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ABSTRACT

This paper presents a new data assimilation approach based on the particle filter (PF) that has potential for

nonlinear/non-Gaussian applications in geoscience. Particle filters provide aMonte Carlo approximation of a

system’s probability density, while making no assumptions regarding the underlying error distribution. The

proposed method is similar to the PF in that particles—also referred to as ensemble members—are weighted

based on the likelihood of observations in order to approximate posterior probabilities of the system state.

The new approach, denoted the local PF, extends the particle weights into vector quantities to reduce the

influence of distant observations on the weight calculations via a localization function. While the number of

particles required for standard PFs scales exponentially with the dimension of the system, the local PF pro-

vides accurate results using relatively few particles. In sensitivity experiments performed with a 40-variable

dynamical system, the local PF requires only five particles to prevent filter divergence for both dense and

sparse observation networks. Comparisons of the local PF and ensemble Kalman filters (EnKFs) reveal

advantages of the new method in situations resembling geophysical data assimilation applications. In par-

ticular, the new filter demonstrates substantial benefits over EnKFs when observation networks consist of

densely spaced measurements that relate nonlinearly to the model state—analogous to remotely sensed data

used frequently in weather analyses.

1. Introduction

Ensemble filters and smoothers provide a means of

estimating the probability density of a system state, given

observations and a numerical model for the dynamical

system. These methods are used frequently for data as-

similation in geophysical systems, such as the earth’s

atmosphere and ocean; examples include the ensem-

ble Kalman filter (EnKF; Evensen 1994; Houtekamer

and Mitchell 1998; Evensen and van Leeuwen 2000) and

ensemble-variational hybrid schemes (e.g., Hamill and

Snyder 2000; Lorenc 2003; Buehner 2005; Liu et al. 2008;

Zhang et al. 2009). The above-mentioned strategies ap-

proximate error distributions for observations and model

forecasts usingGaussian probabilities, causing them to be

suboptimal when the model dynamics are nonlinear, or

when the assimilated observations relate nonlinearly to

the model state.

Despite their limitations, techniques that rely on

Gaussian assumptions have performed well for opera-

tional weather prediction and research (e.g., Buehner

et al. 2010; Bishop and Hodyss 2011; Clayton et al. 2013;

Kuhl et al. 2013; Wang and Lei 2014). Nevertheless, it is

uncertain whether these methods are the best means of

assimilating observations as computational resources

allow for increasingly large ensembles. For example,

Miyoshi et al. (2014) show that ensembles of ;1000

members can provide accurate representations of non-

Gaussian prior probabilities that occur for atmospheric

quantities such as moisture. Ensemble statistics can also

exhibit large deviations from Gaussianity when pro-

jected into observation space by nonlinear operators, as

demonstrated by Pires et al. (2010). This problem limits

the effectiveness of Gaussian filters for assimilating re-

motely sensed data such as satellite radiances and radar

reflectivity.

One filtering approach used frequently for low-

dimensional systems is the particle filter (PF) [see

Doucet et al. (2001) and van Leeuwen (2009) for a re-

view]. The PF provides posterior weights to ensemble
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members (also denoted particles), which reflect the

likelihood of observations given each member. These

weights provide a means of estimating properties of the

posterior error distribution with no assumptions re-

garding error distribution for the prior model state. The

weights also determine which members to remove or

duplicate in PF algorithms that include resampling steps,

with the goal of retaining ensemble members in regions

of high probability only.

Despite the many attractive properties of PFs, they re-

quire an ensemble size that increases exponentially with

the dimension of the system (Snyder et al. 2008, hereafter

S08). Naively using too small of an ensemble will cause

theweights to collapse on to a single particle, rendering the

posterior representation meaningless. The failure of the

PF as an affordable filter for high-dimensional systems

remains a fundamental obstacle for applying this method

on problems in geophysics, such as data assimilation for

operational weather prediction models.

Several strategies for overcoming the dimensionality

challenges of PFs have been proposed recently. A com-

mon approach is to prevent the weight collapse by ma-

nipulating the transition density between data assimilation

cycles (i.e., through the propagation of particles in time),

or by drawing particles from a proposal density condi-

tioned on the current observations. The equal-weights PF

(van Leeuwen 2010) and the implicit PF (Chorin et al.

2010) are both examples of this approach. Other methods

use a PF for filtering strongly non-Gaussian portions of

the state space, while maintaining an EnKF for high-

dimensional quasi-Gaussian quantities. Filters based on

this idea include the blended PF (Majda et al. 2014) and

the hybrid particle-ensemble Kalman filter (Slivinski

et al. 2015). Frei and Künsch (2013) also propose a filter

that combines aspects of particle filtering and Kalman

filtering theory. Their method transitions between an

EnKF and a PF, where the EnKF component is weighted

more when filter degeneracy is likely to occur. Another

strategy, introduced in Reich (2013), is to avoid the

random sampling aspect of PFs by solving an optimal

transportation problem for transforming prior particles

into posterior particles. While Ades and van Leeuwen

(2015) have shown some success applying the equal-

weights PF for high-dimensional systems, filters based on

the PF framework have yet to be proven practical for real

geoscience applications.

Strategies used to develop EnKFs into effective tools

for high-dimensional data assimilation may provide

further insight into how to overcome obstacles for PFs.

Both the EnKF and PF use model realizations of the

system state to estimate prior errors, except the EnKF

relies solely on the ensemble mean and covariance to

approximate a probability density function (pdf). The

success of EnKFs in high-dimensional systems is due in

part to the use of covariance localization (Houtekamer

and Mitchell 2001; Hamill and Whitaker 2001). In this

context, localization refers to the tapering of ensemble-

estimated covariances as a function of distance, which is

particularly beneficial for applications containing a large

spatial dimension. By exploiting the fact that the signal-

to-noise ratio of covariances1 tends to decrease at large

distances, localization reduces the influence of obser-

vations on distant state variables during the posterior

update. A typical approach is to represent prior co-

variances using an element-wise product of ensemble

covariances and a correlation function with compact

support (Gaspari and Cohn 1999). Particle filters do not

rely explicitly on prior covariances, so localization in the

same manner is not feasible. Nevertheless, a similar

strategy for reducing the dimensionality constraints of

this filter may be required before it can become a

practical data assimilation method for high-dimensional

problems. Localization strategies have already been

adopted in several non-Gaussian filters, including the

local–local Gaussian mixture filter (Bengtsson et al.

2003), the rank histogram filter (Anderson 2010), and

the moment-matching filter (Lei and Bickel 2011).

The current study presents a new filtering approach

based on the PF that has potential for data assimilation

applications encountered frequently in geoscience. The

proposed method (denoted local PF) provides a general

Bayesian update of particles in regions near the physical

location of observations, while preserving prior particles

away from observations. In doing so, the filter achieves

localized updates in a manner similar to covariance lo-

calization in EnKFs. The local PF is designed to be

both effective for reasonable ensemble sizes and com-

putationally inexpensive, thus making it a viable tech-

nique for large geophysical models. Furthermore, the

new filter is developed using the National Center for

Atmospheric Research (NCAR) Data Assimilation

Research Testbed (DART) software package, which

allows for its direct comparison with other ensemble

filters. This manuscript introduces the local PF algo-

rithm and presents cycling data assimilation experi-

ments performed using the 40-variable Lorenz (1996)

model (denoted L96). The performance benefits of the

new filter are assessed using the ensemble adjustment

Kalman filter (EAKF; Anderson 2001) as a benchmark.

The manuscript is organized in the following manner.

Section 2 presents the PF in its most basic form and de-

scribes localization in the context of the dimensionality

1 The signal-to-noise ratio is the true covariance divided by the

variance of its sample estimate.
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problem that places practical constraints on this approach.

Section 3 introduces the local PF update algorithm, which

incorporates the localization strategy discussed in section

2. Section 4 provides results from cycling data assimilation

experiments and compares the local PF with the EAKF

over a range of configurations. The last section summarizes

results from this study and discusses the potential of the

new filter for large applications.

2. Particle filtering for high-dimensional systems

a. The particle filter

This section introduces the framework for the most

basic sequential PF. Let x be a random vector of length

Nx representing all prognostic state variables of a system

at a given time, and let y be a vector of length Ny con-

taining observations. The observations are related to the

true state xt through

y5H[xt]1 � , (1)

where H is a measurement operator that maps the state

vector into observation space and � is the measurement

error. The only information needed to estimate the

probability density of x conditioned on new observa-

tions is a prior probability p(x) and the likelihood of the

observations p(y j x). Bayes’s theorem provides an ex-

pression for the posterior probability of x given all in-

formation up to the current time:

p(x j y)5 p(y j x)p(x)ð
p(y j x)p(x) dx

. (2)

One means of obtaining p(x j y) is through a Monte

Carlo approximation of the distributions in (2). For ex-

ample, provided with Ne particles sampled from p(x)

(denoted xn, n5 1, . . . , Ne), p(x) can be constructed as a

sum of delta functions centered on each particle:

p(x)’
1

N
e

�
Ne

n51

d(x2 x
n
) . (3)

Likewise, the posterior density can be approximated using

p(x j y)’ �
Ne

n51

w
n

W
d(x2 x

n
) , (4)

with normalized weights, wn/W, provided by

w
n
5 p(y j x

n
), and (5)

W5 �
Ne

m51

w
m
. (6)

The normalization of weights by (6) serves as an esti-

mator for the denominator of (2). The particle approx-

imation of p(x j y) using (4)–(6) follows the simplest

form of sequential importance sampling in which the

proposal density is chosen as the prior probability den-

sity, and the weights from the previous filtering time

are assumed to be equal (Doucet et al. 2001). The as-

sumption of equal prior weights is satisfied if new par-

ticles are resampled from the posterior each filtering

time—as will be the case for the filtering method pro-

posed in this study.

The particle weights can also be applied to estimate

moments of the posterior error distribution:

f (x) 5

ð
f (x)p(x j y) dx ,

’ �
Ne

n51

w
n

W
f (x

n
) . (7)

For example, (7) approximates the posterior mean

using a weighted sum of particles: xa ’�Ne

n51(wn/W)xn.

Functions of this type will be referred to as ‘‘moment-

estimating functions’’ in this manuscript.

b. Filter degeneracy in particle filters

The filter described in section 2a is completely general

in that it makes no assumptions regarding the error

distributions needed to estimate and sample from the

posterior density. Nevertheless, the Ne required to pre-

vent the collapse of the weights onto a single particle

makes the PF impractical for high-dimensional systems.

The convergence of the largest posterior weight to unity

will be referred to as ‘‘filter degeneracy’’ in this discussion.

Under weak assumptions, Bengtsson et al. (2008) prove

that filter degeneracy occurs when Ne increases sub-

exponentially with the state dimension. Their proof holds

for all forms of observation likelihoods, including cases

when observation error distributions are specified to have

heavy tails to delay the weight collapse (van Leeuwen

2003). Bickel et al. (2008) extend the formal proof in

Bengtsson et al. (2008) to include more general condi-

tions. They also emphasize that theNe required to prevent

filter degeneracy depends on the sum of singular values of

the observation-space prior covariance, rather than the

state dimension alone. S08 provide further asymptotic

analysis of the PF for independent and identically dis-

tributed observation likelihoods, and for cases when both

the prior and observation errors are Gaussian. Their

study provides more specific criteria for avoiding the

weight collapse, which requires an exponential increase of

Ne with the variance of the observation log-likelihood

(denoted t2). Here, t2 can be thought of as an estimate of

the state dimension depicted by measurements in y.
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c. Localization as a means of preventing filter
degeneracy

As discussed in section 1, EnKFs rely on covariance

localization to stabilize the filter when Ne is small rel-

ative to the state dimension. S08 speculate that a

similar strategy may be needed in order to reduce the

dimensionality constraint on PFs. To describe how

localization may be achieved in a PF framework,

consider the case where a single observation, y, is

available and posterior weights are calculated using

the likelihood of the observation given each particle.

One means of achieving localization is to extend the

original weights from scalars to vectors of length Nx,

which will be denoted by vn in this manuscript. The

resulting vectors form the columns of a Nx 3Ne

weighting matrix, and are constructed to reflect the

local influence of observations on the posterior esti-

mate. As in EnKFs, the influence of observations on

neighboring state-space updates is specified using

prior knowledge of the ‘‘physics’’ of the system (e.g.,

physical length scales contributing to spatial correla-

tions in the prior). This form of localization is achieved

by including the function, l[y, xj, r], in the calculation

of the jth elements of each vn and their normalization

vector V:

v
n,j
5 [p(y j x

n,j
)2 1]l[y, x

j
, r]1 1, and (8)

V
j
5 �

Ne

m51

v
m,j

. (9)

The localization function has a maximum value of 1

when the Euclidean distance between y and xj is 0, and

decays to 0 when y and xj are far apart; the rate of this

decay is controlled by the parameter r. In practice,

l[y, xj, r] should be a smooth function with compact

support. The current study uses (4.10) of Gaspari and

Cohn (1999) for l[y, xj, r], which has a Gaussian-type

structure with a width specified by r.

The equation chosen for forming the vector weights

is motivated by two factors. The first advantage of (8)

is that it accomplishes the original goal of localizing

information spatially. Using the symbol . / to denote

element-wise division, the normalized weights vn. /V

reflect the observation likelihood near y and the prior

weights (1/Ne) away from y. The second motivating

factor involves the computation of weights when given

multiple observations. Assuming observation errors

are independent, p(y j xn) can be writtenP
Ny

i51p(yi j xn),
where yi is the ith observation in y. The values for the

jth elements of the weights given the ith observation

are then found sequentially by

v
(yi)
n,j 5P

i

q51

f[p(y
q
j x(y0)n,j )21]l[y

q
, x

j
, r]11g,

5v
(yi21)
n,j f[p(y

q
j x(y0)n,j )21]l[y

q
, x

j
, r]1 1g, (10)

V
(yi)
j 5 �

Ne

n51
v
(yi)
n,j , (11)

where superscript (yi) refers to quantities that reflect all

observations up to yi and x(y0)n is the prior ensemble

before assimilating any observations in y. For applica-

tions where many observations are assimilated over a

large spatial domain, most values in the product of (10)

will be equal to 1. The resulting weight equation is nu-

merically stable for large Ny, because the rate at which

this product approaches zero depends only on the

number of observations within the localization region

defined by l[yq, xj, r]. After applying (10) and (11) to

calculate the weights, posterior quantities are approxi-

mated using

f (x)’ �
Ne

n51

(v
n
. /V)+f (x

n
) , (12)

where + represents an element-wise vector product. The

weighting vectors provide information regarding the

marginal probabilities for each state variable only, so

(12) cannot estimate multivariate properties, such as

covariance. Because of this shortcoming, the local PF

algorithm outlined in section 3 requires a bootstrap re-

sampling step to make multivariate corrections to

particles.

To illustrate how the localized weight equation affects

the PF estimate of posterior quantities, consider the case

where a single observation is assimilated to estimate the

posterior mean and variance of a random vector x of size

100. Let the observation, y5 1, provide an estimate of

state variable 50 with an error variance equal to unity.

Also, let the true prior pdf be given by p(x)5N(m, B),

where m is a 100-element vector of zeros and B is a co-

variance matrix containing diagonal elements equal to

unity. For this demonstration, off-diagonal elements

in B are modeled using a product of Gaussian and

sinusoidal functions (see Fig. 1). The resulting co-

variance matrix is sparse and contains arbitrary struc-

ture near the diagonal elements, which is typical for

most geophysical applications. Using 50 and 1000 sam-

ples drawn from the prior, red lines in Figs. 2a–d show

the posterior mean and variance estimated using the

standard PF approach given by (5)–(7); the optimal

least squares solution using the true mean and co-

variance is plotted in black for reference. The spatial

structure of posterior quantities is influenced largely by
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the correlations specified in B (see black line in Fig. 1),

so the optimal solution is equal to the prior where var-

iables are uncorrelated with the observed variable. The

small ensemble provides relatively accurate results near

the observation, but overestimates the impact of the

observation on the posterior far from state variable 50.

Even with 1000 particles, the PF mean and variance are

relatively noisy in regions where the observation should

have no effect on the posterior. Figures 2e and 2f show

posterior quantities estimated using the localizing ap-

proach with 50 particles. This example demonstrates

that the approximation in (12) preserves the PF solution

near the observation, while removingmost of the distant

errors (Figs. 2e,f). As a result, the local PF captures

major components of the update using a much smaller

ensemble than would be required otherwise, thus

providing a good approximation when large ensembles

are not available.

Before a PFmethod based on localized weights can be

conceived, localization must first be shown to remove

the filter’s exponential dependence on Ne. Section 3 of

S08 contains a simple example that illustrates the re-

lationship between Ne and state dimension, which will

be reproduced here. The filtering problem of interest

uses Ny 5 Nx, for Nx ranging from 10 to 90, and

xt ;N(0, I). Using particles and � drawn randomly from

N(0, I), the PF is applied with an increasingly large Ne

until the posterior mean produces a domain-averaged

root-mean-square error (RMSE) smaller than either the

prior mean or observations. Following S08, the experi-

ments are performed over 400 trials using Ne 5 103 2k,

where k is increased until meeting the stopping criteria.

These simulations estimate the minimum Ne required

for the PF to provide a result that is more useful than the

prior and observed information as Nx and Ny increase.

Results of these simulations are summarized in Fig. 3 by

indicating the meanNe for each set of trials over various

Nx and Ny. Because the observed state variables are

independent in this example, these simulations provide

an effective demonstration of the PF’s behavior for

problems with increasingly higher degrees of freedom.

As a result, the ‘‘no localization’’ case (black markers in

Fig. 3) is a direct replication of Fig. 2 in S08, which

demonstrates the exponential increase in Ne required

for an increase in system dimension. Localization ef-

fectively removes this exponential relationship, as in-

dicated by trials using (10) and (11) to calculate the

weights (colored markers in Fig. 3). Experiments are

FIG. 1. Correlations between state variable 50 and all other

variables in x modeled using the product of Gaussian and sinu-

soidal functions.

FIG. 2. Mean and variance of the prior solution (dashed black), optimal least squares solution (solid black), and PF

solution (red). The PF uses (a),(b) Ne 5 50; (c),(d) Ne 5 1000; and (e),(f) Ne 5 50 with localization.
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performed for multiple localization radii r, ranging from

near zero to 100, to demonstrate the effects of allowing

varying numbers of observations (degrees of freedom)

in the update of each state variable. For this application,

decreasing r leads to a smaller increase in the Ne re-

quired for the posterior to provide accurate results.2 The

optimal localization emerges as the case in which r/ 0,

because the true prior correlations between neighboring

state variables are equal to zero. This case is equivalent

to applying the PF independently for every element of x,

thus causing the Ne curve to be flat.

In the context of S08’s criteria for weight collapse, the

extension of weights from scalar to vector quantities

means a t2 exists for each state variable. Localization

limits the impact of distant independent observations on

the calculation of weights; therefore, t2 at a given grid

point depends only on observations within the neigh-

borhood defined by the localization function. Provided

that most observations lie outside each neighborhood,

the Ne needed for large Nx and Ny can be reduced

substantially.

3. The local particle filter

The localized weight equations introduced in section

2c provide a means of estimating posterior quantities

using small ensembles for high-dimensional systems that

have finite prior correlation length scales between

spatially separated variables. Generating equally likely

samples from the posterior density, however, presents

another challenge for PFs. A typical sampling strategy

for low-dimensional stochastic systems is to remove

particles with small weights and duplicate particles

with large weights; the simplest example is the boot-

strap filter (Gordon et al. 1993). A similar approach is

applied for the local PF, except localization adds com-

plexity to the process because a unique weight exists for

each element of the state vector. Therefore, particles

must be modified to fit characteristics of the posterior

given by (12). The approach taken in this study is to

process observations at each filter time serially, while

recursively updating the particles. This strategy follows

two steps: 1) apply bootstrap resampling for each ob-

servation and merge prior particles with resampled

particles to generate samples from a distribution with

the approximate first- and second-order moments; and

2) use probability mapping to adjust the new particles so

that they are consistent with the marginal probabilities

given by the set of posterior weights for each variable.

The first step is similar to several previously proposed

methods, which form samples to approximate the first

two moments of the posterior pdf (e.g., Xiong et al.

2006; Nakano et al. 2007; Lei and Bickel 2011). One

additional objective of the first step is to preserve the

sampled particles near each observation, so that the

updated particles approach the bootstrap filter solution

near observations. The second step provides higher-

order corrections to the particles not considered during

the first step.

a. Sampling and merging step

To describe the first part of the algorithm, consider the

adjustment of particles associated with the ith observa-

tion. The prior error distribution before assimilating yi is

approximated with Ne equally likely particles that rep-

resent samples from the probability density given all

observations up to yi21; these particles will be denoted

by x(yi21)
n for n5 1, . . . , Ne. To maintain consistency

with the localized weighting vectors, the local PF

must create posterior particles that satisfy the Bayesian

solution in regions of the state space assumed to be

influenced by yi. Likewise, regions of the state space

assumed to be independent of yi need to maintain

characteristics of the prior. To achieve this result, a

scalar weight ~wn 5 p(yi j x(yi21)
n ) is first calculated for

each particle, then normalized by ~W5�Ne

n51 ~wn. These

weights are then used to sample Ne particles with re-

placement to provide posterior particles that would re-

sult from applying the bootstrap filter. Updates are then

made to the prior particles in a manner that is consistent

with the bootstrap filter solution near observations, and

FIG. 3. Markers indicate the Ne required for the PF to produce

errors smaller than the prior or observations for a givenNx andNy.

Values are plotted for several different localization radii r, along

with a second-degree polynomial fit to the markers.

2 Some data points in Fig. 3 show a slight decrease inNe between

an increasing set of dimensions; this result is caused entirely by

sampling error.
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the first two moments of the localized posterior solution

in the neighborhood of the observation:

x
(yi)
n 5 x(yi) 1 r

1
+(x

(yi21)
kn

2 x(yi))1 r
2
+(x

(yi21)
n 2 x(yi)) , (13)

where, x(yi) is the posterior mean calculated using (12)

and kn is the index of the nth sampled particle.3 The new

particles are formed as linear combinations of the sam-

pled particles and prior particles using the coefficient

vectors r1 and r2 of length Nx to specify the influence of

localization on the updates. The form chosen for (13)

provides a straightforward means of deriving an update

equation that satisfies the bootstrap filter solution at

the location of observations, and the posterior mean and

variance calculated from (12) within the localization

region. A solution that satisfies this criteria (see the

appendix) is given by the set of equations for the jth

elements of r1 and r2:

r
1,j
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
(yi)

2

j

1

N
e
2 1

�
Ne

n51

[x
(yi21)

kn ,j
2 x

(yi)
j 1 c

j
(x

(yi21)
n,j 2 x

(yi)
j )]2

vuuuuut ,

(14)

r
2,j
5 c

j
r
1,j
, and (15)

c
j
5
N

e
(12 l[x

j
, y

i
, r])

l[x
j
, y

i
, r] ~W

, (16)

where s
(yi)2
j is the error variance conditioned on all ob-

servations up to yi. Posterior correlations between state

variables are not considered during this formulation, but

are provided implicitly through the sampling step of the

algorithm. To interpret (13)–(16), consider the asymp-

totic behavior of r1,j and r2,j as l[xj, yi, r] approaches 1

and 0. As l[xj, yi, r]/ 1, cj / 0, and

lim
cj/0

r
1,j
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
(yi)

2

j

1

N
e
2 1

�
Ne

n51

(x
(yi21)
kn,j

2 x
(yi)
j )2

vuuuuut ,

’1,

(17)

because the posterior variance is approximately equal

to the sampled particle variance when l[xj, yi, r]5 1.

Likewise, limcj/0r2,j 5 0, which leads to (13) placing all

weight onto the sampled particles. As l[xj, yi, r]/ 0,

cj /‘, and

lim
cj/‘

r
2,j
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
(yi)

2

j

1

N
e
2 1

�
Ne

n51

(x
(yi21)
n,j 2 x

(yi)
j )2

vuuuuut ,

51,

(18)

because the posterior variance is equal to the prior variance

when l[xj, yi, r]5 0. At the same time, limcj/‘r1,j 5 0,

which leads to (13) placing all weight onto the prior

particles.

The sampling step provides a means of adjusting

particles to fit the general Bayesian posterior solution

near the observations. Because each sampled particle is

combined with a prior particle, the resulting posterior

ensemble containsNe unique model states, which avoids

the collapse of the ensemble variance during the serial

assimilation of observations. Random sampling errors

introduced during each update step may accumulate

after processing several observations. To reduce these

errors, the mean and variance terms in (14) are esti-

mated using (10)–(12), which are independent of the

sampling and update procedures described above. This

part of the algorithm requires storing the prior particles

before assimilating the first observation [i.e., x(y0)n ,

n5 1, . . . , Ne] and updating the weighting matrix se-

quentially with each new observation according to (10)

and (11). Last, the index of sampled particles replaces

the index of removed particles in (13), so that kn is equal

to n for the first occurrence of each particle selected

during sampling. This step ensures that particles that

survive the sampling step undergo minimal adjustment

by (13).

In addition to localization, the filter’s stability for

small ensemble sizes can be improved by multiplying

l[xj, yi, r] by a scalar a, where a, 1. This step forces the

weights to be more uniform in regions where observa-

tions have a large impact on the filter update. The

modification to l[xj, yi, r] reduces the update of state

variables near observations in a manner similar to ‘‘re-

laxation’’ approaches used in some formulations of the

EnKF (Zhang et al. 2004;Whitaker andHamill 2012). In

addition, ~wn is replaced with [p(yi j x(yi21)
n )2 1]a1 1 to

maintain consistency between the scalar weights used to

resample particles and the vector weights used in the

moment-estimating equations. This step also places a

minimum on the weights calculated before normaliza-

tion and increases the number of unique particles se-

lected during the sampling step. Problems arise when

errors differ between observations, in which case, the

likelihood values can be orders of magnitude different

between various observation types. In this case, the

weights must be normalized before applying a.

3Multiple copies of particles may result from the sampling,

causing duplicate kn indices to exist.
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b. Probability mapping step

After updating the particles within the localization re-

gion using (13), higher-order corrections are then made

using probability mapping methods used frequently for

debiasing model output (e.g., Ines and Hansen 2006; Piani

et al. 2010;Haerter et al. 2011). Themethod chosen for this

study is the kernel density distribution mapping (KDDM)

approach developed by McGinnis et al. (2015) for non-

Gaussian densities. KDDM operates by mapping a prior

sample into a posterior sample that matches the quantiles

of a specified posterior distribution—here the desired

posterior distribution is defined by the prior particles and

their posterior weights. One advantage of KDDM is that

when applied separately for each state variable in x, the

resulting posterior ensemble contains approximately the

same correlations as the prior ensemble.4 Therefore, uni-

variate KDDM steps can be applied to the particles while

maintaining the cross-variable correlations that resulted

from the sampling part of the update algorithm described

above. For simplicity in notation, denote the jth values of

input (prior) and output (posterior) particles as xfn,j and

xan,j, respectively. Starting from the recently updated par-

ticles and weights, KDDM uses the following steps to

perform the mapping:

1) Approximate the prior and posterior densities using

linear combinations of Gaussian kernels. This step

uses a sum of kernels centered on each xan,j, which are

weighted by 1/Ne to form a prior pdf (pdff ) and

v
(yi)
n,j /V

(yi)
j to form a posterior pdf (pdfa). A fixed

kernel bandwidth of 1 is chosen for this study, but

different choices may be necessary for more complex

filtering problems.

2) Integrate the two pdfs numerically via the trapezoid rule

to form the prior cdf (cdff ) and posterior cdf (cdfa).

3) Apply cubic spline interpolation to find the prior cdf

values at the location of each prior member: cfn,j 5
cdff (xfn,j).

4) Estimate posterior particles by applying cubic spline

interpolation to find the inverse of the posterior cdf

at each cfn,j: x
a
n,j 5 cdfa21(cfn,j).

The impact of probability mapping on the performance

of the filter is discussed in section 4.

c. Algorithm summary and example

Algorithm 1 provides a pseudocode description of the

local PF. The major steps of this algorithm are illustrated

by the schematic in Fig. 4 for a case where two obser-

vations (y1 and y2) are assimilated for the 40-variable

L96 model using four particles. The filter starts with an

ensemble of equally weighted prior particles [denoted

x(y0)n ], shown in model space and observation space in

Figs. 4a and 4b, respectively. Particles are first sampled

with replacement to select x
(y0)
kn

for n5 1, . . . , 4 (Fig. 4c)

based on scalar weights proportional to p(y1 j x(y0)n )

(Fig. 4d). The next step applies (13) to merge each x(y0)n ,

x
(y0)
kn

pair to get x(y1)n for n5 1, . . . , 4 (Fig. 4e.). The vector

coefficients r1 and r2 needed for the merge step depend

on spatially smooth vectors of posterior weights, which

are calculated from (10) and (11) and plotted for each

particle in Fig. 4f. By construction, these weights

are equal to the standard nonlocalized PF weights near

y1 and 1/4 away from y1. After processing the first ob-

servation, y2 is assimilated through the same process,

using x(y1)n for n5 1, . . . , 4 as the new prior particles

(Figs. 4g–l). Note that the weighting vectors plotted in

Fig. 4l for assimilating y2 also depend on the previous

weights in Fig. 4f from (10). These weights are used with

the original set of prior particles (from Fig. 4a) to esti-

mate posterior quantities needed for (13). The particles

then undergo a final adjustment in Fig. 4m using prob-

ability mapping.

Algorithm 1 Localized particle filter algorithm

Input: Initial weighting matrix (vn,j 5 1, n5 1, . . . , Ne,

j5 1, . . . , Nx), prior ensemble (x(y0)n , n5 1, . . . , Ne),

observations y, inflation parameter a, and localization

length scale r.

for i5 1:Ny do

for n5 1:Ne do

~wn )[p(yi j x(yi21)
n )2 1]a1 1

end for

~W) �
Ne

n51

~wn

Draw particles x
(yi21)
kn

, for n5 1, . . . , Ne, from

current prior according to weights ~wn/ ~W

for j5 1:Nx do

for n5 1:Ne do

v
(yi)
n,j )v

(yi21)
n,j f[p(yi j x(y0)n )21]l[yi, xj, r]a1 1g

end for

V(yi)
j ) �

Ne

n51

v
(yi)
n,j

x
(yi)
j ) �

Ne

n51

v
(yi)
n,j

V(yi)
j

x
(y0)
n,j

s
(yi)2
j ) �

Ne

n51

v
(yi)
n,j

V(yi)
j

[x
(y0)
n,j 2 x

(yi)
j ]2

cj )
Ne(12 l[xj, yi, r]a)

l[xj, yi, r]a ~W

4 To achieve this result, it is also necessary to center and scale the

sample to have a mean of 0 and variance of 1, then recenter and

scale the sample after the mapping to reflect the posterior mean

and variance.
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r1,j )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
(yi)2
j

1

Ne21
�
Ne

n51

[x
(yi21)
kn ,j

2 x
(yi)
j 1 cj(x

(yi21)
n,j 2 x

(yi)
j )]2

vuuuut
r2,j ) cjr1,j

x
(yi)
n,j ) x

(yi)
j 1 r1,j(x

(yi21)
kn,j

2 x
(yi)
j )1 r2,j(x

(yi21)
n,j 2 x

(yi)
j )

end for

end for

Apply probability mapping for higher-order corrections

to posterior sample.

4. Cycling data assimilation experiments

a. Test problem: The Lorenz (1996) model

In this section, the local PF is applied for the L96 model

to test the localization and update strategies, and compare

the new method with the EAKF. The L96 model contains

Nx equally spaced variables, xi for i5 1, . . .Nx, which are

evolved in time using the set of differential equations:

dx
i

dt
5 (x

i11
2 x

i22
)x

i21
2 x

i
1F , (19)

FIG. 4. Schematic illustrating how the local PF assimilates a pair of observations for the L96 model.
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with cyclic boundaries: xi1Nx
5 xi and xi2Nx

5 xi. The

three terms in (19) are analogous to advection, damping,

and forcing terms found in geophysical models, and the

system exhibits varying degrees of chaotic behavior

depending on the choice of F and Nx. For experiments

performed in this study,Nx and F remain fixed at 40 and

8, respectively, which leads to chaotic behavior in the

system dynamics (Lorenz 1996; Lorenz and Emanuel

1998). Forward integration of (19) is performed nu-

merically using the fourth-order Runge–Kutta method

with a time step of 0.05 time units [defined arbitrarily

as 6 h; see Lorenz (1996)]. The L96 model and EAKF

data assimilation system used in this study are included

in the open source NCAR DART software package

(Anderson et al. 2009; available online at http://www.

image.ucar.edu/DAReS/DART.

b. Experiment setup

Several data assimilation experiments are constructed

to compare the PF and EAKF for model and observing-

system configurations that mimic applications found in

geoscience. These experiments also provide an opportu-

nity to examine the sensitivity of the filters to ensemble

size and localization over a variety of problems. Both the

PF and EAKF use a Gaspari and Cohn (1999) correlation

function for localization with a shape that is modified by

specifying a half-width r for its decay to 0.5 In addition to

localization, the PF and EAKF each contain a secondary

mechanism for preventing filter divergenceduring cycling.

The EAKF uses the Anderson (2007) adaptive state-

space inflation scheme with the prior standard deviation

for the inflation coefficient g fixed at 0.1. This choice of

g is consistent with previous studies using the EAKF with

adaptive inflation for the L96model (e.g., Anderson 2007,

2009). For the PF, the localization function is multiplied

by the coefficient a as described in section 3. The optimal

a for cases examined in this study ranges from 0.95 to 1,

depending on ensemble size.

The relative performance of the PF with respect to the

EAKF is examined for a number of model and filter

configurations. These experiments include three forms

ofmeasurement operatorH and several different system

parameters, such as the time between observations (Dt)
and the number of observations. Unless stated other-

wise, the default configuration for these experiments

consists of a linear interpolation forH,Dt5 6 h,Ny 5 20,

and no model error. Observations are generated from a

‘‘truth’’ simulation using (1) with �;N(0, I). Spatial

observation locations are fixed with time and chosen

randomly from a Gaussian distribution centered on

variable 20 with a standard deviation of 1/5 the domain

length. The resulting network has most of the observa-

tions in one region of the model domain, leaving por-

tions of the domain relatively unobserved in a manner

similar to environmental observing platforms. The ob-

servations are assimilated over 10 000 cycles to provide a

large sample for verifying the performance of the two

data assimilation systems. After a 1000-cycle spinup

period, domain-averaged prior RMSE and ensemble

spread are averaged over the remaining 9000 cycles to

summarize results from the experiments. The PF and

EAKF are compared in this section for optimally tuned

values of localization (and a for the PF). The ‘‘optimal’’

configuration of the PF and EAKF are found from off-

line sensitivity experiments using ranges of r and a to

find the configuration that yields the lowest prior

RMSEs. These values include r every 0.01 units from

0.02 to 0.10, every 0.03 units from 0.12 to 0.24, and every

0.10 units from 0.30 to 0.50. Likewise, the local PF is

tested for values of a between 0.9 and 1.0 every 0.01

units. The optimal system parameters found in these

tests will be discussed at the end of the section.

c. Sensitivity to ensemble size and observation type

For the first test of the local PF, both filters assimilate

observations using ensemble sizes of 5, 10, 20, 40, 100,

200, 500, and 1000 particles. Three separate sets of ex-

periments are performed, each differing only in the

specification of H: the first experiment uses an in-

terpolation from model space to observation space for

H, the second experiment extends H to include jxj, and
the third experiment applies ln(jxj) to the interpolated

values. Given a univariate random variable x;N(1, 1),

Fig. 5 illustrates the effects of transforming Gaussian

samples into observation space for each H[x]. For ref-

erence, the red dashed lines indicate the Gaussian esti-

mate of the observation-space priors, calculated from

the mean and variance of the transformed sample. The

two nonlinear measurement operators introduce an

additional source of non-Gaussianity that may limit the

effectiveness of the EAKF.

Figure 6 shows average prior ensemble mean RMSEs

and spread for each observation type and Ne using the

three versions of H presented in Fig. 5. The local PF is

applied without KDDM (black lines) and with KDDM

(blue lines) to compare the benefits of using probability

mapping when updating posterior particles. KDDM

requires about 40 particles to provide stable filtering

results, owing to the kernel approximation of pdfs in the

algorithm; for this reason, Fig. 6 does not show results

using KDDM with small ensembles. Experiments using

nonlinear H show marginal improvements in the PF’s

5 Values of r represent the fraction of the L96 model

domain length.

68 MONTHLY WEATHER REV IEW VOLUME 144

http://www.image.ucar.edu/DAReS/DART
http://www.image.ucar.edu/DAReS/DART


accuracy when probability mapping is used, thus dem-

onstrating the performance benefits of applying this

method. For future filter comparisons in this study, the

KDDM step will be used whenever Ne $ 40.

In general, the PF provides satisfactory results for Ne

as small as 5; that is, the variance in the ensemble

matches the true forecast error on average, and the prior

errors remain lower than the climatological errors for

this system—which are found to be about 4.1 from long

free-running forecasts. Because these results are un-

attainable from standard PF approaches, the experi-

ments confirm that localization accomplishes the goal of

preventing filter degeneracy for small ensembles.

When H is linear, the PF requires 200 members to

match the performance of the EAKF (Fig. 6a). The

relative performance of the PF with respect to the

EAKF depends on the underlying error distributions of

prior quantities and the ensemble size used for approx-

imating probabilities. The PF provides an advantage

over the EAKF only when ensemble forecasts present

enough evidence to suggest the true prior error distri-

bution is non-Gaussian with some degree of confidence.

To determine whether significant differences from nor-

mality exist in prior pdfs, the Kolmogorov–Smirnov

(KS) test is applied to prior ensembles from PF data

assimilation cycles. Table 1 shows the percentage of

cycles in which the prior sample for the fifth state

variable6 fails the KS test at the 5% significance level,

which provides an estimate of how frequently the en-

semble can detect deviations from normality. The first

column of the table contains percentages from the linear

H experiment for each ensemble size tested. Because of

sampling uncertainty, values remain below 10% untilNe

reaches about 200, which agrees well with the Ne

FIG. 6. Prior mean RMSE and spread as a function of ensemble

size using (a)–(c) three different types of observations, and

(d) percent improvement of PF over EAKF for each experiment.

Tick marks on curves in (a)–(c) indicate data points.

FIG. 5. Probability densities demonstrating the non-Gaussian

effects of three different measurement operators. The red dashed

line shows a Gaussian curve using the same mean and variance as

the probability densities given by the blue shading.

6 Variable 5 is chosen for this test because it falls between

the densely observed and sparsely observed regions of the

model domain.
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required for the PF to begin producing smaller RMSEs

than the EAKF (Fig. 6a).

WhenH is nonlinear, the number of particles required

for the PF to provide more accurate solutions than the

EAKF decreases. For example, the experiment pre-

sented in Fig. 6b introduces nonlinearity by observing

the absolute value of the system state. This observation

type poses problems for Gaussian filters when the prior

ensemble contains both positive and negative values

following the interpolation of the model state to obser-

vation locations. Because the EAKF is suboptimal for

this observation type, its performance is surpassed by

the PF for ensembles containing fewer than 40 particles.

When H5 lnjxj, the additional source of nonlinearity

allows the PF to outperform the EAKF using as few as

10 particles (Fig. 6c). For this case, the PF requires only

five particles to provide forecast results that are as ac-

curate as the EAKF. The second column of Table 1

contains the percentage of times the observation-space

priors deviate from normal for Ne 5 100. The KS test

shows increasingly higher occurrences of non-Gaussian

probabilities from the three operators tested in this

study, thus explaining why the PF becomes pro-

gressively more beneficial in each filtering experiment.

To provide a more complete assessment of filter per-

formance when non-Gaussian priors are detected fre-

quently, Fig. 7 shows rank histograms calculated from

PF and EAKF priors during the two nonlinear H

TABLE 1. Percentage of cycles containing a prior sample for variable 5 that fails the Kolmogorov–Smirnov test at the 5% significance

level, tabulated for a range of system parameters. Unless specified otherwise, results are from experiments using the default filter and

observation network configuration.

Ne % cycles H[x] % cycles Ny % cycles Dt (h) % cycles

10 0.00 x 7.44 10 0.15 3 6.20

20 0.04 jxj 10.51 20 7.44 6 7.54

40 0.54 ln(jxj) 51.62 40 6.58 12 11.63

100 7.44 — — 100 2.68 24 8.22

200 25.33 — — — — 48 4.01

500 49.68 — — — — — —

1000 69.10 — — — — — —

FIG. 7. Rank histograms calculated from (a)–(j) PF and (k)–(t) EAKF priors for the H[x]5 jxj and H[x]5 ln(jxj) experiments using

Ne 5 100. (from left to right) The verification is performed for state variables 1, 9, 17, 25, and 33.

70 MONTHLY WEATHER REV IEW VOLUME 144



experiments. Histograms are calculated for every eighth

state variable in the model domain using the Ne 5 100

cases. This verification counts the number of times the

truemodel state lands in discrete bins formed by ranking

prior particles in ascending order (Anderson 1996;

Hamill and Colucci 1996; Talagrand et al. 1997). Non-

uniform distributions of frequencies across the bins can

indicate deficiencies in probabilistic forecasts; for ex-

ample, the EAKF experiments demonstrate clear de-

viations from the expected flat distribution (e.g.,

Figs. 7m–o,r–t). On the other hand, rank histograms

produced from PF forecasts are relatively uniform, with

the exception of a few variables that yield a larger than

ideal number of occurrences where the truth lies outside

the range of particles (e.g., Figs. 7b,c,i).

Though not shown, the perturbed-observation EnKF

(Houtekamer and Mitchell 1998) is also applied for ex-

periments with nonlinear H. Lei et al. (2010) found this

method to be more stable than deterministic filters, such

as the EAKF, when prior ensembles exhibit strong non-

Gaussianity. Nevertheless, simulations performed with

the perturbed-observation filter yielded no significant

benefits over the EAKF for the tested applications—

possibly due to the use of localization and adaptive in-

flation to treat systematic errors during data assimilation.

d. Sensitivity to observation network

In this subsection, the filters are applied for various

observation networks to explore potential deficiencies

in the local PF algorithm that may arise for applications

with sparse and dense observations. These tests are

performed usingNe fixed at 100 and a linearH. With this

configuration and the default observation network, the

PF performs almost as well as the EAKF (see Fig. 6a),

providing a natural choice of parameters for this com-

parison. The 100-member ensembles are also small

enough to allow for many simulations to be performed

at a low computational cost. Using the approach de-

scribed at the beginning of this section, observation

networks are generated by choosing random observa-

tion locations for Ny 5 10, 20, 40, and 100.

Figure 8a compares prior ensemble mean RMSEs and

spread from the cycling experiments after tuning the

data assimilation parameters for each observation net-

work. WhenNy is decreased to 10, the resulting increase

in prior ensemble spread leads to a smaller number of

particles landing in the high likelihood region where

observations are present. Nevertheless, errors in the PF

solution increase for smaller Ny at nearly the same rate

as the EAKF, suggesting that localization continues to

maintain the filter’s stability when fewer observations

are available. Large Ny poses additional challenges for

PFs, because dense observation networks are more

likely to capture a higher number of degrees of freedom

in the system than sparse networks; this assumption is

implicit in studies analyzing the asymptotic behavior of

PFs (see section 2b). Despite this drawback, the local PF

continues to provide accurate results as Ny is increased

for a constant Ne.

These experiments demonstrate that the PF and EAKF

respond similarly to changes in the spatial density of ob-

servations. Likewise, the PF does not produce more ac-

curate results than the EAKF during these experiments.

This result occurs because none of the observation net-

works tested in this section increase the occurrence of

non-Gaussian priors during the cycling data assimilation

(see third column of Table 1). Though not shown, addi-

tional members are required for the PF to outperform

Gaussian methods for the tested observation networks,

because the EAKF solution is quasi-optimal.

The performance of the PF is also examined for ob-

servation networks that measure the state at different

frequencies. Here, Dt values of 3, 6, 12, 24, and 48 h are

used, with Ny fixed at 20. Because the filtering steps in

this experiment occur at different time intervals, results

are verified every 48h to coincide with the largest Dt.
The number of verified cycles, however, is kept consis-

tent with previous 6-h cycling experiments by perform-

ing the data assimilation over 8 times as many days.

Similar to the results using a range of Ny, simulations

show that the local PF exhibits sensitivity to temporal

observation density that is consistent with the EAKF

FIG. 8. Prior mean RMSE and spread as a function of (a) ob-

servation density and (b) observation frequency for the EAKF and

PF. Tick marks on each curve indicate data points.

JANUARY 2016 POTER JOY 71



(Fig. 8b). Furthermore, the PF provides no practical

benefit over the EAKF when the L96 system state is

measured infrequently, which follows from the de-

creasing percentage of non-Gaussian priors for Dt.
12 h (fourth column of Table 1). Increasing Dt in these

experiments allows forecast errors to approach the cli-

matological errors for the L96 system, which are ap-

proximately Gaussian. Though not included in Table 1,

additional experiments using 1000 particles to assimilate

observations every 48h yield a similar percentage of

cycles that deviate from normal as the 6-h cycling case

(71.68% vs 69.10%).

e. Practical advantages of the local PF

Experiments presented in previous parts of this

section demonstrate the feasibility of a localized PF for

data assimilation through systematic testing of the fil-

ter over a range of configurations. This subsection

highlights some of the practical advantages of the local

PF for real environmental analysis and prediction

problems.

For themodeling system tested in this study, theKS test

results in Table 1 suggest that the PF provides the largest

benefits when Ne is large or when H is nonlinear—

otherwise, non-Gaussian priors are detected infrequently.

The latter of the two cases is a common occurrence for

filtering problems in geophysics. For example, an appli-

cation relevant for weather analysis and forecasting is the

assimilation of remotely sensed data from satellites and

radars. Here, filters must process densely spaced obser-

vations that relate nonlinearly to the model state, which

challenges the Gaussian assumptions of Kalman filtering–

basedmethods. An analog to this problem is tested for the

L96 system by assimilating a network of 100 randomly

located observations every 6h using H[x]5 ln(jxj). Re-

sults are presented in Fig. 9 for ensemble sizes ranging

from 5 to 1000. For this configuration, the PF provides

substantial benefits over the EAKF (even for Ne 5 5),

owing to the large number of observations and non-

linearity in the measurement operator. This example

presents a case where the PF can extract information

from a dense observation network much more effectively

than the EAKF.

Another benefit of the PF over the EAKF is that the

optimal localization half-width is less sensitive to the

type of observation being assimilated. Figure 10 shows

optimal r as a function of Ne for the three measurement

operators used in Fig. 6, and the example presented in

Fig. 9. The main objective of localization is to reduce

sampling errors resulting from the approximation of prior

pdfs with finite-sized ensembles of imperfect model

forecasts. Nevertheless, the r required to prevent filter

divergence in EAKF experiments with nonlinear H

(section 4a) is found to be much smaller compared to

experiments with linearH. Two possible explanations for

this results are the following: 1) the EAKF uses localiza-

tion to cope with systematic errors—in addition to sam-

pling error—that may occur during the data assimilation,

such as incorrect assumptions regarding the linearity ofH;

or 2) suboptimal estimates of posterior particles lead to

errors in succeeding forecasts, which introduces additional

sampling errors in prior ensembles. Since the PFmakes no

assumptions about H, the optimal r in these experiments

depends mostly on Ne alone. Though not shown, the op-

timal r from observation frequency and density tests in

section 4d also exhibits a larger sensitivity in EAKF sim-

ulations than in PF simulations. The r used to produce the

EAKF results in Fig. 8 ranges from 0.21 to 0.50, while the

optimal r in PF cases remains close to 0.30, regardless of

the observation network.

5. Conclusions

This paper introduces a localizedPF for high-dimensional

nonlinear filtering applications. The new filter calculates a

FIG. 9. PriormeanRMSE and spread as a function of ensemble size

H[x]5 ln(jxj). Tick marks on each curve indicate data points.

FIG. 10. Optimal localization half-width as a function of en-

semble size for each experiment. Tickmarks on each curve indicate

data points.
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vector of posterior weights for each particle based on

the likelihood of observations within neighboring re-

gions of each model state variable. Similar to localized

EnKFs, the local PF reduces the influence of distant

observations on posterior weights by exploiting the fact

that the signal-to-noise ratio of cross-variable co-

variances tends to decrease at large distances in geo-

physical systems. Because the localized weights depend

on much fewer observations than what is used by tra-

ditional PFs, the local PF does not require an ensemble

size that increases exponentially with the dimension of

the system. To generate samples from the posterior

density, the local PF processes observations serially,

while sequentially updating each particle. The first step

in this process is to sample particles with replacement

based on the likelihood of the current observation

given each particle. Particles removed during sampling

are replaced with linear combinations of sampled par-

ticles and prior particles in a manner that satisfies the

posterior mean and variance, and cross-variable cor-

relations are updated via the sampling part of the

algorithm. The sample is then modified to match

higher-order statistics of the posterior by applying a

nonparametric probability mapping method. These

steps result in an ensemble of unique model states that

reflect the marginal Bayesian posterior density near

observations and the prior density away from obser-

vations. Therefore, the filter approximates the standard

particle filter solution when the number of particles is

too small to prevent filter degeneracy—similar to lo-

calization in EnKFs.

In addition to avoiding the assumptions of EnKFs,

the new filter is designed to be computationally af-

fordable for large applications. For each observation,

the local PF algorithm requires updating the weighting

vectors, resampling particles, and calculating the co-

efficients needed for the update equation; these cal-

culations are made within the localization region only

and are easily parallelized. As a result, the cost of

performing the particle update, before probability

mapping, is comparable to the EAKF data assimilation

system in DART. Applying the probability mapping

step nearly doubles the computing time needed for the

local PF in the experiments performed in this study, but

the relative cost of this method becomes trivial as the

number of observations increases. Another practical

advantage of the local PF is that it does not require

stochastic forcing terms in the model dynamics, as is

often the case for PF methods that rely on a proposal

density to prevent filter degeneracy. Because errors in

atmospheric and oceanic models are often unknown,

ensembles are typically evolved in time with a de-

terministic model.

The local PF algorithm presented in this manuscript

has qualities that may be problematic for certain

geophysical applications. Like EnKFs, the localized

updates are not guaranteed to preserve physical bal-

ances in the posterior model state. Mitchell et al.

(2002) show that imbalance issues are made worse for

EnKFs as the localization length scale decreases,

which is equally true in a PF framework. Preliminary

results assimilating observations in an atmospheric

model (not shown) suggest that particles exhibit simi-

lar levels of imbalance when updated using the local

PF and EAKF. The local PF also assumes observation

errors are uncorrelated in order to localize the poste-

rior update provided from each observation; the same

assumption is made in sequential EnKF algorithms,

such as the EAKF used here. This assumption may not

be valid for certain remotely sensed observations, such

as satellite retrievals (Stewart et al. 2008). Neverthe-

less, both issues exist for most data assimilation

methods used regularly for atmospheric and oceanic

models. Furthermore, the filter may still need large

numbers of particles for applications where the de-

grees of freedom in the system cannot be isolated

easily using localization.

The local PF has been added to the NCAR DART

software package for thorough testing with the

40-variableLorenz system.Results from10000-cycle data

assimilation experiments show that the new filter re-

quires only 5 particles to prevent filter degeneracy for

this model. With linear measurement operators and

approximately Gaussian priors, the local PF produces

lower prior mean RMSEs than the DART EAKF

(with localization and adaptive inflation) for ensemble

sizes larger than 200. The largest benefit of the local PF

occurs in applications where dense networks of ob-

servations that relate nonlinearly to the model state

are assimilated. In this case, the local PF provides

substantial benefits over the EAKF using as few as five

particles. These results provide an incentive to explore

the potential of the local PF for high-dimensional

geophysical systems, such as weather and ocean

models. Possible applications include the assimilation

of remotely sensed data such as satellite radiances or

radar reflectivity, which require highly nonlinear

measurement operators. The author has already begun

exploring the feasibility of this method in larger

models. Though not discussed in the current study, the

local PF requires only 25 members to estimate accu-

rate posterior statistics in cycling data assimilation

experiments performed with a coarse-resolution at-

mospheric general circulation model containing 28 200

variables. Data assimilation tests with this model will

be the topic of a future study examining the limitations
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and benefits of the new filter for high-dimensional

problems.
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APPENDIX

Derivation of Update Equations

This appendix describes how the coefficients used in

the PF update equations are formed. As discussed in

section 3, the derivation begins by assuming that the jth

state variable of the nth particle is updated according to

x
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n,j 5 x
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1,j
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2 x
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j )1 r
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The sample mean of the updated particles in (A1) is first

set equal to the posterior mean:
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The approximation in (A2) comes from replacing the

mean of sampled particles with the mean estimated

from scalar weights without localization ~x
(yi)

j . Solving

(A2) for r2,j gives
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The sample variance of particles updated by (A1) is also

set equal to the posterior variance:
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Solving (A4) for r1,j and keeping the positive solution

gives
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Using the moment-estimating function (10) to calculate

the posterior mean and variance terms, (A3) and (A5)

provide expressions for the coefficients r1,j and r2,j
needed to update particles using (A1).

Equation (A3) can be simplified to avoid calculating

the prior and posterior means required for cj. The first

step is to expand each term in cj using moment-

estimating functions based on the likelihood of yi,

given the current particles:
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The coefficients in (A6) reduce to a constant if [(v
(yi)
n,j )/

(V(yi)
j )2 ( ~wn)/ ~W][1/(Ne)2 (v

(yi)
n,j )/(V

(yi)
j )]21 is constant

for all n. To show that this is the case, the weights are

expanded to
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A subtle difference exists between (A7) and the weight

equation used throughout the manuscript [see (10)]:

(A7) calculates weights based on the current observa-

tion and particles that reflect all past observations, while

(10) calculates weights based on the current observation,

the prior particles before assimilating observations at

the current time, and weights that reflect all past ob-

servations. The two methods provide equivalent results

so long as the updated particles reflect the posterior

weights after each observation is processed. After

substituting (A7)–(A10) into [(v
(yi)
n,j )/(V

(yi)
j )2 ( ~wn)/

~W][1/(Ne)2 (v
(yi)
n,j )/(V

(yi)
j )]21, cj reduces to an expression

that is constant for all n, and depends on the localization

function, ensemble size, and sum of likelihoods for the

current observation:
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