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Abstract Data assimilation has the potential to improve flood forecasting. However, research efforts are
still needed for an effective development of assimilation schemes suitable for operational usage, especially
in case of distributed hydrologic models. This work presents a new assimilation system of streamflow data
from multiple locations in a distributed hydrologic model. The system adopts a mixed variational-Monte
Carlo approach, and is here tested with the hydrologic model MOBIDIC, that is part of the operational flood
forecasting chain for Arno river in central Italy. The main objective of the work is to evaluate the actual gain
that the system can lead to flood predictions in a real-time operational usage. Accordingly, a specifically
designed assessment strategy is employed. It is based on several hindcast experiments that include both
high flow and false alarm events in the period 2009–2014 in Arno river basin. Results show that the
assimilation system can significantly increase the accuracy of flow predictions in respect to open loop
simulations in both cases. Specific performances depend on location and event, but in the majority of cases
the error on predicted peak flow is reduced of more than 50% with a lead time of around 10 h. The analysis
reveals also that the structure of the hydrologic model, the coherence between observations at various
sites, and the initial watershed saturation level, considerably affect the obtainable performances. Conditions
that may lead to a worsening of open loop predictions are identified and discussed.

1. Introduction

Accurate and reliable streamflow predictions are fundamental for effective early warning systems, which
are crucial in reducing floods impact [UNISDR, 2002; Carsell et al., 2004; Molinari and Handmer, 2011;
Pappenberger et al., 2015] and are increasingly used worldwide in flood risk management [Pagano et al.,
2014]. Data assimilation is recognized to be a valuable tool to gain accuracy in streamflow predictions [Liu
et al., 2012]. Basically, data assimilation combines observations and numerical models to enhance states
and parameters estimation. It is an established practice in operational meteorology, where it represents a
crucial step for numerical weather predictions and reanalysis [Kalnay, 2003]. Numerous studies demonstrat-
ed its potential also in hydrology, using different methods and observations. Typically employed observa-
tions are in-situ measurements of streamflow [e.g., Seo et al., 2003; Vrugt et al., 2006; Komma et al., 2008;
Clark et al., 2008; Seo et al., 2009; Rakovec et al., 2012; Moradkhani et al., 2012; McMillan et al., 2013; Coustau
et al., 2013; Abaza et al., 2014; Noh et al., 2014; Rafieeinasab et al., 2014; Mazzoleni et al., 2015; Li et al., 2015;
Rakovec et al., 2015] and satellite retrievals of soil moisture [e.g., Pauwels et al., 2001; Reichle et al., 2007;
Brocca et al., 2010, 2012; Li et al., 2012; Sahoo et al., 2013; Laiolo et al., 2015], snow cover [e.g., Clark et al.,
2006; Liston and Hiemstra, 2008; Su et al., 2010; De Lannoy et al., 2012], land surface temperature [e.g.,
Caparrini et al., 2004a, 2004b; Sini et al., 2008; Reichle et al., 2010; Campo et al., 2013], evapotranspiration
[e.g., Schuurmans et al., 2003; Pipunic et al., 2008; Irmak and Kamble, 2009; Schuurmans et al., 2011], and veg-
etation characteristics [e.g., Fang et al., 2011; Ines et al., 2013]. When the assimilation procedure aims at
improving streamflow forecasting, in-situ discharge data are more commonly used than satellite products
of soil moisture, especially if the application is in real time. The main reason is that it is more straightforward
to assimilate the same variable which is forecast. In addition, the choice is also due to the fact that the tem-
poral resolution of discharge measurements is superior, with hourly or subhourly data versus typical much
longer revisit times of satellites used operationally for soil moisture retrieval. A frequent strategy is to
employ streamflow observations for model states updating (usually states of soil moisture and of surface or
river flow) [e.g., Komma et al., 2008; Clark et al., 2008; Chen et al., 2012; Noh et al., 2013; Li et al., 2015]. How-
ever, some studies indicate that a potentially successful approach is to combine states update with
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parameters estimation [e.g., Vrugt et al., 2006; Seo et al., 2003, 2009]. This allows to better deal with possible
structural and parametric errors of the model. The most common approaches adopted in hydrologic data
assimilation are Kalman filters (linear, extended, and ensemble Kalman filter), particle filters and variational
methods. A comprehensive analysis of these methods in the hydrological context is provided in Liu and
Gupta [2007], and Reichle [2008]. Ensemble Kalman filter [Evensen, 1994] can be considered the most com-
mon technique. Its popularity is due mainly to the fact it can deal efficiently with non linear models and it is
flexible and easy to use, as well as straightforward to implement irrespective of model specific characteris-
tics [e.g., Clark et al., 2008; Komma et al., 2008; Pauwels and De Lannoy, 2009; Xie and Zhang, 2010; Rakovec
et al., 2012; McMillan et al., 2013]. Analogous considerations about flexibility and straightforward implemen-
tation are appropriate also for particle filters, although their rationale and functioning differ substantially
from ensemble Kalman filter (see, for instance, Moradkhani et al. [2005], Salamon and Feyen [2009], or Aru-
lampalam et al. [2002] for details about the technique). Furthermore, particle filters do not require the
assumption of Gaussian state-space model as ensemble Kalman filter does. Given this advantage, as well as
the refining of specific techniques, particle filtering is increasingly employed in hydrologic data assimilation
[e.g., Weerts and El Serafy, 2006; Noh et al., 2011; Moradkhani et al., 2012; DeChant and Moradkhani, 2011,
2012; Pasetto et al., 2012; Yan and Moradkhani, 2016]. Variational methods are less diffused in hydrology, as
they require the not straightforward derivation of an adjoint model. However, they are less computationally
expensive and more flexible in case of complex systems [Reichle et al., 2001; Liu and Gupta, 2007; McMillan
et al., 2013] and, since they use observations inside an assimilation window all at once, are less subjected to
overshoots in corrections, i.e., they are smoothers [Reichle, 2008].

Despite the increasing attention that data assimilation is gaining in hydrology, the transfer of research
results into operational systems is still considered insufficient [Liu et al., 2012], with most of the literature
focusing on theoretical advances and synthetic tests [e.g., Andreadis et al., 2007; Reichle et al., 2008; Crow
and Ryu, 2009; Kumar et al., 2009]. However, in the last years, synthetic tests have contributed, together
with real case studies, to understand the potential and the challenges in using data assimilation with distrib-
uted hydrologic schemes [Komma et al., 2008; Clark et al., 2008; Salamon and Feyen, 2009; Brocca et al.,
2010; Lee et al., 2011, 2012; Yan and Moradkhani, 2016]. Indeed, several issues arise when dealing with a dis-
tributed approach instead of lumped, and research efforts are needed to properly address them. The main
troubles are the large dimensionality of the inverse problem, eventually causing overfitting in the update,
the complex topology of domains such as surface drainage and river network, and model governed by dif-
ferent equations with a nonlinear and discontinuous structure [Clark et al., 2008; Lee et al., 2011, 2012; Rako-
vec et al., 2012]. Despite the relevant advances made, in the operational practice data assimilation is
included in hydrologic forecasting mainly with lumped models [Seo et al., 2009; Chen et al., 2012]. A notice-
able exception is the system running at M�et�eo France. It uses the Best Linear Unbiased Estimator (BLUE)
with streamflow observations at multiple locations to update soil moisture states in a distributed hydrologic
model that is forced by an ensemble of meteorological inputs. The inclusion of streamflow assimilation in
the operational forecasting chain was presented and tested in Thirel et al. [2010a, 2010b] over the whole
France. Results demonstrated a great potential of the assimilation scheme in a synthetic experiment, where
also streamflows at not assimilated locations improved. Performances slightly reduced in forecasting mode
using real data, but confirmed the value of the system. Coustau et al. [2015] completed the evaluation
adopting entirely the operational setting, which includes to employ observations only from a limited num-
ber of gauge stations. The results highlighted the fundamental role of stations spatial distribution for a suc-
cessful assimilation. However, the improvement of both the assimilation strategy and the hydrologic model
is envisaged. In particular, it is wished to overcome the limitations related to the usage of a linearized obser-
vation operator in the assimilation. Furthermore, among the few studies that are operationally-oriented for
distributed schemes, only a small number performs a specific evaluation of the assimilation system that is
actually useful to assess the benefit in terms of flood early warning. Such evaluation should be event-based,
i.e., statistical indexes of performance should be computed on any flood event, or, better, on any event that
is relevant in terms of either streamflow or rainfall (i.e., also relevant rainfall events which do not cause a sig-
nificant rise of discharge in the river network should be examined). Instead, many studies [e.g., Thirel et al.,
2010a, 2010b; Rakovec et al., 2012; McMillan et al., 2013; Coustau et al., 2015] evaluate the assimilation sys-
tem continuously over long periods, i.e., they compute performance indexes on time series of streamflow
that extend over several months or years, and hence include numerous dry periods. In addition, the assess-
ment should focus on improvements in predictions of the single hydrograph and on specific skills that are

Water Resources Research 10.1002/2016WR019208

ERCOLANI AND CASTELLI ASSIMILATION OF STREAMFLOW DATA 159



fundamental for flood warning, such as peak flow. Moreover, lead time should be taken into account.
Komma et al. [2008] and Coustau et al. [2013] are studies that adopt an event-based approach for the verifi-
cation of the proposed assimilation systems. However, their verification strategies differ slightly, and could
be integrated to assure a comprehensive evaluation that is preparatory for an operational usage in flood
early warning systems. Only Komma et al. [2008] include in the analysis the dependence of results on lead
time. Conversely, Coustau et al. [2013] examine a larger number of events (12 cases), showing that the per-
formances of the assimilation scheme can change significantly in function of the specific case. Moreover,
both studies assimilate streamflow data and quantify improvements in predictions solely at the basin outlet,
although they both employ a distributed hydrologic model. Hence, issues that could rise from using spatial-
ly distributed information, as well as the possible spatial variability of performances, are not analyzed.

Our work presents a new data assimilation system for streamflow observations at multiple locations in a dis-
tributed hydrologic model, and aims at evaluating whether and to which extent this system could enhance
flood forecasting in the operational practice. The developed system is a mixed variational-Monte Carlo
method. It represents a novel approach that could overcome challenges related to the derivation of an
adjoint model for modular schemes with strong threshold nonlinearities. Thanks to this mixed approach,
the system updates efficiently initial river flow and soil moisture, as well as a parameter related to infiltration
processes, on a distributed basis. For the assessment of performances, we employ an event-based
approach, since we are specifically interested in enhancing predictions for flood early warning. We examine
a large number of events (16) with different characteristics. In fact, the assimilation system is intended to be
employed operationally, and we need to verify its behavior under the large variety of conditions that are
encountered in a real-time usage. Accordingly, both high flow and false alarms (relevant rainfall accumula-
tion but relatively low river flows) cases are included in the analysis. Furthermore, the dependence of results
from lead time is investigated, being a crucial feature that could determine the usefulness of the assimila-
tion scheme in terms of early warning. Both the assimilation and the corresponding evaluation of perform-
ances are performed at multiple locations, increasing the completeness of the analysis. All these
characteristics are rarely present simultaneously in an assessment strategy. However, they are fundamental
to verify exhaustively the operational usability of an assimilation framework for improvement of flood fore-
casting, as our work is intended to. Hence, this study contributes significantly to the transfer of research
activities to the operational practice, which is still considered insufficient especially for spatially distributed
systems (both model and assimilation scheme). Besides the previous facts, the following specific points
merit attention in regard to the few existing studies on the use of the variational approach to assimilate
streamflow data at multiple gauge stations in distributed hydrologic models [e.g., Lee et al., 2011, 2012]: (i)
the results obtained so far are still controversial, and significantly dependent on hydrologic model capacity
to predict streamflow in the basin of interest, as well as on the details of the assimilation strategy, which in
turn are related to the peculiarities of the hydrologic model (in the above studies, the gridded Sacramento
Soil Moisture Accounting and kinematic-wave routing modules that are part of the National Weather Ser-
vice Hydrology Laboratorys Research Distributed Hydrologic Model); (ii) a fine spatial resolution (below kilo-
meter scale), capable of fully resolving the hillslope and drainage structure, is used here for the first time in
a variational assimilation context.

The new assimilation system is tested with the hydrologic model MOBIDIC (MOdello di Bilancio Idrologico
Distribuito e Continuo). MOBIDIC runs operationally at the hydrologic service of Tuscany region, Italy, for
flood forecasting and water resources management purposes. We analyze the developed framework in 16
hindcast experiments that include both high flow and false alarm events in the period 2009–2014. Experi-
ments are run with a high spatial resolution. The area of study is Arno river basin, which is the main catch-
ment of Tuscany region.

The remainder of the paper is organized as follows. Sections 2 and 3 describe the hydrological model MOBI-
DIC and the developed assimilation system respectively. Section 4 illustrates the area of study and the setup
of the hindcast experiments. Results are presented in section 5, and conclusions are drawn in section 6.

2. The Hydrologic Model MOBIDIC

MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) is a physically-based hydrologic model that
runs operatively at the hydrologic service of Tuscany region (Servizio Idrologico Regionale, Regione
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Toscana) for floods forecasting and water resources management purposes. It works at the watershed scale,
and estimates hydrologic fluxes and states in surface water bodies (both river network and reservoirs), soil-
vegetation system and subsurface layer [Campo et al., 2006; Castelli et al., 2009; Yang et al., 2014a, 2014b]. It
is continuous in time and spatially distributed, with horizontal discretization based on a square grid DEM
(Digital Elevation Model).

MOBIDIC solves water and energy balance simultaneously in the soil-vegetation subsystem. Water dynamics
are represented through a computationally efficient scheme, that was recently enhanced by Castillo et al.
[2015]. It discretizes soil vertically with one single layer, that is conceptually subdivided into two nonlinear
reservoirs, the capillary and gravitational compartments. They represent, respectively, smaller pores that
hold water through capillary forces and larger pores that drains under gravity. Accordingly, the maximum
storage capacity of the gravitational reservoir (Wg;max) may be parametrized as the maximum water content
above field capacity, and that of the capillary reservoir (Wc;max) as the difference between field capacity and
wilting point. The two compartments regulate different hydrologic fluxes. Castillo et al. [2015] demonstrated
that this dual-pore storage model captures the essential local-scale soil moisture dynamics, and provides
results that are comparable to those obtained with a numerical solver of Richards equation. For each cell of
the domain, the time evolution of gravitational (Wg) and capillary water (Wc) is driven by:

dWg

dt
5I1QL;up2Qas2Qper2QL;down (1)

dWc

dt
5Qas1Qcap2E3 (2)

where I is infiltration, QL;up is incoming hypodermic flow from uphill cells, Qas is absorption of water from
gravitational to capillary reservoir, Qper is percolation, QL;down is outgoing hypodermic flow toward the
downhill cell, Qcap is capillary rise from shallow water table and E3 is evapotranspiration. Water balance
includes two additional reservoirs, the canopy and surface runoff compartments. The first one accounts for
interception of rainfall by plants canopy, and the second one for temporary storage in runoff. Their water
content, Wp and Ws respectively, evolves in time in accordance with:

dWp

dt
5P2T2E1 (3)

dWs

dt
5RH1RD2Rdown2E2 (4)

where P is precipitation, T is throughfall, RH is Horton runoff, RD is Dunne runoff, Rdown is outgoing runoff
toward the downhill cell, E1 and E2 are direct evaporation from canopy and surface water respectively.
Water contents are here expressed as volume per unit area ½L�, and fluxes as volume per area and time unit
½LT21�. Fluxes between the four conceptual reservoirs are described in the following. Infiltration provides
water to the gravitational reservoir. It is limited in rate by soil hydraulic conductivity Ks ½LT21�, and in volume
by the maximum storage capacity of the gravitational compartment. Accordingly, Horton and Dunne runoff
may be generated. Regarding Horton runoff, a stochastic approach is adopted to take into account the
intermittent nature of precipitation. At each time step, the expected value of the infiltration rate is comput-
ed assuming that rainfall is a random variable with an exponential distribution [Castelli, 1996].

I5
ðT1RupÞ 12exp 2

ð12f0ÞKsK1

T1Rup

� �� �
if Wg � Wg;max

0 if Wg > Wg;max

8><
>: (5)

where Rup is incoming runoff from uphill cells and f0 is a parameter representing rainfall intermittence (for
details, see Castelli [1996]). Moreover, K1 ½2� is a parameter accounting for augmented infiltration rate
before surface ponding. This brings back the role of the capillary compartment which may dominate the
early stage of infiltration. K1 is then assumed to be dependent on the level of saturation of capillary soil.
Both percolation toward groundwater and downhill hypodermic flow are parametrized as linearly depen-
dent on gravitational water content:

Qper5c �Wg (6)
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QL;down5b �Wg (7)

where c and b are the corresponding empirical rate coefficients ½T21�. Moreover, water leaves the gravita-
tional reservoir through an absorption flux that feeds the capillary compartment. Absorption is considered
linearly dependent on a bulk suction head through an empirical rate coefficient k ½T21�:

Qas5k � ðWc;max2WcÞ (8)

The capillary reservoir may receive water also through capillary rise when a shallow water table is present.
The flux is modeled according to Salvucci [1993]:

Qcap5
Ks½ðdw=wbÞ

2n
2ðw=wbÞ

2n�
11ðw=wbÞ

2n
1ðn21Þðdw=wbÞ

2n (9)

where dw ½L� is the mean distance between the water table and the unsaturated soil layer, w ½L� is the soil
matric potential (computed following Brooks and Corey [1964]), wb ½L� is the bubbling pressure, and n ½2� is
the product of Brooks-Corey pore size distribution index and pore-size disconnectedness index. Outgoing
runoff toward the downhill cell is evaluated as linearly dependent from surface water content through a
kinematic parameter â:

Rdown5â �Ws (10)

â5a �
ffiffi
i
p
ffiffi
i
p (11)

where a ½T21� is a rate coefficient for runoff, i ½2� is the topographic slope and � indicates averaging over
the cells of the basin. Finally, throughfall is computed as excess over the maximum storage of the canopy
reservoir:

T5
P2Wp;max=Dt if Wp > Wp;max

0 if Wp � Wp;max

(
(12)

Additional specifications about fluxes computation can be found in Castelli et al. [2009] and Castillo et al.
[2015].

Evapotranspiration is subtracted from canopy, surface and capillary soil reservoirs according to their water
availability and on the basis of potential evapotranspiration, that is computed through the surface energy
balance:

Rn2G5H1LE (13)

where Rn is the net radiation available at the surface, G is heat flux into soil (positive downward), H and LE
are surface turbulent fluxes of sensible and latent heat respectively (positive upward). The turbulent fluxes,
in (W m– 2), are computed employing a bulk formulation for heat transfer:

H5qaCpCHUðTs2TaÞ (14)

LE5qaLCHUðqs2qaÞ (15)

where qa (kg m– 3) is air density, Cp (J kg– 1 K– 1) is air specific heat at constant pressure, L (J kg– 1) is latent
heat of vaporization, U (m s– 1) is wind speed, Ts and Ta (K) are temperatures of land surface and air, qs and
qa (kg kg– 1) are specific humidities of surface and air, and CH (-) is the bulk transfer coefficient for heat. It
includes both surface roughness and atmospheric stability effects [Van den Hurk and Holtslag, 1997]. Poten-
tial (energy-limited) evapotranspiration is computed first. The energy balance is coupled with the 1-D equa-
tion of heat diffusion into soil:

qsCs
@T
@t

5
@

@z
k
@T
@z

� �
(16)

where qs (kg m– 3) is soil density, Cs (J K– 1 kg– 1) is soil heat capacity, k (W m– 1 K– 1) is soil thermal conduc-
tivity, and T (K) is soil temperature. Equation (16) is integrated forward in time employing a three-point
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vertical discretization. As lower boundary condition a constant temperature is imposed, while the top
boundary condition is:

k
@T
@z

����
z50

52G (17)

Actual evapotranspiration is computed taking into account water availability in canopy, surface and capil-
lary soil reservoirs, and it is used to solve again the energy balance and hence to obtain the actual update
of land surface temperature Ts. This coupling between energy and water balance gives the possibility (not
used here) to assimilate land surface temperature observations for the improvement of soil moisture
estimation.

Groundwater dynamics may be modeled through 2-D Dupuit approximation or as a linear reservoir. In both
approaches an explicitly interaction between subsurface and surface is included. The latter method is
employed in the present work, focused on head dynamics in a watershed where groundwater contribution
to high flows is negligible.

The hydrographic network is represented in vector form, as inferred from ‘‘blue lines maps,’’ and channels
are treated as cylindrical. Rivers are fed by surface runoff and base flow from groundwater. Three options
are available for flow routing through the network, i.e., lag approach, Muskingum-Cunge method and cas-
cade of liner reservoirs. The assimilation scheme is developed for the latter method, that represents an opti-
mal compromise between complexity and representativeness of the physical process. Hence, the system of
governing equation here considered for flow routing is:

dQðtÞ
dt

5A qLðtÞ1UQðtÞ2QðtÞ½ �5F A;QðtÞ; qLðtÞð Þ (18)

where, with a network composed by n reaches, QðtÞ 2 Rn are the discharges exiting each reach at time t,
qLðtÞ 2 Rn are the lateral inflows (surface runoff plus groundwater flow) at the same instant, and A 2
Rn3n is a diagonal matrix with the inverse of the characteristic time of each river on the diagonal,
which are assumed to be constant in time. Lastly, U 2 Rn3n is a binary matrix accounting for the network
topology. Each row of U corresponds to a river reach, with 1 in the columns of its tributaries and 0 else-
where. The evolution of the state QðtÞ depends on its initial condition, parameters A and time-varying
input qLðtÞ.

3. The Assimilation Scheme

The assimilation system is based on a variational approach, since it demands less restrictive hypothesis than
Kalman and Monte Carlo filters and smoothers. The scheme aims at enhancing flood forecasting through
the assimilation of river flow observations at multiple locations. Hence, an adjoint model for MOBIDIC mod-
ule of flow routing is derived. The scheme will provide estimates of initial conditions and of parameters
involved in flow formation processes.

3.1. Adjoint Model of Flow Routing in the River Network
Following a classical variational approach [e.g., Castelli et al., 1999; Margulis and Entekhabi, 2003;
Caparrini et al., 2004a; Margulis and Entekhabi, 2004; Ding and Wang, 2005], the assimilation is
based on the minimization of a penalty functional J with respect to the quantities to estimate over
the assimilation window ½t0; t1�. J contains squared errors between predictions and observations
over the whole observation period and at the end of it (first and second term in equation (20)
respectively), and between current and prior values of the quantities to optimize (third and fourth
term in equation (20)). Here these quantities are streamflow at the beginning of the observation
period and temporal evolution of the lateral inflow within it. The minimization problem is physically
constrained by adjoining equation (18) to J through a vector of Lagrange multipliers kðtÞ 2 Rn (last
term in equation (20)).
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J5
1

t12t0

ðt1

t0

QðtÞ2QobsðtÞ
� 	T K Q

2
QðtÞ2QobsðtÞ
� 	� �

dt

1 Qðt1Þ2Qobsðt1Þ
� 	T K Q

2
Qðt1Þ2Qobsðt1Þ
� 	� �

1 Qðt0Þ2Q0ðt0Þð ÞT K Q0

2
Qðt0Þ2Q0ðt0Þð Þ

� �

1
1

t12t0

ðt1

t0

qLðtÞ2q0LðtÞ
� 	T K qL

2
qLðtÞ2q0LðtÞ
� 	� �

dt

1

ðt1

t0

kT ðtÞ dQðtÞ
dt

2F A;QðtÞ; qLðtÞð Þ
� �� �

dt

(19)

The meaning of the various symbols employed in equation (20) is as follows: QobsðtÞ and Qobsðt1Þ 2 Rn

are flow observations available at the generic time instant t and at the final instant of the assimilation win-
dow ½t0; t1�; QðtÞ; Qðt0Þ and Qðt1Þ 2 Rn are simulated streamflows at the generic, first and final instant of
the assimilation window ½t0; t1�, the sign �ð Þ0 indicates the prior value of the quantity to estimate (in our case
the initial condition for streamflow Qðt0Þ and the lateral inflow at any instant inside the assimilation window
qLðtÞ). Lastly, K Q; K Q0

; K qL
2 Rn3n are weighting factors for the various error terms of J. The general idea is

that the more uncertain a specific component is considered, the greater its weight is and the larger will be
the correction applied to its prior value [Margulis and Entekhabi, 2001]. Hence, from a stochastic point of
view, K Q; K Q0

and K qL
may be thought as related to the inverse of the covariance of their corresponding

error term [Bennett, 1992; Liu and Gupta, 2007]. In practice, their relative magnitudes control the rate of con-
vergence of the iterative procedure (described in the following) through which J will be minimized [Castelli
et al., 1999]. Following Castelli et al. [1999], K Q; K Q0

and K qL
are here treated simply as factors driving algo-

rithm efficiency, since no detailed information is available on the statistical structure of the error terms. The
penalty functional J is minimized if its first variation dJ vanishes. After some computations, that are reported
in Appendix A, it is found that this condition is met if the following equations are satisfied:

dkðtÞ
dt

5
K Q

T QðtÞ2QobsðtÞ
� 	

t12t0
2
@FT ðtÞ
@Q

kðtÞ (20)

kðt1Þ52K Q
T Qðt1Þ2Qobsðt1Þ
� 	

(21)

Qðt0Þ5Qðt0Þ01 K Q0
T

� 	21
kðt0Þ (22)

qLðtÞ5qL
0ðtÞ1 t12t0ð Þ K qL

T
� 	21 @FT ðtÞ

@qL
kðtÞ (23)

where kðt0Þ and kðt1Þ are the vectors of the Lagrange multipliers at the initial and final instant of the assimi-
lation window. Equation (20) is a system of ordinary differential equations and represents the adjoint model
of flow routing (equation (18)). It describes the time evolution of the Lagrange multipliers kðtÞ, that in the
variational assimilation framework are called adjoint state variables. Equation (21) gives the terminal condi-
tion for kðtÞ (i.e., its value at the final instant of the assimilation window) on the basis of the mismatch
between simulated and observed streamflow at instant t1. Starting from this known value of kðt1Þ, the
adjoint model (20) can be integrated backward in time, obtaining Lagrange multipliers kðtÞ at any instant of
the assimilation window. Equations (22) and (23) update the priors of, respectively, initial condition of rivers
flow Qðt0Þ and the temporal evolution of the lateral inflow qLðtÞ on the basis of the just computed temporal
evolution of kðtÞ. The estimate of Qðt0Þ and qLðtÞ is refined through an iterative procedure constituted by
subsequent integrations of forward and adjoint model and corresponding updates. However, qLðtÞ is a state
variable of MOBIDIC model, determined by runoff formation and routing processes, as well as by groundwa-
ter dynamics. Hence, if it is updated without physical constraints, mass conservation is likely to be violated.
Rigorously, MOBIDIC equations driving the formation of qLðtÞ should be included in the derivation of the
adjoint model. Nevertheless, it would be an unpractical solution, mainly because of the threshold processes
that characterize soil moisture dynamics. We identify a more effective strategy in combining the variational
approach with a parsimonious Monte Carlo technique. On the basis of the improved temporal evolution of
qLðtÞ, estimated through the adjoint model and equation (23), we infer key variables that determine runoff
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formation exploiting information contained in a pregenerated ensemble of qLðtÞ. As key variables control-
ling runoff, we selected initial condition of water content in capillary soil and the parameter f0, that repre-
sents rainfall intermittence (see section 2). Soil moisture determines the partitioning of rainfall between
infiltration and runoff, and f0 can be considered as a parameter that corrects for uncertainties in both inter-
polation of rainfall data and hydraulic conductivity spatial distribution. At the beginning of the assimilation
procedure, and only once, an ensemble of qLðtÞ covering the length of the assimilation window is generat-
ed by running MOBIDIC with a number of couples of spatially homogeneous ‘seed’ maps of initial capillary
water Wc0 and f0. In case sequential windows are employed, the temporal length of the ensemble spans
from the initial instant of the first window to the final instant of the last window. Both Wc0 and f0 are varied
such that the respective range of physical variability is fully embraced. Namely, Wc0 goes from 0 to 1 in
terms of saturation level, and f0 from 0 to 1. The ensemble size is maintained small mainly thanks to the fact
that the ‘seed’ maps are constrained to have only one degree of freedom in space, i.e., they are spatially
constant. Furthermore, the range of variability of each quantity is covered using a reasonable variation step.
For instance, in terms of capillary water, the aim is to distinguish between very dry, moderately dry, interme-
diate, moderately wet or very wet conditions. Accordingly, the saturation level is varied with a step of 15%.
The step for f0 is 0.05. Therefore, the size of the ensemble slightly exceeds 100 members. At each iteration
of the variational procedure, the update equation (23) gives a desired trajectory of qLðtÞ for any reach of the
network. With desired trajectory meaning the temporal evolution of qLðtÞ that minimizes the penalty
functional J. The ‘seed’ map leading to realization with the minimum distance from this desired trajectory of
qLðtÞ is selected for any single river independently from the others, and the corresponding initial capillary
water and f0 fields are obtained as composites from different ‘seed’ maps. Hence, a spatially distributed esti-
mate (aggregated at the level of river reach) which preserves mass balance is obtained for both quantities.
The whole estimation process rests upon the adjoint model of the module for flow routing in the river net-
work, which is a reach-based model (equation (18)). Thus, the spatial detail of the estimate is that of the riv-
er reach for any quantity (Qðt0Þ; qLðtÞ; Wc0, f0), although the variables natively defined at this scale are only
Qðt0Þ and qLðtÞ (see MOBIDIC description in section 2). The lateral inflow qLðtÞ works as link between the
reach-based scale of the variational approach and the grid-based variables to estimate (Wc0, f0). Namely,
although their value is potentially different in any squared cell employed to discretize the basin, they are
updated homogeneously over the cells contributing to a specif river reach, and the update is driven by the
estimated temporal evolution (the desired trajectory) of qLðtÞ in that reach. Figure 1 illustrates the function-
ing of this mixed variational-Monte Carlo system for a specific assimilation window. Lastly, when interpret-
ing the just-described approach, the fact that a vectorial description of the river network with a high spatial
detail will be employed should be taken into account (see section 4).

In summary, for a specific assimilation window, the enhanced estimate of initial river flow Qðt0Þ, initial capil-
lary water Wc0 and f0 is obtained through an iterative procedure that includes the following steps:

1. Generate an ensemble of qLðtÞ, that covers the extent of the assimilation window, by varying f0 and Wc0

over the basin.
2. Select suitable prior values for the quantities to estimate.
3. Run MOBIDIC in the assimilation window to obtain modeled streamflows QðtÞ.
4. Using streamflow observations QobsðtÞ inside the assimilation window, integrate backward in time the

terminal value problem (20), (21) to obtain the adjoint state variables kðtÞ in the assimilation window.
Namely, first evaluate the terminal condition for adjoint variables through equation (21), and then, start-
ing from the just obtained value of kðt1Þ, integrate backward in time the system of ordinary differential
equations (20) up to the first instant of the assimilation window t0.

5. On the basis of the just obtained values of kðtÞ, update the prior estimate of Qðt0Þ and qLðtÞ through
equations (22) and (23) respectively.

6. Select, for each river reach independently, the realization of the ensemble that minimizes the distance
from the just updated temporal evolution of qLðtÞ. Associate the corresponding Wc0 and f0 to the con-
tributing cells, such that spatially distributed maps (river reach spatial scale) of Wc0 and f0 are obtained.

7. Adopt updated Q0; Wc0 and f0.
8. Restart from step 3 until some convergence criterion is met.

The adjoint model is composed by a set of ordinary differential equations that are coupled on the basis of
network topology. This implies that the procedure is not limited to reaches for which observations are
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available, but corrections spread upstream. The advantage is that all the river network could potentially
benefit from the data assimilation, improving model performances even in ungauged reaches. However,
the coupling poses also potential issues, since the adjoint model may have to deal with discordant forcings
from downstream. For instance, observations may be greater than the modeled flow in a certain location
and lower in another, both trying to spread their opposite tendency to the same upstream part of the
network.

4. Hindcast Experiments

The performances of the assimilation system are assessed through several hindcast experiments in Arno riv-
er basin, central Italy. The variety of the considered events allows an overall evaluation of the actual
improvement that it can lead to flood forecasting operations. A flood forecasting chain benefits not only
from more accurate predictions during high flow events, but also from a reduced number of significant
overestimations of streamflow that may cause false alarms. Accordingly, a real-time oriented evaluation of
the assimilation system should verify its effectiveness in both situations, i.e., the selection of case-study
events should be based not only on river hydrographs but also on rainfall accumulation. This will bring in
the analysis also those cases where intense rainfall did not produce significant flood waves. Details about
the area of study and the hindcast experiments are given in sections 4.1 and 4.2 respectively.

4.1. Area of Study and Data
Arno river basin extends over about 8300 km2 and is bounded by the Appennine mountain range from
north to east. Average and maximum elevation are about 350 and 1600 m a.s.l. respectively. Arno is the
main river of Tuscany region, and its mainstream is about 240 km length. Flood forecasting is a relevant
concern in Arno basin, since Arno passes through major Tuscan cities, as Florence and Pisa. Climatic condi-
tions are semiarid with large seasonality and a mean annual precipitation of nearly 800 mm. The population
living in the basin is about 22,00,000, corresponding to the high average density of 265 people/km2. How-
ever, the population is mainly concentrated in cities, whose spatial extent covers a small portion of the
basin. The urban area to consider impervious from a hydrologic modeling point of view corresponds to
about 5%, while the main land cover types are cropland, olive-yards, vineyards and forest. Three reservoirs
are present in the basin. Two are dedicated to energy production, with no floods control at the current
stage. The third one is for water supply. It is placed in the initial part of a tributary which flows into Arno

Figure 1. Scheme of the mixed variational-Monte Carlo assimilation system.

Water Resources Research 10.1002/2016WR019208

ERCOLANI AND CASTELLI ASSIMILATION OF STREAMFLOW DATA 166



river upstream the city of Flor-
ence. It drains an area equal to
about 4% of the total contribut-
ing to the mainstream in corre-
spondence of the confluence,
and to less than 2% of the total
watershed.

Figure 2 shows Digital Elevation
Model, river network and the
location of flow measurement
stations employed in this work.
They are all located along Arno
river, with S. Giovanni alla Vena
station being the closest to
basin outlet. On the basis of
rainfall and discharge data from
some selected events among
those examined in this study,
watershed response time at S.
Giovanni alla Vena is estimated

to be in the range 17225 h, mainly around 20 h. As frequently done, the centroid-lag-to-peak, i.e., the time
between the centroid of the hyetograph and the flow peak, is employed for the estimates [Dingman, 2008].
To complete the presentation of the 5 gauge stations, the centroid-lag-to-peak of each one is shown in Fig-
ure 10 for one of the examined events. All the stations provide streamflow data every 15 min. Furthermore,
in the area of interest, 102 thermometers, 70 hygrometers, 165 pluviometers, 50 anemometers and 31
radiometers are available for the study, with data at the temporal resolution of 15 min. They are all located
inside the basin, or in proximity of it, distributed almost homogeneously over the area. To force the model,
data from all the available measurement sites are interpolated through Inverse Distance Weighting, obtain-
ing maps of micrometeorological quantities at the appropriate spatial resolution (i.e., the spatial resolution
employed to run the model, that is specified in the next section). Different power parameters are used to
interpolate the various quantities, and a correction for elevation is applied exclusively in case of air tempera-
ture. Rainfall is the main micrometeorological forcing relevant to this study, since we are conducting an
event-based evaluation. Precipitation data are interpolated with the power parameter equal to 6, meaning
that the weight of the closest pluviometer is rapidly predominant over the others. The 3 reservoirs present
in the basin are not included in the simulations, since in the current management setup they are not
assigned to relevant flood regulation operations. As described in the first paragraph of the present section,
the two hydroelectric reservoirs are not effective for floods control, while the third one may impact only
slightly on flood waves also at the closest measurement station (Nave di Rosano). The area drained by the
reservoir is small (about 4%) in respect to that contributing to the flow at this location.

As presented in section 2, the main parameters driving soil hydrologic behavior in MOBIDIC are the hydrau-
lic conductivity, Ks, and the maximum storage capacity of soil gravitational(capillary) compartment, Wg;max

(Wc;max). Following the current operational setup of MOBIDIC at the hydrologic service of Tuscany region,
the values here adopted for these parameters are those officially provided by Tuscany region through a
map including hydrologic characterization of soil for the whole regional territory. For details about the
methods and the database employed to derive such map, we refer to the associated technical documenta-
tion [Gardin, 2014], while here we briefly summarize only the rationale. Both hydraulic conductivity and soil
water content at various potentials (from which Wg;max and Wc;max can be computed directly) have been
estimated through pedo-transfer functions applied to a large database of soil horizons (about 13,800, corre-
sponding to 3800 vertical profiles). The employed pedo-transfer functions have been selected from those
available in the literature on the basis of admissibility tests and validation against measured values. Differ-
ent pedo-transfer functions have been selected for different soil texture classes. The hydraulic conductivity
has been corrected to the take into account the presence of rock fragments, and its minimum value in the
first 30 cm of soil has been assumed to be representative of infiltration processes. The thickness of the soil

Figure 2. Digital Elevation Model (DEM) and river network of Arno basin used in the simu-
lations. Black circles indicate the available flow measurement stations. DEM is plotted at
the resolution employed in the simulations, i.e., 500 m.
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contributing to Wg;max and Wc;max has been assumed to be the minimum between 1.5 m and the depth at
which the first rock layer is encountered. Results are spatialized using pedologic criteria based on soil typo-
logical units and soil-landscape relationships.

4.2. Experiments Setup
In order to evaluate the gain in flood forecasting that can be obtained through the assimilation system, 16
hindcast experiments are performed. They include both high flow and false alarm events (high rainfall but
low flow) that occurred in the period 200922014. Table 1 lists, for all the examined events, observed values
of flow peak at the available measurement stations (Qmax) and mean total precipitation over the basin (P).
The events are named in descending order of observed peak flow at S. Giovanni alla Vena station, i.e., E01

has the maximum peak flow and E16 the minimum one. Furthermore, in Figure 3, the peak flow at S. Gio-
vanni alla Vena station is plotted in function of the mean total precipitation in the drainage basin for each
examined event. The almost complete absence of correlation between P and Qmax shows that a proper
hydrologic modeling is fundamental for a correct flood forecasting.

Simulations are run with spatial and temporal resolutions that are employed operationally at the hydrologic
service of Tuscany region, i.e., 500 m and 15 min. Comparing the size of the square grid (0.25 km2) with the
extension of the basin (about 8300 km2), it can be asserted that we are running high resolution simulations.
Also the vectorial description of the river network is spatially detailed, with an average extent of the contrib-
uting area for each river reach equal to 7.1 km2. The values adopted for MOBIDIC conceptual parameters
(a58.5e-06 s– 1, b57.62e-06 s– 1, k51.4e-05 s– 1, c51.68e-08 s– 1) have been identified through a trial-and-
error new calibration over 5 relevant events in the period 2010–2014, obtaining average (over events) Nash-
Sutcliffe efficiencies of 0.51, 0.67, 0.66, 0.78 and 0.73 at Subbiano, Montevarchi, Nave di Rosano, Fucecchio
and S. Giovanni alla Vena stations. None of these calibration events is included in the evaluation of the
assimilation system. The calibration on the 2010–2014 events updates a set of first guess values previously
used to run the model over the same watershed [Campo et al., 2006; Castelli et al., 2009].

Data from the five measurement stations are employed simultaneously in the assimilation. The procedure
(with mixed variational-Monte Carlo approach) described in section 3 is applied sequentially on not

Table 1. Mean Total Precipitation Over the Basin, P (mm), Observed Peak Flow, Qmax (m3s– 1), Percentage Error on the Peak Flow, PE (%), Timing Error of the Flow Peak, Etime (hours),
Logarithmic Nash-Sutcliffe Efficiency, g, and Root Mean Square Error, RMSE (m3s– 1), in Open Loop Simulations at the Available Measurement Stations for High Flow (From E01 to E10)
and False Alarm (From E11 to E16) Events (n.a. Means That Observations are Not Available)

E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 E12 E13 E14 E15 E16

P - MEAN 65 42 47 68 87 70 45 58 68 90 41 74 36 44 37 49
Qmax- SUBB 512 576 591 448 198 347 577 436 448 490 147 55 82 116 1 8
Qmax- MONT 840 544 902 684 506 389 1069 852 1080 471 251 88 75 140 2 61
Qmax- NAVE 1162 910 1657 851 739 568 1281 959 1097 622 430 202 220 278 31 83
Qmax- FUCC 1979 n.a. 1983 1491 1443 n.a. 1409 n.a. 1088 980 676 361 346 247 118 104
Qmax- SGIOV 1932 1929 1924 1820 1730 1534 1507 1497 1077 990 715 398 369 215 125 109
PE - SUBB 238.0 240.0 229.5 273.8 21.1 253.8 211.9 20.7 227.1 273.6 54.9 210.5 47.7 207.2 >999 >999
PE - MONT 248.4 216.8 224.9 255.4 237.0 238.0 229.2 20.3 225.3 258.6 43.0 164.1 194.7 209.8 >999 362.2
PE - NAVE 239.6 210.8 223.7 240.2 234.0 233.4 218.0 35.5 219.9 244.4 50.1 99.4 65.7 115.8 >999 539.3
PE - FUCC 225.7 n.a. 25.2 241.6 240.6 n.a. 23.3 n.a. 214.2 246.9 42.4 125.7 68.7 206.0 558.0 682.9
PE - SGIOV 215.5 225.9 24.0 244.7 241.8 235.1 23.5 8.4 28.7 240.5 43.3 151.9 75.1 269.2 641.4 814.8
Etime- SUBB 0.00 0.00 20.50 20.25 0.25 2.75 20.50 20.50 0.00 20.75 20.75 22.75 22.25 0.00 234.75 25.50
Etime- MONT 21.00 0.00 20.75 20.50 21.75 1.50 0.00 20.25 0.25 21.00 23.00 21.50 29.50 3.75 3.75 0.00
Etime- NAVE 21.50 21.50 21.25 22.00 0.50 20.50 22.50 23.50 21.25 22.50 24.50 22.25 2.75 3.25 23.75 24.50
Etime- FUCC 21.25 n.a. 20.25 25.50 20.75 n.a. 21.25 n.a. 1.00 1.00 22.25 22.00 0.25 3.25 1.50 4.00
Etime- SGIOV 2.50 22.00 20.50 28.50 22.50 23.75 21.75 20.50 1.50 0.75 1.75 21.00 1.50 4.25 21.75 3.50
g - SUBB 1.59 1.16 2.26 0.19 1.48 0.76 2.63 1.33 1.92 0.15 20.22 23.12 20.03 22.79 211.21 26.57
g - MONT 0.50 1.54 2.42 0.40 0.49 0.15 2.15 0.76 1.85 0.22 20.39 22.78 22.07 23.35 213.39 23.51
g - NAVE 0.49 1.88 1.72 0.39 20.44 20.25 2.46 0.17 1.97 0.09 0.27 22.48 20.45 22.19 26.45 24.43
g - FUCC 1.02 n.a. 1.58 0.58 20.79 n.a. 2.84 n.a. 2.26 0.23 0.72 23.62 21.16 22.80 24.71 24.91
g - SGIOV 1.33 0.94 1.89 0.66 20.26 0.86 2.45 0.34 1.84 0.37 0.56 23.87 21.45 23.35 25.07 25.52
RMSE-SUBB 52 79 47 94 20 50 43 54 41 87 35 51 19 83 21 39
RMSE-MONT 147 54 60 144 80 95 102 131 117 90 69 107 63 131 74 93
RMSE-NAVE 239 72 175 183 168 160 101 202 113 153 89 129 74 165 173 189
RMSE-FUCC 331 n.a. 236 325 363 n.a. 98 n.a. 105 255 130 310 143 271 350 337
RMSE-SGIOV 293 274 204 396 349 280 121 315 118 221 148 425 179 307 465 440
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overlapping windows of 6 h. Repeating in
sequence the assimilation every 6 h is
judged a valuable strategy to use the
developed system for operational flood
forecasting, as it allows predictions to be
corrected since the early stage of the
event. Employing a longer assimilation
window would spread the correction due
to any local mismatch between observa-
tions and predictions farther upstream,
affecting a broader portion of the water-
shed. The upstream diffusion of the
update is due to the coupling between
the differential equations composing the
adjoint model of the river network rout-
ing module (see section 3.1). In presence
of various points of assimilation, a win-
dow much longer than the travel time
between them leads to force adjoint

equations of upstream reaches on the basis of multiple downstream observations. In some cases, an exces-
sive superposition of forcings may weaken the impact of the assimilation, e.g., if model-data mismatches
are discordant at the various locations. A window of 6 h, combined with the spatial distribution of the 5
assimilation locations here employed, updates the majority of the basin without causing an undue combi-
nation of forcings. The blocks of 6 h are predetermined over the hours of a day, i.e., the first block in 1 day
is always 026, the second one 6212, the third one 12218 and the last one 18224. The reason is again to
facilitate the operational usage of the system. For each event, the first assimilation window is the block of
the day containing, or the time at which rainfall starts, or the instant at which streamflow begins to rise. The
condition to apply is decided in function of the specific event. Analysis of initial discharge in the river net-
work and capillary water in soil, as well as the optimal estimate of the parameter f0, are obtained for each
assimilation window, and then used to run the corresponding prediction simulation. Usually, the mismatch
between simulated and observed discharge at a certain instant is directly converted into an update for soil
moisture. In this case, the update should be applied with a lag time that is appropriate for the location at
which it is assigned (i.e., to effectively reduce the streamflow mismatch at the instant it is detected, flow
travel time between the point of the watershed where soil moisture is corrected and the point where
streamflow is observed must be considered). In the assimilation system we present, as comprehensively
described in section 3.1, initial soil water content is not directly updated through the variational approach,
i.e., it does not compute the increment for Wc. The variational part provides the time evolution of the lateral
inflow that should enter each river reach during the observation period to reduce streamflow mismatch
between model and measures. This time evolution is used as a finger print to ‘pick up’ a model realization
from a pregenerated ensemble that covers all the possible range of evolution determined by treating Wc

(and f0) as unknown. Thus, time lag is implicitly taken into account through this step. As the assimilation
window advances in time (i.e., more time passes since rainfall started), an increasing portion of the water-
shed can be updated correctly. The lead time associated with each prediction run is computed as the differ-
ence between the time of observed peak flow and the final instant of the corresponding assimilation
window. Accordingly, a negative lead time indicates that the assimilation window includes the observed
peak. The weighting matrices of the penalty functional to minimize (equation (20)) are taken diagonal, i.e.,
errors are assumed to be statistically independent following Seo et al. [2003, 2009] and Lee et al. [2011,
2012]. For each event, the quantitative evaluations that are described and discussed in the next section are
conducted over the hydrograph comprised between the first instant of the first assimilation window and
the instant of the falling limb at which streamflow comes back to the order of magnitude of the beginning.

In addition to the just described experiments, other 16 assimilation tests are performed. They are identical
under every aspect to the first 16, except that streamflow observations are not assimilated at S. Giovanni
alla Vena station. The goal of these second group of experiments is to give a very first insight into the capa-
bilities of the assimilation system at ungauged locations. A more elaborate investigation would be needed

Figure 3. Maximum observed streamflow, Qmax (m3s– 1), at S. Giovanni alla
Vena station in function of the mean total precipitation in the drainage basin,
P (mm).

Water Resources Research 10.1002/2016WR019208

ERCOLANI AND CASTELLI ASSIMILATION OF STREAMFLOW DATA 169



for a comprehensive assessment of system performances at ungauged points, but this goes beyond the
aim of the present work. S. Giovanni alla Vena station has been selected as test site because, from an opera-
tional perspective, the main interest is in improving predictions at downstream locations through upstream
assimilation.

5. Results

Flow predictions accuracy is evaluated in terms of error on flow peak and Nash-Sutcliffe efficiency, here
employed in a logarithmic form (g) that is part of a likelihood function examined in Cheng et al. [2014]:

g52ln 12NSEð Þ (24)

with Nash-Sutcliffe efficiency (NSE) computed as:
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where Qobs
i and Qmod

i are observed and modeled flow values, N is their total number, and the overbar means
averaging. To readily interpret values of g, consider that it preserves the sign of NSE and its range is
ð21;11Þ, namely it tends to plus infinity in case of perfect match between model and observations
(NSE51). Moreover, a value of NSE equal to 0.9 corresponds to g52:3. The main reason to use the logarith-
mic NSE is that in our set comprising events of different nature (with both high and extremely low flows)
and highly variable model performances (as it will be discussed in the following), NSE spans a broad range.
In fact, in false alarms it is likely to obtain a NSE significantly lower than zero (it is the result of low and flat
observed flows combined with rather high predicted values). The adoption of a logarithmic scale allows to
better deal with largely negative and high values (close to 1) of NSE at the same time. Namely, we exploit
the fact that g stretches the NSE range ð21;11Þ over ð21;11Þ. In addition to logarithmic NSE, also the
Root Mean Square Error (RMSE) is employed to measure global performances of each run:
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where notation is maintained coherent with that employed in the definition of NSE.

Values of the percentage error (PE) on peak flow, the corresponding timing error, g and RMSE are reported
in Table 1 for Open Loop (OL) runs, i.e., without data assimilation. OL simulations are started about 15 days
before the examined events and run continuously till after the end of each event. For false alarm events
(from E11 to E16), note that, in addition to negative g, also high percentage errors are present because of the
extremely low values of observed streamflow (e.g., percentage errors greater than 999% at Subbiano, Mon-
tevarchi and Nave di Rosano for event E15 correspond to 1, 2 and 31 m3s– 1 of observed peak). These events
are characterized by hydrographs with flows of few m3s– 1 or lower, in some cases almost flat, although a
rather relevant precipitation occurred. A comparable rainfall with comparable rainfall accumulation in the
antecedent two weeks may generate a noticeable runoff in other occasions, and reproducing such wide var-
iability of responses is challenging for mathematical models when parameters are fixed. Namely, models
structures (equations used to describe complex interconnected phenomena) are usually too rigid in respect
to reality. Table 1 shows that, besides the variability in the kind of events (i.e., both high flow and false
alarms events), we are considering also a wide range of model performances. Open loop simulations pro-
vide both poor (e.g., E10, E12) and good (e.g., E07, E09) agreement with observations, as well as intermediate
situations (e.g., E02, E04).

Figure 4 provides an overall evaluation of the assimilation system performances. It reports the difference
between the logarithmic Nash-Sutcliffe efficiency in data assimilation simulations, g, and its corresponding
value in open loop runs, gOL, in function of lead time (panels a-e). The increments are plotted in separate
panels for each measurement station, and a different symbol is used for any examined event. In particular,
black symbols are for events whose observed peak flow at S. Giovanni alla Vena station is greater than
1600 m3s– 1, gray symbols are for the range 50021600 m3s– 1, and white symbols are for peak flows lower
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than 500 m3s– 1. In the plots, a positive value indicates an enhancement of predictions in respect to open
loop. Remember that a unique lead time is associated to each run in its entirety, defining it as the difference
between the time of locally observed peak flow and the final instant of the corresponding assimilation win-
dow. The general behavior at all the locations is, as desired, an increase of g as lead time reduces, and an
improvement in respect to open loop. The enhancement occurs for both high flow and false alarm events.
Although the level of the gain is variable among the various events and locations, in numerous cases g
increases of 0.5 or more in respect to open loop with a lead time of about 10 h, that is comparable with the
response time of the basin at the various stations (see Figure 10 for an estimate of response times in one
specific event). Hence, results show that the assimilation system can significantly improve the prediction of
flow time evolution. Results reveal also some differences between the examined locations. First, at down-
stream stations (Fucecchio and S. Giovanni alla Vena) the increment of g is generally greater. Such behavior
is probably due to the fact that downstream sites benefit not only from the local assimilation, but also from
that at multiple upstream points. Second, the spread of the increment obtained at a fixed lead time
between the various events is small at Subbiano, while it is remarkable at all the other locations. This indi-
cates that, as the complexity of the upstream river network and the amount of the employed information
increase, the assimilation system becomes more flexible, being more dependent on the characteristics of
the specific event. At the same time, the fact that flexibility enlarges while moving downstream makes the
system more prone to produce greater improvements at Fucecchio and S. Giovanni alla Vena stations.
Exceptions to the diffuse positive impact of the data assimilation scheme on model results are high flow
events E07 and E03 (marked with gray squares and black stars respectively), and, to a lesser extent, the false
alarm E14 (marked with white diamond symbols). In both E07 and E03 the open loop run already generates
accurate predictions at all the stations, with an average g of 2.51 and 1.97 respectively (see Table 1). The
assimilation system cannot further enhance these already good performances, and causes a worsening of
the overall accuracy of predictions, especially in the first assimilation windows. This suggests that, in pres-
ence of a good match between simulation and observations, an additional forcing of modeled flows toward
observed flows could be deleterious. Further insight into this aspect will be given in the following, when

Figure 4. (a–e) Difference between logarithmic Nash-Sutcliffe Efficiency in data assimilation simulations (g) and the corresponding open loop value (gOL) in function of lead time for all
the analyzed events at the available measurement stations. (f) Difference between logarithmic Nash-Sutcliffe Efficiency in simulations that do not assimilate streamflow data at S. Gio-
vanni alla Vena (gwsg) and the corresponding value in simulations that do assimilate at S. Giovanni alla Vena.
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the hydrographs of event E07 will be analyzed. However, continuing with the assimilation, g re-start to
increase, with the tendency of recovering the accuracy of the open loop as lead time reduces. In E03, g of
the last assimilation run nearly equals, or surpasses, that of the open loop at the various locations. The evo-
lution of g in function of lead time suggests an analogous behavior for E07, although the assimilation
sequence is stopped before that performances of open loop could be recovered. This fact, i.e., that the
assimilation scheme can remedy its possible malfunction, indicates its robustness. Anyway, note that the
values of g remain quite high for both events at all the locations despite the worsening. Hence, in its worst
performances, the assimilation system does not cause a dramatic drop of predictions accuracy. Regarding
false alarm E14, the explanation for the initial worsening of results is different. Open loop run dramatically
overestimates stream flow at all the locations, as shown by the relative errors on the peak reported in Table
1. However, during the period corresponding to the first two assimilation windows, simulated and observed
streamflows are almost in accordance, being both of the order of few m3s– 1 at all the stations. Hence, the
assimilation scheme receives an ambiguous information, coming from a weak signal, and cannot update
properly model states and parameters on its basis. As soon as observed and simulated streamflows start to
diverge (since the third window), the system acts correctly and predictions accuracy improves, with an
increment of g of 0.5 or more at all the locations.

The previous considerations conform also to Figures 5a–5e, which shows the RMSE of each prediction run
normalized with the RMSE of the open loop simulation and plotted in function of the corresponding lead
time. Values lower than 1 indicate improved predictions in respect to open loop. Overall and specific (in
terms of both event and location) behaviors noticed in Figure 4 are present also in these plots, verifying
that the use of g to assess runs performances is reasonable. Here, a lead time of about 10 h corresponds fre-
quently to a reduction of the RMSE of nearly one half (except that at Subbiano, where the diminution for
the same lead time is mainly around 15%). In several cases, at Fucecchio, S. Giovanni alla Vena and Nave di
Rosano, the reduction reaches 70%.

Since accurately forecasting flow peak is one of the most important skills for flood early warning, a specific
evaluation of the gain that the assimilation scheme can provide on it is performed. Figure 6 reports, for

Figure 5. (a-e) Root Mean Square Error in data assimilation simulations (RMSE) and the corresponding open loop value (RMSEOL) in function of lead time for all the analyzed events at
the available measurement stations. (f) RMSE in simulations that do not assimilate streamflow data at S. Giovanni alla Vena (RMSEwsg) normalized with respect to the corresponding value
in simulations that do assimilate at S. Giovanni alla Vena.
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each measurement station, the error on peak flow normalized with the corresponding value in open loop
simulation (absolute value) in function of lead time (panels a-e). In general, the error is smaller than that of
the open loop, and decreases as lead time reduces. Relevant improvements are reached at each station,
with a gain of more than 50% in respect to open loop for numerous experiments with a lead time of around
10 h. In particular, peak flow forecasts at S.Giovanni alla Vena and Fucecchio significantly enhance when
flow peak in the upstream locations is included in the assimilation window (i.e., for negative lead times at
Subbiano, Montevarchi and Nave di Rosano). However, specific performances are highly event-dependent
and data assimilation can also worsen peak forecasting. For instance, this is the case of flood events E09, E07

and E03 (marked with gray stars, gray squares and black stars in Figure 6). Data assimilation initially increases
flow peak error in respect to open loop at any station. As the assimilation window advances in time,
improvements are obtained upstream, while downstream they are not achieved. The reason for this behav-
ior is twofold. First, these events are all characterized by an open loop with a low percentage error in peak
flow at the various measurement stations, and especially at those located downstream (see Table 1). The
values for S. Giovanni alla Vena are 28.7%, 23.5% and 24.0% respectively. Therefore, in presence of
already accurate predictions, it is arduous to provide additional enhancement. Moreover, a slight worsening
corresponds to significant values in the plot because of the normalization by a small open loop error. Sec-
ond, observations at the various locations are not always fully coherent between them, since measurement
errors are also present, especially in presence of high flows. Hence, upstream corrections may be discordant
with downstream data, and cause a slight deterioration of already accurate predictions.

Figure 7a offers an aggregated view of the just-discussed results. It shows boxplots of normalized peak error
from all the stations and hindcast experiments, subdividing results into 5 ranges of lead time, namely lead
time grater than 24 h, between 24 and 12, 12 and 6, 6 and 0 and lower than 0. The third class is that con-
taining lead times comparable with basin response time at all the examined locations (see Figure 10 for
response times). The median of the normalized error is smaller than 1 for all the 5 classes, meaning that
open loop predictions are likely to be enhanced by data assimilation even with a relevant advance. Howev-
er, the impact of the assimilation system is characterized by a quite large variability until lead time is greater

Figure 6. (a-e) Flow peak error in data assimilation simulations normalized with respect to the corresponding open loop error (absolute value) in function of lead time for all the analyzed
events at the available measurement stations. (f) Flow peak error in simulations that do not assimilate streamflow data at S. Giovanni alla Vena (Eqmax,wsg) normalized with respect to the
corresponding value in simulations that do assimilate at S. Giovanni alla Vena.
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than 12 h, with a 25th percentile of nearly 1 in both first and second class. As lead time decreases, the medi-
an of normalized peak error approaches zero and the variability in performances reduces. Hence, the effec-
tiveness of the assimilation system enhances and becomes increasingly event-independent with shorter
forecast horizons.

To give further insight into the gain obtainable with the assimilation system, hydrographs for 4 of the 16
examined events are shown in Figures 8–11. They correspond, respectively, to the false alarm event E11 and
to high flow events E09, E10 and E07. Observations are gray dots, with those used in the assimilation marked
with diamond symbols. Open loop simulation is the solid line, predictions from assimilation of flow data
during the first, second, third, and fourth and assimilation window are the dotted, dashed, dash-dot and

Figure 7. (a) Boxplots of normalized flow peak error for all the measurement stations and analyzed events. Normalization is with respect
to the corresponding value in open loop simulations. The gray band highlights the range ð21; 11Þ, i.e., where error from data assimilation
runs is reduced in respect to open loop. (b) Reduction of RMSE in respect to OL at S. Giovanni alla Vena station with a lead time of about
10 h as a function of the average soil saturation at the beginning of the assimilation.

Figure 8. Hydrographs at the measurement stations for the false alarm event E11. Flow observations are gray dots, with those used in the assimilation marked with diamond symbols.
Open loop simulation is the solid line, predictions from the assimilation of flow data during the first, second, third, and fourth assimilation window are the dotted, dashed, dash-dot and
solid thick line respectively. Mean precipitation intensity in the drainage basin is reported in the second axis of the plot.
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solid thick line respectively. The 4 experiments show different impacts of the assimilation system on predic-
tions. In event E11, the overestimation of the open loop is progressively corrected by data assimilation at all
the locations as the assimilation window advances in time (Figure 8). Accurate predictions are obtained in
the third assimilation step, and those from the fourth match observations almost perfectly. The third and
fourth window include, respectively, the central part of the raising limb and peaks of the upstream stations.
Note that the match is almost perfect also in the downstream stations where the fourth assimilation

Figure 9. As in Figure 8 but for the high flow event E09.

Figure 10. As in Figure 8 but for the high flow event E10. Basin response time (hours) is indicated for each measurement station.
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window does not include the local peak. This behavior is coherent with what already noticed from Figure 6.
Namely, the most relevant gain at downstream locations (S.Giovanni alla Vena and Fucecchio) is obtained if
upstream peaks, or at least the central part of the rising limb, are included in the assimilation window. Event
E09 shows an almost opposite impact (Figure 9). Data assimilation initially degrades the accuracy of predic-
tions, especially in terms of peak flow, and mainly at Fucecchio and S.Giovanni alla Vena stations. At this
locations, the variational scheme detects an overestimation of the flow during the first two assimilation win-
dows and hence attempts to lower it. The initial overestimation does not correspond to a comparable over-
estimation of the flood, and corrections imposed by the assimilation eventually worsen the forecasts of the
peak. Enhancements are obtained in the third step, whose window corresponds to the central part and the
beginning of the rising limb for upstream and downstream locations respectively. Predictions are valuable
at all the stations, and excellent at Fucecchio and S.Giovanni alla Vena. The last assimilation includes
upstream peaks in the window, and leads to almost perfect predictions at Fucecchio, while performances at
S. Giovanni alla Vena slightly deteriorate. The flow is overestimated, with a percentage peak error of about
8.4%, that is nearly equivalent to that of the open loop, although this is of underestimation. The reason
could be partially related to errors in flow observations, since data do not show a noticeable increase in
flow volume between Fucecchio and S. Giovanni alla Vena. The behavior for event E10 (Figure 10) is interme-
diate. Predictions from data assimilation runs are always better than open loop at all the measurement sta-
tions. However, the enhancement is not progressive as in E11. For instance, the second assimilation slightly
worsen the forecasts corresponding to the first one. The subsequent assimilation recovers the gap and pre-
dictions from the last window are definitely a significant enhancement of the open loop. Differently, in
event E07 (Figure 11) data assimilation generates a diffuse worsening of forecasting. The open loop antici-
pates runoff formation in respect to observations, but reproduces quite correctly the peaks at all the mea-
surement stations. The reason is likely that the model does not consider the snowy nature of precipitation,
and hence does not reproduce the associated delay in runoff. The assimilation scheme attempts to lower
the flow in the early rising limb of the hydrographs, causing a reduction in the total flow volume and in
peak flow. The result is that it worsens predictions. A partial remedy can be achieved by proceeding with
assimilation (e.g., predictions from the fifth assimilation window). This experiment exemplifies the fact that
data assimilation cannot overcome model shortcomings or structural errors, and that an exacerbate
forcing of model output toward observations can impact negatively on predictions of a complex dynamical
system.

Figure 11. As in Figure 8 but for the high flow event E07.
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Lastly, we show the impact that the assimilation system has on the process of runoff formation. Figure 12
reports maps of hillslope runoff (m3s– 1km– 2) and of cumulative rainfall height (mm) at the final instant of
the fourth assimilation window of the high flow event E09. In particular, map (a) is the background runoff,
i.e., from the open loop run, map (b) is the analysis from the fourth assimilation step and map (c) is the dif-
ference between this latter and the background, i.e., the analysis increment. Map (d) is the total rainfall
height at the same instant. Note the spatially distributed nature of the correction obtained with the assimi-
lation system, which is mainly concentrated in the area with the highest rainfall height, where uncertainty
could be larger. The increment is correctly principally positive, since the open loop simulation suffers under-
estimation (see Figure 9). However, positive and negative increments are present in adjacent cells in some
areas. This happens in cells that, although adjacent, are characterized by significantly different soil proper-
ties, and generate considerably dissimilar amounts of hillslope runoff in the open loop run. The assimilation
system updates the initial capillary water content in terms of saturation levels at the reach-scale (i.e., select-
ing the same realization for all the cells contributing to a specific river reach, as explained in more details in
section 3.1), smoothing out local differences of saturation. This, in turn, reduces partially the variability of
Dunne runoff. In the event shown in Figure 12, referring to the portion of basin upstream to Subbiano sta-
tion, the spatial variability of the generated hillslope runoff reduces in average of 37% between open loop
and analysis. This reduction is estimated by computing the spatial coefficient of variation in each subbasin
of the area for both open loop and analysis cumulative hillslope runoff.

The previous analysis shows that the proposed assimilation system has the potential to improve streamflow
forecasting on a variety of events, although with different margins. However, some limitations must be
underlined. The system acts mainly on runoff formation processes, by updating soil moisture (main impact
on Dunne runoff) and f0 (main impact on Horton runoff). Under extreme conditions of soil saturation
(completely dry or fully saturated), this strategy cannot guarantee the spanning of all the state space. In
case soil is saturated, no update of f0 and Wc can increase hillslope runoff. Thus, a possible streamflow
underestimation cannot be recovered. Symmetrically, in presence of dry soil and almost null rainfall inter-
mittence, it would not be possible to correct model overestimation of streamflow with only f0 and Wc as
degrees of freedom in the generation of the ensemble. Although such extreme combinations of soil initial

Figure 12. Hillslope runoff (m3s– 1km– 2) of the high flow event E09 at the final instant of the fourth assimilation window. (a) Is the back-
ground map (open loop simulation), (b) is the analysis map (data assimilation simulation), and (c) is the analysis increment (analysis minus
background). Black circles indicate the position of the gauge stations. (d) Is the cumulative rainfall height (mm) at the same instant.
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condition and required correction are not encountered in the examined events, Figure 7b supports the pre-
vious rationale, and extends it to more general conditions. The improvement obtained at S. Giovanni alla
Vena station, in terms of RMSE reduction and with a lead time of about 10 h, is plotted as a function of the
average soil moisture in the contributing area at the beginning of the assimilation procedure. An overall
tendency of performances worsening as initial soil saturation grows is detectable. Furthermore, a distinct
behavior is present at rather high and low saturation degrees. In the latter case, model overestimation of
streamflow cannot be properly corrected, and false alarms events E16 and E14 maintain a quite relevant
RMSE also after the assimilation. With high initial saturation, the worst performances correspond to events
that would require an increase of runoff formation (E02, E03, E07). Instead, relevant improvements are
obtained when model suffers overestimation and the initial level of saturation is high (E08, E12).

5.1. Performances at Ungauged Locations
As described in the last paragraph of section 4, a second group of 16 experiments is performed to evaluate
system performances at ungauged locations. These simulations are identical to the first 16, except that
observations are not assimilated at S. Giovanni alla Vena. The obtained results are summarized in Figures 4f,
5f, 6f, and 13 in terms of the 3 statistics employed in this work (g, RMSE, Eqmax). In particular, Figure 13
shows performances obtained at S. Giovanni alla Vena in case data are not assimilated there in comparison
to the full-assimilation results. Panel (a) plots the difference between g in assimilation runs and in open
loop, panel (b) the ratio between RMSE in assimilation runs and open loop, and panel (c) the absolute
value of the ratio between error on peak flow in assimilation runs and open loop. The symbols are the
same employed in Figures 4–6. Overall, no overturning of capabilities is present, especially in terms of
whole hydrograph predictions (g and RMSE). In fact, symbols are grouped around the 1 : 1 line in all the
plots. The larger deviation for higher values of g2gOL is related to the logarithmic character of this measure.
Most importantly, it never happens that open loop predictions deteriorate because of not assimilating local-
ly (i.e., no symbols are present in the lower-right quarter of g scatter, or in the upper-left quarter of RMSE
and Eqmax scatters). Improving or worsening of open loop predictions is maintained from the full-
assimilation. Only the level of improvement/degradation changes. In the majority of cases, when data are
not assimilated locally, assimilation effectiveness slightly diminishes in respect to the full-assimilation (i.e.,
most of symbols are below/above the 1 : 1 line in g/RMSE or Eqmax scatters). Larger reductions usually corre-
sponds to those events that improve the most in respect to open loop. Thus, the improvements due to the
assimilation system remain valuable also when data are not assimilated locally. In some cases, the perform-
ances of the system are even better than in the full-assimilation. This happens clearly for events E02, E06, E07,
E10, and also for E04 and E09 in terms of only Eqmax. It shows that more information does not corresponds
necessarily to a better functioning of the assimilation. When the mismatch between model predictions and
observations is due mainly to model structural or parametric errors (and not to an incorrect evaluation of
initial conditions), a lower level of constraining can be beneficial. On the basis of the detailed discussion
about specific events of the previous section, this is the case for E07 and E09. Another situation in which the
assimilation system can benefit from reducing the number of assimilation sites, is when the excluded obser-
vations are not coherent with those from the other locations (i.e., when the local measurement error is
unduly and unexpectedly large).

Figure 13. Assimilation system performances obtained at S. Giovanni alla Vena in case data are not assimilated there in comparison to the full-assimilation results. Quantities and sym-
bols are coherent with Figures 4–6.
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Lead time-dependency of the changes in system performances in respect to the full-assimilation is illustrat-
ed in panel (f) of Figures 4–6. They show the ratio between g, RMSE, Eqmax in runs that do not assimilate at
S. Giovanni alla Vena and the corresponding value in full-assimilation simulations. The general behavior is
that the lack of local assimilation is less influent for lead times in the range 20–30 h, while its impact is
increasingly stronger when lead time reduces below 20 h or it increases above 30 h. This is a further indica-
tion of the interplay between assimilation lead time, assimilation location and basin response time. Again,
system performances decrease more in events where the improvement with respect to the open loop is
larger (e.g., E08 and E15).

6. Summary and Conclusions

This work presents a new assimilation system of flow data at multiple locations in a distributed hydrologic
model. The model MOBIDIC, that is part of the forecasting chain for Arno river in central Italy, is used as
operational framework to demonstrate the effectiveness of the developed scheme. The scheme provides
optimal estimates of initial flow in the river network, initial capillary water in soil, and rainfall intermittence
(parameter f0) on a distributed basis, using a mixed variational-Monte Carlo approach. Assimilation is real-
ized on sequential windows of 6 h, judging this strategy suitable for an operational usage of the system. We
perform a real-time oriented evaluation of the developed system through 16 hindcast experiments in Arno
basin. They include both high flow and false alarm events, that are the two crucial situations for flood early
warning. The enhancement in flow predictions is assessed through a logarithmic formulation of Nash-
Sutcliffe efficiency (g), RMSE, error on peak flow, as well as through hydrographs comparison, taking into
account the dependence on lead time.

Results show that the assimilation system can considerably enhance flood forecasts and reduce false alarms,
with flow predictions increasingly improving as the assimilation window advances in time. Although specific
gains depend on both location and event, in numerous cases a lead time of about 10 h corresponds to a
reduction of more than 50% of peak error and an increment of 0.5 or more of g in respect to open loop at
all the locations. A lead time of 10 h is comparable with the response time of the basin at the various gauge
stations. Shorter forecast horizons lead to more event- and location-independent performances.

The spatially distributed nature of the assimilated information leads to some differences in the behavior
between upstream and downstream locations. Overall, the assimilation system becomes more dependent
on the specific characteristics of the event as the complexity of the upstream network and the amount of
the employed information increase. Furthermore, downstream predictions benefit substantially from an
assimilation window that includes upstream peak flows, provided that observations at the various locations
are coherent among themselves. Otherwise, the positive impact of the assimilation could be significantly
reduced, up to a degradation of model performances. This reveals that, when assimilating streamflow data
at multiple locations, the spatial distribution of the gauge stations and the accuracy and mutual coherence
of observations can affect substantially the obtainable improvement in predictions. On the other side, the
enhancement in proximity of the basin outlet could be satisfactory also without a local assimilation, but
using data only from a properly distributed number of upstream stations. This fact is verified by repeating
the 16 experiments without assimilating observations at S. Giovanni alla Vena, and comparing performances
with the original experiments. As expected, it is found that generally performances slightly reduce, but they
remain in line with those of the full-assimilation.

Results show also that, under some conditions, the assimilation system may initially impact negatively on
flow predictions. However, it is found that, proceeding with the assimilation, the degradation of the predic-
tions accuracy could be partially recovered, proving that the scheme is robust. The analysis points out that
a worsening of predictions may happen when open loop predictions are already accurate, and also when
the mismatch between model and observations is due mainly to model shortcoming or structural errors,
indicating that the native capabilities of the hydrological model affect significantly the performances of the
assimilation system. Namely, the gain obtainable through the assimilation system is limited by model struc-
ture, besides possible errors on data, and hence its effectiveness does not depend only from the assimila-
tion scheme itself.

From an operative point of view, the developed assimilation system can be suitable for real-time applica-
tions in flood forecasting given its general positive impact on predictions, its robustness and the capability
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of improving predictions at downstream ungauged locations. Nevertheless, under specific, but not a priori
identifiable conditions, a possible negative effect should be taken into account. In addition, in presence of
soil almost dry or saturated, the adopted strategy suffers a rigidity that could prevent to fully address the
necessary modifications in streamflow.

Further research should investigate the optimal spatial distribution of measurement stations in the river net-
work, and examine in depth the impact of the assimilation on ungauged locations, since this work has pro-
vided only a very first insight into the latter topic. Moreover, the influence of the length of the single
assimilation window should be better assessed.

Appendix A: Derivation of the Adjoint Model Equations

The penalty functional expressed in equation (20) can be re-written integrating the term kT ðtÞdQðtÞ=dt by
parts:
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In order to minimize J, its first variation dJ must be vanished:
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where dQ and dqL are the variation of the state and input respectively, and dQ0 and dQ1 are those corre-
sponding to the initial and final instant of the assimilation window. This general expression can be re-
written by making explicit each term:
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Given independent variations dQ; dQ0; dQ1 and dqL, the previous condition is equivalent to equations (20),
(21), (22) and (23).
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