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[1] The optimization of hydrologic models using the ensemble Kalman filter has received
increasing attention during the last decade. The application of this algorithm is
straightforward when the relationship between the state variables and the observations
is linear, in other words, when the observations can be directly mapped onto the state
space. However, when this relationship is nonlinear, a number of methods can be derived
in order to perform this transfer. Up till now, it has not been demonstrated which of these
methods is recommended for discharge assimilation with the ensemble Kalman filter.
The objective of this paper is to analyze these methods for conceptual rainfall-runoff
models in a small-scale catchment. The study has been performed in the Bellebeek
catchment (86.36 km2) in Belgium, using two time series models and one conceptual
rainfall-runoff model. A first analysis of the algorithms has been performed using the one
time step ahead discharge predictions. The results indicate that linearization of the storage-
discharge relationship (the observation system) should be avoided if discharge data are
assimilated using the ensemble Kalman filter. Further, assimilating discharge data into
conceptual rainfall-runoff models for small catchments does not work well when a unit
hydrograph is used for runoff routing. This can be explained by the stronger impact of the
model error (caused by errors in the forcings, model structure, and parameters),
accumulated over the duration of the unit hydrograph, as compared to the impact of
erroneous initial conditions. A second analysis using longer lead times has led to the
conclusion that, for the type of catchment and model used in this study, the accuracy of the
meteorological forcings is more important than an accurate estimation of the model initial
conditions through data assimilation.
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1. Introduction

[2] Floods are among the most common natural disasters
in the world. For example, in the Northern part of Belgium,
eight floods causing severe economic loss occurred during
the last 15 years. Besides infrastructure protecting measures,
one indispensable tool to manage floods is the use of
rainfall-runoff models to predict the arrival of discharge
peaks. Typically, such models conceptualize the catchment
as a number of reservoirs (for example a soil water reservoir
and a deep groundwater reservoir), which receive water
either from the atmosphere through infiltration or from other
reservoirs, and release water, either to the atmosphere
through evapotranspiration, to other reservoirs, or to the
catchment river system. Examples of such models are the
Hydrologiska Byrns Vattenbalansavdelning (HBV) model
[Linström et al., 1997] and the Probability Distributed
Model (PDM) [Moore, 2007].

[3] In the application of these models, a number of
problems arise. A first problem is the determination of the
various parameters used in the model equations. Ideally,
these parameters should be measured at the study site, and
used in the model application. However, because of a number
of constraints this approach is not possible. First, a number,
if not all, of the model equations require catchment average
parameters. These catchment averages can only be obtained
through the interpolation of in situ point measurements,
which will lead to nonnegligible error in the parameter
estimate. Second, a number of the model equations are
determined empirically, meaning that they have no real
physical basis. It is thus impossible to directly measure
the parameters for these models. As a consequence, the only
way to determine the model parameters is to compare the
modeled discharge values to observations and to adapt the
parameter values until an optimal fit has been obtained. A
large number of methods have been developed for this
purpose, for example the Parameter Estimation (PEST)
method [Doherty, 2001], Bayesian recursive parameter
estimation [Thiemann et al., 2001], the Shuffled Complex
Evolution (SCE-UA) algorithm [Duan et al., 1994; Yapo
et al., 1998; Vrugt et al., 2003a, 2003b] the Multiple Start
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Simplex (MSX) and local Simplex methods [Gan and Biftu,
1996], simulated annealing [Thyer et al., 1999], genetic
algorithms [Reed et al., 2000, 2003], and Particle Swarm
Optimization [Gill et al., 2006].
[4] A second problem in the application of rainfall-runoff

models, even if they are thoroughly calibrated, is that there
will remain a mismatch between the modeled and the
observed discharge. This is due to the fact that a model is
always a simplification of the physical reality, and to uncer-
tainties in the model initial conditions, parameter values, and
meteorologic forcing data. To reduce this mismatch in real
time applications, model state variables can be regularly
updated using external observations. This is commonly
referred to as data assimilation. One type of external obser-
vation is the surface soil moisture content. A number of
studies have already put the use of remotely sensed soil
moisture data for flood forecasting purposes in practice
[Pauwels et al., 2001, 2002; Parajka et al., 2006]. However,
this type of assimilation requires the inversion of the remotely
sensed signal into soil moisture values, either off-line or
during the model application, which is a complicated task.
An alternative is the use of discharge records to update the
model state variables.
[5] In order to assimilate discharge rates into hydrologic

models, a number of algorithms can be used. A first possi-
bility is the use of the Extended Kalman Filter (EKF), of
which a number of examples can be found in the work by
Wood and Szöllösi-Nagy [1980]. The major drawbacks of
this approach are the high computational demand for the
propagation of the background error covariance (especially
for large system state vectors), and the neglection of higher-
order derivatives for the background error covariance prop-
agation and the mapping of the observational information
(the observed discharge) to the model state variables. In
order to overcome these drawbacks, the ensemble Kalman
filter (EnKF) has been developed [Evensen, 1994]. The
EnKF propagates an ensemble of model realizations
through time, and estimates the background error covari-
ance matrix from the ensemble statistics. Examples of
studies that have used to EnKF to assimilate discharge rates
into hydrologic models can be found in the work by
Pauwels and De Lannoy [2006], Vrugt et al. [2006], and
Weerts and El Serafy [2006]. The major drawback of the
EnKF is the underlying assumption that the distribution of
the model states is Gaussian [Weerts and El Serafy, 2006].
The Particle Filter (PF) does not require a specific form
for the state distribution, but has as major drawback that the
distribution of the particle weights quickly becomes strongly
skewed, and a resampling algorithm needs to be applied
[Weerts and El Serafy, 2006]. Examples of the use of the PF
to update the states of hydrologic models using discharge
data are given by Moradkhani et al. [2005] and Weerts and
El Serafy [2006]. An intercomparison between the EnKF
and the PF was performed by Weerts and El Serafy [2006],
and led to the conclusion that EnKF is more robust, less
sensitive to the choice of the model and measurement
errors, and outperformed the PF in real data experiments.
For this reason, this paper focusses on the application of
the EnKF for hydrologic model state updating using dis-
charge observations.
[6] The most complicated task in the application of the

Kalman filter for discharge assimilation is the correct

mapping of the discharge observations to the state variables.
In the EKF this mapping is performed through the calcula-
tion of a Jacobian matrix, which contains the first deriva-
tives of the observation simulations with respect to the state
variables. This is referred to as linearization of the observa-
tion system. In hydrologic models, the relationship between
the storages (or soil moisture values) and the discharge
is nonlinear and not explicitly known, and this Jacobian
matrix has to be calculated numerically. The EKF is still
widely used for operational applications, for example in the
European Centre for Medium-Range Weather Forecasts
(ECMWF) global data assimilation system [Reichle, 2008],
or in the French National Center for Meteorological
Research (CNRM) Interactions between the Soil Biosphere
and Atmosphere (ISBA) model [Sabater et al., 2007]. This
implies that, if observations with a nonlinear relationship
with the state variables are to be assimilated into these
models, a linearization of the observation system has to be
performed. On the other hand, if the EnKF is applied, the
approach suggested by Evensen [1994] can be used, in which
the linearization of the observation system is bypassed using
the ensemble statistics. This approach avoids the cumber-
some calculation of all individual elements of the Jacobian
matrix. Although this approach is commonly used in
hydrologic applications with nonlinear observation systems
[Reichle et al., 2002a; Weerts and El Serafy, 2006; Durand
and Margulis, 2007], it has never been shown whether or
not it outperforms a linearization of the observing system
which relates the soil water state to the discharge.
[7] The objective of this paper is to assess which of these

methods is the most appropriate for ensemble-based dis-
charge assimilation. In order to demonstrate the impact of
the linearization described above on the performance of the
EnKF, discharge data are first assimilated into a very simple
time series–based rainfall-runoff model, constructed with a
linear and a nonlinear observation system. The methods are
then applied to an operational rainfall-runoff model, the
HBV model, which uses unit hydrograph–based routing.
This implies that the modeled discharge at a certain time
step is a function of not only the storages at that time step,
but also of the storages up till a number of time steps before
the observation. If discharge rates are assimilated, the state
vector thus needs to be distributed in time. The use of these
different models allows an assessment of whether the
recommended assimilation method depends on the model
structure or not.

2. Site and Data Description

[8] The study was performed in a subcatchment of
the Dender catchment in Belgium, more specifically the
Bellebeek catchment. The elevation ranges between 10 and
110 m. Soil texture is predominantly loam (75%), and the
land use is predominantly agriculture (63%) and pasture
(22%). The surface area of the catchment is 87.36 km2.
Figure 1 shows the location of the catchment together with a
Digital Elevation Model (DEM) of the area.
[9] Discharge was measured at the outlet of the catch-

ment. Precipitation as well as the required meteorologic data
to calculate potential evapotranspiration according to the
methods of Hargreaves as explained by Shuttleworth
[1992], were measured at the meteorologic station of
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Liedekerke, located close to the outlet of the basin. All data
sets were available at an hourly time step from August 2006
through July 2007.

3. Rainfall-Runoff Models

[10] Three different rainfall-runoff models are applied in
this study, using a 1 h time step. A short description of each
model is given in this section, while a listing of all the
model equations is provided in Appendix A.

3.1. Time Series Model

[11] A first, very simple, rainfall-runoff model applied in
this study consists of an Autoregressive Moving Average
with Exogenous inputs (ARMAX) expression relating the
precipitation to the catchment storage S (mm). This catch-
ment storage is then related to the discharge q (m3 s�1)
using two different observation systems, more specifically a
linear and a nonlinear equation. A detailed model descrip-
tion is provided in section A1.

3.2. HBV Model

[12] The Hydrologiska Byrns Vattenbalansavdelning
(HBV) model [Linström et al., 1997], of which Figure 2
shows a schematic, divides the catchment into a number of
reservoirs. The state variables are the amount of water
stored in the soil reservoir (S(t), m3), the slow reservoir
(S1(t), m3), and the fast reservoir (S2(t), m

3). The HBV

model allows reinfiltration of the surface runoff, and uses a
triangular unit hydrograph for the routing of the overland
flow. The time delay between the generation of surface
runoff and the arrival at the catchment is thus modeled,
albeit in a relatively simple manner. A detailed model
description is provided in section A2.

4. Ensemble Kalman Filter

4.1. Description

[13] A description of the ensemble Kalman filter can be
found in the work by Reichle et al. [2002b]. A short
description is given here.
[14] The state variables of a single forecast ensemble

member are stored in the vector xk
if
. k indicates the time step,

i the ensemble member. The superscript f refers to the
forecast variables. The background error covariance Pk

f is
calculated to estimate the forecast uncertainty:

P
f
k ¼ 1

N � 1
DkD

T
k

Dk ¼ x
1f
k � x

f
k ; ::; x

Nf
k � x

f
k

h i

x
f
k ¼ 1

N

XN
i¼1

x
if
k

8>>>>>>><
>>>>>>>:

ð1Þ

Figure 1. Location of the study site and DEM of the study area. Units are in centimeters above sea
level. The white lines in the DEM represent the boundaries of the catchment of the Bellebeek.

W08428 PAUWELS AND DE LANNOY: DISCHARGE ASSIMILATION

3 of 17

W08428



N is the number of ensemble members and the superscript T

indicates the transpose operator. The Kalman gain Kk is
then calculated:

Kk ¼ P
f
kH

T
k HkP

f
kH

T
k þ Rk

h i�1

ð2Þ

Rk is the observation noise covariance.
[15] Equation (2) was originally derived for the optimi-

zation of linear systems [Kalman, 1960]. In the original
formulation, Hk is a transfer function, describing the linear
relationship between the state variables and the observations:

yk ¼ Hkxk þ vk ð3Þ

xk is the vector with the state variables, yk is the vector with
the observations, and vk is the observation error. In order to
allow an application for nonlinear systems, the Extended
Kalman Filter was developed [Gelb, 1974]. In the application
of the Extended Kalman Filter, equation (2) is still valid.
Further, Pk

fHk
T and HkPk

fHk
T are obtained through explicit

matrix multiplications as well, whereHk is a Jacobian matrix,
relating the observations to the state variables. This matrix is
calculated as

Hk ½i; j� ¼
@hkðx f

k Þ½i�
@xk ½ j�

�����
x
f

k
½ j�

ð4Þ

i is the row and j the column number.Hk(.) is the relationship
between themodel states and the observations. The linearized
observation operatorHk for the different models in this paper
will be derived in section 6. In the application of the Extended
Kalman Filter, the model needs to be linearized, in order to
propagate the background error covariance matrix Pk. In
order to bypass closure problems caused by this linearization,
the ensemble Kalman filter has been developed [Evensen,
1994]. In the application of the ensemble Kalman filter, the
matrix multiplications in equation (2) can be reduced. In
order to avoid the linearization of the observation system
and to reduce computational requirements, Evensen [1994]
suggested to calculate Pk

fHk
T as the forecast cross covariance

between the state and the measurement predictions, and to
calculate HkPk

fHk
T as the error covariance matrix of the

measurement predictions. It is important to note that it cannot
be theoretically proven that this approach is mathematically
superior to the explicit calculation ofHk through equation (4)
and the explicit matrix multiplications in equation (2). This
covariance-based approach will be further explained in
section 5.
[16] Using the Kalman gain, the states of the individual

ensemble members are then updated:

xiak ¼ x
if
k þKk yk � hkðxifk Þ þ vik

h i
ð5Þ

xk
ia is the analysis vector (after the update), and vk

i is a
realization of the observation error. Using the analyzed
state, the forecast at the next time step can then be
calculated:

x
if
kþ1 ¼ f kðxiak Þ þ wi

k ð6Þ

fk(.) is the model, and wk
i a realization of the model error.

4.2. Application in This Study

[17] For the time series models (TSMs), there is at each
time step one state variable, so the application of the EnKF
is straightforward. More specifically, at each time step t =
k4t the state vector can be written as

xk ¼ Sðk4tÞ½ � ð7Þ

However, for the HBV model, as stated in section A2, there
are three state variables per time step, i.e., the storages in the
three reservoirs S(k4t), S1(k4t), and S2(k4t). The objective
is to update the model at each time step, so one runoff
observation per time step is used. However, as stated in
section 3, a unit hydrograph is used for runoff routing. This
implies that at each time step the modeled discharge is a
function of not only the state variables at the time step, but
also of the state variables at a number of previous time steps
(in this case 14 time steps). As stated in section A1, the
amount of time steps to take into account has been
determined through calibration of unit hydrograph–based
models for the study site [Ferket, 2008]. A methodology to
take into account this time delay is described by Pauwels
and De Lannoy [2006]. More specifically, the state vector at

Figure 2. Schematic of the HBV model.
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a certain time t = k4t is expanded by the reservoir storages
of time steps k � 1 through t � 13:

xk ¼ Sðk4tÞS1ðk4tÞS2ðk4tÞ½
:: Sððk � 13Þ4tÞS1ððk � 13Þ4tÞS2ððk � 13Þ4tÞ�T

ð8Þ

For all models, the observation vector at time step t contains
the discharge at time step t:

yk ¼ qoðk4tÞ½ � ð9Þ

[18] Figure 3 further explains this methodology for the
HBV model. At each time step k � 13 the model is applied
for fourteen extra time steps, and the total discharge at time
step k is calculated. The forecasted discharge at time step k
is then compared to the observed value, and the ensemble
Kalman filter is used to update the storages from time step
k � 13 through time step k. The analyzed storages at time

step k � 13 are then the initial conditions for the model at
time step k � 12. Using this initial condition, the same
procedure is then repeated for a new model application,
starting at time step (k � 12).

5. Full Ensemble-Based Covariance Calculation
of the Kalman Gain

5.1. Derivation

[19] Equations (2) and (4) show that, in order to calculate
the Kalman gain, a Jacobian matrix is needed. For many
applications, as is the case in this study, an explicit analyt-
ical expression relating the state to the observation is not
available. This first derivative thus needs to be calculated
analytically, through a first-order Taylor expansion, which is
a computationally demanding task. Therefore, a different
methodology to calculate Kk is proposed, which has been
used before to deal with highly nonlinear forward models
for satellite observations [Reichle et al., 2002a].

Figure 3. Assimilation of discharge observations into the HBV model, taking into account the time
delay between the generation of runoff and the arrival at the catchment outlet. Here q is the routed
discharge, and q is one of the storages (S, S1, or S2). Here m is the duration of the unit hydrograph. For
simplicity, only one storage is shown.
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[20] The nominator in the expression for the Kalman gain
(equation (2)) can be rewritten as

P
f
kH

T
k ¼ E xk � x

f
k

	 

xk � x

f
k

	 
T
� �

@hkðx f
k Þ

@xk

�����
x
f

k

0
@

1
A

T

ð10Þ

If hk(.) is a linear model with respect to the state variables,
this can be rewritten as

P
f
kH

T
k ¼ E xk � x

f
k

	 

hkðxkÞ � hkðx f

k Þ
	 
T

� �
ð11Þ

This is the covariance between the errors in the modeled
states and the modeled discharge, sxkfqk

f. This covariance can
be calculated using the ensemble in a similar way as the
background error covariance is calculated (equation (1)).
Further, the first term in the denominator of equation (2) can
be written as

HkP
f
kH

T
k ¼

@hkðx f
k Þ

@xk

�����
x
f

k

0
@

1
AE xk � x

f
k

	 

xk � x

f
k

	 
T
� �

	 @hkðx f
k Þ

@xk

�����
x
f

k

0
@

1
AT

ð12Þ

Again, for a linear model with respect to the states, this can
be rewritten as

HkP
f
kH

T
k ¼ E hkðxkÞ � hkðx f

k Þ
	 


hkðxkÞ � hkðx f
k Þ

	 
T
� �

ð13Þ

This is the variance of the modeled discharge (sqk
f
2 ). Again,

this variance can be calculated in a similar way as equation (1).
Using these approximations, the expression for the Kalman
gain becomes

Kk ¼ s
x
f

k
q
f

k

s2

q
f

k

þ Rk

	 
�1

ð14Þ

5.2. Mathematical Interpretation

[21] Let us assume we have a very simple system, with
one state variable (the soil moisture q) and one model
output, the discharge (q). Observations of the discharge
are used to update the modeled soil moisture. In this case,
the matrix Hk becomes as scalar variable, and equation (4)
can be written as

Hk ¼
@qf

k

@qk

�����
q f

k

ð15Þ

Using equation (2), the Kalman gain can then be written
as

Kk ¼
P

f
k Hk

H2
k P

f
k þ Rk

ð16Þ

Assume the asymptotical case where the observation is
perfect, in other words, Rk is zero. The Kalman gain then
becomes

lim
Rk!0

Kk ¼
P

f
k Hk

HkP
f
k Hk

¼ 1

Hk

¼
@q f

k

@qk

�����
q
f

k

ð17Þ

The state variable is then updated as (equation (5))

qiak ¼ q if
k þ @q f

k

@qk

�����
q
f

k

qok � q
if
k

	 

ð18Þ

On the other hand, if equation (14) is used, the Kalman gain
in this case becomes

Kk ¼
sq f

k
q
f

k

s2

q
f

k

þ Rk

ð19Þ

Again, assume the asymptotical case where the observation
is perfect. The Kalman gain then becomes

lim
Rk!0

Kk ¼
sq f

k
q
f

k

s2

q
f

k

ð20Þ

This equation can be interpreted as follows. If, in a plot with
the modeled discharge as abscissa, and with the modeled
soil moisture as ordinate, the results of all ensemble
members would be plotted, the Kalman gain calculated with
equation (20) would simply be the regression through all
these model results. In this case the state update equation
becomes

qiak ¼ q if
k þ

sq f

k
q
f

k

s2

q
f

k

qok � q
if
k

	 

ð21Þ

Figure 4 further explains the difference between these two
approaches (the use of equation (18) versus equation (21)).
Since, in the generation of the ensemble, parameter values as
well as forcing variables are disturbed, the relationship
between the soil moisture and the discharge will be different
for each ensemble member. In the original derivation of the
EKF, there is only one ensemble member, and the Kalman
gain calculated using equation (17) is nothing else than the
slope of the tangent line evaluated at (qk

if, qk
if). In Figure 4 this

slope is denoted a1. However, in equation (17), ensemble
averages of qk and qk are used in order to calculate the first
derivative. This slope (denoted a2 in Figure 4) will thus not
be equal to a1. On the other hand, if the Kalman gain is
calculated using the regression through the results of the
ensemble members (equation (20)), again a different slope
(a3 in Figure 4) will be obtained. Figure 4 shows that, if
either of these latter two slopes (a2 and a3) are used, and if
the relationship between the discharge and the soil moisture
were linear, the assimilation of a perfect observation for each
ensemble member would lead to an updated state variable
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that would not match the observed discharge. A similar
reasoning can be made for a system with nonzero
observation error, multiple state variables and/or multiple
observations. The question thus arises which of the slopes
is better to use. For this reason, the results obtained using
the Kalman gain calculated using a linearization of the
observation system (equation (2)) will be compared to the
results obtained using the covariance approximation
(equation (14)).
[22] For the reason explained above, we will also

assess whether it is better to calculate a separate Kalman
gain for each individual ensemble member. In this approach,
equation (4) is applied to each individual ensemble member,
instead of to the ensemble averaged results. Further, using
this Jacobian matrix Hk

i instead of Hk, a separate Kalman
gain is calculated using equation (2). The state update
equation then becomes

xiak ¼ x
if
k þKi

k yk � hkðxifk Þ þ vik

h i
ð22Þ

Figure 4 shows that, if the relationship between the dis-
charge and the soil moisture were linear, the assimilation of
a perfect observation for each ensemble member would lead

to a state variable that exactly matches the observed
discharge. It should be noted that this method will lead to
exactly the same results as the ensemble Kalman filter for
the TSM with a linear observation system, since in this case
p1 is identical for all ensemble members.

5.3. Implications for the HBV Model

[23] As stated in section 4.2, the state vector for the HBV
model at each time step k contains the three reservoir
storages from time step k through time step k � 13. In the
ensemble-based covariance approximation, the covariance
between the modeled storages and discharge can be calcu-
lated as

s
x
f

k
q
f

k

¼ 1
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XN
i¼1

S
if
k � S

f
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Sj
if is a short notation for Sif( j4t). N is the ensemble size,

and the overbar indicates the average over the ensemble.
qk
if is the forecasted discharge for ensemble member i. sqk

f
2

is simply the variance of the modeled discharge across the
ensemble at the observation time step (sqkf

2 ). The state
update equation thus becomes

Siak ¼ S
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k þ

s
S
f

k
q
f

k

s2

q
f

k
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8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ

i is the ensemble member number, qk
o the observed

discharge at time step k (m3 s�1), and vk
i a Gaussian number

with mean 0 and variance Rk. Equation (24) shows that, in the
update of each state variable, on top of the observation error
and the variance in the modeled discharge, only the
covariance of that specific variable and the modeled

Figure 4. Schematic relationship between the discharge q
and the soil moisture content q for an ensemble member i
(thick solid line). The dots represent the results of all
individual ensemble members. Here a1 is the slope of the
tangent line using the values from ensemble member i; a2 is
the slope of the tangent line through the point, calculated
using the ensemble average values; and a3 is the slope of
the tangent line through the point, calculated using the
regression through the ensemble members. Here qk

ia,1 is the
result of the update using a1, qk

ia,2 is the result of the update
using a2, and qk

ia,3 is the result of the update using a3.
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discharge is used. This is different from the update using the
linearization of the observation system, where the gradients
of the simulated discharge with respect to the other state
variables are used in the calculation of the Kalman gain
(equation (2)). This means that, since the HBV model is
restarted from time step k � m + 2, using the covariance-
based approach, only the covariance between the storages at
time step k � m + 1 and the discharge at time step k need to
be calculated, and only the analyzed storages at time step k�
m + 1 need to be calculated, since these are the initial
conditions for the model application at time step k � m + 2.

6. Linearized Observation Operators Hk to
Calculate the Kalman Gain

6.1. TSM

[24] For each time step, there is only one state variable,
the catchment storage (S(t), mm). Since the relationship
between the observations and the state variable is known
analytically (equations (A2) and (A3)), the Jacobian matrix
(equation (4)) can be calculated analytically. For the TSM
with a linear observation system, Hk becomes

Hk ¼ p1½ � ð25Þ

p1 is the slope of the discharge-storage relationship
(equation (A2) in section A1). For the TSM with a nonlinear
observation system the Jacobian can be calculated as

Hk ¼ 1:5p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S f ðk4tÞ

q� �
ð26Þ

p2 is the parameter multiplied by the storage raised to the
power 1.5 in the discharge-storage relationship (equation (A3)
in section A1).

6.2. HBV Model

[25] In section 5.3 the distribution of the state vector is
explained. Under these circumstances, the Jacobian matrix
Hk can then be calculated as

Hk ¼
@q f ðk4tÞ
@Sðk4tÞ

����
Sf ðk4tÞ

@q f ðk4tÞ
@S1ðk4tÞ

����
S
f

1
ðk4tÞ

@q f ðk4tÞ
@S2ðk4tÞ

����
S
f

2
ðk4tÞ

::

"

::
@q f ðk4tÞ

@Sððk � 13Þ4tÞ

����
Sf ððk�14Þ4tÞ

@q f ðk4tÞ
@S1ððk � 13Þ4tÞ

����
S
f

1
ððk�14Þ4tÞ

	 @q f ðk4tÞ
@S2ððk � 13Þ4tÞ

����
S
f

2
ððk�14Þ4tÞ

#
ð27Þ

An analytical expression for the relationship between the
discharge and the storages does not exist. For this reason,
the first derivatives are calculated numerically, through a
first-order Taylor series expansion.

7. Results

7.1. Calibration of the Rainfall-Runoff Models

[26] All models were applied using an hourly time step
from 1 August 2006 through 31 July 2007. The parameters
for the models have been estimated using the data from the
study period through the Multistart Weight-Adaptive Recur-
sive Parameter Estimation (MWARPE) method, as described
by Pauwels [2008]. This methodology uses the linear
sequential filter equations in an iterative, Monte Carlo
framework. Table 1 lists the obtained parameter values for
the TSM, with a linear and a nonlinear observation system,
and Table 2 for the HBV model. Using these parameters, an
ensemble of model applications was generated. For this
purpose, the meteorological forcings (precipitation and
potential evapotranspiration), the model parameters, and
the initial conditions were disturbed by adding a Gaussian
random number to their deterministic values. This method-
ology to generate the ensemble is common practice in the
application of the ensemble Kalman filter. Examples can be
found, among many others, in the work by Evensen [1994],
Reichle et al. [2002a], De Lannoy et al. [2006, 2007], and
Durand and Margulis [2007]. The standard deviation of this
random number was set to a fraction of the parameter value.
In order to verify the appropriateness of the ensemble for
data assimilation purposes, two different ensemble verifica-
tion measures were used [De Lannoy et al., 2006]. For this
ensemble verification, the ensemble spread (enspk), the
ensemble mean square error (msek), and the ensemble skill
(enskk) need to be calculated at each time step k:

enspk ¼ 1

N

XN
i¼1

q
if
k � q

f
k

	 
2

msek ¼
XN
i¼1

q
if
k � qok

	 
2

enskk ¼ ðq f
k � qokÞ

2

8>>>>>><
>>>>>>:

ð28Þ

In order for the ensemble to have a large enough spread, it is
expected that on average the ensemble mean differs from
the observation by a value that is equal to the time average

Table 1. Parameter Values for the TSM With Linear and

Nonlinear Observation Systemsa

Parameter Units

Value

Linear
Observation System

Nonlinear
Observation System

f1 - 0.923 0.947
m1 h�1 0.2438 0.5703
m2 h�1 0.8923 0.8893
m3 h�1 0.7628 0.8891
m4 h�1 0.7563 0.4964
m5 h�1 0.4222 0.0478
m6 h�1 0.0174 0.0040
m7 h�1 0.0098 0.0761
m8 h�1 0.0020 0.0111
m9 h�1 0.0136 0.0059
m10 h�1 0.0063 0.0020
m11 h�1 0.0194 0.0013
m12 h�1 0.0014 0.0002
m13 h�1 0.0166 0.0003
m14 h�1 0.0007 0.0196
sa h�1 0.06321 0.06120
p0 m3 s�1 0.324 0.433
p1 m3 s�1 mm�1 0.083
p2 m3 s�1 mm�1.5 0.0118

aHyphen indicates a dimensionless parameter.
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of the ensemble spread [De Lannoy et al., 2006]. Thus, the
following should be true:

henski
henspi  1 ð29Þ

h.i indicates an average over the simulation period. Further,
if the truth is statistically indistinguishable from a member
of the ensemble, the following should be true [De Lannoy
et al., 2006]:

h
ffiffiffiffiffiffiffiffiffi
ensk

p
i

h
ffiffiffiffiffiffiffiffi
mse

p
i 

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

2N

r
ð30Þ

These verification measures can be interpreted as indica-
tions that the ensemble covers the range of the observa-
tions. It is therefore important that they are calculated over
the entire ensemble, not just the low or high flows. If, for
example, they were calculated only over the peak flows,
there is a high chance that the ensemble does not cover the
low flows at all. This would imply that the model has not
been adequately calibrated over the low flows, which would
cause bias in the model results, and which could lead to a
worse model performance through the data assimilation. The
optimal fractions were determined using an interval search.
An ensemble size of 32 and 64 members was used, and the
ensemble size with the best match for both statistics was
used in the data assimilation study.
[27] For the TSM, an ensemble size of 32 members

resulted in the best ensemble performance, while for the
HBV model the best performance was obtained with
64 members. For the HBV model, a disturbance fraction of
0.11 for the model parameters and 1 for the initial conditions
and meteorological forcings was obtained. For the TSM with
a linear observation system, the disturbance fraction for the
parameters and meteorological forcings was 0.03475. When
a nonlinear observation system was used, this fraction was
0.0236. Table 3 shows the ensemble verification statistics
obtained for all models. Figures 5 (top) and 6 (top) show
the results of the ensemble application for the TSM with
linear and nonlinear observation systems, respectively. The
Root Mean Square Error (RMSE) between the ensemble

mean model results and the observations is calculated as
follows:

RMSE ¼ 1

no

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXno
m¼1

ðqom � qfmÞ

s
ð31Þ

no is the amount of data points, qm
o the observed discharge,

and qm
f the modeled (forecast) discharge, both in m3 s�1.

Table 2. Parameter Values and Initial Conditions for the HBV

Model Used in the Model Simulationsa

Parameter Units Value

l - 1.778
Smax m3 2.168 � 107

b - 0.174
a - 0.414
P m3 s�1 13.354
b - 0.055
g - 0.713
S2,max m3 4.04 � 106

k2 m3 s�1 411.3
k1 s�1 8.065 � 10�6

S(t = 0) m3 9.143 � 106

S1(t = 0) m3 9.179 � 104

S2(t = 0) m3 1 � 10�10

aHyphens indicate dimensionless parameters.

Figure 5. Results of the model applications for the TSMl.
(top) Baseline run. (bottom) Assimilation of observations
with the ensemble Kalman filter with nonlinear observation
system and an observation error of 0.1 m3 s�1. The solid
line is the 1:1 line, and the dotted line is the regression.
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The results of the TSM with a nonlinear observation system
are almost identical as when a linear observation system is
used. Figure 7 shows the results of the ensemble application
for the HBV model. Although some individual peaks are
overestimated or underestimated, overall the model simu-
lates the peaks rather well, as is expressed through the
regression line which is very close to the 1:1 line. Errors in
the model meteorological forcings and the relatively simple

model structure are the cause of these mismatches. The
motivation to apply data assimilation is to improve the
model results for the peaks. Overall, from these results it can
be concluded that the HBV model, applied in an ensemble
framework, can adequately simulate the rainfall-runoff
behavior of the catchment.
[28] In order to demonstrate the impact of the ensemble

spread, a second ensemble was generated, in which the

Figure 6. Results of the model applications for the TSMnl.
(top) Baseline run. (bottom) Assimilation of observations
with the ensemble Kalman filter with nonlinear observation
system and an observation error of 0.1 m3 s�1. The solid
line is the 1:1 line, and the dotted line is the regression.

Figure 7. Results of the model applications for the HBV
model. (top) Baseline run. (bottom) Assimilation of observa-
tions with the ensemble Kalman filter with nonlinear ob-
servation system and an observation error of 0.1 m3 s�1. The
solid line is the 1:1 line, and the dotted line is the regression.
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original disturbance factors were decreased by a factor of
1.1 for the TSM, and two for the HBV model. In other
words, for both models a second ensemble was generated,
with an insufficient ensemble spread. A third ensemble was
then also generated, in which the original disturbance
factors were multiplied by 1.1 and 2, for the TSM and the
other models, respectively. In this case the ensemble spread
was thus too large. These different disturbance fractions
were chosen so the ensemble statistics for all models were
approximately equal. Table 3 shows the statistics of these
two extra ensembles for both models. It will be assessed to
what extent the quality of the ensemble impacts the perfor-
mance of the different ensemble Kalman filter approaches
for the purpose of discharge assimilation.

7.2. Assimilation at Every Time Step for the TSM

[29] Table 4 shows the results of the discharge data
assimilation into the TSM. It should be stressed that these
results, as well as all results described in section 7, unless
explicitly stated otherwise refer to the one-step-ahead en-
semble mean forecasted discharge values, not the analysis
values. An error in the observed discharge of 0, 0.1, and
0.5 m3 s�1 is assumed. Even though zero errors are rarely

encountered in reality, this case serves to focus on how the
innovation is mapped on the analysis increment. These
different error levels are used to assess the impact of the
observational error level on the efficiency of the data
assimilation algorithms. As can be expected, the results of
the ensemble Kalman filter with linearized and nonlinear-
ized observation systems are identical if the observation
system is linear. Table 4 shows that these conclusions are
independent of the quality of the ensemble used for the data
assimilation algorithms.
[30] In case a nonlinear observation system is used, and

the observations are perfect, the use of the ensemble Kalman
filter with a linearized observation system leads to an increase
in the forecast error. Figure 8 shows the results of the
assimilation of perfect observations into the TSM with
nonlinear observation system. It should be noted that the
constant base flow values around time step 1000 and
approximately between time step 6000 and 6750 are caused
by the larger value of p0, as can be seen in Table 1. For these
time steps, the storage is approximately zero, which will lead
to a discharge close to p0. Figure 8 shows that this increase in
the forecast error can be explained by the strong overesti-

Table 3. Ensemble Verification Measures for the Ensembles Useda

Measure

HBV TSMl TSMnl

Ideal Value Ensemble Value Ideal Value Ensemble Value Ideal Value Ensemble Value

Optimal Ensemble
henski
henspi

1 1.15 1 1.00 1 1.05

h
ffiffiffiffiffiffiffi
ensk

p
i

h
ffiffiffiffiffiffi
mse

p
i

0.712 0.639 0.718 0.585 0.718 0.638

Ensemble With Insufficient Spread
henski
henspi

1 3.32 1 2.73 1 2.41

h
ffiffiffiffiffiffiffi
ensk

p
i

h
ffiffiffiffiffiffi
mse

p
i

0.712 0.795 0.718 0.768 0.718 0.778

Ensemble With Excessive Spread
henski
henspi

1 0.190 1 0.037 1 0.267

h
ffiffiffiffiffiffiffi
ensk

p
i

h
ffiffiffiffiffiffi
mse

p
i

0.712 0.372 0.718 0.121 0.718 0.382

aTSMl stands for the TSM with a linear observation system, and TSMnl stands for the TSM with a nonlinear observation
system.

Table 4. Root Mean Square Error Between the Observed and Simulated Discharge for the Baseline Run and the Different Assimilation

Runs for the Different Modelsa

Model Baseline Run

Perfect Observations Observation Error 0.1 m3 s�1 Observation Error 0.5 m3 s�1

EnKFl EnKFnl MH EnKFl EnKFnl MH EnKFl EnKFnl MH

Optimal Ensemble
TSMl 0.651 0.129 0.129 - 0.220 0.220 - 0.354 0.354 -
TSMnl 0.647 0.923 0.537 1.551 0.217 0.217 0.218 0.333 0.332 0.331
HBV 0.426 0.443 0.377 0.437 0.432 0.369 0.434 0.434 0.385 0.425

Ensemble With Insufficient Spread
TSMl 0.654 0.129 0.129 - 0.232 0.232 - 0.370 0.370 -
TSMnl 0.651 0.924 0.537 4.144 0.223 0.223 0.223 0.345 0.344 0.342
HBV 0.427 0.447 0.368 0.428 0.445 0.355 0.429 0.453 0.390 0.435

Ensemble With Excessive Spread
TSMl 0.625 0.137 0.137 - 0.217 0.217 - 0.409 0.409 -
TSMnl 0.663 0.923 0.537 1.546 0.212 0.212 0.213 0.321 0.320 0.321
HBV 0.466 0.451 0.482 0.443 0.453 0.434 0.447 0.453 0.447 0.437

aTSMl stands for the TSM with a linear observing system, and TSMnl stands for the TSM with a nonlinear observing system. EnKFl stands for the EnKF
with a linearized observation system, EnKFnl stands for the EnKF with a nonlinearized observation system, and MH stands for multiple Jacobians per
ensemble. Units are in m3 s�1.
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mation of a number of discharge peaks. This is caused by the
effect of the observation system linearization. Table 5 further
explains this problem, for the model results around time step
6225 (the first strongly overestimated peak). At time step
6225 the slope Hk is almost zero, while at the same time
step the model underestimates the discharge. Since Rk is

equal to zero, the Kalman gain becomes very large. The
reason for this is that under these conditions Hk

�1, which
maps the observations to the state, becomes very large. This
will lead to a very high value of the analysis storage, and
consequently the forecasted discharge. Five time steps are
needed in order to correct this overestimation. The use of
multiple Kalman gains does not reduce this problem. These
results clearly demonstrate the impact of the nonlinearity of
the observation system. The baseline results obtained using a
linear and a nonlinear observation system are very similar,
but the application of the ensemble Kalman filter with
linearized observation system leads to strongly different
results for both cases. When the observation error is nonzero,
both approaches lead to similar results and an improvement
of the forecasted discharge.
[31] The results in Table 4 also show that the ensemble

Kalman filter with nonlinearized observation system consis-
tently results in the lowest forecast error, regardless of the
quality of the ensemble.
[32] Figures 5 (bottom) and 6 (bottom) show that, if dis-

charge rates with a realistic level of uncertainty (0.1 m3 s�1)
are assimilated every time step, and the EnKF with non-
linearized observation system is used, a strong improvement
in the model results is obtained, and both the high flows as
well as the low flows are simulated accurately.

7.3. Peak Forecasting for the TSM

[33] In order to assess the impact of the data assimilation
algorithms on subsequent predictions in a more realistic
setting, the data assimilation was halted immediately before
the largest peaks in the data set. From this time step on, the
model was applied in ensemble forecast mode, without
data assimilation. The peaks with maximum values above
3 m3 s�1 were selected for this purpose. Table 6 lists the
start and end times of these peaks, together with the results
obtained for all models and data assimilation algorithms.
[34] Table 6 shows that for both the linear and nonlinear

observation system similar conclusions can be drawn. For all
peaks, and for all assimilationmethods, if data are assimilated
every time step, the mismatch between the observations and
the model simulations is strongly reduced. However, when
the data assimilation is halted immediately before the peak,
at best a slight reduction in the RMSE and in many cases an
increase is obtained. This leads to the conclusion that, for
this catchment and these time series models and parameter
sets, the accuracy of the precipitation records is more
important than the accuracy of the initial storages, if peak
discharges need to be predicted using longer lead times.

Figure 8. Results of the assimilation of perfect observa-
tions into the TSM with nonlinear observation system. (top)
Results obtained using the ensemble Kalman filter with
linearized observation system. (bottom) Results obtained
using multiple Kalman gains.

Table 5. Values of the Different Parts of the State Update Equation for the TSM With Nonlinear Observing System, Optimal Ensemble

Spread, Zero Observation Error, and the State Variables for Ensemble Member 1a

Time Step k qo(k4t) (m3 s�1) q f(k4t) (m3 s�1) Hk (m
3 s�1 mm�1) Kk (mm s m�3) I1 (m

3 s�1) xk
1� (mm) xk

1+ (mm)

6223 0.382 0.433 0.00072 1397.54 �0.0511 0.05230 0
6224 0.428 0.433 0.00005 20028.38 �0.0050 0.00025 0
6225 0.567 0.433 0.00038 2653.55 0.1340 0.01451 355.54
6226 0.395 73.719 0.32534 3.07 �73.087 337.149 112.50
6227 0.374 13.470 0.18297 5.47 �13.038 106.553 35.30
6228 0.374 2.724 0.10248 9.76 �2.3351 33.3839 10.60
6229 0.382 0.810 0.05616 17.80 �0.4283 10.6553 2.45
6230 0.385 0.474 0.02699 37.04 �0.0903 2.34201 0

aI1 stands for the innovation for ensemble member 1.
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7.4. Assimilation at Every Time Step for the HBV
Model

[35] Table 4 shows the results of the application of the
different data assimilation algorithms for the HBV model.
Figure 9 shows the results of the assimilation of perfect
observations into the HBV model. The impact of the data
assimilation is clearly not as strong for the HBV model as
for the time series models. This lower impact of the data
assimilation for the HBV model can be explained by the
impact of the routing algorithm. As explained above, if an
observation is assimilated at time step k, the state variables
from time step k � 13 through k are updated, and the model
is restarted at time step (k � 12). One can expect that the
correlation between the ensemble mean forecasted state
variables at time step k � 13 and the ensemble mean
forecasted discharge at time step k is not as large as the
correlation between the state variables at time step (k � 1)
and this discharge. More specifically, for the HBV model
baseline run (no data assimilation), the correlation coeffi-
cient between S((k � 13)4t) and qf(k4t) is 0.551. For
S1((k � 13)4t) and qf(k4t) the correlation coefficient is
0.753, and for S2((k � 13)4t) and qf(k4t) it is 0.340. The
highest-correlation coefficient is thus 0.753, corresponding
to a determination coefficient of 0.56. This implies that
changing the state variables 13 time steps before the
discharge observation will have a limited impact on the
modeled runoff.
[36] In other words, the HBV model is reinitialized 14

time steps prior to the observation. In this case model
uncertainty, caused by uncertainty in the parameters, forc-
ings, and model structure, dominates over the uncertainty in
the initial conditions.
[37] Table 4 shows that the only assimilation method

consistently leading to an improvement in the model fore-
casts is the ensemble Kalman filter with nonlinearized

observation system. The only exception is when the obser-
vations are perfect and the ensemble spread is too large. For
the other methods, in almost all cases a worsening of the
model forecasts has been obtained.
[38] Figure 7 (bottom) shows that, if discharge rates with

a realistic level of uncertainty (0.1 m3 s�1) are assimilated
every time step, and the EnKF with nonlinearized observa-
tion system is used, this reduction in the RMSE can be
attributed to a slightly better modeling of the low flows as
well as the high flows. However, as stated above, the impact
of the data assimilation is limited.

7.5. Peak Forecasting for the HBV Model

[39] Table 6 shows that, if the discharge is assimilated at
every time step, the EnKFnl outperforms the EnKFl for all
peaks, except for the peak starting at time step 5020.
However, for this peak, the difference between the results
obtained from both methods is relatively small. In general,
the HBV baseline run simulates the peaks better than either
of the time series models, but when discharge data are
assimilated at every time step using both approaches to the
EnKF, the opposite conclusion can be drawn. In many
cases, the assimilation of discharge rates at every time step
using the EnKF increases the mismatch between the obser-
vations and the model simulations. However, the impact of
the data assimilation is limited, as compared to the time
series models. This can be explained by the data assimila-
tion algorithm. In section 5.3, it is explained that for the
EnKFnl, the covariance between the state variables at time
step k � 13 and the discharge at time step k is used, in order
to update the state variables at time step k � 13. Table 7 lists
these covariances, together with the state variables, for the
time steps up till the onset of the peak starting at time step
325. As can be expected, and is explained in section 7.4, the

Table 6. Results of the Model Applications With Data Assimilation Terminated at the Onset of the Peaka

Onset Peak End Peak Model Baseline Run Result

Assimilation Results

EnKFl EnKFnl MH

E S E S E S

325 350 TSMl 1.812 0.821 1.921 0.821 1.921 - -
TSMnl 1.676 0.709 1.878 0.709 1.879 0.707 1.876
HBV 2.065 2.344 2.347 1.437 1.336 2.328 2.249

493 541 TSMl 1.308 0.635 1.436 0.635 1.436 - -
TSMnl 1.279 0.564 1.520 0.565 1.520 0.559 1.520
HBV 1.330 1.471 1.476 1.251 1.192 1.467 1.424

3116 3150 TSMl 1.356 0.377 1.366 0.377 1.366 - -
TSMnl 1.391 0.312 1.255 0.312 1.255 0.312 1.253
HBV 1.100 0.950 0.952 0.840 1.197 1.236 1.121

4036 4065 TSMl 1.561 0.450 1.225 0.450 1.225 - -
TSMnl 1.282 0.362 0.723 0.363 0.723 0.363 0.723
HBV 1.200 1.433 1.475 1.197 1.271 1.156 1.162

4925 4940 TSMl 2.056 0.991 2.011 0.991 2.011 - -
TSMnl 2.209 0.839 1.955 0.840 1.954 0.839 1.955
HBV 1.800 1.888 1.890 1.853 1.818 1.850 1.770

5020 5042 TSMl 2.642 0.525 2.147 0.525 2.147 - -
TSMnl 2.555 0.448 1.833 0.449 1.834 0.450 1.833
HBV 0.777 0.799 0.897 0.894 1.018 1.073 0.776

5145 5193 TSMl 2.895 0.461 2.919 0.461 2.919 - -
TSMnl 2.785 0.390 2.728 0.390 2.728 0.391 2.728
HBV 0.796 0.829 0.776 0.720 1.352 1.296 0.919

aUnits are in m3 s�1. The observation error is 0.1 m3 s�1. The onsets and ends of the peaks are in time step numbers. E indicates assimilation at every
time step, and S indicates assimilation until the onset of the peak.
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Figure 9. Results of the assimilation of perfect observations into the HBV model. (top) Results
obtained using the ensemble Kalman filter with linearized observation system. (middle) Results obtained
using the ensemble Kalman with nonlinearized observation system. (bottom) Results obtained using
multiple Kalman gains.

14 of 17

W08428 PAUWELS AND DE LANNOY: DISCHARGE ASSIMILATION W08428



magnitude of these covariances is relatively low, which will
lead to a negligible update of the state variables.
[40] When multiple Jacobians are used, similar conclu-

sions can be drawn as for the EnKFl. The conclusion of this
analysis of the modeled peaks is that, for the EnKF with
linearized and nonlinearized observation system, mixed
results are obtained, if the data assimilation is stopped at
the onset of the peak. This can be explained by the limited
updating of the initial conditions 13 time steps before the
peak, as is explained above.

8. Computational Efficiency

[41] For all models, when data are assimilated every time
step, the EnKF with nonlinearized observation system was
computationally the most efficient method. The approaches
with a linearized observation system and multiple Kalman
gains required more computer time. This can be explained by
the higher amount of model applications in order to calculate
the Jacobian matrix Hk, and the higher amount of matrix
multiplications needed to calculate Kk in equation (2).
[42] As a summary, the EnKF with nonlinearized obser-

vation system is computationally the most efficient method.
The approaches in which the observation system is linear-
ized are computationally more demanding, and they suffer
from serious drawbacks with respect to model performance.

9. Discussion and Conclusions

[43] The objective of this paper was to examine how
discharge data are best assimilated into hydrologic models,
if the models are applied in an ensemble framework, and
the ensemble Kalman filter is used as assimilation algo-
rithm. The relationship between the observations and the
state variables (the observation system) is nonlinear, which
has as consequence that a number of approaches can be
derived to map the discharge observations to the state
variables. The results of the one time step ahead forecasts
indicate that the spread and the accuracy of the generated
ensemble is in some cases important. The application of two
time series models showed the impact of the nonlinearity of
the observation system. In all cases, assimilation of dis-
charge into hydrologic models clearly works best if linear-

ization of the observation system is bypassed. If the time
delay between the generation of runoff and the arrival at the
catchment is modeled using a unit hydrograph, only a
marginal improvement in the model results is obtained.
This can be explained by the dominating effect of the model
error, as compared to the impact of the initial conditions.
The model error is caused by errors in the meteorological
forcings, model structure, and model parameters, accumu-
lated over the duration of the unit hydrograph. Since the
initial conditions need to be updated a number of time steps
prior to the observation, the model error can accumulate
over a number of time steps, and the improvement in the
modeled discharge will be limited. The consequence is that
a more realistic model structure will not necessarily lead to
an improvement of the results through data assimilation, if
discharge is assimilated. This problem can be overcome by
using a cascade of linear reservoirs to represent the surface
routing processes, as is performed, for example, in the work
by Moradkhani et al. [2005], Vrugt et al. [2006], Blöschl
et al. [2007], and Komma et al. [2008]. Another solution
is the approach ofWeerts and El Serafy [2006], in which the
modeled unrouted discharge is compared to the observed
discharge a number of time steps later. On the basis of this
approach, Weerts and El Serafy [2006] concluded that the
ensemble Kalman filter outperformed the Particle Filter.
Since comparing routed runoff to observations is arguably
a more realistic approach, the question arises which of these
two filters is more appropriate if this approach is used.
Ongoing research is focusing on this question. The final
conclusion of this paper is that, if longer lead times are
considered, given the model structure, the accuracy of the
meteorological forcings is more important than an accurate
estimation of the model initial conditions through data
assimilation.

Appendix A: Model Description

A1. TSM

[44] The Time Series Model (TSM) can be written as

SðtÞ ¼ f1Sðt � 1Þ þ
X14
i¼1

miRtotðt � iÞ þ ak ðA1Þ

Table 7. Analysis of the HBV Model Results for the Peak Starting at Time Step k = 325 Using the Ensemble Kalman Filter With

Nonlinearized Observation Systema

k P (mm h�1) Qo (m
3 s�1) sqk� Sk�13

� (m3 s�1 m) sqk� S1,k�13
� (m3 s�1 m) sqk� S2,k�13

� (m3 s�1 m) Sk
a (m) S1,k

a (m) S2,k
a (m)

310 0 0.511 �8.1 � 10�5 2.7 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
311 0 0.494 �9.1 � 10�5 1.9 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
312 0 0.482 �1.0 � 10�4 1.3 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
313 0 0.475 �1.2 � 10�4 6.4 � 10�7 0 1.9 � 10�1 7.8 � 10�4 0
314 0 0.464 �1.3 � 10�4 5.3 � 10�8 0 1.9 � 10�1 7.8 � 10�4 0
315 0 0.458 �1.3 � 10�4 1.1 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
316 0 0.455 �1.2 � 10�4 2.1 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
317 0 0.449 �1.1 � 10�4 3.0 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
318 0 0.444 �1.0 � 10�4 3.9 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
319 0 0.437 �9.0 � 10�5 4.9 � 10�6 5.8 � 10�8 1.9 � 10�1 7.8 � 10�4 0
320 0 0.432 �3.3 � 10�5 4.2 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
321 0 0.429 �2.6 � 10�5 5.0 � 10�6 0 1.9 � 10�1 7.7 � 10�4 0
322 0.93 0.425 �2.8 � 10�5 5.2 � 10�6 0 1.9 � 10�1 7.8 � 10�4 0
323 0 0.455 �2.9 � 10�5 5.3 � 10�6 0 1.9 � 10�1 9.3 � 10�4 6.9 � 10�5

324 1.09 0.461 �1.1 � 10�5 3.1 � 10�6 0 1.9 � 10�1 9.3 � 10�4 2.6 � 10�7

325 1.03 0.471 1.1 � 10�5 1.2 � 10�6 0 1.9 � 10�1 1.1 � 10�3 6.8 � 10�5

aP is the precipitation, and qo is the observed discharge. The observation error is 0.1 m3 s�1.
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S(t) is the total storage in the catchment at time step t (mm),
and Rtot is the precipitation (mm h�1). t is equal to k4t, with
4t the model time step (s). f1 is the lag one autoregressive
parameter (), mi is the lag i moving average parameter (h),
and ak is a Gaussian random number with zero mean and
standard deviation sa (mm). The lag of 14 time steps in the
moving average model represents the effect of routing and
reinfiltration on the catchment discharge. The amount of
time steps to take into account has been determined through
calibration of unit hydrograph–based models for the study
site [Ferket, 2008]. The initial storage is assumed to be zero.
Two different observation systems were used for this model.
A first, linear observation system, relates the storage (the
system state) to the catchment discharge as follows:

qðtÞ ¼ p0 þ p1SðtÞ ðA2Þ

p0 and p1 are parameters, with units m3 s�1 and m3 s�1

mm�1, respectively. A second, nonlinear observation
system relates the catchment storage to the catchment
discharge as follows:

qðtÞ ¼ p0 þ p2S
1:5ðtÞ ðA3Þ

p2 is a parameter (m3 s�1 mm�1.5). The exponent of 1.5 has
been chosen to demonstrate the effect of a relatively weak
nonlinear observation system on the performance of the
assimilation algorithms.
[45] As a summary, for the TSM with a linear storage-

discharge relationship, 18 parameters need to be calibrated:
f1, m1 through m14, sa, p0, and p1. If a nonlinear observation
system is used, p2 needs to be determined instead of p1.

A2. HBV Model

[46] The Hydrologiska Byrns Vattenbalansavdelning
(HBV) model, of which Figure 2 shows a schematic, was
originally developed by Linström et al. [1997]. In this paper,
the version of Matgen et al. [2006] is applied. The model
uses observed precipitation (Rtot(t)) and potential evapo-
transpiration (ETP(t)) as input, both in m3 s�1. t is the time
in seconds. The catchment is divided into a soil reservoir, a
fast reservoir, and a slow reservoir. There are thus three
state variables: the amount of water in the soil reservoir
(S(t), m3), the slow reservoir (S1(t), m3), and the fast
reservoir (S2(t), m

3).
[47] A number of fluxes are calculated, which depend on

the state variables of the system. The actual evapotranspi-
ration ETR(t) (m3 s�1) is first determined:

ETRðtÞ ¼ 1

l
SðtÞ
Smax

ETPðtÞ ðA4Þ

l is a dimensionless parameter, and Smax is the storage
capacity of the soil reservoir (m3). The infiltration Rin(t)
(m3 s�1) is calculated as follows:

RinðtÞ ¼ 1� SðtÞ
Smax

� �b

RtotðtÞ ðA5Þ

b is a dimensionless parameter. After this, the effective
precipitation Reff (t) (m3 s�1) is determined:

Reff ðtÞ ¼ RtotðtÞ � RinðtÞ ðA6Þ

The calculation of the percolation D(t) (m3 s�1) is then
performed:

DðtÞ ¼ Pe 1� e
�b

SðtÞ
Smax

0
B@

1
CA ðA7Þ

Pe is a percolation parameter (m3 s�1), and b a dimension-
less parameter. After this, the storage in the soil reservoir at
the end of the time step can be calculated as follows:

Sðt þ4tÞ ¼ SðtÞ þ RinðtÞ � ETRðtÞ � PercðtÞð Þ4t ðA8Þ

4t is the time step in seconds.
[48] The input in the fast reservoir R2(t) (m

3 s�1) is then

R2ðtÞ ¼ a
SðtÞ
Smax

Reff ðA9Þ

a is a dimensionless parameter. The outflow from this
reservoir Q2(t) (m

3 s�1) is then determined:

Q2ðtÞ ¼ k2

S2ðtÞ
S2;max

� �g

ðA10Þ

S2,max is the storage capacity of the fast reservoir (m3), and
k2 (m3 s�1) and g () are model parameters. After this, the
storage in the fast reservoir at the end of the time step can be
calculated as

S2ðt þ4tÞ ¼ S2ðtÞ þ R2ðtÞ � Q2ðtÞð Þ4t ðA11Þ

The input in the slow reservoir R1(t) (m3 s�1) is then
computed:

R1ðtÞ ¼ Reff ðtÞ � R2ðtÞ ðA12Þ

The outflow from this reservoir Q1(t) (m
3 s�1) can then be

calculated as

Q1ðtÞ ¼ k1S1ðtÞ ðA13Þ

k1 is a model parameter (s�1). Finally, the storage in the
slow reservoir at the end of the time step is calculated:

S1ðt þ4tÞ ¼ S1ðtÞ þ R1ðtÞ � Q1ðtÞ þ PercðtÞð Þ4t ðA14Þ

The total discharge q(t) is then simply the sum of Q1(t) and
Q2(t). A triangular unit hydrograph is then used for runoff
routing.
[49] As a summary, the model contains ten time-invariant

parameters (l, Smax, b, a, P, b, g, S2,max, k2, and k1), and
three state variables per time step (the storages S(t), S1(t),
and S2(t)).
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