

Full
Article

Uncertainty in hydrologic modeling: Toward an integrated data
assimilation framework

Yugiong Liu' and Hoshin V. Gupta'
Received 20 November 2006; revised 20 April 2007; accepted 30 April 2007; published 3 July 2007.

[1] Despite significant recent developments in computational power and distributed
hydrologic modeling, the issue of how to adequately address the uncertainty associated
with hydrological predictions remains a critical and challenging one. This issue needs to
be properly addressed for hydrological modeling to realize its maximum practical potential
in environmental decision-making processes. Arguably, the key to properly addressing
hydrologic uncertainty is to understand, quantify, and reduce uncertainty involved in
hydrologic modeling in a cohesive, systematic manner. Although general principles and
techniques on addressing hydrologic uncertainty are emerging in the literature, there exist
no well-accepted guidelines about how to actually implement these principles and
techniques in various hydrologic settings in an integrated manner. This paper reviews, in
relevant detail, the common data assimilation methods that have been used in hydrologic
modeling to address problems of state estimation, parameter estimation, and system
identification. In particular, the paper discusses concepts, methods, and issues involved in
hydrologic data assimilation from a systems perspective. An integrated hierarchical
framework is proposed for pursuing hydrologic data assimilation in several progressive

steps to maximally reduce uncertainty in hydrologic predictions.
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1. Introduction

[2] Hydrologic modeling has benefited from significant
developments over the past two decades, including dramatic
growths in computational power, ever increasing availabil-
ity of distributed hydrologic observations, and improved
understanding of the physics and dynamics of the hydro-
logic system. This has led to the building of higher levels of
complexity into hydrologic models, and an advance from
lumped, conceptual models toward semidistributed and
distributed physics-based models. Paradoxically, while
these advances reflect our growing understanding, they
have also increased the need for concrete methods to deal
with the increasing uncertainty associated with the models
themselves, and with the observations required for driving
and evaluating the models. It is now being broadly recog-
nized that proper consideration of uncertainty in hydrologic
predictions is essential for purposes of both research and
operational modeling [Wagener and Gupta, 2005]. The
value of a hydrologic prediction to water resources and
other relevant decision-making processes is limited if rea-
sonable estimates of the corresponding predictive uncertain-
ty are not provided [e.g., Georgakakos et al., 2004].

[3] To adequately address uncertainty in hydrologic mod-
eling, there are three distinct yet related aspects to be
considered: understanding, quantification, and reduction of
uncertainty. Arguably, understanding uncertainty is an inte-
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gral part of any application of uncertainty quantification
and/or reduction. Many uncertainty analysis frameworks
have been introduced in the hydrologic literature, including
the generalized likelihood uncertainty estimation (GLUE)
methodology [Beven and Binley, 1992], the Bayesian recur-
sive estimation technique (BaRE) [Thiemann et al., 2001],
the Shuffled Complex Evolution Metropolis algorithm
(SCEM) [Vrugt et al., 2003a], the multiobjective extension
of SCEM [Vrugt et al., 2003b], the dynamic identifiability
analysis framework (DYNIA) [Wagener et al., 2003], the
maximum likelihood Bayesian averaging method (MLBMA)
[Neuman, 2003], the dual state-parameter estimation meth-
ods [Moradkhani et al., 2005a, 2005b], and the simultaneous
optimization and data assimilation algorithm (SODA) [Vrugt
et al., 2005]. However, few of these methods completely
address all the above three critical aspects of uncertainty
analysis in an explicit and cohesive way.

[4] Methods of probabilistic prediction and data assimi-
lation (DA) for quantification and reduction of state uncer-
tainty have been extensively explored in the atmospheric
and oceanic sciences [e.g., Daley, 1991; Courtier et al.,
1993; Anderson and Anderson, 1999]. Their application in
the hydrological sciences is relatively new, although deter-
ministic hydrological prediction and parameter estimation
have become reasonably mature. Nevertheless, the hydro-
logic literature has seen various applications of data assim-
ilation and/or uncertainty analysis in hydrology ranging
from characterization of soil moisture and/or surface energy
balance [e.g., Entekhabi et al., 1994; Houser et al., 1998;
Entekhabi et al., 1999; Galantowicz et al., 1999; Boni et al.,
2001; Walker et al., 2001; Reichle et al., 2001a, 2001b,
2002a, 2002b; Margulis et al., 2002; Dunne and Entekhabi,
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2005], to rainfall-runoff modeling [e.g., Restrepo, 1985;
Moradkhani et al., 2005a, 2005b; Vrugt et al., 2005], to
flood foresting [e.g., Kitanidis and Bras, 1980; Young,
2002], to estimation of hydraulic conductivity [e.g., Katul
et al., 1993; Lee et al., 1993], to groundwater flow and
transport problems [e.g., Eigbe et al., 1998; Graham and
McLaughlin, 1991; McLaughlin et al., 1993], to estimation
of water table elevations [e.g., Van Geer et al., 1991;
Yangxiao et al., 1991], and to water quality modeling
[e.g., Beck, 1987].

[5] One critical issue for hydrologic modeling is how the
DA methods used in atmospheric and related sciences can
best be adapted and combined with hydrologic methods to
cope with the uncertainties arising from hydrologic model-
ing in a cohesive, systematic way to maximally reduce and
adequately quantify the predictive hydrologic uncertainty
[Krzysztofowicz, 1999; Mantovan and Todini, 2006]. Al-
though general principles and techniques on addressing
hydrologic uncertainty are emerging in the literature, there
exist no well-accepted guidelines about how to actually
implement these principles and techniques in various hy-
drologic settings. In this paper we discuss the sources of
uncertainty in hydrological modeling from a systems per-
spective, illustrate in detail some of the common DA
methods that have been used to quantify and reduce
hydrological uncertainty, and propose a (preliminary) hier-
archical data assimilation framework for systematically
addressing the various types of uncertainties as a way to
move forward. It is worth noting that this paper does not
attempt to provide a comprehensive review of the literature
regarding all the methods, applications, and issues related to
data assimilation in hydrology; instead, we aim to present to
the readers an illustrative and integrated (rather than frag-
mented) picture of the state of the art of hydrological data
assimilation from a systems perspective.

[6] The paper is organized as follows: Section 2 discusses
the three important aspects in addressing hydrologic uncer-
tainty, i.e., understanding, quantifying, and reducing uncer-
tainty; in section 3 we present an integrated view of
uncertainty in hydrologic modeling from a systems perspec-
tive; Bayes’ theorem and its application to data assimilation
are discussed in section 4; sections 5, 6, 7, and 8 are devoted
to reviews of the common methods that have been used to
approach problems of system identification, parameter esti-
mation, state estimation, and simultaneous state and param-
eter estimation, respectively; an integrated Bayesian
hierarchical framework for handling all hydrologic uncer-
tainty in a cohesive, systematic manner is proposed in
section 9; and the paper closes with some general discussions
and recommendations for future research in section 10.

2. Understanding, Quantifying, and Reducing
Hydrologic Uncertainty

[7] As mentioned in the introduction, understanding,
quantification, and reduction of uncertainty are the three
critical aspects to be considered in order to adequately
address uncertainty in hydrologic modeling and prediction.
For a full uncertainty analyses one may argue that there
exists an additional aspect where uncertainty in the predic-
tions are analyzed and interpreted to infer the deficiencies in
the model and data, a process that Wagener and Gupta
[2005] referred to as ‘““uncertainty communication.” This,
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however, is beyond the scope of the current paper, which
focuses on hydrologic data assimilation.

[s] Obviously, without first adequately understanding all
the different uncertainty sources and the relationships be-
tween them, it is difficult to conduct uncertainty quantifi-
cation and reduction in a meaningful way. This is because
different uncertainty sources may introduce significantly
different error characteristics that require different techni-
ques to deal with; and missing important uncertainty sour-
ces may lead to misleading uncertainty predictions in the
hydrologic outputs. As of today, our understanding of
hydrologic uncertainty is still far from complete and there
is much room for further efforts in search of cohesive,
systematic means to approach this. It is also very important
to distinguish modeling uncertainty from predictive uncer-
tainty: While modeling uncertainty comes mainly from the
imperfect fit to the truth of the past, predictive uncertainty
can also arise from extrapolation errors or temporal predic-
tion errors due to the fact that the future typically does not
look exactly like the past [e.g., Morgan et al., 1990;
Krupnick et al., 2006]. In other words, predictive uncer-
tainty is related to, but not necessarily equivalent to,
modeling uncertainty; and reduction in modeling uncer-
tainty does not necessarily lead to enhanced predictability
of the model under changing conditions. In decision-making
processes, there may exist other types of uncertainty, such as
decision uncertainty, which arises “whenever there is am-
biguity and controversy about how to quantify or compare
social objective” [Finkel, 1990, p. 16], and scenario uncer-
tainty, which is related to the inability of the scenarios to
account for all the factors affecting the key output/decision
variables [Cullen and Frey, 1999]. In the context of hydro-
logical data assimilation, addressing modeling uncertainty is
of primary interest, which, in turn, will have an impact on
predictive uncertainty.

[¢9] As far as quantifying uncertainty is concerned, a
classical and straightforward way presented in the literature
is to represent the predictions in terms of a probability
distribution, computed by performing probabilistic instead
of deterministic prediction/modeling [e.g., Kuczera and
Parent, 1998; Krzysztofowicz, 1999; Montanari and Brath,
2004; Tamea et al., 2005]. For example, by producing an
ensemble of hydrologic predictions (instead of a single
deterministic prediction as does traditional hydrologic mod-
eling), probabilistic prediction seeks to take into account
uncertainties in the equations and/or parameters that are
used to describe the physical system and in the hydrologic
observations that are made on the system and used in the
prediction/modeling process. Of course, for effective quan-
tification of the uncertainty, some prior knowledge (esti-
mate) about the error characteristics that describe the
probability distribution of the uncertainties is required,
indicating that quantification of uncertainty is, indeed, to a
large degree dependent on the understanding of uncertainty.
In practical applications of probabilistic prediction, the high
nonlinearity of the hydrologic system and the complex
interactions between different components of the system
result in it being highly difficult to estimate and apply
probability distributions that accurately represent the true
joint distributions of the uncertainties without creating
computational and/or mathematical difficulties. Hence, in
practice, locally linear assumptions are usually made about
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Figure 1. Schematic diagram of model components from a

systems perspective.

the system, and uniform or (truncated) Gaussian/normal
distributions are typically used to quantitatively represent
various sources of uncertainties [e.g., Moradkhani et al.,
2005a, 2005b]. To quantify the uncertainty in hydrologic
outputs, sampling (sometimes called ensemble) methods are
now widely used by taking samples from the assumed error
probability density functions (PDFs) and running the model
forward for a certain amount of time. With a sufficiently
large sample of predictions, statistics describing the uncer-
tainties in model outputs can be easily derived from the
sample. In most cases, quantification of uncertainty is
embedded in the data assimilation processes aiming to
reduce predictive uncertainty as discussed below.

[10] There are three main areas where actions can be
taken toward reducing uncertainty in hydrologic predic-
tions: (1) acquisition of more informative and higher quality
hydrological data (including data of new types) by devel-
oping improved measurement techniques and observation
networks; (2) development of improved hydrologic models
by incorporating better representations of physical processes
and using better mathematical techniques; and (3) develop-
ment of efficient and effective techniques that can better
extract and assimilate information from the available data
via the model identification and prediction processes.

[11] While hydrologic science has witnessed astonishing
advances in the availability of hydrologic data (area 1) and
the complexity/reliability of hydrological models (area 2),
there is an urgent need for techniques that effectively and
efficiently assimilate important information from the data
into the models to produce improved hydrological predic-
tions (area 3). We will generally refer to such techniques as
data assimilation (DA) methods, defined here as

procedures that aim to produce physically consistent representations
or estimates of the dynamical behavior of a system by merging the
information present in imperfect models and uncertain data in an
optimal way to achieve uncertainty quantification and reduction.

[12] It is worth mentioning that this description of the DA
problem is broadly encompassing, not being limited only to
problems of “state estimation” as the term is often applied
to in the literature. Instead, it describes the more compre-
hensive problem of “merging models with data” and
therefore includes the three related problems of system
(structure) identification, parameter estimation, and state
estimation, which are all critical to the reduction of uncer-
tainty in model predictions. More details on these concepts
are provided in section 3.

[13] Arguably, understanding uncertainty should always
be an integral part of any application of uncertainty
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quantification/reduction; and given the continual arrival
of different kinds of observations, one should not stop at
the quantification step but continue to reduce the uncer-
tainty by assimilating new observations. In most cases of
DA applications, the process of uncertainty reduction
inherently involves the quantification of uncertainty in
the model inputs, parameters, structure, and observations,
and preferably provides quantitative information about
uncertainty in model predictions or forecasts. In recogni-
tion of this, the focus of this paper is given to under-
standing and reduction of hydrologic uncertainty from a
systems perspective (sections 3—9).

3. Hydrologic Uncertainty From a Systems
Perspective

[14] Uncertainty in hydrologic modeling may arise from
several sources: model structure, parameters, initial condi-
tions, and observational data used to drive and evaluate the
model. In this section, to formally specify the different
sources, we will describe a model as being composed of
multiple components from the perspective of systems the-
ory. Errors in each of these model components can give rise
to uncertainty in hydrologic modeling. In this sense we
include within the realm of data assimilation any procedure
that assimilates information from observations to reduce the
uncertainty associated with one or more of the model
components, be it the state, the parameters, or the system
structure.

3.1.

[15] For the purpose of communication, here we consider
a model to be composed of seven different components
(Figure 1): system boundary (B), inputs (u), initial states
(o), parameters (), structure (M), states (x), and outputs ().
Note not all the hydrologic applications existing in the
literature comply with this definition/terminology of system
components (see below).

[16] In this exposition we define the inputs « and outputs
v as fluxes of mass and/or energy into and out of the system
across the system boundary B; states x as time-varying
quantities of mass and/or energy stored within the system
boundary B; and parameters 6 as characteristic properties of
the system that are assumed to be “time-invariant” (remain
constant over the time duration of interest). Note that in
some fields, the system ““state” x* is taken to be some other
quantity somehow related to the mass or energy state x; in
such cases the same general equations hold but with some
modifications to account for the relationship of x* to x.
Also, we shall return to the issue of time-invariance of
model parameters in a moment. For example, in catchment
modeling, # may refer to the time-varying two-dimensional
spatial distribution of precipitation flux over the catchment;
y may refer to the time-varying two-dimensional distribu-
tion of streamflow flux at all points along the river network
and of evaporation and transpiration from the surface of the
catchment; x may refer to the three-dimensional time-
varying spatial distribution of surface and subsurface mois-
ture stored within the catchment boundary; and 6 may refer
to the time-invariant three-dimensional spatial distribution
of catchment characteristics such as the soil hydraulic
properties.

Model Components in Systems Theory
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[17] The model structure M consists of two components:
M* and M” (i.e., M= {M~, M”}). Here M~ and M” are (in
general) nonlinear vector functional relationships, where
M ™ represents the input-to-state mapping and M” represents
the state-to-output mapping. For example, M may refer to
the coupled equations describing the three-dimensional
evolution of surface and subsurface moisture in response
to catchment inputs and outputs (precipitation, evaporation,
transpiration, and outflow), and M” may refer to the
coupled equations describing the dependence of catchment
outputs (evaporation, transpiration, and outflow) on the
system states. These mappings can be described or con-
structed in a variety of different ways, including the
continuous-time differential equation formulation (using ¢
to represent continuously varying time):

dx/dt = M*(x,ul0) (1)
y = M"(x0), (2)

and the discrete-time difference equation formulation (using
k to represent discrete moments in continuously varying
time f):

Xj+1 = Mi:+1(xk7“k+1|0) 3)

Vit = Mi iy (31 16)- 4)

[18] Since computer-based implementations are usually
constructed to make predictions at discrete moments of
time, we shall (without loss of generality) use the discrete
time formulation described by equations (3) and (4) in all
subsequent discussion. Note that the formulation must
implicitly employ the continuity equation dx/dt = u — y to
ensure physical consistency in the time-dependent account-
ing for mass and energy fluxes.

[19] As mentioned above, this formulation assumes that
the model parameters 6 do not vary with time over the
duration of interest. As a conceptual extension, one might
wish more generally to permit the system characteristics
represented as “parameters” to vary slowly with time, in
response to changes in the model state and/or system inputs.
In general, we would expect (for reasons of physical
consistency) that the rate of this “parameter” variation is
slower than that of the variation of the state. To complete
the mathematical description, we would then introduce an
additional set of mapping relationships that describes, in a
manner analogous to the input-state relationship, the time-
evolution of the parameters 6 (see equations (5)—(7)).

Ot = MY (X, g1, Ok |D) (5)
X1 = My, (o, w1 |0k) (6)
Vi1 = My (i1 160). (7)

[20] Note that this revised formulation introduces a new
set of (uncertain) time-invariant coefficients ¢ which must
be specified a priori or estimated from data; for example, if
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0 is believed to take the same Gaussian distribution at all
time steps, ¢ might represent the (time-invariant) mean and
covariance of that distribution (¢ ~ N(ug, 07)). However, if
we define an extended “state” vector x’ = [x, 8] by adjoining
the time-varying quantities x and 6 into a single variable,
and define a new “parameter” vector ¢, the formulation in
(5)—(7) is not fundamentally different from that given in
equations (3)—(4). For simplicity of notation, we will
therefore proceed by adopting the representation of
equations (3)—(4) and let the reader make the appropri-
ate substitutions for the more general case as necessary.

3.2. Errors in Different Model Components

[21] Of the seven model components illustrated in
Figure 1, five of them (i.e., B, u, xo, 0, and M) must be
specified, estimated, or defined before the model can be
actually run, while the remaining two (x and y) are com-
puted by running the model. Each of the five predefined
components may be uncertain in various characteristic
ways, and the consequence of these uncertainties will be
mapped into the model states and outputs. Hence input data,
parameters, the model structure, initial conditions, and the
system boundary represent five major sources of uncertain-
ties in hydrologic modeling. In most cases, model inputs
and initial conditions are specified or estimated from in situ
observations. Accordingly, errors in these two sources can
be collectively considered as data errors or observation
errors. Errors in output observations that are used to
evaluate the model results should be considered as data
errors as well. Note in cases where x, are treated as model
parameters, errors associated with x, can be considered as
parameter errors [e.g., Liu et al., 2003]. Definition of the
system boundary is part of the model conceptualization
process; hence the uncertainty associated with B can be
considered as one source of structural uncertainty. In
summary, there are three primary types of uncertainties in
hydrologic modeling: structural errors, parameter errors,
and data errors (see also discussions by Wagener and Gupta
[20057).

[22] 1. Models are assemblies of assumptions and sim-
plifications and thus inevitably imperfect approximations to
the complex reality, i.e., the true system that a model seeks
to characterize. Conceptualization with inappropriate
approximations and omissions can result in large (albeit
poorly understood) errors in the conceptual structure of a
numerical model. Structure errors can also arise from the
mathematical implementation (e.g., spatial and temporal
discretizations) that transforms a conceptual model into a
numerical model [Neuman, 2003].

[23] 2. Model parameters are conceptual aggregate rep-
resentations of spatially and temporally heterogeneous
properties of the real system. Parameters are an integral
part of the equation-based modeling approach, and the use
of “effective” parameter values in hydrologic modeling is
essential. Errors in the estimates of parameter values can
result in huge errors in the model outputs as shown in many
modeling studies [e.g., Gupta et al., 1998; Liu et al., 2005].
However, the “conceptual” and spatiotemporal aggregate
nature of parameters sometimes makes it difficult to specify
them directly and unambiguously from observations made
in the field (of course exceptions exist, such as pumping
tests to estimate system conductivities). In other words,
parameters are not often easily measurable, and must
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generally be estimated by indirect means (e.g., prior knowl-
edge or model calibration) with consequent introduction of
errors and uncertainties.

[24] 3. Data errors can generate uncertainties in hydro-
logic predictions through the model inputs and initial
conditions, both of which can be estimated from observa-
tions [e.g., Clark and Slater, 2006]. A data error is also
referred to as a measurement error if] as typically is the case,
the data of concern is measured. A measurement error
usually consists of two components: (1) instrument error
due to imperfect measurement devices that do not accurately
record the variables they are designed to measure and
(2) representativeness error due to scale incompatibility or
differences (in time or space) between the variable mea-
sured by a device and the corresponding model variable.
Representativeness error can be discussed in terms of
spacing (distance or interval between samples), extent
(overall coverage of measurements in space or time), and
support (averaging volume or area of samples) [Bldschl and
Grayson, 2000]. These two error components tend to have
very different characteristics which may vary from variable
to variable. To effectively quantify or reduce uncertainty in
the predictions, statistics of both errors should be considered
and adequately specified.

[25] Structural, parameter, and data errors collectively
lead to uncertainties in hydrologic predictions of model
outputs and states. Among these three types of errors,
structural errors are generally the most poorly understood
and the most difficult to cope with; nevertheless, their
impacts on hydrologic predictions can be far more detri-
mental than those of parameter errors and data errors
[Carrera and Neuman, 1986; Abramowitz et al., 2006].

3.3. Addressing Uncertainty in Different Model
Components

[26] Viewing model components and the errors in them
within a dynamic systems framework (as described in
sections 3.1 and 3.2) helps to better understand and organize
the different uncertainty sources in hydrologic modeling.
The next critical issue is how to adequately represent (or
quantify) the uncertainties in these sources and feed them
into a DA framework to effectively and efficiently reduce
the predictive uncertainty. A DA application usually
requires proper specifications or assumptions of the char-
acteristics of errors associated with the four major error
sources (initial conditions, inputs, parameters, and model
structure). This, however, is not a trivial issue, because prior
knowledge on the error characteristics is usually not avail-
able, especially for errors associated with poor specification
of the model structure. In the meantime, one should realize
that different DA problems may require different techniques/
algorithms that best fit into the specific problem setting.

[27] Loosely speaking, there are three types of data
assimilation problems based on the model component being
considered: state estimation, parameter estimation, and
system identification, described as follows.

[28] 1. State estimation seeks to characterize the true
“state” of the system by optimally combining state informa-
tion represented by the model with that inferable from all
kinds of available data sources, quantitative or qualitative. In
the literature the term data assimilation is commonly used to
refer specifically to state estimation only [e.g., McLaughlin,
1995, 2002]. Note that the definition (including dimension)
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and computation of the model state are conditional on the
specification of a model structure and values for the param-
eters. While current data assimilation methods are praised for
their ability to deal with all the three types of errors men-
tioned above (i.e., structural errors, parameter errors, and
measurement errors), most applications of state estimation
have been focused on the measurement errors only, without
rigorous treatment of structural and parameter errors [e.g.,
Reichle et al., 2002a, 2002b].

[29] 2. Parameter estimation aims to estimate proper
values of the model “parameters” based on available data,
so that the model makes sufficiently accurate simulations or
predictions of the true input-state-output response. Note that
the definition, dimension, and specification of the model
parameter set are conditional on the specification of a model
structure (the form of the input-state-output relationship).
Traditionally, parameter estimation has been conducted by
using deterministic (manual or automatic) calibration tech-
niques that tend to ignore model structural errors and
measurement errors [e.g., Duan et al., 1992; Yapo et al.,
1998]. Recently, stochastic data assimilation methods have
been developed and applied to parameter estimation prob-
lems [e.g., Thiemann et al., 2001; Moradkhani et al., 2005a,
2005b].

[30] 3. System identification involves the selection of
appropriate structures (i.e., conceptual models) for a math-
ematical or numerical model that aims to represent the real
system. More specifically, a system identification process
aims to define a set of proper mappings (typically equations,
e.g., equations (3) and (4)) that accurately represent the
relationships between the model inputs, parameters, states,
and outputs [e.g., Neuman, 2003].

[31] Among the three types of DA problems, system
identification is the most important and, typically, also the
most difficult, as it may involve the development of
qualitative diagnostic measures and include the use of
expert knowledge and subjectivity. Regardless of that, to
maximally reduce the final total uncertainty in hydrologic
predictions, all these three types of problems should be
addressed, with order of importance being system identifi-
cation, parameter estimation, and state estimation, and,
when necessary, in an iterative manner. In the meantime,
all types of errors (i.e., structural, parameter, and data
errors) should be properly considered in each of three types
of DA processes to reduce bias and uncertainty in the final
predictions.

[32] As mentioned above, we define data assimilation as a
process that assimilates information from observational data
(quantitative or qualitative) in such a way as to improve
estimation/representation of any of the three major model
components of concern (i.e., model states, parameters, and
structure). The following sections review the methods
typically used in hydrological modeling, including methods
for system identification, parameter estimation, and state
estimation. In general, Bayes’ theorem has been employed
as the foundation of various data assimilation methods and
is therefore discussed first (section 4).

4. Bayes’ Theorem and Its Application to Data
Assimilation

[33] We consider two events 4 and B, which we expect
from empirical observation or for reasons of physical
p phy
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consistency) to be related in some manner. We further
assume that the probability in the occurrence (or observa-
tion) of events 4 and B can be described by P(4) and P(B).
Then, the cooccurrence (or observation) of 4 and B is
represented by the joint probability function P(4 N B),
and this can be further expressed as

P(ANB) = P(A|B) - P(B) = P(B|4) - P(A), (8)

where P(A|B) is the conditional probability of occurrence of
event 4 given knowledge that event B has occurred (and
similarly for P(B|4)). This leads directly to Bayes’ theorem:

P(B|4) = w. )

[34] In the Bayesian use of probabilities, the marginal
probabilities (P(4) and P(B)) and the conditional probabil-
ities (P(A|B) and P(B|A)) are referred to as the prior and
posterior PDFs, respectively. Bayes’ law provides a power-
ful basis for a full stochastic representation of all the
uncertainties in the model and the data in hydrologic
modeling. Using Bayes’ theory, equation (9) can be refor-
mulated to describe all three aspects of data assimilation,
including system identification, parameter estimation, and
state estimation.

[35] As discussed in section 2, the five uncertain quanti-
ties (B, u, xo, 0, and M) must be specified in order to use
equations (3) and (4) to compute estimates of the two
remaining quantities (x and y). We represent the prior
knowledge of the quantities (B, u, xo, 6, and M) by the
probabilities pprior(B)7 pprior(u)a pprior(xO)a pprior(e)a and
DPprio(M), respectively. We further assume that there may
become available a set of uncertain observations z which
may contain information about any of the system aspects of
interest. For example, z may consist of direct or indirect
measurements on any of the system fluxes (u and y), state
variables (x), parameters (), or initial conditions (x, and B),
or more generally can consist of qualitative assessments of
any of these quantities, including the model structure (M).
Of course, such observations will generally be incomplete,
in the sense that they refer to values at a limited and discrete
set of points in the four dimensions of space and time.
Further, such observations may generally be indirect, in the
sense that they actually describe some quantity that is
related to the uncertain model quantity of interest. For
example, this indirect relationship might arise from inexact
correspondence such as scaling differences (e.g., point scale
observations are made of spatially distributed soil hydraulic
properties, whereas the model representation describes the
mean spatial value over some larger scale). Alternatively, it
may arise from observing some closely related quantity
(e.g., remotely sensed observations are made of radiances
which are then related to the system properties of interest
via radiative-transfer models). By considering all such
factors, we define the following general observation equation:

Zk:MZ(yk,xk,uk,xo,G,B,M). (10)

[36] To solve the DA problem, we are now interested in
the posterior probability distribution (PPD) of the various
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quantities of interest: the model structure, parameters, state
variables, and outputs. By application of Bayes’ theory it
can be shown that for given observations z,

P(Z|M) 'pprior(M)

) (1

Pposterior (M|Z) -

[37] Equation (11) provides a means for identifying
appropriate model structures M by describing the posterior
probability associated with a selected model structure in
terms of the “likelihood” p(z|M) that the observations z
might have been generated by the model assuming that the
structure M is the correct one, multiplied by the probability
that the model structural assumption is correct (p,,o{(M)).
Acknowledging the logical progressive chain of conditional
dependence described as {M — 0 — x — y}, we can further
derive

p(Z|M, ‘9) 'pprior(9|M) 'pprior(M)

ppoxteriar(mzaM) = p(Z, M) (12)
Pposterior (X‘Z, M7 6)
(el M, 6) - p(+IM. ) - Py (B1M) - Pyrir (M) (13)

pl(z,M,0)

ppnster[ar()/‘xv 27M7 9)
:P(Z|y7x7Ma 0) - p(ylx, M, 0) - p(x|M, 0) - Pprior(01M) - Pprior(M)
p(x,z,M,0)

(14)

[38] For simplicity of presentation we have ignored the
additional dependence on the system boundary B and
initial conditions x,. In equation (11), p(z) is a constant
that normalizes the posterior probability mass to unity.
Equation (12) describes how to compute posterior esti-
mates of the model parameters 6 given the model structure
M and observations z; equation (13) describes how to
compute posterior estimates of the model states x given the
model structure M, parameters 6, and observations z; and
equation (14) describes how to compute posterior esti-
mates of the model outputs y given the model structure M,
parameters 0, states x, and observations z. In data assimi-
lation these equations serve as the fundamental basis for
system identification (equation (11)), parameter estimation
(equation (12)), state estimation (equation (13)), and
quantification of uncertainty in hydrologic predictions
(equation (14)).

5. Methods for System Identification

[39] In hydrologic modeling or analysis, a system iden-
tification problem typically involves selecting or construct-
ing a valid model structure or a set of equally valid model
structures (i.e., conceptual models and mathematical imple-
mentations) for the hydrologic system of concern. Histori-
cally, hydrologic modeling has relied on a single conceptual
model of a particular hydrologic environment. Beven and
Freer [2001, p. 1] point out that for a complex environ-
mental system, there may actually exist “many different
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model structures and many different parameter sets within a
chosen model structure that may be behavioral or acceptable
in reproducing the observed behavior of that system,” a
phenomenon that Beven [1993] has termed as “equifinal-
ity.” This may be partially, if not primarily, due to the
limited ability of current conceptual models in representing
the complex, heterogeneous hydrologic systems that have
unknown, and possibly unique system characteristics
[Beven, 2000]. In this sense, hydrologic predictions based
on a single conceptual model or model structure are
invariably subject to statistical bias (if an invalid model is
chosen) and underestimation of uncertainty (if equivalent
valid models are not included) [Neuman, 2003]. Hence the
“system identification” problem in hydrologic modeling
can be approached through using a suite of “independent™
plausible model structures with probability of each structure
properly defined so that collectively, these model structures
adequately and unambiguously approximate the true under-
lying system.

[40] In most data assimilation techniques (such as those
described later in sections 6 and 7), errors in model
structures are usually accounted for by adding an (unbiased)
error term to the model transition equation (see section 7.1).
However, because of equifinality of models as described
above, a full consideration of the model structure error
requires involving at least several “‘independent” alternative
model structures that encompass a range of different
assumptions [Beven and Young, 2003]. In this sense, a
multimodel approach based on a suite of conceptual
models is better suited for handling uncertainty associ-
ated with model structure errors than single-model
approaches [National Research Council, 2001; Neuman,
2003; Georgakakos et al., 2004]. In the hydrologic litera-
ture, Beven and Binley [1992] introduced the generalized
likelihood uncertainty estimation methodology (GLUE)
where multiple competing model structures and parameter
sets are allowed to account for the possibility of equifinality
of models, producing a likelihood-weighted probability
distribution of output predictions. GLUE is described in
more detail as a model calibration and uncertainty estima-
tion methodology in section 6.2.1.

[41] Along the same line of reasoning, a coherent mech-
anism for handling structural uncertainty is the concept of
Bayesian model averaging (BMA) [Hoeting et al., 1999]. In
BMA, the posterior distribution of the prediction on a
quantity y given the observation z is approximated by the
weighted sum of the posterior distributions of a set of K
independent (or mutually exclusive) models M = {M;, ...,
Mg}, ie.,

p12) = > p(y| My, 2)p(My2),

k=1

(15)

where the weights are determined by the posterior
distributions of the models p(M;|z) given by Bayes’ theorem
as expressed in (11), where the normalization factor p(z) is
obtained by

K

plz) = ZP(Z|Mk)p(Mk)

k=1

(16)
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and the likelihood of each model M (given by p(z|M})) is
calculated as

plelMy) = / (100 M )p(6: M) 6. (17)

[42] In equations (16) and (17), p(z|M,) is the likelihood
of observing the data z given the model M;; p(z|6:, M) is
the joint likelihood of model M, and its parameter set 6;
(0] M;) is the prior density of ) given the model structure
M; and p(M;) is the prior probability that the model
structure M is valid. The BMA framework provides a
cohesive way to jointly assess model structure and
parameter uncertainties; however, it tends to be computa-
tionally demanding/cumbersome and also requires reliable
prior information about model parameters. Neuman [2002,
2003] proposed a maximum likelihood version of BMA
(MLBMA) that proves to be more computationally feasible
and capable of dealing with situations where reliable prior
information is lacking [Ye et al., 2004, 2005].

[43] In atmospheric science it has recently become very
popular to use a multimodel ensemble method (MME) for
weather and climate forecasting [e.g., Doblas-Reyes et al.,
2000; Palmer et al., 2000; Ziehmann, 2000; Palmer, 2004;
Hagedorn et al., 2005a, 2005b]. In an MME approach a
larger ensemble of predictions is composed from a suite of
smaller ensembles, each generated based on an independent,
plausible model (i.e., several ensembles are generated using
each model structure). Instead of computing the probability
of each model as in a BMA approach, the goal of MME is to
account for uncertainty in the model structure, the
assimilated data, and, in particular, the uncertainty asso-
ciated with knowledge of initial conditions, by means of
sampling from the output distributions of several different
models. Most MME-based studies have reported that the
performance of (properly selected) multimodel ensembles is
superior to that of single-model ensembles, due not only to
error compensation among different models, but also to the
greater consistency and reliability of multimodel ensembles
that cover a broad range of possible solutions [e.g.,
Georgakakos et al., 2004; Hagedorn et al., 2005a, 2005b].

[44] For all the three methodologies mentioned above
(i.e., GLUE, BMA, and MME), all probabilities (including
the final posterior) are implicitly conditioned on the set of
selected models M. Hence it is critical to select a set of
relatively independent, plausible models that are most
strongly supported by available data. Otherwise, there is
no confidence about whether uncertainty is overestimated or
underestimated, and there is no guarantee that the truth will
even lie within the range of a model ensemble. This,
however, is not straightforward, for there exist no well-
accepted guidelines in the literature about how to define
“independent” model structures or how many “indepen-
dent” models are needed to adequately span the model
space.

6. Methods for Parameter Estimation

[45] Despite the physical basis of many hydrological
models, their parameters are often conceptual, effective
quantities that cannot be measured in the field, and must
therefore be estimated indirectly. The parameter estimation
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problem is referred to by different names in the literature,
including model calibration, parameter optimization, data
assimilation, inverse problem, parameter tuning, among
others. Arguably, an adequate parameter sensitivity analysis
should always precede a parameter estimation study to
identify sensitive parameters, for including insensitive
parameters may render a parameter estimation process
ineffective and cumbersome, especially for a complex
model that has a large number of parameters [e.g., Liu et
al., 2004, 2005]. In this section we review traditional,
deterministic model calibration methods as well as the
newly emerging, stochastic data assimilation methods for
parameter estimation.

6.1. Model Calibration Methods

[46] As an illustration to the general concept of model
calibration, we consider a physically based model with p
parameters (0 = {0, ..., 0,}), which is to be calibrated by
assimilating the information from N different time series of
observations {Z,, n = 1,..., N} corresponding to N model
outputs {Y,, n=1,..., N}. The parameter estimation problem
can be most generally stated as a vector optimization problem
as follows [Gupta et al., 1998]:

Minimize F(0) = { f,(6),n =1,...,N} subject to § C ©, (18)

where £,,(6) is an objective function (also called a criterion)
for measuring the distance between the nth model output
and the nth observation; © is the physically feasible p-
dimensional parameter space; and F(0) is a vector in the case
of a multiobjective parameter estimation problem (N > 2)
and a scalar in single-objective cases (N = 1).

[47] The two major strategies used for parameter estima-
tion have been the ‘““manual-expert” approach and the
“automatic” approach. While manual-expert strategies rely
on the informed but subjective judgment and skill of an
experienced hydrologist, automatic strategies utilize the
power of computer-based optimization techniques based in
nonlinear regression theory. With the emergence of increas-
ingly complex hydrological models with larger numbers of
model parameters, effective and efficient automatic
approaches have become more popular than the time-
consuming, expertise-demanding manual approaches. Duan
et al. [1992] introduced the Shuffled Complex Evolution
algorithm (SCE), a global optimization strategy applicable
to a broad class of single-criterion calibration problems.
This algorithm was extended to the multiobjective complex
optimization method (MOCOM) by Yapo et al. [1998],
thereby enabling the use of multiple complementary
measures for better extraction of information from the data,
resulting in improved parameter estimates.

[48] The single- and multiple-criteria methods for param-
eter estimation mentioned above rely on deterministic
nonlinear optimization techniques that seek to identify a
single (few) “best” parameter set (sets), thus implicitly
ignoring the uncertainties associated with observed data,
model structure and parameters. In the case of significant
system and data noise or bias, such methods can lead to
parameter estimates that provide biased model predictions.
Recently, Vrugt et al. [2003a] presented an efficient Markov
Chain Monte Carlo (MCMC) sampler called the Shuffled
Complex Evolution Metropolis algorithm (SCEM, with a
multiobjective extension MOSCEM presented by Vrugt et
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al. [2003b]), which converges to an ensemble of parameter
sets that approximates the posterior distribution of model
parameters. This posterior description of parameter un-
certainty obtained through SCEM or MOSCEM can be used
to assess the uncertainty in hydrological outputs arising
from parameter uncertainty, representing an improvement
over traditional deterministic optimization methods (e.g.,
SCE and MOCOM) in accounting for uncertainties
associated with model parameters.

[49] Nevertheless, application of any of the methods
mentioned above is implicitly based on an assumption that
there exists a feasible parameter set for which the specific
model structure under consideration is able to provide
unbiased estimates of the model states and outputs at each
time step. When this is not true (as is generally the case), we
must acknowledge the existence of model structural and
data errors and combine the (stochastic) parameter estima-
tion methods with methods for system identification as
described below in section 6.2. In addition, it should be
mentioned that most (traditional) parameter estimation
methods do not exploit the full power of the Bayesian
framework, because they rely on “batch” processing of
long-term historical data, and therefore lack the ability to
recursively reduce parameter (and hence prediction) uncer-
tainty as new data become available. An exception is the
data-based mechanistic (DBM) approach to stochastic mod-
eling, which is based on advanced recursive methods of
time series analysis and has been successfully applied to
hydrological systems modeling and data assimilation [e.g.,
Young, 2003, and references therein]. When considered in
Bayesian terms, the DBM approach has the advantage of
quantifying the uncertainty in the model and the data
without resort to Monte Carlo methods, resulting in
comparatively simple online implementation for flood
forecasting and warning [e.g., Young, 2002; Romanowicz
et al, 2000].

6.2. Parameter Estimation Based on Stochastic
Methods

[s0] In recognition of the two major limitations of the
model calibration methods mentioned above, there has been
recent growing interest in the use of stochastic, sequential
data assimilation techniques for parameter estimation. Such
techniques operate within the Bayesian updating framework
for estimation of predictive uncertainty. Examples include
the generalized likelihood uncertainty estimation method
(GLUE, [Beven and Binley, 1992]), the Bayesian recursive
estimation method (BaRE [Thiemann et al. [2001]), and
other more recent techniques for simultancous state and
parameter estimation (see relevant details in section 8).
6.2.1. Generalized Likelihood Uncertainty Estimation
(GLUE)

[5s1] Beven and Binley [1992] introduced the generalized
likelihood uncertainty estimation (GLUE) methodology for
model calibration that takes into account the effects of
uncertainty associated the model structure and parameters.
A fundamental assumption underlying GLUE is the “equi-
finality” or “nonuniqueness” concept [Beven, 1993], where
multiple model structures and many parameter sets within a
chosen structure are considered equally likely as simulators
of the system. In other words, it is assumed that there exists
no optimal model or parameter set due to structural and
parameter uncertainties. This has introduced a different
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philosophy to the venue of model calibration where the
primary goal had historically been identifying an optimal
parameter set based on a single model.

[52] To implement the GLUE methodology, several al-
ternative model structures are selected and appropriate prior
parameter uncertainty distributions are assumed for each
model. Samples are then taken from these parameter dis-
tributions (coupled with their corresponding model struc-
tures) to generate Monte Carlo simulations. To evaluate the
degree of correspondence between each simulation and the
observed system behavior, a likelihood value is calculated
based on a predefined likelihood measure (i.e., a measure of
goodness of fit). The likelihood values are then used to
determine whether a model structure-parameter set is ““be-
havioral” or “nonbehavioral” according to a subjectively
defined threshold of likelihood values; and only behavioral
model structure-parameter sets are retained to provide
predictions of the system behavior. To assess the uncertainty
associated with the predictions, weights of the behavioral
sets of model structure and parameters are calculated by
normalizing the corresponding likelihood values so that all
the weights sum up to one; the distribution of these weights
is then taken as the probabilistic distribution of the predicted
variables to reflect the uncertainty impacts of structural and
parameter errors on model predictions.

[53] The primary improvement of the GLUE methodol-
ogy over the deterministic calibration methods lies in its
ability to explicitly account for the combined effects of
model structure and parameter uncertainty, by using mul-
tiple models and assuming proper prior distributions for
each parameter. Moreover, when a new observation period
arrives or there exist different observation types (quantita-
tive or qualitative), the likelihood values can be updated to
estimate the posterior distribution of parameter sets (and
thus that of model predictions), based on Bayes’ theorem.
One concern that has been raised is that the Bayesian
equation may not properly apply in GLUE in certain cases,
because in GLUE, a certain likelihood measure, or essen-
tially an objective function, is used in place of a formal
likelihood function that is consistent within the framework
of Bayes’ theorem [e.g., Thiemann et al., 2001; Mantovan
and Todini, 2006]. In addition, in the GLUE procedure,
uncertainties associated with input data and output data (i.e.,
data errors) are not explicitly and/or formally considered.
6.2.2. Bayesian Recursive Estimation (BaRE)

[54] Thiemann et al. [2001] introduced the Bayesian
recursive parameter estimation (BaRE) methodology that
poses the parameter estimation problem within the context
of a formal Bayesian framework. Unlike in GLUE where
error sources are only implicitly considered with a like-
lihood measure, BaRE makes strong, explicit assumptions
about the characteristics of errors in the observations by
using an exponential power density error model. Like in
GLUE, proper parameter ranges and prior probability
distributions are specified; and the Monte Carlo approach
is used to sample from the predefined distributions to
represent parameter uncertainty.

[55] Once the error model is defined and model structure-
parameter selections are initialized from their prior distri-
butions, the BaRE methodology consists of two recursive
steps that are common to the other data assimilation
methods for state estimation (see section 7): prediction
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and update. At time #;, BaRE predicts the outputs and the
uncertainty in the outputs by running the model forward to
the next observation time #..; (i.e., when the observation
z,41 1s available) for each set in the model structure-
parameter ensemble. To update the probability of the model
structure-parameter sets, a recursive version of the Bayesian
equation for parameter estimation (equation (12)) is used to
obtain the posterior probability of each model structure-
parameter set i as follows:

Pposterior (Mia 02+1 |Z/€+1) X p<Zk+1 ‘Mi? 02) Pprior (02|Mi)p1"‘i0r (Ml) .
(19)

[s6] After updating, the model system continues to run
forward to the next observation time, using the posterior
model structure-parameter distribution at time #;,; as the
prior distribution. With a well-posed modeling system, this
recursive process of conditioning parameters on available
observations would gradually reduce uncertainty associated
with the model structure-parameter set and lead to a
progressively smaller region of high probability density
(HPD) in the model-parameter space. In some cases, the
sampling limitation of the Monte Carlo approach may lead
to the HPD parameter region converging to one single point
[Beven and Young, 2003; Gupta et al., 2003]. Misirli [2003]
proposed an improvement on the BaRE methodology by
including a resampling technique to reduce the effect of the
sampling limitation.

[s7] Like GLUE, the BaRE methodology introduced a
broader paradigm for parameter estimation without resort-
ing to traditional optimization techniques. By adopting a
recursive rather than “batch™ approach, BaRE allows
model parameters to behave as though time-variant and
also reduces the dependence on availability of substantial
input and output data before estimation can begin. More
important, BaRE explicitly considers the uncertainties as-
sociated with model-parameter selection and output meas-
urements, which has not been possible for most previous
model calibration studies through parameter optimization,
and explicitly represents these in the state and output
predictions.

[s8] Nevertheless, the BaRE methodology is not the final
word on what can be achieved for model-parameter estima-
tion. First of all, input data uncertainty and model structural
uncertainty are not specifically separated out and are only
implicitly considered, by expanding the predictive uncer-
tainty bounds in a somewhat subjective manner. In addition,
in the current BaRE methodology for which parameter
estimation is the primary focus, the outputs and associated
uncertainty remain un-updated after the posterior parameter
distributions are obtained; in other words, the effects of
reduction on parameter uncertainty (through incorporating
new knowledge from available observation) do not properly
propagate to the estimation of outputs and associated
uncertainty in a timely manner. Accordingly, it would be
beneficial to conduct simultaneous state and parameter
estimation to generate unbiased parameter estimates, as well
as more accurate state estimates. Several such approaches
are reviewed in section 8. Finally, given that system
structures and model parameters naturally vary slowly in
time, it would be more appropriate to employ a time interval
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sufficiently larger than the typical observation time step
when performing model structure-parameter estimation. In
other words, better results may be achieved by adopting an
estimation algorithm that combines the advantages of batch
and recursive methods through using an assimilation time
interval of proper length.

7. Methods for State Estimation

[s9] State estimation for dynamic systems is a process
where information is extracted from observations and ac-
cumulated in time into the model, propagating to all state
variables. For a well-behaved model with consistent con-
straints of physical properties of the system, improved state
estimates can be obtained through data assimilation. This
section focuses on state estimation methods assimilating
observations that are distributed in time. Given observations
available up to the current time, there are three types of state
estimation problems: (1) smoothing problems that seek to
characterize system states at a past time; (2) filtering
problems that seek to characterize system states at the
current time; and (3) forecasting problems that seek to
characterize system states at a future time point [Gelb,
1974; McLaughlin, 2002]. Smoothing problems are usually
found in reanalysis or retrospective studies, while filtering
and forecasting problems are most commonly seen in real-
time or operational forecasting applications. In dealing with
these problems, batch-processing methods (or smoothers)
are employed to estimate model states in a batch mode
through least squares approximations, while sequential
methods (or filters) are typically used for recursive
estimation/correction of the states of a system each time
an observation becomes available. In hydrologic data
assimilation the most commonly used methods are Kalman
filtering, particle filtering, and variational data assimilation.
These methods are explained in detail below, with an
introduction to the state-space formulation commonly used
for state estimation applications.

7.1.

[60] For the convenience of illustrating the different state
estimation methods, let us consider the following generic
dynamic state-space formulation of a stochastic model:

State-Space Formulation

Xpp1 = Myr Ok, 0, 1) + 1y (20)

Zjp1 = Hip1 (%11, 0) + €xg1, (1)
where x; and x;; represent the true system state vectors at
time #; and #;,, respectively; the nonlinear operator M.
(equivalent to the model structure mentioned earlier in
section 3) expresses the system propagation from time #; to
t+1 In response to the model input vector uy.; 0 is a vector
of time-invariant model parameters; the observation vector
z+1 1s related to the model parameters and states through an
observation operator Hy.; (equivalent to M* mentioned in
equation (10)); 7.+ denotes the model error with mean 7.
and covariance Q;; and ;. denotes the observation error
with mean Z,., and covariance Rj.;. In the context of
Bayesian updating (equation (13)), the state equation (20)
represents the model prior at time #;1, while the observation
equation (21) can be used to calculate the likelihood of the
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observation z;.;. Note in the literature, the state equation is
also referred to as “transition equation,” “forward model,”
“forecast model,” or “dynamic system”; and the observa-
tion equation is often referred to as ““measurement equation/
model/system.”

[61] To set up the assimilation system using the above
state-space formulation, some assumptions have to be made
on the statistics of the two error terms 77 and ¢, based on the
prior knowledge of the deficiencies in the assimilating
system. For example, the mean values of 7 and ¢ (i.e.,
biases) reflect the systematic errors in the modeling and
observation systems, while the error covariances Q; and R,
in particular reflect the uncertainty in the model predictions
and observations. In practice, since these error character-
istics cannot be observed directly and are difficult to
estimate via indirect methods such as calibration, approx-
imations to the error PDFs are typically unavoidable [e.g.,
Reichle et al., 2001a, 2001b]. One popular approach is to
assume that the errors are zero-mean white noise sequences
with a normal (i.e., Gaussian) probability distribution. In
addition, it is typically assumed that the model error and
observation error are uncorrelated in order to obtain optimal
estimates.

7.2. Kalman Filtering

[62] In the case of Gaussian model and measurement
errors and linear model and observation operators, the data
assimilation problem presented in (20) and (21) can be
easily solved by an optimal recursive data processing
algorithm known as the Kalman filter (or KF [Kalman,
1960]). The KF algorithm originates from the optimal least
squares analysis and consists of recursive implementation of
a prediction step (equations (22) and (23)) and an update
step (equations (24) and (25)) as follows:

X = M (5, 0, u1) (22)
Py = Mea PEME A+ O (23)
X1 = Xt + Kindin (24)
Py =Py — K M Py, (25)

where P is the error covariance matrix of the state variables;
M and H stand for the linear (or “linearized” in nonlinear
cases) model operator and observation operator presented in
matrix forms, respectively; the minus and plus superscripts
are used to discriminate the states and the error covariance
matrix before and after updating, respectively; T stands for
transpose; and d is the innovation vector and is defined as
the difference between the actual observation z and the
model forecast of z (denoted as z ), i.e.,

i1 = Zkp1 — Zpy

Zpy1 = Hiepn (x;ﬂv 9)‘
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K is called the Kalman gain and can be calculated as
follows:

— T
Pk+]Hk+]

K = .
Mo P BE R

(28)

[63] The calculations of (22)—(28) can be repeated at the
next time step k + 2 to assimilate a new observation
available at that time; and this process can progress
sequentially into the future to assimilate all available
observations if desired. Note by updating the states with
equation (24), the assimilation algorithm does not explicitly
comply with fundamental physical principles such as
conservation of mass, momentum, and energy within the
model system.

[64] Equation (28) shows that the Kalman gain K is
determined by the relative magnitudes of the state error
covariance P and the observation error covariance R and
acts as a weighting factor on the innovation term. In other
words, the larger the observation error covariance, the
smaller the Kalman gain, and the smaller the update
correction applied to the forecast state vector. This indicates
that the assimilation results can be highly sensitive to the
choice of the priors, i.e., the statistics of model structural,
parameter, and measurement errors. It is worth noting that
low correlation between model states and observations will
also result in a small Kalman gain, suggesting the importance
of using appropriate observations in an assimilation study.

[65] The KF algorithm described above is easy to imple-
ment and has proved effective and efficient in the case of
linear system dynamics [e.g., Figbe et al., 1998; Galantowicz
et al., 1999]. However, in practice, hydrologic systems are
often inevitably highly nonlinear, limiting the use of
Kalman filtering. Hence variations of the KF algorithm
have been developed to make it applicable to nonlinear
problems, including the commonly used extended Kalman
filter (EKF [Jazwinski, 1970]) and ensemble Kalman filter
(EnKF [Evensen, 1994]).

[66] In the EKF algorithm, local (tangent linear) approx-
imation of the nonlinear state and measurement equations
(i.e., the model operator M and the observation operator H)
is performed each time data assimilation is conducted.
When implementing the EKF, the same equations (22)—(27)
for the KF algorithm will be used; however, the linearized
forms of the model and observation operators (M and H)
will be used in those equations. Some successful applica-
tions of the EKF have been seen in the hydrological
literature [Katul et al., 1993; Entekhabi et al., 1994; Walker
and Houser, 2001]; the EKF, however, may produce
instabilities or even divergence due to closure approxima-
tion by neglecting the second- and higher-order derivatives
of the model [Evensen, 1994].

[67] Evensen [1994] introduced the ensemble Kalman
filtering (or EnKF) algorithm as an alternative to the EKF to
address difficulties arising from high-dimensional nonlinear
filtering problems. By making a Monte Carlo generation
from random input perturbations, EnKF nonlinearly propa-
gates an ensemble of model states using (20), maps them to
an ensemble of prior estimates of the observations using
(21), and then updates the prior ensemble based on the
Kalman gain. The EnKF still consists of a prediction step
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(equation (29)) and an update step (equation (30)) as
follows:
i=1,-.n

xj‘:ril = Mk+1 (x;’ia 97 M;ch]) (29)

x;ill =x +Kk+1dli+1 i=1--n, (30)
where n is the size of the ensemble; the input ensemble
uj+ 1s obtained by adding a noise term (j; to the nominal
input w1, i.€., Uprr = Upery T Grt (G ~ N0, Upp); and
Uy is the error covariance of uy, ). A noise term &y, can
also be added to the nominal observation z;,, to calculate
the innovation ensemble using the following two equations
(as compared with (26) and (27)):

6;;-%—1 NN(O7Rk+l)7i: 17"'7”
(31)

i _ i —.I
iy = Zk41 T 1 — Zk

lejl :Hkﬂ(x,;’:l,ﬁ) i= 1,"‘,”. (32)

[68] Unlike in the EKF, no linearization of M or H is
needed. More important, the prior (or prediction) error
covariance Py, of the state variables can be directly
calculated from the ensemble {x;;|} as expressed in (33),
saving substantial computation resources in propagating and
updating P using (23) and (25),

_ _ _ T
Py = 2’1?11 = E[Xkﬂ (Xk+l) ]v (33)
where ¥ denotes covariance and Xy = {xi1}7 - 1. In fact,
the state error covariance P is never explicitly needed in
EnKEF, for the Pj, H,{H term in (28) is essentially the cross
error covariance of the state prediction {x;/i} and the
observation prediction {z;7}}, i.e.,

P;+1HZ+1 = Efﬂ = E[ijrlzl;rl]’ (34)
where Zi = {ZiV - . Similarly, the prediction error
covariance in the observation space (i.e., the Hy Py HkL
term in (28)) can be calculated from {z;;1} as follows:

— T zZ — — T
Hy P Hey = X0, = E[Zk-H (Zia) ]

(35)
Consequently, the Kalman gain in the EnKF algorithm can
be easily derived by substituting (34) and (35) into the
following equation:

Kot = 55, (S5, + Ret) (36)
Similar to the standard KF and EKF algorithms, EnKF can
also be implemented recursively in time to sequentially
assimilate observations as they become available.

[9] The applicability to nonlinear problems and easy
implementation of the EnKF method has led to extensive
applications of this DA technique in hydrology, meteorol-
ogy, and other fields [e.g., Burgers et al., 1998; Margulis et
al., 2002; Reichle et al., 2002a, 2002b; Moradkhani et al.,
2005a; Vrugt et al., 2005].
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7.3. Particle Filtering

[70] Particle filtering (PF) is another commonly used data
assimilation algorithm for recursive estimation of model
states. In the literature the algorithm is also known as
bootstrap filtering, the condensation algorithm, sequential
Monte Carlo (SMC) sampling, interacting particle approx-
imations, and survival of the fittest [Arulampalam et al.,
2002]. In particle filtering, the posterior probability
distribution (PPD) of model states at time #. is
characterized by a set of discrete random particles
({x+1}71) with associated importance weights ({Wisq}i-1)
as follows:

n
Pkt |Z1041) = ZW;chl&(karl — 1) (37)

i=1

where n is the number of particles and § denotes the Dirac
delta function. If n is sufficiently large, the discrete
expression on the left-hand side of (37) becomes an
effective approximation to the PPD of the true state space
at time 1.

[71] The PPD is best represented if the particles are
directly sampled from the posterior distribution of the states,
which, however, is generally not possible. To circumvent
this obstacle, a sequential importance sampling (SIS) strat-
egy has typically been adopted, where a proposal distribu-
tion g() (referred to as importance density in the literature) is
used and the importance weights are calculated as follows:

i . . .
Wit1 :p(x;H-I|lek+1)/‘](x;c+1‘zl:k+l> i=1,---,n (38)

where {w};(f}}f’:l are the weights before normalization (i.e.,

Wit = w}{(:%/z wii). In practice, equation (38) can be

rearranged aslft;elow to allow recursive evaluation of the
importance weights as successive observations become
available (see Arulampalam et al. [2002] for detailed
derivation):

i(%) i(*)P(Zk+l|X2+1)P(x2+1‘x;c)
Wit = Wi i i
q (X1 ¥ 251

i=1,,n (39)

[72] Choice of an appropriate proposal importance den-
sity is crucial in the SIS algorithm as reported by several
studies [e.g., Doucet et al., 2000; Arulampalam et al.,
2002]. In a generic approach the importance density is often
conveniently chosen to be the prior; and the weight
calculation in (39) simplifies to

i(¥)

Wi :w;((*)p(2k+1|x}c+l) i=1,---,n. (40)
This renders the importance weights proportional to the
likelihood p(zz+1|xi+1) calculated using the observation
equation (21).

[73] Particle filtering based on the above SIS algorithm
consist of recursively propagating the particles using (20)
and updating the importance weights associated with each
particle using (21) and (40) as successive observations
become available in time. Compared with the Kalman
filtering algorithms discussed earlier (i.e., the standard KF,
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EKF, and EnKF), PF performs updating on the particle
weights instead of the state variables. In addition, PF has the
desirable characteristics of being applicable to any state-
space model of any form, linear or nonlinear, Gaussian or
non-Gaussian.

[74] Implementation of the SIS particle filter in practice,
however, may often be complicated by the well-known
degeneracy problem where many particles are found to
have negligible weights after a few iterations, thus making
little or no contribution to the final representation of the
posterior distribution [Doucet et al., 2000] (Note that this
same problem arose in the implementation of the BaRE
algorithm, which has conceptual and implementational
similarities.) As a result, only a small number of particles
effectively participate in the filtering process according to
the following measure [Doucet et al., 2000; Arulampalam et
al., 2002]:

Ng =173 (why), (41)
i=1

where N4 is the effective sample size that can be used to
measure the degree of degeneracy in the filter. In general,
the required number of particles # is likely to increase with
the dimension of the state vector, the overlap between the
prior and the likelihood, and the required number of time
steps for filter operation; there exists, however, no universal
provable criterion for defining the minimum effective
sample size required to achieve a satisfactory approximation
to the true PPD of the state vectors [Gordon et al., 1993].

[75] In practice, to reduce the effect of the degeneracy
problem, a resampling procedure is usually added to the SIS
algorithm when there exists significant degeneracy (i.c.,
when N4 is below a certain predefined threshold). The
resampling step involves eliminating particles with small
weights by replacing them with high-weight particles and
then applying uniform weights to all the particles [e.g.,
Arulampalam et al., 2002; Moradkhani et al., 2005b]. When
resampling is applied at each step (without evaluating N,), the
standard SIS algorithm becomes the sampling importance
resampling (SIR) filter, a special case of the SIS filter.

[76] Although resampling can reduce the effect of degen-
eracy, it also introduces another practical problem known as
sample impoverishment due to loss of diversity among
particles, especially for systems with small noises. In the
case of severe sample impoverishment, all particles may
converge to one single point in the state space, rendering
poor final representation of the posterior distribution. Musso
et al. [2001] introduced a modified PF known as the
regularized particle filter (RPF) to solve the above problem
by resampling from a continuous approximation to the
importance density, instead of a discrete approximation as
the SIR does.

[77] For more details on the implementation and applica-
tions of particle filtering and various SMC methods, the
readers are referred to Gordon et al. [1993], Carpenter et al.
[1999], Crisan et al. [1999], Doucet et al. [2001],
Arulampalam et al. [2002], and Djuri¢ et al. [2003].

7.4. Variational Data Assimilation (VDA)

[78] Unlike Kalman filtering and particle filtering, which
approach the assimilation in a sequential manner, variational

12 of 18



Wo07401

methods operate in a batch-processing manner over a given
time window which contains a sequence of observation time
points. Hence variational methods are smoothers and mostly
suitable for solving smoothing problems. Theoretically,
VDA methods can also be used for filtering problems if a
new smoothing problem is defined sequentially at each
observation time point; this, however, can be compu-
tationally inefficient for real-time applications where the
measurement vector z needs to be expanded indefinitely
as new observations arrive continually. Depending on
the spatial and temporal dimensions of the state variable,
VDA methods can be one-dimensional (1D-Var), three-
dimensional (3D-Var), or four-dimensional (4D-Var) (see
unpublished lecture available at www.ecmwf.int/newsevents/
training/rcourse_notes/pdf files/Assim_concepts.pdf).

[79] For illustration purposes we assume that the prior
estimate of state variables at time 7, is xo (with error
covariance Qy); and the assimilation is to operate over the
time interval [#, ¢,], with observations [zi, zs, ..., z,]
available at the n discrete time points [f1, 6, ..., t,]. A
general variational data assimilation problem can then be
defined as the minimization of the following cost function
J, which represents the aggregated error over the entire
assimilation window (assuming that errors at different
times are independent and additive):

J(xu,0) => 0] O+ (@ — Hiw]) Rz — Hili])
i=1 i=1
+ (0 =) 05" (x0 = %)
+ i: (u,- — u;)TC;ul (ui — u;)
i=1

+(O-0)'Cc'0-0)
=Ju +Jo+Jo +Ju +Jo, (42)
where 7); represents the model error at #;; u; and 0~ denote
the prior model inputs at #; and the prior time-invariant
parameters, respectively; and C,, and C, are the time-
invariant error covariances of inputs and parameters,
respectively. The purpose of variational data assimilation
is, by means of minimizing J, to obtain the least squares
estimates of state variables x; and input variables u; for
each time point within the assimilation window and the
time-invariant parameters 6. The minimization problem is
subject to the strong constraint that the state, input, and
parameter estimates obtained by VDA must be consistent
with the state equation (20). Alternatively, one can turn the
constrained minimization problem into an unconstrained
one by adjoining the state equation to the cost function
(42) with a Lagrange multiplier A as follows:

n
J (61, 0) = Iy +Jo +Jo +Ju +Jo+ > N i — Milxi,ui, 0)].
i=1

i=

(43)

[s0] In the above general formulations of the cost func-
tion, the first term J), penalizes the difference between the
estimated model error vector 7; and its prior mean (assumed
to be zero in this case); the second term J, is used to
penalize the differences between model predictions and
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observations at all time points within the assimilation
window; and J,, J,, and Jy are included to measure the
errors associated with the initial conditions, model inputs
and parameters, respectively. When summed together to
form the aggregated cost function, each of the errors is
weighted by the corresponding error covariance (i.e., O, R,
Qo, Cyu, o1 Cp). In this general VDA framework, errors from
various sources (e.g., the model, observations, initial
conditions, inputs, and parameters) can be collectively
taken into account.

[s1] In practice, however, nonlinear, high-dimensional
hydrologic applications render the comprehensive optimi-
zation problem as represented by (42) very difficult, and
often impossible, to solve. Consequently, simplifications
and approximations are often introduced by, for example,
neglecting model/parameter errors and/or linearizing the
state and observation equations. Even with simplifications,
solving a VDA problem analytically is not easy, and often a
numerical algorithm such as the adjoint model technique is
used to obtain solutions in an iterative manner.

[s2] To illustrate the implementation process of variation-
al data assimilation, we consider a simple VDA system
where the objective is to minimize the following cost
function with only the measurement term J, considered:

n

J(x)=Jo =" (z— Hilx)) 'R (z: — Hilxi]).

i=1

(44)

[83] According to the state equation (20), given 0, u;, and
7; (assumed to be zero in this case), the state prediction at ¢;
(i.e., x;) is solely dependent on prediction at the previous
time step #;,_; (i.e., x;_1), which is in turn solely dependent
on x;_,. This indicates that x; is ultimately determined by the
initial condition x,, the only fundamental unknown in this
VDA problem. The objective of VDA is then to find the
best estimate of xo that minimizes Jo (xo). The optimization
process requires the evaluation of both the cost function and
its gradient V.Jy (xo), which can be computed as follows
using the adjoint technique (see detail derivations by Huang
and Yang [1996]; see also unpublished note available at
http://citeseer.ist.psu.edu/huang96variational.html):

(45)

VJo(xo) = Z {H MZ} H{d;

i=1 | k=0

d,' = R:l (Zl' — H,-(xi, 0))
where MY is the transpose of the tangent linear model of M,
at point x; similarly, H/ denotes the transpose of the tangent
linear model of H; at point x; and d; is the normalized
difference between model prediction and the observation at
time #;. For computational efficiency, we define the adjoint
model at time ¢; as

Y1 =M/ (% +H/d,), (46)
where ¥; is called the adjoint variable. It can be proved that if
we start from the end point of the assimilation interval #, with
X, initialized to zero and then integrate the adjoint model
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(46) backward in time to the initial time 7y, we obtain X,
which is exactly equal to VJ (x¢) defined by (45). With this
method of computing the cost function gradient, a VDA
problem can be solved through an iterative minimization
process to identify a best estimate of x,, which can then be
used to compute the value of x at any time point within the
assimilation window by integrating the state equation (20)
forward in time.

[s4] A number of examples of designing and solving a
VDA problem can be found in the literature. Huang and
Yang [1996] discussed in detail the general procedure to
construct a VDA system using the adjoint technique based
on a nonlinear mathematical model, with only observation
errors considered in the cost function. Applications of
similar VDA techniques are given by McLaughlin [1995,
2002], Bouttier and Courtier [1999], Reichle et al. [2001a,
2001b], and Seo et al. [2003]. The readers are referred to
these references for more details of using the VDA
algorithms.

[s5] Compared with the sequential equivalents KF and
EKF, the VAR methods are preferable for data assimilation
in a realistic, complex system (e.g., a numerical weather
prediction framework) because they are much less expen-
sive computationally than KF and EKF methods. In addi-
tion, by using observations inside the assimilation interval
all at once, VDA methods are also more optimal than KF
and EKF methods inside (within) the interval (at the end of
the interval, VDA and KF methods are expected to give the
same results for linear systems; in the presence of high
nonlinearity, the results from the two methods may diverge
because VDA gives the mode of an uncertain variable while
KF estimates the expected value). However, the sequential
KF methods are more suitable for real-time data assimila-
tion to process observations that arrive continuously in time,
while VDA methods can only be run for a finite time
interval; also, KF methods provide error covariance esti-
mates for the prediction, while a VDA method itself does
not provide any estimate of the predictive uncertainty. When
the assimilation system is nonlinear, both EKF and VDA
methods rely on using the tangent-linear models M and H to
approximate the state and observation equations; if the
nonlinearity is important, it makes more sense to use
ensemble (or Monte Carlo) approaches such as EnKF and
PF for data assimilation.

8. Simultaneous State and Parameter Estimation

[s6] In general, parameter estimation tends to focus on
uncertainty in the parameter estimates only, while neglect-
ing partial or all of the other uncertainty sources. On the
other hand, state estimation via data assimilation methods,
although having the potential for explicitly handling various
uncertainties arising from model inputs and observations,
typically does not take into account the uncertainties asso-
ciated with model parameters. In either case, there is a
tendency to generate biased model predictions due to biased
parameter and/or state estimates. Hence it would be desir-
able to combine parameter estimation with state estimation
to account for all kinds of uncertainties.

[87] Vrugt et al. [2005] applied a simultaneous optimiza-
tion and data assimilation (SODA) approach to estimate
both states and parameters of two hydrological models. The
SODA approach estimates model parameters using the
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batch calibration strategy SCEM, with EnKF updating of
state estimates performed at each time step in each model
run during the calibration process. This way of combining
optimization with data assimilation is conceptually simple
and easy to implement. Preliminary results show that the
SODA approach is able to produce both less biased
parameters and less biased model states, compared with
the results from using only SCEM or EnKF. The SODA
approach is certainly a step forward from traditional
parameter estimation and data assimilation methodologies,
in that it reasonably uses calibration to correct long-term
systematic biases due to parameter uncertainties and uses
ensemble data assimilation to correct short-term or
instantaneous system biases associated with model states,
data, and other sources of errors. The SODA approach,
however, is still not wholly satisfactory in that it optimizes
model parameters in one single batch, without allowing
parameters to vary over time while also requiring consider-
able computational time.

[88] Moradkhani et al. [2005a, 2005b] presented two
dual state-parameter estimation methods based on EnKF
and PF, respectively. These two methods were designed to
recursively estimate both states and parameters using two
parallel filters. In these methods, Monte Carlo sampling and
sequential updating (via EnKF or PF techniques) are applied
to not only a vector of state variables, but also to a different
vector of model parameters at each assimilation time step.
Accordingly, the probability distributions of both model
states and parameters are (independently) recursively
updated each time a new observation is available. In these
approaches, better state and parameter estimates enable the
modeling system to evolve consistently over time and make
improved predictions with proper uncertainty bounds.
Along the same lines, Labarre et al. [2006] presented an
approach to jointly estimate the model states and the
hyperparameters of the data assimilation algorithm using the
mutually interactive state and parameter estimation (MISP)
technique [7odini, 1978a, 1978b] with two conditionally
linked Kalman filters running in parallel.

[89] Another way of conducting joint state-parameter
estimation is to extend the current state vector with the
model parameters, a technique known as ““state augmenta-
tion” [e.g., Gelb, 1974; Drécourt et al., 2005]. Here the
model parameters are recast as state variables to form an
extended state vector; and the simultaneous state and
parameter estimation problem is reduced to a state
estimation problem. If we assume the parameters are time-
variant with normally distributed errors &, at time #, (&, ~
N(O, V})), then with state augmentation, the new model
equation and observation equation can be expressed as
follows (as opposed to the original equations (20) and (21)):

X M, O]]x
o [0 9] [] [] orsor=t

Vi Hy 0] x Ek
)-8 2] 2] o

where ¥/, 3, M/, H', 1/, and & are the new state vector,
observation vector, model operator, observation operator,
model error, and observation error, respectively. These new
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quantities should be used in place of the old ones when a
data assimilation algorithm (e.g., EKF or EnKF) is applied
to recursively update the states and parameters simulta-
neously. Being conceptually simple, this method, however,
may render the estimation process unstable and intractable
because of complex interactions between states and
parameters in nonlinear dynamic systems [Zodini, 1978a,
1978b]. In addition, since parameters generally vary much
more slowly than the system states, unstable problems may
also result from the fact that both model states and
parameters are updated at each observation time step in this
method. This same argument may apply to the dual state-
parameter estimation methods presented by Moradkhani et
al. [2005a, 2005b].

9. An Integrated Uncertainty Framework for
Hydrological Modeling

[90] The data assimilation methods introduced in
sections 5—8 are designed for system identification, param-
eter estimation, state estimation, and combined state and
parameter estimation, respectively. As described in section
4, Bayes’ theorem is the fundamental basis of these DA
methods. However, one criticism of Bayesian methods is
that the computation of posteriors depends on prescribed
priors that could be wrong, rendering the possibility of
unrealistic uncertainty estimation. For example, state esti-
mation is often conducted under the assumption that the
model structure and parameters are correct (i.e., assuming
the model/parameter priors to be unity), which is hardly the
case in hydrologic modeling. To adequately quantify the
total uncertainty in hydrologic predictions and to maximally
reduce it, we shall consider an integrated uncertainty
framework that can facilitate the implementation of all the
three types of DA applications in a cohesive, systematic
manner.

[o1] Berliner [1996] introduced a Bayesian hierarchical
modeling (BHM) approach to complex environmental DA
problems, where one can obtain the joint distribution of the
model process x and parameters 0, given observational data
z, by computing a hierarchy of conditional models based on
Bayesian rules as follows (see also Wikle [2003]):

p(x.01) o< plzlx, O)p(x|6)p(0). (49)
With the logical progressive chain of conditional depen-
dence {M — 6 — x — y} as described in section 4, we can
derive the following integrated hierarchical framework in a
manner analogous to the BHM approach described above:

p(yx,0,M|2, 22" M) o« p(M|z)  (1)system identification

. p(9|ze,M ) (2)parameter estimation

- p(x|z,6,M)  (3)state estimation

- p(y|Z¥, x, 6, M)(4)output prediction
(50)

where Z, ze, Z', 2% denote independent observations on
which the model structure, parameters, states, and outputs
are progressively conditioned, respectively. To assess the
total uncertainty of a hydrological model, it is really critical
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that the joint output-state-parameter-structure distribution
p(, x, 0, M) (instead of the individual distributions) be
examined, considering the complex interactions between the
model outputs, states, parameters, and structure. The
purpose of the hierarchical approach is to obtain this
complicated joint distribution, which is difficult to compute
directly, by factoring it into a sequence of conditional
probabilities that are easier to characterize utilizing avail-
able knowledge and data.

[92] In the framework defined in (50), one starts with
(1) system identification by computing p(M|z") given the
observation z* and some prior knowledge of the model
parameters; (2) the model parameters are then estimated
through a parameter estimation technique given a different
set of observations z” and the models M (and their
probability distribution obtained in the previous step;
(3) with the observation z* , and M and 6 obtained in (2),
the distribution of the model states x can be updated; and
(4) finally, with M, 0, and x defined in the last three steps
and the observation z”, one can predict the final uncertainty
reflected in the model outputs y. The joint distribution of the
model outputs, states, parameters, and structures, which
captures the complex interactions among these components,
can be obtained by multiplying the four conditional
probability terms together as shown in (50). When a period
of new observations arrives, the above progressive steps can
be repeated to update the conditional probability distribu-
tions and the overall joint distribution.

[93] In implementing this uncertainty framework, one
should choose a most suitable data assimilation method
for each of the four steps. In particular, special attention
should be paid to the appropriate timescales when deciding
which DA method to use. For example, as discussed in
section 3, we expect model parameters to vary much more
slowly in time than the states and outputs. In this sense, it
would be appropriate to adopt a smoothing or variational
approach for parameter estimation in step 2 and a sequential
or filtering approach for state estimation in step 3. In
principle, a method used for state estimation is expected
to be applicable to output prediction as well, for model
states and outputs generally share the same dynamic char-
acteristics/frequencies. We can also reasonably assume that
the model structure does not vary with time or varies at a
very low frequency (even lower than that of the parameters).
Precisely how to adjust the existing DA methods so that
they can be cohesively nested within the above integrated
hierarchical framework remains an important topic for
further research.

10. Summary and Discussions

[04] Application of data assimilation techniques to hy-
drologic modeling is relatively new, and there is a lack of
general guidance in the hydrologic literature on how to
choose and implement a suitable DA technique so that the
hydrologic uncertainty is properly considered. This may
come to limit the extensive application of hydrologic data
assimilation. On the other hand, it has not been realized by
the general hydrologic community that the traditional data
assimilation focus on state estimation alone is not sufficient
for adequate consideration of the uncertainties associate
with all sources in hydrologic modeling. In most cases,
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uncertainty in model structures and parameters is ignored in
data assimilation applications.

[95] In this analysis we have discussed the three critical
aspects of addressing hydrologic uncertainty, namely, un-
derstanding, quantifying, and reducing uncertainty, to arrive
at a general context for hydrologic data assimilation. The
intention of this paper is to provide not an extensive review
of all the data assimilation techniques and applications
existing in the hydrologic literature, but a discussion of
the main recent developments, potential future directions,
and some open issues in hydrologic data assimilation. We
explore uncertainties associated with different sources from
a systems perspective, leading to the definition of the three
major types of DA problems: system identification, param-
eter estimation, and state estimation. Bayesian techniques
for addressing these uncertainty problems and typical meth-
ods used in the hydrologic literature were then described in
relevant detail to provide sufficient guidance on how to
properly implement these methods. To adequately quantify
the hydrologic predictive uncertainty and reduce it to a
maximum degree, we call for the adoption of an integrated
framework such as the one proposed in section 9, where
system identification, parameter estimation, state estima-
tion, and ultimately output prediction are progressively
conducted in a cohesive, systematic manner. Proper imple-
mentation of all these DA problems within such a single,
integrated framework would greatly improve the effective-
ness and efficiency in extracting information from available
data and assimilating it into hydrologic predictions.

[96] Nevertheless, there remain critical issues that need to
be properly addressed before the proposed integrated frame-
work can be implemented to realize its maximum potential.
For example, the exposition assumes that we have success-
fully described the information extraction process via the
definition of suitable likelihood functions [e.g., Beven and
Young, 2003; Gupta et al., 2003], a topic that merits
rethinking and further research. Also, the fundamental
Bayesian rule requires that the error models used as inputs
to data assimilation applications be properly prescribed
from prior information, which is often difficult to satisfy for
real-world hydrologic applications. Although we all recog-
nize that real hydrologic systems are seldom linear or close
to linear, there often has been no other choice but to prescribe
the error distributions as Gaussians; better strategies (e.g., via
using mixtures of Gaussians [ Wojck et al., 2006]) are desired
to avoid this subjectivity in prescribing various types of
errors, and new mathematical developments might be
necessary to circumvent this difficulty. Also, we must
recognize that a hydrological system (i.e., a model structure)
and its physical properties (i.e., model parameters) naturally
tend to vary much more slowly in time than the states and
fluxes of the system. In other words, proper timescales (or
time intervals) should be identified and utilized in the
different steps within the framework. In addition, implement-
ing such an integrated framework would require a substantial
amount of data, encompassing various observation types that
are suitable for different kinds of DA problems including
system identification, parameter estimation, and state
estimation. Other issues to be addressed may include, for
example, handling temporally and spatially correlated errors
in hydrological variables [e.g., Drécourt et al., 2005] and
resolving the scale differences between model states and
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observations. To facilitate addressing these issues, the next
generation of hydrologic models should be developed in
coordination with developments in DA techniques to
facilitate the implementation of the proposed integrated
hierarchical framework. Finally, it is useful to be aware that
complete accounting for model structure errors might never
be achieved, as there exists no means to define a model space
(with a set of truly independent model structures) that can
perfectly represent the reality.
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