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ABSTRACT

This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE

estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists

of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch

smoother (EnBS) approach. Themethods were applied over the 27-yrLandsat 5 record at snow pillow and snow

course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is

more densely vegetated and thus more challenging for SWE estimation than the previous applications of the

EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) esti-

mates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and

snow course sites were reduced by 68%–82% and 60%–68%, respectively, when applying the data assimilation

methods. This result is encouraging for a basin like the American where the moderate to high forest cover will

necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated ba-

sins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSEwas;54%of that seen in the

EnBS,while for snow courses the PBSRMSEwas;79%of theEnBS. Sensitivity tests show relative insensitivity

for both the PBS andEnBS results to ensemble size and fSCAmeasurement error, but a higher sensitivity for the

EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

1. Introduction and background

Snow-dominated hydrologic systems are globally

significant given the estimate that over one-sixth of the

world’s population derive the majority of their water

resources from basins containing seasonal snowmelt

(Barnett et al. 2005). Much of the water supply that

comes from snow-dominated basins is stored in

regional-scale montane systems, including those in the

western United States (including Alaska), Alps, An-

des, Himalayas, and Hindu Kush, among others. In

many regions, downstream urban and agricultural

areas rely almost exclusively on snowmelt runoff from

mountainous areas for their water supply (Viviroli

et al. 2007).

In mountainous regions, highly variable spatial pat-

terns of snow cover are the result of complex montane

topography and orographic effects and equally complex

atmospheric circulation patterns (e.g., Dettinger et al.

2004; Lundquist et al. 2010). Snowfall events are often

the result of large-scale synoptic meteorological condi-

tions, but heterogeneity in surface conditions are due

to a complex mosaic of factors:
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1) Variations in elevation contribute directly to snow

water equivalent SWE accumulation variations as a

result of orographic effects.

2) Vegetation patterns contribute to variability in snow-

fall interception losses, radiative fluxes, and expo-

sure, which can impact wind-driven redistribution.

3) Slope, aspect, and shading by terrain variability

directly impact the incoming shortwave radiation,

which causes variability in melt rates and therefore

melt-out dates.

4) The albedo of snow, and its dynamics as a result of

snow metamorphism under varying meteorological

conditions, can further enhance spatial variability in

both SWE and the subsequent soil moisture during

and after melt.

5) Sloped terrain can influence variability via gravita-

tional redistribution.

Beyond the water–energy cycle in mountainous regions,

ecological systems and biogeochemical processes are

highly sensitive to variability in the hydrologic cycle

(Bales et al. 2006; Trujillo et al. 2012).

Despite the importance of montane snowpacks, fun-

damental questions remain unanswered to a large de-

gree (Bales et al. 2006; Dozier 2011), including 1) how

much water is stored in montane snowpacks, 2) how

does this amount vary in space and time and how does it

depend on underlying physiographic characteristics, and

3) how is the snowpack changing in time? The lack of

insight into these fundamental questions stems primarily

from gaps in the available datasets in montane regions.

Operational in situ networks in the western United

States consist primarily of snow pillow and snow course

data. Despite the relatively high sampling density com-

pared to other regions of the globe, these in situ mea-

surements invariably sample only a very small fraction

of the snow-covered area in montane regions. For

example, in the Sierra Nevada the number of snow pil-

low sensors yield an average sampling density of one

sensor for every 620 km2 (Guan et al. 2013). Moreover,

the in situ sensors generally do not provide a

well-distributed sampling versus elevation and other

physiographic characteristics, leaving much of the high-

elevation regions completely unsampled. This sampling

problem is generally exacerbated in drought years when

the preponderance of snowmay occur at high elevations

above the measurement network (e.g., Rice et al. 2011).

For all of the above reasons, interpolation of operational

in situ data to create spatially continuous snow estimates

is difficult and fraught with uncertainty (e.g., Fassnacht

et al. 2003; Dozier 2011), making answering scientific

questions that have to do with SWE spatial variability

difficult. Moreover, in other mountainous regions of the

globe, in situ data tend to be even scarcer and more

sparsely distributed.

Remote sensing data provide a distinctly different

information stream with unique mapping capabilities

that provide insight into spatiotemporal snow cover

patterns across the relevant physiographic gradients.

With respect to snow remote sensing, two satellite-based

methods have historically provided the primary mech-

anisms for characterizing snow. Satellite-based visible

and near-infrared (Vis/NIR) measurements provide the

ability to map snow-covered area SCA globally at rela-

tively high resolution (30–500m depending on the sen-

sor; e.g., Rosenthal and Dozier 1996, Hall et al. 2002;

Dozier et al. 2008; Painter et al. 2009; Cortés et al. 2014).
The direct benefit of such data streams lies primarily

with their spatial resolution, since the key modes of

spatial variability in snow processes in montane regions

are on the order of 100m (e.g., Clark et al. 2011), while

the primary drawback is that the resulting SCA esti-

mates do not provide direct information on SWE.

Satellite-based passive microwave (PM) data provide a

much more direct link to SWE but are only typically

available at resolutions greater than 10km. This makes

estimating SWE in montane regions from PM data dif-

ficult because of subgrid variability in snow and vege-

tation coverage. Efforts to improve retrievals and other

estimation frameworks using PM data are an active area

of ongoing research (e.g., Kelly et al. 2003; Durand and

Margulis 2007; Tedesco et al. 2010; Li et al. 2012; Vander

Jagt et al. 2013).

Because of the aforementioned challenges, spatially

and temporally continuous estimates of SWE generally

require some level of modeling. Snow models have the

added benefit of embedding physical laws (i.e., mass and

energy balance) and implicit relationships with readily

available auxiliary data (topography, gridded meteoro-

logical datasets, etc.) into the SWE estimates. That said,

uncertainty in these inputs directly propagates into SWE

estimate uncertainty. In addition to such forward mod-

eling approaches, which may only use in situ data for

calibration or validation, other methods attempt to

merge models and measurements to take advantage of

information content in both. One such example is the so-

called SWE reconstruction approach (e.g., Cline et al.

1998; Molotch et al. 2004; Molotch and Bales 2005;

Molotch andMargulis 2008; Molotch 2009; Li andWang

2011; Rice et al. 2011; Jepsen et al. 2012) that effectively

integrates snowmelt estimates backward in time during

the ablation season via energy flux estimates scaled by

fractional SCA fSCA to get mapped estimates of the

peak SWE. One can pose the problem more generally

as a (probabilistic) data assimilation framework, which

has been shown to be a more robust alternative to
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traditionally applied deterministic SWE reconstruction

(Girotto et al. 2014b). This probabilistic reconstruction

was originally outlined in Durand et al. (2008) and

Girotto et al. (2014a,b) and amounts to an SWE re-

analysis based on precipitation data, meteorological

data related to energy balance, remote sensing data, and

the physics embedded in snow hydrologic models.

The objective of this paper is to present, apply, and

verify a newly proposed data assimilation method for

SWE reanalysis, which improves on the methods uti-

lized in Durand et al. (2008) and Girotto et al. (2014a,b).

The newly proposed approach is essentially a particle

batch smoother (PBS) rather than a Kalman-based en-

semble batch smoother (EnBS) and is expected to out-

perform the Kalman-type approach. Herein, the PBS

approach is described in detail, contrasted with the

EnBS, and applied in parallel to the EnBS framework.

The basic questions to be addressed are 1) does the new

PBS SWE reanalysis approach outperform the pre-

viously applied EnBS SWE reanalysis approach and

2) how do the sensitivities to input parameters (and

therefore robustness to uncertain inputs) for the two

methods compare? The goal in answering these ques-

tions is to assess what approach is better suited for large-

scale applications where inputs are unknown or highly

uncertain. The underlying hypothesis is that the PBS is

more general and therefore should perform as well as or

better than the EnBS approach.

2. Methods

a. Forward and measurement models

The general estimation (data assimilation) problem

starts with models for the evolution of the state variables

of interest and the measurement process. A general

discrete-form state-space (or forward) model formula-

tion can be written as

yt 5 a(yt21,ut,a); subject to: yt505 y0 , (1)

where yt is the system state vector at time t (with an

uncertain initial condition y0), ut is a vector of uncertain

time-varying inputs, a is a vector of uncertain time-

invariant model parameters, and a is a nonlinear space–

time discretized vectormodel operator. In the context of

SWE reanalysis described herein, the state vector is the

spatially distributed map of SWE; the time-varying in-

puts consist of meteorological forcings (radiation, air

temperature, precipitation, etc.); the parameters a in-

clude a multiplicative precipitation coefficient, the mag-

nitude of subgrid spatial SWE variability, and an albedo

decay parameter; and the model operator a represents

the land surface model (LSM) used to predict SWE

forward in time. The measurement process is generally

written as

zt 5m(yt)1 vt , (2)

where zt is the measurement at time t; m is the mea-

surement operator or model; and vt represents an ad-

ditive measurement error vector, which is assumed to

have known error characteristics (i.e., Gaussian with

prescribed mean and covariance). In the context of the

SWE reanalysis described herein, zt is a vector of fSCA

measurements and m represents a nonlinear snow de-

pletion curve (SDC) model (e.g., Liston 2004) that

predicts fSCA based on the modeled SWE (and other

inputs). The specific forward and measurement models

used in this work are described in more detail in

section 2d.

b. Bayes’s theorem as the basis for data assimilation

It is generally assumed in a data assimilation frame-

work that the uncertain variables (y0, ut, a, and vt) can

be characterized by postulated prior probability density

functions (PDFs) that represent the mean estimate and

uncertainty in each quantity. Based on the prior PDFs

and themodel operator a, one can theoretically define the

prior state PDF py(yt), which provides a full character-

ization of the state prior to the assimilation of any mea-

surements. The goal of any data assimilation framework

is to estimate the state vector conditioned on the mea-

surement vector, which in a probabilistic framework is

fully described by the conditional (or posterior) PDF

(e.g., Gelman et al. 2004): pyjz(yt j zt). As described in

more detail inGirotto et al. (2014a,b), the SWE reanalysis

problem using assimilated fSCA measurements is best

suited for a batch estimation (or smoother) approach

rather than a sequential (or filtering) approach. This

amounts to solving the forward model [Eq. (1)] over the

full seasonal cycle and then assimilating all fSCA mea-

surements at once (i.e., in one batch) to estimate SWE.

The reason for this has to do with the fact that, in most

cases, an instantaneous fSCA measurement has little

information on the instantaneous SWE, but the collec-

tion of fSCA measurements and their temporal evolu-

tion, most notably during the ablation season, are in

many cases highly correlated with the amount of accu-

mulated SWE and the melt-season energy input to the

snowpack. This is the primary basis of the deterministic

SWE reconstruction approaches mentioned above,

which can be conceptualized as special cases of the more

general SWE reanalysis via a data assimilation tech-

nique (Girotto et al. 2014b).

In a batch smoother context, real-time estimates are

not provided as they are in a filtering context, but
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otherwise the goals of the assimilation are similar. For

batch smoothing, the relevant vectors at discrete times

can simply be collected into larger vectors, that is, Y, Z,

and M representing the state, measurement, and pre-

dicted measurement vectors, respectively. The upper-

case notation is used to represent the collection of

vectors over the whole seasonal cycle and the t subscript

is dropped since this includes all states across the as-

similation window, not just those at a particular time. As

mentioned above, the goal of the estimation problem is

to characterize the conditional PDF, which in the

smoother case is given by pYjZ(Y jZ). Formally, this PDF

is given by Bayes’s theorem (e.g., Gelman et al. 2004):

pYjZ(Y jZ)5
pZjY(Z jY)pY(Y)

pZ(Z)
5 c0pZjY(Z jY)pY(Y) ,

(3)

where pZjY(Z jY) is the likelihood function for the state

Y, pY(Y) is the prior state PDF, and c0 is simply a nor-

malization constant to ensure that the conditional PDF

integrates to one.

c. Ensemble methods

For practical reasons, prior and posterior PDFs are

often approximated using ensemble-based methods,

where an ensemble ofmodel inputs is randomly sampled

from the prior PDFs:

py
0
(y0)/ y0,j; pa(a)/aj;

pu(ut)/ut,j; for j5 1, . . . ,N , (4)

where j represents an individual ensemble member (or

replicate) out of an ensemble of chosen size N. The

ensemble of prior inputs can then be used in the forward

and measurement models, that is,

yj,t 5 a(uj,t,aj, yj,t21)0Yj and m(yj,t)0Mj . (5)

The end result of this Monte Carlo approach is a prior

(or open loop) ensemble estimate of SWE (Yj) and

predicted fSCA (Mj) over the full seasonal cycle. An

ensemble method amounts to a discrete approximation

of the continuous prior PDF (i.e., using Dirac delta

function d):

pY(Y
2)’ �

N

j51

w2
j d(Y2Y2

j ) , (6)

where the superscript minus sign is used to emphasize

that the variable is a prior estimate. As discussed in

Zhou et al. (2006), this discrete estimate of the prior

PDF implicitly assigns an equal discrete probability or

weight (w2
j 5 1/N) to each replicate. Such ensemble

approaches provide significant flexibility in how un-

certainties are handled and allows for the nonlinear

propagation of uncertainties through the forwardmodel.

The posterior PDF can be approximated similarly as

pYjZ(Y
1 5Y jZ)’ �

N

j51

w1
j d(Y2Y1

j ) , (7)

where the superscript plus sign is used to emphasize that

the variable is a posterior estimate. Different algorithms

can be used to approximate this conditional PDF as

described in more detail below.

Previous SWE reanalysis efforts have focused on in-

troducing uncertainty in the key meteorological forcing

variables (Durand et al. 2008; Girotto et al. 2014a,b),

with a particular emphasis on precipitation, that is,

P2
j,t 5 b2j Pnom,t , (8)

where Pnom is a nominal precipitation input. The vari-

able Pt can be thought of as one of the dynamic inputs in

the forcing vector u and/or the variable b can be thought

of as one of the parameters in the vector a. This for-

mulation was proposed because of the typical high un-

certainty in snowfall inputs in montane environments

and because precipitation provides the first-order direct

control on the accumulated SWE in the absence of sig-

nificant snow redistribution mechanisms. Durand et al.

(2008) and Girotto et al. (2014a,b) chose to directly es-

timate the uncertain b parameter (rather than the states

directly) as a means for ultimately improving the prior

estimate of SWE through conditioning on fSCA mea-

surements. This was done using an EnBS approach

where the ensemble of parameters is updated via

log(b1j )5 log(b2j )1K[(Z1Vj)2M2
j ] , (9)

whereK is the Kalman gain, which is computed from the

sample covariances estimated from the ensemble:

K5CbM(CM 1CV)
21 . (10)

Equation (9) conditions the parameter b on the mea-

sured fSCA values (i.e., Z) over the full temporal as-

similation window. A posterior simulation using the

posterior ensemble estimate of b from Eq. (9) in the

forward model [Eq. (1)] is used to obtain the posterior

estimate for SWE1
j,t.

In such Kalman-type update approaches, each pos-

terior replicate is still implicitly assigned an equal

weight (wj 5 1/N; Zhou et al. 2006), but with a different

value assigned to the state–parameter. In this context,
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one can describe the Bayesian estimation process

schematically as

Prior: b2j 0Y2
j 5 SWE2

j with w2
j 5

1

N
and

Posterior: b1j 0Y1
j 5 SWE1

j with w1
j 5

1

N
.

(11)

An important caveat is that the Kalman update is only

optimal for Gaussian prior PDFs, which will only strictly

be maintained in linear models with Gaussian inputs.

Hence, the approach described above is generally sub-

optimal, yet has been shown to be a useful approach for

providing improved posterior estimates of SWE by

extracting information from fSCA measurements

(Durand et al. 2008; Girotto et al. 2014a,b). The sub-

optimality comes from the implicit Kalman update as-

sumption that the prior and measurement PDFs can be

adequately approximated solely by their means and

covariances, neglecting higher-order moments. The

computational effort of the EnBS-based SWE reanalysis

method described above consists of 2N (i.e.,N prior plus

N posterior) forward model simulations along with

evaluation of the update in Eq. (9).

In this paper, we propose a new method for SWE

reanalysis that is more general than the previously

described EnBS approach. The new approach uses a

PBS formulation to estimate the SWE state vector di-

rectly. Particle filters (e.g., Arulampalam et al. 2002;

Moradkhani et al. 2005; Zhou et al. 2006) attempt to

more directly approximate Bayes’s theorem for the

case where non-Gaussian PDFs and nonlinear models

make the ensemble Kalman smoother suboptimal.

Extending such methods to a batch smoother, the prior

PDF pY(Y) in Eq. (3) is approximated in the same way

as described above and shown in Eq. (7). This Monte

Carlo step involves no loss of generality in that the

prior PDFs py0 (y0), pu(ut), and pa(a) can be non-

Gaussian and the forward model can be nonlinear

yielding a non-Gaussian prior state PDF.Unlike the EnBS,

however, the PBS specifies that the prior and posterior

state replicates are the same and instead updates the

analysis weights (probabilities). This can be formalized

by substituting the prior and posterior approximations

from Eqs. (6) and (7) into Bayes’s theorem [Eq. (3)],

which yields

Y1
j 5Y2

j and

w1
j 5 c0pZjY(Z jY)w2

j 5
c0
N

pZjY(Z jY) , (12)

where the likelihood function can be expressed as [for

the additive error case assumed in Eq. (2)]

pZjY(Z jY)5 pV(Z2M2
j )5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)Nobs jCV j

q

3 exp[20:5(Z2M2
j )

TC21
V (Z2M2

j )] ,

(13)

where pV(V) is the specified (i.e., Gaussian) PDF for the

measurement error vector V (typically assumed as zero

mean with an error covariance CV) and Nobs is the

number of observations in the assimilation window.

Equations (12) and (13) provide the mechanism for

approximating the posterior PDF, which can be de-

scribed schematically as

Prior: Y2
j 5 SWE2

j with w2
j 5

1

N
and

Posterior: Y1
j 5Y2

j 5 SWE2
j with

w1
j 5

c0
N

pV(Z2M2
j ) , (14)

where the posterior estimate is obtained simply by

computing updated probabilities (weights) from the

prior information. To make the posterior a valid PDF,

one can simply compute the normalization constant as

c0 5N/�jpV(Z2M2
j ). The process will more heavily

weigh those replicates (particles) that are more likely

(i.e., predictions closer to the observations) and reduce

the weight for those that are less likely (i.e., predictions

farther from the observations) based on the likelihood

function.

The updated weights provide a discrete estimate of

the posterior PDF, as shown in Eq. (7), which can be

used to determine posterior statistics, for example, those

representing the central tendency (e.g., mean and me-

dian) and dispersion [e.g., standard deviation and inter-

quartile range (IQR)] of the estimate. Note that while

the mean and standard deviation can be estimated di-

rectly, the median and IQR for the posterior PBS esti-

mates are an approximation because of the discrete

nature of the weights (probabilities) w1
j . The posterior

PBSmedian (at a given time) is determined by sorting the

SWE replicates and summing up the corresponding

weights to get the replicate with an integrated value

closest to 50%. Similarly, the posterior PBS IQR limits

(at a given time) are approximated by determining the

replicates with the integrated probabilities closest to

25% and 75%.

It is important to note that the above implementation

of the PBS estimates the SWE state directly (and the

b parameter implicitly), while the EnBS estimates only

the b parameter directly, where SWE is then estimated

via a posterior forward model simulation. However,

because the b parameter and SWE are highly correlated
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(results not shown), the implicit joint state–parameter

estimate provided by the PBS provides limited addi-

tional benefit over the EnBS implementation; instead,

the differences are primarily driven by information ex-

traction from the fSCA measurements, as described in

more detail below. With respect to computational de-

mand, the above PBS implementation implies that no

additional forward simulations need to be performed as

shown in Eq. (11), as this articulation of the PBS is a

‘‘weak constraint’’ assimilation operation, while the

EnBS is a ‘‘strong constraint’’ operation (Talagrand

2003). Some additional important comments should also

be mentioned here. In particle filtering applications, a

resampling scheme is often required after each condi-

tioning step (e.g., sequential importance resampling;

Moradkhani et al. 2005) to avoid degeneracy (collapse)

of the posterior weights after several updates. In the

PBS implementation proposed herein, the single update

avoids the degeneracy problem in most cases. Addi-

tionally, in some applications the particle filter

requires a larger ensemble size than theKalman filter. In

the specific SWE reanalysis application shown herein,

an ensemble size that is large enough for the EnBS ap-

pears to generally be large enough for the particle

smoother (PS). When true, the PBS approach proposed

herein has about half of the computational expense of

the EnBS implementation shown above (i.e., N forward

model simulations compared to 2N simulations), along

with less restrictive assumptions. Implementing the

EnBS in a state estimation mode could eliminate this

difference in computational expense.

d. LSM–SDC used in this study

The specific forward andmeasurementmodels used in

this study are almost identical to those described inmore

detail in Girotto et al. (2014a,b; additional details pro-

vided therein). The LSM used was the Simplified Simple

Biosphere model, version 3 (SSiB3; Xue et al. 2003),

which contains a three-layer snow scheme along with

vegetation canopy and soil submodules. Static model

parameters are defined via lookup tables (LUT) based

on vegetation and soil type in a given pixel. The model is

forced by hourly meteorological inputs including pre-

cipitation, radiation, and reference-level air tempera-

ture, humidity, wind speed, and pressure.

The LSM is coupled to the Liston (2004) snow de-

pletion curve model as described in Girotto et al.

(2014b). The SDC serves as the primary component of

the measurement model since it predicts the fSCA dy-

namics on the ground over time as a function of evolving

snowpack properties. Using the physiographic and me-

teorological inputs for a given pixel, the bare soil and

forested portions of the pixel are simulated separately,

yielding separate fSCA and SWE estimates for each

fraction of the pixel. Rather than make assumptions

about the subcanopy snow cover (as commonly done

using vegetation gap fraction approaches; e.g., Molotch

and Margulis 2008), the predicted fSCA is taken from

the bare soil (nonforested) simulation. Specifically, the

bare soil fSCA is transformed to the at-sensor fSCA via

m(yj,t)5 (12 fTMveg,t)fSCAj,t , (15)

where fSCAj,t is the predicted bare soil fSCA from the

Liston SDC and fTMveg,t is the estimated forest fraction that

obscures the ground from the Landsat sensor. Note that

the measurement model is only applied at the times of

Landsat fSCA measurements. The dynamical fTMveg,t re-

trieved from Landsat was used in Eq. (15) to maintain

internal consistency between the vegetation cover and

fSCA at each measurement time. Although the re-

trieved vegetation fraction from Landsat can include

shrubs and other ‘‘nonobscuring’’ types of vegetation

(when not buried by snow), over this region it is ex-

pected that most (if not all) of the vegetation seen by

Landsat during ablation consists of mostly trees and

forested areas.

3. Study site, data, and experimental design

a. Study site characteristics

The American River watershed located in the north-

ern Sierra Nevada of California (United States) shown

in Fig. 1 (left; total drainage area of 4819km2) was

chosen as the test bed for this study. The choice was

made because of its representativeness with respect to

other northern Sierra Nevada basins, because of the

relatively large amount of in situ data that are used for

verification in this study, and because the basin has a

higher forest cover fraction than in the previous EnBS

applications shown in Girotto et al. (2014a,b). It is

expected a priori that more forest cover will make for a

more challenging estimation of SWE from fSCA data.

The American River watershed drains mostly from

east to west and feeds the Folsom Lake reservoir (;1.4

cubic kilometers capacity), which is one of the large

reservoirs that make up the California (CA) water sys-

tem. The runoff from the watershed is driven largely by

snowmelt. The watershed area above the nominal rain–

snow transition of 1500m above mean sea level (MSL;

Rice et al. 2011) is 2124 km2 and ranges up to elevations

of almost 3100mMSL (Fig. 1). The area above the rain–

snow transition in the American watershed contains six

land-cover types according to the National Land Cover

Database (NLCD): open water (;1.0%), developed
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areas (;0.7%), bare soil (;2.0%), forest (including

evergreen, deciduous, and mixed; ;67.3%), short veg-

etation (including shrubs and grass; 28.8%), and wet-

lands (;0.1%). Fractional forest coverage ranges from

0% to above 90% across the basin, with forest fraction

generally decreasing with increasing elevation.

b. Reanalysis input data

1) IN SITU DATA FOR VERIFICATION

The American River watershed contains 28 in situ

monitoring locations with direct measurements of SWE,

as shown in Fig. 1. All results and analyses presented

herein are at these specific sites. The in situ network is a

mix of 12 telemetered snow pillow sites that provide

daily SWE estimates and 20 snow course sites that

provide SWE estimates around the first of the month,

typically during themonths of January–May. Four of the

sites have collocated pillows and courses. All data were

acquired from the CA Department of Water Resources

Data Exchange Center (CDEC; http://cdec.water.ca.

gov/). The physiographic characteristics corresponding

to the model pixel centered on the provided coordinates

for each in situ location are shown in Table 1. Figure 2

shows the comparison of the distribution of elevation,

land-cover type, and forest cover fraction of the pixels

centered on the in situ sites relative to the full domain

(i.e., above 1500m MSL). The in situ sites have a com-

parable physiographic distribution to that of the full

domain except that they do not sample the highest (or

lowest) elevations (Fig. 2, top) or the highest forest

cover fractions (above 80% forest cover; Fig. 2, bottom).

It should be noted that the snow pillows themselves are

often sited in flat clearings even when in a forested re-

gion, which invariably leads to potential representa-

tiveness issues when comparing with a pixel-averaged

SWE estimate.

2) MODEL INPUT DATA

The LSM–SDC applied in this study (described in

section 2d), uses the same input data and is run at the

same spatial resolution (90m) as inGirotto et al. (2014a,b).

Hence, for brevity, only the key points are repeated

here. The static datasets needed by the forward model,

which include topography, land-cover type, and forest

cover fraction, are derived from the ASTER global

DEM (http://asterweb.jpl.nasa.gov) and the National

Land Cover Database (Homer et al. 2007). The data

shown in Figs. 1 and 2 come from these sources. Ancil-

lary inputs like slope, aspect, shading, and sky-view

factor are derived from the ASTER DEM.

The dynamic meteorological inputs were taken from

phase 2 of the North American Land Data Assimilation

System (NLDAS-2) dataset (Xia et al. 2012), which is

available over the United States from 1979 to present.

The coarse-scale (1/88) inputs are downscaled using

similar techniques as those described in Girotto et al.

(2014a,b), which make use of topographic corrections to

estimate the hourly meteorological forcings at a given

pixel. The primary differences have to do with the

FIG. 1. (left) Sitemap showing the location of theAmericanRiver basin (black outline) in the SierraNevada, CA.

(right) DEM for the American River basin showing the elevation distribution above 1500m MSL. In situ snow

pillow and snow course sites are shown using red plus signs and black crosses, respectively. Four of the sites have

collocated pillows and courses as described in Table 1. The three sites highlighted by the cyan circles are the

locations of the stations with illustrative results shown in Figs. 3–8.
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long- and shortwave parameterization. The new long-

wave model used is the clear-sky model of Prata (1996)

with a cloudy-sky correction based on a solar index as

described in Crawford and Duchon (1999). The choice

of this model was based on the results shown in

Flerchinger et al. (2009), which compared a multitude

of models from sites across the globe and found this

combination to be among the best. As part of the

downscaling procedure [appendix A in Girotto et al.

(2014b)], uncertainty is added to the inputs to generate

an ensemble of meteorological forcings as indicated

schematically in Eq. (4). For consistency with the

longwave model, the shortwave uncertainty and bias-

correction model was rederived based on the solar

index (instead of relative humidity). The use of these

static and dynamic variables as inputs to the LSM–

SDC generate prior estimates of SWE and fSCA

needed in the reanalysis [i.e.,Y2
j andM2

j , respectively,

in Eq. (14)].

3) fSCA INPUT DATA

The reanalysis methods described above condition

prior SWE estimates on remotely sensed fSCA esti-

mates. The retrieved fSCA estimates used in this study

are derived from Landsat 5 Thematic Mapper (TM)

data (covering 1985–2011) as described in Girotto et al.

(2014a) and using the methodology shown in Cortés
et al. (2014). Specifically, estimates at a given satellite

overpass time are estimated from Landsat reflectances

using a spectral end-member unmixing approach. This

results in mapped Landsat 5 TM estimates of fractional

snow-covered area fSCATM and fractional vegetation

cover fTMveg at each overpass time. The pixel-wise fSCA

values are screened to include only reliable (cloud free)

measurements during a window defined by a specified

number of days (60 days) before the peak SWE in the

prior estimate going forward through the end of the

water year (WY). This screening implicitly uses differ-

ent windows for each pixel since the peak SWE is a

function of elevation (and other factors). The screened

fSCATM data are collected in the measurement vectorZ

for assimilation.

c. Experimental design

The experimental setup for this study was designed to

elucidate how well the newly proposed PBS SWE

reanalysis method performs (compared to the open-loop

and EnBS estimates) and to assess its sensitivity to

key input parameters. The PBS and EnBS reanalysis

TABLE 1. List of stations (sorted by NLCD fractional forest

cover) with in situ snow pillows and/or snow courses in the

American River basin and their corresponding key physiographic

characteristics. Stations shown in boldface are those highlighted for

illustrative purposes in Figs. 3–8. (Full names and information

about each station are available online: http://cdec.water.ca.gov/

cgi-progs/staSearch.)

CDEC station

identification

Pillow

and/or course

NLCD

fveg (%) Elev (m)

LOS Pillow 0 2538

WRG Course 5 2115

VVL Pillow 8 2042

SIL Pillow and course 14 2168

ONN Course 16 1859

ABN Course 28 2224

FRN Pillow 29 2301

ALP/APH Pillow and course 36 2307

DMN Course 40 1846

SCN Pillow 44 2668

BLC Pillow 45 1593

RBB Pillow 45 1798

RBP Pillow 46 1578

ECS Course 47 2270

LCP Course 49 2570

WBM Course 50 1919

MCB Course 50 1889

CAP Pillow and course 52 2439

PHL Course 60 2093

LYN Course 60 2039

CRF Course 65 2223

IHS Course 65 1612

TMF Course 70 1999

TBC Course 71 1753

LCF Course 72 2283

GKS Pillow 73 1707

HYS Pillow and course 76 2028

RBV Course 77 1708

FIG. 2. Relative frequency plots showing the distribution above

1500m MSL of (top) elevation, (middle) land-cover type, and

(bottom) forest cover fraction in the full domain (black) or at the

in situ snow pillow and course sites (light gray). The dark gray

color represents the overlap between the full domain and in situ

distribution.
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methods were applied at each of the 28 in situ station

sites for all available years spanning the Landsat 5 re-

cord (1984–2011), which amounts to 27 water years (WY

1985–2011) tested. All told, the analysis described

herein amounted to 756 station years, although a small

fraction of stations are missing in situ data in some years

(presumably because of pillow or telemetry failures or

inability to perform the snow course surveys).

Because of potential geolocation errors in the in situ

coordinates and potential representativeness issues in

comparing in situ point-scale versus single-pixel results,

simulations for the nine (90m) model pixels surrounding

each in situ location were performed. The motivation for

looking at neighboring pixel estimates stems from in-

herent problems in comparing pixel-averaged estimates

to in situ point-scale data. In the analysis described in

sections 4a and 4b, the SWE estimates from the neigh-

boring pixel with the smallest errors relative to the snow

pillow or course data are used for computing the bulk

error statistics (Rittger 2012; Girotto et al. 2014a). This is

an attempt to hedge against representativeness and geo-

location errors. The primary focus is on the comparison of

error metrics between the two reanalysis methods.

Three ensemble-based estimates of SWE were gen-

erated for analysis: 1) an open-loop or prior estimate

(i.e., those estimates prior to assimilation), 2) a posterior

estimate using the newly proposed PBSmethod, and 3) a

posterior estimate using the previously applied EnBS

approach. Such a comparison allows for assessing

1) whether the fSCA data provide a benefit to the SWE

estimate (i.e., do the posterior estimates outperform

the prior estimate in a highly vegetated basin?) and

2) whether the PBS method outperforms the EnBS

method. A nominal set of results is analyzed first, fol-

lowed by sensitivity tests to key input parameters.

The prior ensemble simulations require specification of

prior PDF input parameters. The perturbed parameters

are the same as those inGirotto et al. (2014a) and include,

most notably, the parameter b shown in Eq. (8) (assumed

lognormally distributed), along with the subpixel SWE

coefficient of variation b needed in the Liston SDC

model (assumed uniformly distributed) and the snow al-

bedo decay parameter CVIS (assumed uniformly distrib-

uted). Nominal values for the parameters of these

distributions are shown in Table 2. In particular, the prior

mean value of the parameter b is specified as 2.5, which is

based on previous literature estimates (Pan et al. 2003;

DeLannoy et al. 2010), is the same value used in Girotto

et al. (2014a), and indicates a prior belief in a general

underestimation of snowfall in the NLDAS-2 pre-

cipitation data. The nominal SWE reanalysis estimates

are obtainedusing an ensemble size ofN5 100 replicates,

which is the order of magnitude shown to perform well

previously in the EnBS applications of Durand et al.

(2008) and Girotto et al. (2014a,b). A nominal fSCA

measurement error standard deviation of sZ 5 15% was

used based on previous work (e.g., Cortés et al. 2014) and
defines the measurement error covariance CV used in

Eqs. (9), (10), and (13), where it is assumed that mea-

surement errors are independent in time.

To assess the robustness of the nominal case SWE es-

timates, sensitivity tests were also performedwith respect

to key input parameters. In the sensitivity tests the focus

was on those parameters most closely connected to the

data assimilation framework, with an emphasis on the

ensemble size, the fSCA measurement error standard

deviation, and the priormean value of the coefficient bmb

to understand how these inputs affect the two methods.

The parameter N must be large enough to accurately

represent the statistics (i.e., covariances) or likelihood

needed in the EnBS or PBS, respectively, but larger

values directly increase the computational expense of the

assimilation methods. The parameter sZ dictates how

much the fSCAmeasurements are trusted relative to the

prior estimate of fSCA in the assimilation step. Finally,

the parameter mb determines how much the nominal

precipitation is scaled on average in the prior estimate.

Ideally, the posterior would be insensitive to this prior

parameter specification. The specific perturbation sensi-

tivity experiment cases examined were with 1) ensembles

of size N 5 50 and 200, 2) a reduction in fSCA mea-

surement error standard deviation of sZ 5 10% [used in

Girotto et al. (2014a,b)], and 3) mb 5 2.0 and 3.0. The set

of sensitivity experiments are identified in Table 3.

4. Results and discussion

a. Illustrative nominal results for individual in situ
stations

For illustration, representative individual station-year

results are presented, which allow for an understanding

TABLE 2. Key nominal input parameters used in the SWE re-

analysis. The postulated distribution for b is lognormal, and the

postulated distributions for bmin and CVIS are uniform.

Parameter name Variable Value

Ensemble size N 100

Prior b mean mb 2.5

Prior b coefficient of variation CVb 0.25

Prior b max value bmax 5

Prior b min bmin 0.05

Prior b max bmax 0.80

Prior CVIS min CVISmin
0.20

Prior CVIS max CVISmax
0.45

fSCA measurement error std dev sZ 15%
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of how the methods work. To simultaneously show

results and the typical similarity and disparity between

snow pillow and snow course data, the illustrative re-

sults were taken from sites where snow pillows and

snow courses are nominally collocated. Of the four sites

with collocated pillows/courses, three were chosen for

their forest cover fraction that span the range of forest

cover seen in the basin (Table 1): station SIL (fveg 5 14%;

elevation: 2168m MSL), station CAP ( fveg 5 52%; el-

evation: 2439m MSL), and station HYS ( fveg 5 76%;

elevation: 2028m MSL). The driest year (WY 1988)

and wettest year (WY 2011) over the 27-yr record ex-

amined are shown to illustrate the performance for

different SWE conditions. The subsample of station

years described above provides a representative sam-

ple of results across all 756 station years. Bulk results

across all stations are presented in the following

section.

Figure 3 illustrates the two reanalysis estimates rela-

tive to the prior estimate and observations for the SIL

station in the dry WY 1988. The observations shown

consist of the Landsat-derived fSCA data (which are

assimilated) and the independent ground verification

data from snow pillows and snow courses (which are not

assimilated). Note that in the fSCA figures (top panels),

the data shown are the Landsat-derived observations

scaled by vegetation [i. e., fSCATM
t /(12 fTMveg,t)] to make

the measurements comparable to the bare ground SDC

fSCA estimates; it is the fSCATM
t data (not the scaled

version) that are assimilated. This inversion of the

Landsat data in the figures is done simply for visualiza-

tion purposes to allow for a comparison with the con-

tinuous time series of the prior fSCA prediction.

The prior and posterior estimates are those before and

after assimilation of the fSCATM
t data. The prior esti-

mate shows the ensemble median and IQR of predicted

SWE and fSCA over the water year with prior SWE

accumulation beginning near 1 December, peaking at

just under 0.6m in February, and melting out around

1 May (Fig. 3, bottom). The corresponding prior (on the

ground) fSCA from the SDC model shows intermittent

peaks early in the accumulation season, followed by

fSCA quickly reaching 100% once the primary accu-

mulation begins, where it remains at 100% until

;1 April and reduces to 0% by mid-May (followed by

some intermittent events late in the season; Fig. 3, top).

The observed SWE shows a smaller peak (;0.3m) and

an earlier melt-out date (;1 April) compared to prior

(Fig. 3, bottom). It should be noted that there are some

discrepancies between the in situ snow pillow and snow

course data for the SIL station. This is not uncommon

and is likely the result of representativeness and/or

geolocation differences between the pillow site and

course locations. Such differences should be kept in mind

when comparing estimates to the observations, that is, it

is possible to fit one and not the other in many cases.

The fSCA observations show an earlier melt than the

prior (Fig. 3, top), which is consistent with the prior

overestimation in SWE. It is precisely this signal that is

used by the assimilation step to provide an improved

posterior estimate. The number of available fSCA ob-

servations depends on the cloud conditions and gener-

ally results in 5–10 observations from before peak SWE

through the end of theWY. The number of observations

that effectively cover the ablation season is also de-

pendent on the amount of peak SWE and the energy

regime (i.e., cloudiness) during the ablation season (i.e.,

where an above-average cloudy ablation season will

generally slow the melt process).

The assimilated fSCATM
t data result in an updated

ensemble SWE-fSCA estimate. This is where the PBS

and EnBS posterior estimates can depart from each

other. By construct, both methods aim to improve the fit

with fSCATM
t observations and thereby implicitly im-

prove the SWE estimates. Both posterior fSCA esti-

mates move toward the observations, with the PBS

providing a slightly better fit in this case (Fig. 3, top).

The PBS accomplishes this by more heavily weighting

replicates that more closely match the observations [Eq.

(12)], while the EnBS does so by updating the b co-

efficients using the Kalman update shown in Eq. (9).

With respect to SWE, both posterior estimates also

move toward the independent observations, with the

PBS providing a better estimate than the EnBS (Fig. 3,

bottom). The PBS matches the pillow and course data

well in terms of both the peak SWEand themelt-out date,

while the EnBS improves over the prior, but still over-

estimates peak SWE and melt-out date. The IQR of the

posterior estimates is reduced with respect to the prior.

This is simply a reflection of the information content in

the fSCATM
t measurements propagating to the posterior

estimates. For this station year, the posterior IQR for

the PBS estimate is smaller than for the EnBS estimate,

TABLE 3. Identification of sensitivity experiments and their

corresponding perturbed parameters. The single perturbed pa-

rameter and its value are shown while all other parameters are the

same as the nominal set shown in Table 2.

Sensitivity

expt name

Perturbed

variable

Perturbed

variable value

Case 0 (Nominal) — —

Case 1a N 50

Case 1b N 200

Case 2 sZ 10%

Case 3a mb 2.0

Case 3b sCVIS
3.0
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indicating more information is extracted from the

fSCATM
t measurements. Assuming the observed SWE is

representative of the reanalysis estimate, the fact that

the PBS results match both the independent fSCA and

SWE measurements is indicative of a reasonable esti-

mate of the ablation-season melt fluxes (at least for this

pixel). It is important to keep in mind that both the PBS

and EnBS will generally attempt to fit the fSCA data by

construct; whether this yields an improved estimate of

SWE depends mostly on the LSM–SDC accurately es-

timating the ablation-season melt fluxes, which are pri-

marily dependent on disaggregated meteorological

forcings and snow albedo.

Analogous estimates are shown in Figs. 4 and 5 for the

CAP and HYS stations, respectively. Qualitatively, the

results are similar in the sense that the prior over-

estimates the observed SWE and predicts a later melt

out than the Landsat fSCA observations would suggest.

For all three pixels, the EnBS posterior does not deviate

as much from the prior as the PBS posterior does. While

in some cases this could simply be a reflection of a good

prior estimate, here it is indicative of a smaller (sub-

optimal) update. In all three pixels, the EnBS generally

overestimates the peak SWE, while the PBS generally

has smaller errors with respect to peak SWE. Note that

both the PBS and EnBS estimates for melt out are later

than those shown by the snow pillow data. This is con-

sistent with the fact that the pillow data are point-scale

estimates, while the posterior estimates are a pixel av-

erage, where subgrid SWE may generally melt out later

in the ablation season. Also note that for the HYS sta-

tion year (Fig. 5, bottom) there is a significant difference

between the snow pillow and snow course SWE com-

pared to SIL and CAP. This discrepancy and the smaller

updates may be partly explained by the fact that the

HYS pixel has the largest forest cover fraction (76%).

As such, the actual Landsat fSCATM
t data span a smaller

range [i.e., between 0 and (12 fTMveg,t)]. This necessarily

makes the model–measurement misfit in Eqs. (9) and

(14) smaller than for a nonforested pixel despite having

FIG. 3. Comparison of (left) PBS and (right) EnBS reanalysis results at a low forest cover (NLCD fveg 5 14%)

station (SIL) during a dry year (WY 1988). (top) Prior (red) and posterior (blue) predictions of fSCA vs scaled

fSCA observations; (bottom) the prior (red) and posterior (blue) predictions of SWE vs SWE observations from

snow pillows (gray plus signs) and snow courses (black triangles). The solid lines are the ensemble median and the

shaded region represents the ensemble IQR. Note that the fSCA observations (black circles) are Landsat derived

and scaled by vegetation [fSCATM
t /(12 fTMveg,t)] to make the measurements comparable to the bare ground fSCA

predictions. This inversion of the Landsat data is for visualization purposes to generate a continuous time series of

the prior fSCA prediction. The fSCATM
t data (not the scaled data) are assimilated.
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the same measurement error (i.e., lower signal-to-noise

ratio). In general, the PBS performs better than the

EnBS at removing prior biases; this is more evident (and

discussed in more detail) in the context of the WY 2011

results shown below.

Results from the same three stations are shown in

Figs. 6–8 for WY 2011, which was the wettest year of the

27-yr period. For all three stations, the peak SWE was

3–4 times larger in 2011 than it was in 1988. This directly

leads to a large difference in the melt-out date, which is

approximately 2–3 months later than it was in 1988.

Note, however, that even in this wet year the prior

overestimated the peak SWE (Figs. 6–8, bottom). This is

indicative of a likely overestimate ofmb. While the value

of mb 5 2.5 is based on previously used values in the

literature, it appears to yield an overestimate of peak

SWE for these stations. It is also possible (if not likely)

that there is interannual variability in b, which is not

being represented in the prior by using a constant mean

value across all years. Sensitivity to this parameter is

explored more below.

The PBS estimates are able to overcome the prior bias

more effectively than the EnBS in WY 2011. For all

three stations, the fSCA observations during ablation

are outside of the prior IQR (Figs. 6–8, top). The PBS is

able to overcome this by using the replicates that pass

near the observations and weighting them heavily,

thereby fitting the observations within the expected

measurement error (Figs. 6–8, top). The EnBS relies on

covariances in the update [Eq. (10)], which may not be

capable of providing a full update in cases with signifi-

cant prior biases. Specifically, at times when most of the

ensemble has predicted values of fSCAj,t 5 1, the co-

variance in the ensemble [CbM in Eq. (10)] at these times

will be near zero. This is the case here where the bulk of

the prior ensemble (as represented by the IQR) is

showing values of fSCAj,t 5 1 while the observations

are showing ablation [e.g., Fig. 7 (top, right)]. So de-

spite there being large model–measurement misfits

fi. e., [(Z1Vj)2M2
j ]g with respect to some of the

early ablation measurements, the contribution to the

update [in Eq. (9)] by these measurements is small be-

cause of the small covariance terms in the Kalman gain.

In contrast, the PBS uses themeasurement–model misfit

at these times in the likelihood function that contributes

to the weight updates [Eq. (12)]. This represents a po-

tential mechanism for the EnBS to have the undesirable

property of having the posterior estimate be sensitive to

the prior input parameters. In other words, if the prior is

too far from the underlying true fSCA, the covariance

needed for the EnBS may be inappropriately small

leading to a smaller update. One approach for obtaining

FIG. 4. As in Fig. 3, but for results at a medium forest cover (NLCD fveg 5 52%) station (CAP).
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better coverage of the observations by some ensemble

members would be to increase the coefficient of varia-

tion of the prior b coefficients. The PBS can also have

sensitivity to the prior, but in a potentially less damaging

way. As long as some replicates cover the fSCA de-

pletion record, there will be potential to extract that

information from the measurement sequence. If the

prior is so far biased (or with unrealistically low un-

certainty) as to not cover the measurements, then the

PBS may also suffer from sensitivity to the prior mean

b parameter by most heavily weighting a small number

of replicates at the extreme tail of the prior distribution

that are closest to the measurements.

In the nominal case examined here, the PBS re-

analysis shows almost no bias in peak SWE across the

three sites, while the EnBS generally overestimates peak

SWE (Figs. 6–8, bottom). The other primary distinction

between the PBS and EnBS estimates is the ensemble

spread, where the IQR for the PBS is generally smaller

than for the EnBS. This is not inherently a positive trait,

as it is possible that the spread could be unrealistically

small. Given the relatively close fit between the obser-

vations and the PBS posterior estimates, the PBS pos-

terior uncertainty seems reasonable. As inWY 1998, the

posterior estimates show a later melt out when com-

pared to the snow pillow data, which we hypothesize is

due to representativeness issues between point-scale

and pixel-averaged estimates.

b. Bulk nominal results for the full 27-yr reanalysis
record

The bulk nominal case results for all station years are

shown in Figs. 9 and 10. Figure 9 shows scatterplots of

predicted SWE (both prior and posterior) for the PBS

andEnBS relative to the observed snow pillow and snow

course data. Specifically, all course data are used in the

comparison and the peak SWE is compared to the cor-

responding snow pillow data at the time of predicted

peak SWE. Note that the prior results are the same in

both cases; only the posterior estimates differ between

the PBS and EnBS.

The prior estimates show a systematic positive SWE

bias relative to observations (Fig. 9, left), which is con-

sistent with the individual station results discussed

above. The IQR for the prior is generally large, as shown

with the uncertainty bars (Fig. 9, left), because of the

large unconditional uncertainty in model inputs. The

assimilation of fSCA measurements can generally have

twomain impacts on the prior: shifting of the prior mean

(i.e., reduction of bias) and/or reduction of the prior

uncertainty. The posterior estimates for both the PBS

and EnBS (Fig. 9, middle and right) generally show a

FIG. 5. As in Fig. 3, but for results at a high forest cover (NLCD fveg 5 76%) station (HYS).
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large improvement in bias relative to the prior. The PBS

shows less scatter in the posterior estimate and the IQR

values are reduced considerably relative to the prior

(Fig. 9, middle). The EnBS also removes most of the

prior bias but has higher IQR values compared to the

PBS (Fig. 9, right).

Figure 10 shows the distribution of prior and posterior

snow pillow and snow course errors. The prior snow

pillow errors are biased (with individual errors ranging

between20.5 and 1.5m), while the posterior PBS SWE

errors are centered nearly symmetrically around zero

and limited primarily to the range of 20.4 and 0.4m

[Fig. 10 (top, left)]. The prior snow course errors are less

biased, but show a broader range of values compared to

the snow pillow errors. The PBS posterior SWE snow

course errors are also centered on zero, with most error

values again limited to 20.4 and 0.4m [Fig. 10 (bottom,

left)]. The posterior EnBS results show SWE errors that

are also centered near zero. The pillow errors are a bit

more skewed toward positive values [Fig. 10 (top,

right)], while the snow course errors aremore symmetric

about zero [Fig. 10 (bottom, right)]. For both snow pil-

low and snow course data, the range of EnBS errors is

slightly larger than for the PBS errors. The skewness and

bias in theEnBS posterior is largely due to the prior bias,

which the EnBS appears to be more sensitive to. This is

discussed in more detail in the context of the sensitivity

experiment results below.

Table 4 shows bulk SWE error metrics for both

reanalysis methods in terms of the mean errorME, root-

mean-square error RMSE, and the correlation co-

efficient between estimates and measurements. The

prior mean errors for the snow pillows and snow courses

were 0.58 and 0.30m, respectively, indicating the prior

estimate was positively biased relative to the observa-

tions. The differences in prior ME values between the

snow pillows and snow courses is also indicative of some

inconsistency between the two observed SWE datasets.

The prior RMSE values (0.74 and 0.47m) indicate larger

errors for the snow pillows compared to the snow

courses, while the prior correlations were similar (0.82

and 0.81). The assimilation of fSCA data improved the

prior estimate for both the PBS and EnBS for both snow

pillows and snow courses in terms of all error and cor-

relation metrics. The posterior ME for the PBS is small

for both the pillows and courses (0.02 and20.01m) and

is relatively small for the posterior EnBS estimates for

the snow courses (0.05m). The ME for the EnBS esti-

mates compared to snow pillows is larger compared to

the other cases (0.13m). The posterior RMSE is reduced

in all cases relative to the prior. In general, the PBS

RMSE is less than the EnBS RMSE, that is, ;54% and

FIG. 6. As in Fig. 3, but for a wet year (WY 2011).
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79% of the EnBS RMSE for the snow pillows and snow

courses, respectively. The correlations are improved for

the posterior in both cases, with slightly higher values

for the PS. These SWE error metrics compare favorably

to the EnBS implementation applied to the Kern River

basin in Girotto et al. (2014a), where the pillow and

course ME values were 0.03 and 0.05m and RMSE

values were 0.14 and 0.21m, respectively. This is notably

positive since the American River generally has higher

forest cover than Kern, which invariably will obscure

more of the snow-covered area on the ground. This

implies that the data assimilationmethods can work well

even in less ideal basins than those applied to previously.

Table 4 also shows the averaged ensemble IQR of the

prior and posterior estimates. The IQR cannot be vali-

dated in this context, but it is provided as a reference for

the internal estimate of uncertainty in the ensemble

prior–posterior estimates. The IQR will generally de-

crease after assimilation of measurements, but by how

much depends on the information content of the ob-

servations and how efficient the assimilation method is

at extracting the information. For the snow pillows and

snow courses, the PBS IQR is about 63% and 85%, re-

spectively, of the IQR for the EnBS. Since the two

methods assimilate identical observations, this indicates

that the PBS is able to extract more information under

the nominal setup. One important caveat is that if the

number of replicates near the measurements is artifi-

cially small (i.e., because of a poor prior distribution),

the PBS IQR could be artificially small as well.

The results presented in Table 4 are based on using

the smallest error from the nine neighboring pixels

around a given in situ site to alleviate representativeness

and geolocation errors. Analysis was performed (not

shown) that alternatively used the nearest pixel SWE or

the average SWE from all neighboring pixels. While the

values changed, the qualitative comparison between

the PBS and EnBS was essentially the same as those

discussed above.

c. Sensitivity experiment results

Results for the sensitivity tests identified in Table 3

are shown in Fig. 11 in terms of the ME, RMSE, and

IQR over the full 27-yr reanalysis at the snow pillow/

snow course sites. The nominal results shown in Fig. 11

correspond to those shown in Table 4. The goal of these

tests was to identify how sensitive (if at all) the two

methods were to key input variables.

Cases 1a and 1b correspond to the smaller (N 5 50)

and larger (N 5 200) ensemble size and show limited

differences in ME or RMSE for either the PBS or EnBS

relative to the nominal case. This supports the argument

FIG. 7. As in Fig. 4, but for a wet year (WY 2011).
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that the nominal ensemble size of N 5 100 seems suffi-

cient for both methods in the cases tested and, if com-

putational savings is desired, an ensemble size ofN5 50

may even be acceptable based on these results. For the

IQR, there are also only small differences, but the PBS

shows an increase in IQR for the larger ensemble size.

This may be indicative of an underestimation of en-

semble spread in the nominal case, which had prior

overestimation in SWE and therefore may have had

fewer ensemble members in the neighborhood of the

measurements.

Case 2 corresponds to the case of fSCA measurement

error being decreased from the nominal value of

sZ 5 15% to sZ 5 10%. The differences in ME and

RMSE (relative to the nominal) for pillows and courses

are small for both the PBS andEnBSmethods. Except in

the case of the PBS at the snow course locations, the

RMSE becomes slightly smaller when using sZ 5 10%,

which may indicate that sZ 5 10% is more optimal;

however, the differences are very small, indicating that

using values between 10% and 15% will yield similar

SWE estimates in either the PBS or EnBS. The re-

duction in IQR for both the PBS and EnBS (relative to

the nominal) is an expected result since the measure-

ments are trusted more and therefore the posterior

spread will be less.

Cases 3a and 3b correspond to the smaller (mb 5 2.0)

and larger (mb 5 3.0) prior precipitation coefficient

mean values. For the PBS, the magnitude of the ME is

larger for the two perturbation cases (for both pillows and

courses) relative to the nominal, with a more negative

ME for mb 5 2.0 and a positive ME for mb 5 3.0. For the

PBSRMSE comparison, the nominal case has the lowest

errors, with the largest errors corresponding to case 3b.

This would seem to indicate that the optimal value for

mb in the PBS lies between 2.0 and 3.0, making the

nominal value of 2.5 a reasonable choice. For the EnBS

case, the ME is smallest for both the snow pillows and

snow courses for case 3a and largest for case 3b. This

indicates that for a smaller value of mb, the EnBS would

have performed significantly better than the nominal

case and comparable to that of the PBS. This also sup-

ports the conclusion that the optimal value of mb in the

EnBS lies between 2.0 and 3.0, but that the posterior

EnBS results are more sensitive to the chosen value.

Specifically, a lower value would lead to a smaller prior

bias that wouldmore easily be corrected. In particular for

the snow pillow comparison, the EnBS errors are smaller

for mb 5 2.0 than for the nominal case, while much larger

for the mb 5 3.0 case compared to the nominal. The key

point is that the EnBS posterior estimates are somewhat

dependent on the prior values of mb and that the PBS is

FIG. 8. As in Fig. 5, but for a wet year (WY 2011).
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less sensitive to the choice for the prior than the EnBS is.

The prior for mb in this case was time invariant; a more

sophisticated prior would likely lead to improved pos-

terior results, especially for the EnBS. For both the PBS

and EnBS, the IQR results for the nominal case are

bracketed by the two different priors, but in different

ways. For the PBS, case 3b yields a smaller IQR. Since

this corresponds to amore biased prior, the lower IQR is

not necessarily indicative of a more confident estimate,

but rather likely a result of fewer replicates near the

measurements. For the EnBS, the IQR is largest for case

3b, which corresponds to the fact that the method is

unable to extract as much information when the prior is

farther from the underlying truth.

5. Conclusions

A previously developed ensemble batch smoother

(EnBS) and newly developed particle batch smoother

(PBS) data assimilation (reanalysis) method for esti-

mating SWE from historical Landsat-derived fSCA data

were applied over the 27-yr Landsat 5 record to in situ

verification sites in the American River basin in the

northern Sierra Nevada. The study basin was more

highly forested than in previous applications of the

EnBS, which allowed for a more robust test of both the

old and new methods in a more challenging regime. The

key conclusions from this study are as follows:

1) Both data assimilation methods provided significant

improvement over the prior (modeling only) esti-

mates. In particular, the prior estimate showed a

general overestimation of SWE at the in situ sites

examined, which both the EnBS and PBS methods

largely removed. The prior RMSE values at the snow

pillow and snow course sites were reduced by 68%–

82% and 60%–68%, respectively. This result is

encouraging for a basin like the American, where

the moderate to high forest cover will necessarily

obscure more of the snow-covered ground surface

than in previously examined, less-vegetated basins.

2) The PBS outperformed the EnBS in the nominal case

using nominal input parameters. Specifically, the

PBS generally had lower ME and RMSE values

and higher correlations in all cases. Differences in

ME values between snow pillows and snow courses

indicate some inconsistency between the two verifi-

cation datasets. For snow pillows, the PBS RMSE

was ;54% of that seen in the EnBS, while for snow

courses the PBS RMSE was ;79% of the EnBS. In

general, the EnBS showed smaller (suboptimal)

updates relative to the prior (and to the PS) leading

to larger posterior estimation errors.

FIG. 9. Scatterplots of (left) prior and SWE reanalysis estimates from (middle) PBS and (right) EnBS vs ob-

servations from (top) snow pillows and (bottom) snow courses over all station years. The pillow estimates are those

at the time of peak (posterior) SWE. The open circles represent the ensemble median and the error bars represent

the ensemble IQR.
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3) A sensitivity test to key inputs to the data assimila-

tion framework show relative insensitivity of both

the PBS andEnBS results to ensemble size and fSCA

measurement error around the nominal values used.

However, the results showed that, in comparison to

the PS, the EnBS was much more sensitive to the

mean prior precipitation input. This sensitivity was

directly tied to the suboptimal updates in the nom-

inal case: when the prior estimate is highly erroneous

(i.e., positively biased), the EnBS is likely to suffer

more from the prior errors. This is likely exacerbated

in the case of a highly vegetated basin where the

dynamic range of the fSCAmeasurements is smaller,

leading to a smaller signal-to-noise ratio in the

assimilated observations. The PBS has less restrictive

assumptions on the update, and as long as some

replicates in the prior ensemble are close to the

observations, the posterior estimate is still reasonably

FIG. 10. Error histograms of (left) PBS and (right) EnBS for (top) snow pillow and (bottom)

snow course SWE over all station years. The prior errors are shown in red and the reanalysis

posterior errors are shown in blue.

TABLE 4. Bulk error statistics (ME andRMSE) and correlation coefficient between prior and posterior for the PBS andEnBS estimates

across all in situ (snow pillow and snow course) sites for WY 1985–2011. The comparison with snow pillow and snow course data is based

on the neighboring pixel with the smallest mean errors to overcome potential representativeness and geolocation errors. In this case, the

prior and posterior estimate used in the calculations is the ensemble median. TheME is in reference to the observations so that a positive

ME refers to an overestimate (positive bias) relative to the observations. Also shown is the averaged ensemble IQR for each case.

ME (m) RMSE (m) Pearson correlation coef IQR (m)

Prior pillows 0.58 0.74 0.82 0.53

PBS posterior pillows 0.02 0.13 0.95 0.15

EnBS posterior pillows 0.13 0.24 0.89 0.24

Prior courses 0.30 0.47 0.81 0.38

PBS posterior courses 20.01 0.15 0.92 0.17

EnBS posterior courses 0.05 0.19 0.89 0.20
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accurate. In the sensitivity test case where the prior

estimate used in the EnBS was less biased, the

estimation errors were comparable to that of the PBS.

Given the increased accuracy and robustness of the

PBS over the EnBS method (especially in forested do-

mains) shown in this study, it is suggested as a better

alternative to SWE estimation in montane basins where

verification data may be limited and input uncertainties

can often be high. Some caveats and comments that

should be mentioned include the following:

1) The PBS method as implemented herein implicitly

updates both states (SWE) and the multiplicative

precipitation parameter (b), while the EnBS only

updates the multiplicative precipitation parameter

directly and then generates a posterior estimate via

posterior simulation. However, analysis (not shown

herein) found that the high degree of correlation

between SWE and bmakes the added benefit of dual

state–parameter estimation minimal in this context.

Rather, it is the generality of the PBS that provides

the primary estimation benefit.

2) The likelihood functionneeded in thePBSas formulated

herein may becomemore difficult to evaluate for higher

dimensional measurement vectors. This could become

more of an issue when including fSCA estimates from

other sensors (e.g., Landsat 7 and 8 or MODIS) and/or

when combiningwith other data streams (e.g., PMdata).

3) The PBS could also likely be made more robust to

input errors by using larger prior input uncertainties or

different prior distributions to increase the number of

replicates that span and cover the measurement space.
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