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ABSTRACT

The assessment of climate change impacts on water resources involves several methodological decisions, in-

cluding choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic

modeling approaches. Among these, hydrologic model structure selection and parameter calibration are

particularly relevant and usually have a strong subjective component. The goal of this research is to improve

understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic

processes. The study is conducted in three basins located in the Colorado headwaters region, using four different

hydrologicmodel structures [PRMS,VIC, NoahLSM, andNoahLSMwithmultiparameterization options (Noah-

MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic

changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared

before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm.

Hydrologic changes are examined via a climate change scenario where the Community Climate System Model

(CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting

(WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hy-

drologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically,

intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even

after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors

in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydro-

logic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Pablo A. Mendoza, Department of Civil, Environmental, and Architectural Engineering, University of

Colorado Boulder, UCB 428, Boulder, CO 80309.

E-mail: pmendoza@colorado.edu

762 JOURNAL OF HYDROMETEOROLOGY VOLUME 16

DOI: 10.1175/JHM-D-14-0104.1

� 2015 American Meteorological Society

mailto:pmendoza@colorado.edu


1. Introduction

There is now general agreement in the scientific com-

munity that the rising levels of carbon dioxide in the at-

mosphere are modifying historical climate conditions

(Stocker et al. 2014). One of the most relevant impacts of

future climate change on society is changes in regional

water availability for municipal, industrial, mining, irriga-

tion, hydropower generation, andother activities (Xu 1999;

Brekke et al. 2009; Wagener et al. 2010). This situation is

particularly critical for the Colorado River basin (CRB)

because of the susceptibility of runoff variations due to

changes in precipitation and temperature, which stem from

changes in evapotranspiration ET processes and snowpack

accumulation–melt patterns (Christensen andLettenmaier

2007). This vulnerability, together with the importance of

theCRB forwater resources supply for the growing regions

of western and southwestern United States, has motivated

many climate change studies in this area based on different

modeling approaches and therefore resulting in a diverse

set of conclusions (Milly et al. 2005; Christensen and

Lettenmaier 2007; Hoerling and Eischeid 2007; Ray

et al. 2008; Hoerling et al. 2009; Rasmussen et al. 2011,

2014; Miller et al. 2011, 2012; Vano et al. 2012, 2014).

The large uncertainty in estimates of hydrologic

changes (i.e., changes in hydrologic variables obtained

from hydrologic models) due to climate perturbation is

not surprising for the hydrologic research community.

In recent decades, many sources of uncertainty for

quantifying climate change impacts on water resources

have been identified (Chen et al. 2011), including:

1) selection of greenhouse gas emission scenarios,

2) choice of climate model(s), 3) specification of cli-

mate model initial conditions, 4) choice of meteoro-

logical forcing downscaling methods, 5) selection of

hydrological model structures, and 6) choice of hy-

drological model parameter sets. Understanding risks

associated with climate change requires estimating the

uncertainty at each step of the modeling process (Xu

1999; Bergström et al. 2001; Wilby 2005; Wilby and

Harris 2006; Graham et al. 2007; Chen et al. 2011; Vano

et al. 2014). Among these elements, the choices of cli-

mate model (Murphy et al. 2004) and downscaling

methods (Gutmann et al. 2012, 2014) have received

significant attention, because recent studies have found

that these are the main contributors to overall un-

certainty (Wilby and Harris 2006; Chen et al. 2011).

Although a considerable number of past studies fo-

cused on the treatment of uncertainty in climate change

projections, only a few have focused on hydrologic model

structures and parameter uncertainty. For instance,

Wilby (2005) explored parameter stability and identifi-

ability using two hydrologic model structures, finding

1) that transferability of model parameters between wet

and dry periods depends on the representativeness of the

training period and 2) thatmodel structure uncertainty on

projected streamflow can be comparable to the un-

certainty due to choice of emission scenario when the

simplest model (low-flow period) is considered. Jones

et al. (2006) applied three different models in 22 Aus-

tralian catchments covering a wide range of climates and

demonstrated that runoff variations due to changes in

rainfall and evapotranspiration are clearly model de-

pendent. Jiang et al. (2007) compared outputs from six

hydrological models for mean annual and monthly

changes in hydrologic variables due to perturbations of

precipitation and temperature, finding 1) that differences

acrossmodels depend on the climate scenario, the season,

and the variable of interest and 2) that models without

thresholds in soil moisture have larger differences in

projected changes in soil storage. Poulin et al. (2011) used

two different hydrological models to compare the effects

of model structure against parameter equifinality on the

uncertainty of hydrologic simulations, finding that model

structure uncertainty dominates. More recently, Miller

et al. (2012) found that hydrologic model choice has

a large effect on the portrayal of climate change impact in

the San Juan River basin. Vano et al. (2012) evaluated

hydrologic changes due to perturbed climate scenarios

using six hydrologic–land surface models in the CRB,

demonstrating large intermodel differences in runoff

changes due to shifts in precipitation and temperature.

Surfleet et al. (2012) compared a large-scale approach,

a basin-scale approach, and a site-specific approach in the

Santiam River basin (United States), showing that dif-

ferences in the portrayal of climate change impacts can be

attributed to scale and the ability of themodels to capture

local hydrological processes.

Despite the increasing awareness of the implications of

hydrologic model structures on the estimation of climate

change impacts on hydrology, the effects of model rep-

resentation of specific processes (e.g., evapotranspiration,

snow accumulation and ablation, and percolation) on the

overall hydrologic model response still remains unclear.

In view of this, the main goal of this paper is to compare

hydrologic changes obtained with different hydrologic

model structures in terms of annual water balance,

monthly simulated processes (e.g., ET, snowpack, and

soil moisture), and signature measures of hydrologic be-

havior (e.g., runoff seasonality and long-term base flow)

for uncalibrated and calibrated model simulations.

2. Study area

The headwaters of the CRB are snow dominated, with

approximately 85% of the streamflow resulting from

APRIL 2015 MENDOZA ET AL . 763



snowmelt. Changes in snowpack can therefore have

a large impact on hydrologic processes within the

Colorado headwaters (Miller and Piechota 2008). The

water resources in the CRB are currently allocated to

seven states and Mexico for consumption, irrigation,

and hydropower, among other uses. The importance

of the CRB for water management and decision

making, together with strong evidence of a shift in the

hydroclimatology over the past decades (e.g., Miller

and Piechota 2008, 2011), has motivated several

studies to generate streamflow projections under dif-

ferent future climate scenarios (e.g., Milly et al. 2005;

Christensen and Lettenmaier 2007; Hoerling et al.

2009; Bureau of Reclamation 2012). We conduct this

study over three basins in the Colorado headwaters

region—Yampa River at Steamboat Springs, East

River at Almont, and Animas River at Durango—

whose location and elevation ranges are shown in

Fig. 1. These basins are representative of the main

hydroclimatic characteristics of other gauged,

unregulated headwater basins throughout the upper

Colorado River basin (not shown). Moreover, these catch-

ments have been included in many past climate change

studies (e.g., Wilby et al. 1999; Sankarasubramanian

and Vogel 2002; Mastin et al. 2011; Milly and Dunne

2011) and, because of their relatively small size com-

pared to the CRB, they offer a unique opportunity to

perform extensive analysis involving thousands of

model runs (e.g., sensitivity analysis and hydrologic

model calibration), to evaluate different approaches in

climate change impact assessment, and also to provide

detailed understanding of physical processes in the head-

waters of the CRB.

Table 1 summarizes the main hydroclimatic charac-

teristics of the three basins for which historical data are

available, over an 8-yr period (from October 2000 to

September 2008). Mean basin precipitation ranges

between 700 and 900mmyr21, while mean basin ele-

vation is above 2500m MSL. Among these basins, the

Yampa River at Steamboat Springs has the lowest

runoff ratio (smallest runoff and largest precipitation

amounts), and the East River at Almont has the highest

runoff ratio. The land surface of the Yampa and

Animas River basins is predominantly covered by de-

ciduous forests (26% at Yampa and 23% at Animas)

and evergreen forests (37% at Yampa and 39% at

Animas), while the land surface of the East River basin

is mainly covered by evergreen forests (29%) and

grassland–herbaceous (26%).

3. Methods

a. Meteorological forcings

We use outputs from the regional Weather Research

and Forecasting (WRF) Model (Skamarock et al. 2008)

FIG. 1. Location of the basins of interest.
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to force our hydrological simulations. The datasets come

from the WRF historical runs and pseudo global

warming (PGW) simulations with horizontal grid spac-

ing of 4 km described in Rasmussen et al. (2014). The

model physics options used in that study included the

Noah land surface model, version 3.2 (Noah LSM), with

upgraded snow physics (Chen andDudhia 2001; Barlage

et al. 2010); the Thompson mixed-phase cloud micro-

physics scheme (Thompson et al. 2008); the Yonsei

University planetary boundary layer (Hong et al. 2006);

and the Community Atmosphere Model’s (CAM)

longwave and shortwave radiation schemes (Collins

et al. 2006). In current climate, the WRF simulations

have been validated against SNOTEL sites, and pre-

cipitation spatial variability, timing, and intensities are

well represented by the model (Ikeda et al. 2010; Prein

et al. 2013).

The PGW approach (Schär et al. 1996; Hara et al.

2008; Kawase et al. 2009) consists of adding a mean

climate perturbation to the initial and 3-hourly bound-

ary conditions, here taken from the North American

Regional Reanalysis (NARR;Mesinger et al. 2006). The

climate perturbation used was based on expected

changes from the NCAR CCSM3 forced by the A1B

scenario. This perturbation is generated by subtracting

the current 10-yr (1995–2005) monthly climatology from

a future 10-yr (2045–55) monthly climatology. A de-

tailed description of this approach can be found in

Rasmussen et al. (2011, 2014).

Meteorological data from WRF simulations are

available at hourly time steps and a 4-km resolution for

both historical and PGW conditions during the period

from October 2000 to September 2008. The variables

and temporal disaggregation used depend on specific

hydrologic model requirements (Table 2). Figure 2 in-

cludes basin-averaged monthly precipitation and tem-

perature from WRF for current and future climate

scenarios over the period fromOctober 2002 to September

2008. Note that PGW simulations reflect increases in

precipitation during fall and winter and the beginning

of spring and a decrease in precipitation during sum-

mer over all basins. On the other hand, the increase in

temperature tends to be uniform throughout the year

in all basins. These signals in precipitation and tem-

perature changes are present at each individual water

year (not shown), although monthly precipitation

amounts can vary at the basins of interest from year

to year.

The single choice of GCM, emission scenario, and the

time period over which the climate perturbation was

TABLE 1. Characteristics of the three study watersheds. Hydrologic variables correspond to the period fromOctober 2000 to September

2008. Variables P, R, PE, RE, and DI denote basin-averaged mean annual values of precipitation, runoff, potential evapotranspiration,

runoff efficiency, and dryness index, respectively. Values of PE are obtained from PRMS by using a Jensen–Haise formulation (Jensen

et al. 1970).

Location

Area

(km2)

Mean basin

elevation

(m MSL)

Mean annual

runoff

(mmyr21)

Mean precipitation

from WRF

(mm yr21)

Mean annual

PE (mmyr21)

Mean annual

RE (R/P)

Mean annual

DI (PE/P)

Yampa at

Steamboat Springs

1468 2674 228 717 953 0.32 1.33

East at Almont 748 3127 327 782 757 0.42 0.97

Animas at Durango 1819 3098 365 883 885 0.41 1.00

TABLE 2. Summary of data sources and simulation setup used in this study. For the forcing variables, air temperature at 2m and wind

speed at 10m are used for hydrologic simulations.

Model Vegetation data Soil data Forcing variables

Spatial–temporal

discretization

PRMS USGS 1-km gridded

vegetation type and

density data (USDA 1992)

State soil geographic

(STATSGO) 1-km

gridded soils data

(USDA 1994)

Daily precipitation; maximum and

minimum daily temperature.

4 km and Dt 5 24 h

VIC University of Maryland

1-km Global Land Cover

Classification (Hansen

et al. 2000)

STATSGO 1-km

gridded soils data

(USDA 1994)

Precipitation, temperature,

shortwave and longwave

radiation, wind speed, relative

humidity, and air pressure.

4 km and Dt 5 1 h

Noah LSM and

Noah-MP

National Land

Cover Database,

2006 (Fry

et al. 2011).

STATSGO 1-km

gridded soils

data (USDA 1994)

Precipitation, temperature,

shortwave and longwave

radiation, wind speed, relative

humidity, and air pressure.

4 km and Dt 5 1 h
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obtained is certainly an important limitation for this

study, since they affect the magnitude and direction of

climatic shifts. Indeed, Vano et al. (2014) demonstrated

the large effects of these decisions on long-term runoff

projections over the upper CRB, including results from

19 GCMs and three emission scenarios (A2, A1B, and

B1) obtained by Seager et al. (2007) and Christensen

and Lettenmaier (2007). However, they also noted that

higher future greenhouse gas emissions broadly trans-

late to a warmer and, in most cases, drier climate, im-

plying that a general decrease in runoff should be

expected in this region. Although high-resolution cli-

mate models limit the number of scenarios that can be

analyzed, they offer a more realistic representation of

climate features that strongly depend on terrain com-

plexity (Rasmussen et al. 2011, 2014), providing better

meteorological fields for the assessment of climate

change impacts on hydrology.

b. Hydrologic–land surface models

We choose four hydrologic–land surface models: the

U.S. Geological Survey (USGS) Precipitation–Runoff

Modeling System (PRMS;Leavesley et al. 1983; Leavesley

and Stannard 1995), the Variable Infiltration Capacity

model (VIC; Wood et al. 1992; Liang et al. 1994, 1996),

the Noah land surface model (Noah LSM; Ek 2003;

Mitchell et al. 2004), and the Noah LSM with multi-

parameterization options (Noah-MP; Niu et al. 2011;

Yang et al. 2011). Our choice is based on the fact that the

four models cover different degrees of complexity in

terms of conceptualization of vegetation, soil, and sea-

sonal snowpack (see Table 3 and Fig. 3 for further de-

tails) and also have different parameterizations for some

hydrologic processes (different model equations for

canopy storage, base flow, etc.). Additionally, these

hydrologic model structures have been used in several

research studies (e.g., Wilby et al. 1999; Haddeland et al.

2002; Hay et al. 2002; Hay and Clark 2003; Christensen

and Lettenmaier 2007; Barlage et al. 2010; Yang et al.

2011; Cai et al. 2014). Our experimental design considers

a hydrologic model spatial resolution (4 km) identical to

that used in the WRF configuration of Rasmussen et al.

(2014), though simulation time steps, forcing variables,

and land cover data used for a priori parameter esti-

mates vary depending on specific model requirements

(see Table 2 for further details).

In this study, we use a single suite of physics options

for Noah-MP, including a Ball–Berry-type model for

canopy stomatal resistance, a CLM-type soil moisture

factor for controlling stomatal resistance, the simple

TOPMODEL-based runoff scheme (SIMTOP) for

runoff and groundwater (Niu et al. 2005), a Monin–

Obukhov similarity theory–based drag coefficient, su-

percooled liquid water and frozen soil permeability

based on Niu and Yang (2006), a radiation transfer

scheme equivalent to a ‘‘mosaic’’ model, a Canadian

land surface scheme (CLASS) for snow surface albedo,

a partitioning of precipitation into snowfall and rainfall

based on Jordan (1991), a Noah-type lower boundary of

soil temperature, and a semi-implicit snow–soil tem-

perature time scheme. Readers are referred to Niu et al.

(2011) for a full description of each model component.

c. Experimental setup

1) MODEL SIMULATIONS

All model simulations are carried out for the period

from 1 October 2000 to 30 September 2008, using the

first two years to initialize model states. As done for

FIG. 2. Basin-averagedmonthly (top) precipitation and (bottom)

temperature values for CTRL (dashed lines) and PGW(solid lines)

WRF outputs used in this study (period from October 2002 to

September 2008).

766 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



T
A
B
L
E
3
.
O
v
e
rv
ie
w
o
f
h
y
d
ro
lo
g
ic

m
o
d
e
l
co
m
p
o
n
e
n
ts

u
se
d
in

th
is
st
u
d
y
.

M
o
d
e
l

S
n
o
w
a
cc
u
m
u
la
ti
o
n

a
n
d
m
e
lt

C
a
n
o
p
y
st
o
ra
g
e

M
o
is
tu
re

in
th
e
so
il

co
lu
m
n
/s
u
rf
a
ce

ru
n
o
ff

B
a
se

fl
o
w

P
R
M
S

T
w
o
-l
ay
e
r
e
n
er
g
y
–
m
a
ss

b
a
la
n
ce

m
o
d
e
l.
S
n
o
w
p
a
ck

e
n
e
rg
y

b
a
la
n
ce

is
co
m
p
u
te
d
e
v
e
ry

1
2
h
.

T
h
e
p
re
ci
p
it
a
ti
o
n
ca
n
b
e
in
te
rc
e
p
te
d
b
y
a
n
d
e
v
a
p
o
ra
te
d

fr
o
m

th
e
p
la
n
t
ca
n
o
p
y
.
T
h
e
p
re
ci
p
it
a
ti
o
n
th
a
t
is
n
o
t

in
te
rc
e
p
te
d
b
y
th
e
ca
n
o
p
y
la
y
e
r
(t
h
ro
u
g
h
fa
ll
)
is

d
is
tr
ib
u
te
d
to

th
e
w
a
te
rs
h
e
d
la
n
d
su
rf
ac
e
.
In
te
rc
e
p
ti
o
n

o
f
p
re
ci
p
it
a
ti
o
n
b
y
th
e
p
la
n
t
ca
n
o
p
y
is
co
m
p
u
te
d
d
u
ri
n
g

a
ti
m
e
st
e
p
a
s
a
fu
n
ct
io
n
o
f
p
la
n
t
co
v
er

d
e
n
si
ty

a
n
d
th
e

st
o
ra
g
e
a
v
a
il
a
b
le

o
n
th
e
p
re
d
o
m
in
a
n
t
p
la
n
t
co
v
e
r
ty
p
e

in
e
a
ch

h
y
d
ro
lo
g
ic
re
sp
o
n
se

u
n
it
(H

R
U
).

S
u
rf
a
ce

ru
n
o
ff
a
n
d
in
fi
lt
ra
ti
o
n

a
re

co
m
p
u
te
d
u
si
n
g
a
n
o
n
-

li
n
e
a
r
v
a
ri
a
b
le
-s
o
u
rc
e
-a
re
a

m
e
th
o
d
a
ll
o
w
in
g
fo
r
ca
sc
a
d
e

fl
o
w
.

T
h
e
g
ro
u
n
d
w
at
e
r
zo
n
e
is
co
n
ce
p
-

tu
a
li
ze
d
a
s
a
li
n
e
a
r
re
se
rv
o
ir
(i
.e
.,

b
a
se

fl
o
w
is
co
m
p
u
te
d
a
s
a
li
n
e
ar

fu
n
ct
io
n
o
f
g
ro
u
n
d
w
a
te
r
st
o
r-

a
g
e
).

V
IC

T
w
o
-l
ay
e
r
e
n
er
g
y
–
m
a
ss

b
a
la
n
ce

m
o
d
e
l.

W
a
te
r
e
n
te
rs

o
n
e
-l
a
y
e
r
ca
n
o
p
y
re
se
rv
o
ir
a
n
d
ca
n
le
av
e
a
s

ca
n
o
p
y
e
v
a
p
o
ra
ti
o
n
,
tr
a
n
sp
ir
a
ti
o
n
,
o
r
th
ro
u
g
h
fa
ll
.

C
a
n
o
p
y
th
ro
u
gh

fa
ll
o
cc
u
rs

w
h
e
n
a
d
d
it
io
n
a
l
p
re
-

ci
p
it
a
ti
o
n
e
x
ce
ed

s
th
e
st
o
ra
g
e
ca
p
ac
it
y
o
f
th
e
ca
n
o
p
y
.

D
if
fe
re
n
t
v
e
g
et
a
ti
o
n
cl
a
ss
e
s
a
re

a
ll
o
w
e
d
w
it
h
in

a
u
n
iq
u
e

g
ri
d
ce
ll
v
ia
a
m
o
sa
ic
a
p
p
ro
a
ch
,w

h
e
re

e
n
e
rg
y
a
n
d
w
a
te
r

b
a
la
n
ce

te
rm

s
a
re

co
m
p
u
te
d
in
d
ep

e
n
d
e
n
tl
y
fo
r
e
a
ch

co
v
er
a
g
e
cl
a
ss

(v
e
g
e
ta
ti
o
n
a
n
d
b
a
re

so
il
).

A
n
in
fi
lt
ra
ti
o
n
ca
p
ac
it
y
fu
n
ct
io
n

is
d
e
fi
n
e
d
.
V
e
rt
ic
a
l
m
o
ve
m
e
n
t

o
f
m
o
is
tu
re

th
ro
u
gh

so
il

fo
ll
o
w
s
1
D

R
ic
h
ar
d
s
e
q
u
a
ti
o
n
.

D
e
fi
n
e
d
a
s
a
fu
n
ct
io
n
o
f
th
e
so
il

m
o
is
tu
re

in
th
e
th
ir
d
la
y
e
r
(A

rn
o

fo
rm

u
la
ti
o
n
).
T
h
e
fu
n
ct
io
n
is

li
n
e
ar

b
e
lo
w
a
so
il
m
o
is
tu
re

th
re
sh
o
ld

a
n
d
b
e
co
m
e
s
n
o
n
-

li
n
e
ar

a
b
o
v
e
th
a
t
th
re
sh
o
ld
.

N
o
a
h

L
S
M

O
n
e
-l
a
ye
r
e
n
e
rg
y
–m

a
ss

b
a
la
n
ce

m
o
d
e
l
th
a
t
si
m
u
la
te
s
sn
o
w

a
cc
u
m
u
la
ti
o
n
,
su
b
li
m
a
ti
o
n
,

m
e
lt
in
g
a
n
d
h
e
a
t
e
x
ch
a
n
g
e
a
t

th
e
sn
o
w
–
at
m
o
sp
h
e
re

a
n
d

sn
o
w
–
so
il
in
te
rf
a
ce
s.

O
n
e
ca
n
o
p
y
la
ye
r,
si
m
p
le
ca
n
o
p
y
re
si
st
a
n
ce
.S

im
p
le
Ja
rv
is

ty
p
e
o
f
ca
n
o
p
y
re
si
st
a
n
ce

fu
n
ct
io
n
,
si
n
g
le

li
n
e
a
ri
ze
d

e
n
er
g
y
b
a
la
n
ce

e
q
u
a
ti
o
n
re
p
re
se
n
ti
n
g
co
m
b
in
e
d

g
ro
u
n
d
–v
e
g
e
ta
ti
o
n
su
rf
ac
e
,
co
n
si
d
e
ri
n
g
se
a
so
n
a
l
L
A
I

a
n
d
g
re
en

v
e
g
et
a
ti
o
n
fr
a
ct
io
n
.

S
u
rf
a
ce

ru
n
o
ff
is
co
m
p
u
te
d
a
s
th
e

d
if
fe
re
n
ce

b
e
tw

ee
n
th
ro
u
g
h
fa
ll

a
n
d
a
m
a
x
im

u
m

in
fi
lt
ra
ti
o
n

ra
te
.
V
er
ti
ca
l
m
o
ve
m
e
n
t
o
f

m
o
is
tu
re

th
ro
u
g
h
so
il
la
y
e
rs

fo
ll
o
w
s
1
D

R
ic
h
ar
d
s
e
q
u
a
ti
o
n
.

C
o
m
p
u
te
d
a
s
th
e
p
ro
d
u
ct

o
f
a

sc
a
li
n
g
fa
ct
o
r
b
e
tw

ee
n
0
a
n
d
1

a
n
d
th
e
h
y
d
ra
u
li
c
co
n
d
u
ct
iv
it
y
o
f

th
e
b
o
tt
o
m

la
y
e
r.

N
o
a
h
-

M
P

T
h
re
e-
la
y
e
r
e
n
e
rg
y
–m

a
ss

b
a
la
n
ce

m
o
d
e
l
th
a
t
re
p
re
se
n
ts

p
e
rc
o
la
ti
o
n
,
re
te
n
ti
o
n
,
a
n
d

re
fr
e
ez
in
g
o
f
m
e
lt
w
at
e
r
w
it
h
in

th
e
sn
o
w
p
a
ck
.

S
n
o
w
in
te
rc
e
p
ti
o
n
in
cl
u
d
es

lo
a
d
in
g
–
u
n
lo
a
d
in
g,

m
e
lt
–

re
fr
e
e
ze

ca
p
ab

il
it
ie
s,
a
n
d
su
b
li
m
a
ti
o
n
o
f
ca
n
o
p
y
-

in
te
rc
e
p
te
d
sn
o
w
,
a
lo
n
g
w
it
h
d
e
ta
il
e
d
re
p
re
se
n
ta
ti
o
n

o
f
tr
a
n
sm

is
si
o
n
a
n
d
a
tt
e
n
u
a
ti
o
n
o
f
ra
d
ia
ti
o
n
th
ro
u
g
h

th
e
ca
n
o
p
y
,
w
it
h
in
-
a
n
d
b
e
lo
w
-c
a
n
o
p
y
tu
rb
u
le
n
ce
,

a
n
d
d
if
fe
re
n
t
o
p
ti
o
n
s
to

re
p
re
se
n
t
th
e
b
io
p
h
ys
ic
a
l

co
n
tr
o
ls
o
n
tr
a
n
sp
ir
a
ti
o
n
.

S
u
rf
a
ce

ru
n
o
ff
is
a
n
e
x
p
o
n
e
n
ti
a
l

fu
n
ct
io
n
o
f
d
e
p
th

to
w
a
te
r

ta
b
le
.
V
e
rt
ic
a
l
m
o
ve
m
e
n
t
o
f

m
o
is
tu
re

th
ro
u
g
h
so
il
la
y
e
rs

fo
ll
o
w
s
1
D

R
ic
h
ar
d
s
e
q
u
a
ti
o
n
.

B
a
se

fl
o
w

is
p
a
ra
m
e
te
ri
ze
d
a
s
a
n

e
x
p
o
n
e
n
ti
a
ld

e
ca
y
in
g
fu
n
ct
io
n
o
f

th
e
w
a
te
r-
ta
b
le
le
ve
l(
S
IM

T
O
P
).

APRIL 2015 MENDOZA ET AL . 767



many past large-scale (i.e., from continental to global

scale) hydrologic modeling experiments (e.g., Mitchell

et al. 2004; Gerten et al. 2004; Xia et al. 2012), we first

compute hydrologic changes using default parameter

values obtained from the information sources described

in Table 2. Therefore, a comparison of hydrologic

change estimates obtained from uncalibrated (i.e., use of

default parameters) and calibrated model simulations

will provide a comprehensive assessment of the caveats

behind traditional methodologies used for climate

change impact evaluation.

We calibrate all the models for all basins with the

University of Arizona shuffled complex evolution (SCE-

UA) algorithm (Duan et al. 1992, 1993) by minimizing

the root-mean-square error (RMSE) between observed

and simulated daily streamflow for the period between

1 October 2002 and 30 September 2008. Given the short

length of WRF reanalysis datasets and that our main

priority is to analyze hydrologic change signals, we de-

cided to perform calibration and compute hydrologic

changes over the entire period from October 2002 to

September 2008 instead of splitting it into calibration

and validation datasets. In this study, runoff from hy-

drologic model simulations is obtained as the sum of

surface runoff and base flow, including also interflow if

the model is PRMS.

PRMS does not have an explicit river network routing

scheme for streamflow; instead, it has a cascade module

used to define connections for routing flow from upslope

to downslope hydrologic response units and stream seg-

ments and among groundwater reservoirs (Markstrom

et al. 2008). In VIC, Noah LSM, and Noah-MP, no

horizontal routing of surface overland flow, subsurface

flow, or channel flow is performed. Instead, basin-averaged

runoff is taken as the average of the 1D (vertical) 4-km

model grid cells’ runoff. During the calibration process,

we preserve the spatial variability of a priori model

parameters (in case they are spatially distributed)

through the adjustment of multiplier values that are

applied for each parameter within the entire water-

shed. We adjust only those parameter multipliers

identified as the most sensitive after performing a Dis-

tributed Evaluation of Local Sensitivity Analysis

(DELSA; Rakovec et al. 2014). The reader is referred

to the appendix for a list with the parameters included

in the calibration of each model.

Once the calibration process is finished, hydrologic

changes are computed for the period from October

2002 to September 2008 by forcing the models with the

same meteorological datasets used for uncalibrated

simulations.

2) EVALUATION METRICS

In this study we evaluate models using six signature

measures (Stewart et al. 2005; Yilmaz et al. 2008) to

present a comprehensive portrayal of model perfor-

mance in terms of hydrologic functional behavior. First,

we consider the runoff ratio RR as a measure of the

FIG. 3. Comparison of model architectures used in this study: PRMS, VIC, Noah LSM, and Noah-MP.
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overall water balance and therefore as a signature of the

evapotranspiration model component:

RR5R/P , (1)

where R is the mean annual runoff and P is the mean

annual precipitation.

The second metric selected is the centroid of the daily

hydrograph for an average water year, or ‘‘center time’’

of runoff (CTR; Stewart et al. 2005), which is a measure

of runoff seasonality:

CTR5

�
N

i51

tiQi

�
N

i51

Qi

. (2)

In the above equation, ti is the number of days since 1

October,Qi is the streamflow associated with ti, andN is

the total number of days in a water year.

Three signature measures are extracted from the flow

duration curve (FDC). First, the FDCmidsegment slope

(FMS) represents the variability, or flashiness, of the

flow magnitudes:

FMS5
log(Qm

1
)2 log(Qm

2
)

m12m2

, (3)

wherem15 0.2 andm25 0.7, and thus,Qm1
andQm2

are

the flows with exceedance probabilities of 0.2 and 0.7,

respectively. A steep slope of the FDC indicates flashi-

ness of the streamflow response, whereas a flatter curve

indicates a relatively damped response and a higher

storage (Yadav et al. 2007; Casper et al. 2012). Second,

the FDC high-segment volume (FHV) is a measure of

the catchment response to high rainfall/snowmelt

events:

FHV5 �
H

h51

Qh , (4)

where h5 1, 2, . . . ,H are the flow indices into the array

of flows with exceedance probabilities lower than 0.02.

Third, the FDC low-segment volume (FLV) is the

measure of the long-term base flow:

FLV5 �
L

l51

[log(Ql)2 log(QL)] , (5)

where l 5 1, 2, . . . , L is the index into the array of flow

values located within the low-flow segment (0.7–1.0 ex-

ceedance probabilities) of the FDC and L is the index

for the minimum flow.

Finally, we choose the FDC median (FMM; Yilmaz

et al. 2008) as a measure of midrange flows:

FMM5median[log(FDC)], (6)

where log(FDC) represents the array of sorted daily

streamflow values in log space. The median is selected

because it is less sensitive to a skewed distribution than

the mean of the streamflow time series.

4. Results and discussion

a. Model performance

Figure 4 summarizes model performance for the pe-

riod from October 2002 to September 2008 in terms of

mean annual streamflow, monthly streamflow, and flow

duration curves, for both uncalibrated and calibrated

simulations. None of the hydrologic model structures

considered in this study is able to reproduce seasonal

runoff patterns or flow duration curves using default

parameter values (Fig. 4a). Although this is not sur-

prising and has been widely reported in the literature,

many studies that seek to characterize the water balance

at the continental scale make use of noncalibrated or

semicalibrated land surface models (e.g., Mitchell et al.

2004; Xia et al. 2012). Importantly, the inclusion of

a ‘‘classic’’ calibration process based on the minimiza-

tion of the RMSE between simulated and observed total

runoff still leaves inconsistencies across different model

structures (Fig. 4b). Some models show large errors in

mean annual runoff or seasonal runoff patterns even

after calibration, and the FDC is not accurately repre-

sented by any model, particularly for low flows.

To assess how much model performance improves

functional catchment behavior through a traditional

single-objective calibration strategy, we analyze the

differences between simulated and observed values of

signature measures of hydrologic behavior for both un-

calibrated and calibrated model simulations (Fig. 5).

Parameter adjustment clearly improves the simulation

of those signatures whose formulations are closer to the

objective function used for calibration (in this case

RMSE, which gives more relative importance to high

flows). Consequently, calibration results in smaller in-

termodel differences in the runoff ratio, the response to

large precipitation events (i.e., FHV), and midrange

flows (i.e., FMM). On the other hand, intermodel dif-

ferences in the runoff seasonality (i.e., CTR), the flash-

iness of runoff (i.e., FMS), and baseflow processes (i.e.,

FLV) are still pronounced after model calibration. Ex-

amples of this are Noah-MP and VIC at Yampa when

looking at FMS, or Noah LSM at East and PRMS at

Animas when evaluating baseflow processes (i.e., FLV),
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where calibration has actually degraded the signature

measures. While a different objective function (e.g.,

based on the log of the flows) might improve other

metrics (e.g., FLV), no single metric is likely to capture

all catchment behaviors.

b. Changes in annual water balance

To what extent does parameter calibration decrease

the uncertainty in projected changes in the overall water

balance? To provide an initial answer to this question,

we first analyze both uncalibrated and calibrated hy-

drologic model outputs in the runoff–ET space for

a single climate scenario. In Fig. 6, the diagonal lines

represent basin-averaged mean annual precipitation for

current and future climate scenarios over a 6-yr average

period (from October 2002 to September 2008). The

intersection of these lines with the x axis indicates that

all precipitation becomes runoff, while the intersection

with the y axis indicates that the system converts all

precipitation into ET. In the same figure, different

symbols represent outputs coming from different hy-

drologic model structures for current climate (unfilled)

and future climate (solid). A symbol located exactly on

the diagonal lines represents a simulationwith negligible

changes in storage over the 6-yr simulation period,

whereas symbols located below the 1:1 line denote in-

creases in storage, and those above denote decreases

in storage. Intermodel differences in precipitation

partitioning are represented by the distance between

different symbols (unfilled or solid), while the distance

between a particular symbol (e.g., star for Noah-MP) for

current (unfilled) and future (solid) climate scenarios

represents the hydrologic change signal.

The results obtained from uncalibrated simulations

(Fig. 6a) indicate that intermodel differences are much

larger than the magnitude of hydrologic change signals.

Furthermore, all the models have the same hydrologic

change signal direction (increase in ET and decrease or

negligible change in mean annual runoff) with the ex-

ception of Noah LSM, which projects increases in both

runoff and ET (Fig. 7a). As expected, intermodel dif-

ferences in runoff (Fig. 6b) decrease considerably (i.e.,

less variability along the x axis) and the direction of

hydrologic change signal (Fig. 7b) is more consistent

across models (i.e., less runoff and more ET for future

climate scenario) after calibration, with the exceptions

of VIC at Yampa and PRMS at East. Noah-MP stands

out from the rest of the models because the direction

and magnitude of the signal is not substantially altered

after the calibration (cf. Figs. 7a,b). On the other hand,

considerable shifts in projected runoff changes are ob-

tained after calibrating PRMS at East (from 211 to

6mmyr21), VIC at Yampa (from27 to 4mmyr21), and

Noah LSM at all basins (from 8 to 221mmyr21 at

Yampa, from 6 to 221mmyr21 at East, and from 12 to

213mmyr21 at Animas). Moreover, an important

FIG. 4. Historical streamflow (a) uncalibrated and (b) calibrated simulation outputs for the period from October 2002 to September 2008

for all basins: mean annual streamflow for all water years (top), mean monthly flows (middle), and flow duration curves (bottom).
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result from Fig. 6b is that intermodel differences in

precipitation partitioning into runoff and ET are still

comparable or even larger than the magnitude of hy-

drologic change signal, even after model calibration.

Table 4 summarizes fractional hydrologic changes on

an annual basis for both uncalibrated and calibrated

model simulations over a 6-yr average period (from

October 2002 to September 2008). A suite of different

variables is included in order to illustrate how model

structure selection and parameter calibration may affect

the direction and magnitude of projected changes on

hydrologic systems. For instance, in the East River ba-

sin, the magnitude of fractional changes in maximum

snow water equivalent (SWE) increases with PRMS

(from 20.10 to 20.19) and decreases with Noah-MP

(from 20.09 to 20.04) after the calibration process.

Another example is given by base flow at the Yampa

River basin: fractional changes switch from positive to

negative values after calibrating PRMS (from 0.03 to

20.04) and Noah LSM (from 0.08 to 20.08), but they

shift from negative (20.04) to positive (0.01) values if

the model selected is VIC. Similarly, Table 4 illustrates

the effects of calibration on fractional changes in total

runoff (e.g., PRMS at East, VIC at Yampa, and Noah

LSM at all basins), capturing (although in different

units) the results from Fig. 7 that were previously dis-

cussed. The key result from Table 4 is that the inter-

model differences in the hydrologic impacts of the

CCSM–WRF climate scenario vary substantially across

models (i.e., the differences in the columns of Table 4

for each basin), and the intermodel differences are

larger than the mean multimodel change signal for

most metrics.

c. Monthly changes

Figure 8 shows mean monthly runoff values obtained

from all models for both uncalibrated and calibrated

simulations over a 6-yr average period (from October

2002 to September 2008). As expected, the use of default

parameters (Fig. 8a) translates into very different

catchment responses under current and future climate

scenarios, and these differences are also reflected in

projected monthly changes [PGW minus control

(CTRL)]. The largest and smallest changes in runoff are

obtained from VIC and Noah LSM, respectively, and

the seasonality of these shifts differs substantially across

models. For instance, the Noah LSM simulates increases

in runoff during February–April, extending to May for

the Yampa River basin, and a decrease during May–

June, while Noah-MP generates an increase in runoff

during March–May and a decrease during June–

September (Fig. 8a). Much more consistent results

acrossmodels are obtainedwhen parameter calibration is

FIG. 5. Difference between simulated (CTRL) and observed

(Obs) signature measures of hydrologic behavior (period from

October 2002 to September 2008) obtained from (left) un-

calibrated and (right) calibrated model runs.
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performed (Fig. 8b), and this is reflected in both the

magnitude and seasonality of runoff variations. A key

question that follows from here is whether intermodel

similarities in runoff changes are due to intermodel

agreement in changes of other water storages and fluxes.

With the aim to explore possible reasons for the (mis)

match in projected runoff changes among different

model structures, we analyze monthly changes in model

states and fluxes obtained from both uncalibrated and

calibrated runs (Fig. 9). The variables included in this

analysis are ET, SWE, soil moisture, base flow, and

surface runoff. To improve consistency in the compari-

son across models, we consider only the top two soil

layers for the computation of soil moisture storage with

VIC, Noah LSM, and Noah-MP, and the addition of

interflow to surface runoff for PRMS. Figure 9a shows

large differences in changes for ET, base flow, and sur-

face runoff among models, while more consistent results

in terms of seasonal cycles and amplitude are obtained

for snowpack (except Noah LSM) and soil moisture.

However, intermodel differences of soil moisture and

surface runoff are preserved or emphasized after the

calibration process (Fig. 9b). Furthermore, one can infer

from the results displayed in Figs. 8b and 9b that the

same runoff changes might be obtained using different

hydrologic models due to very different mechanisms;

that is, internal compensations of model structures

and model parameter errors are adjusted through

FIG. 6. Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual precipitation (diagonal; mm yr21) into basin-

averaged mean annual runoff (x axis; mm yr21) and evapotranspiration (y axis; mm yr21) across different model structures and basins for

the period from October 2002 to September 2008. Results are displayed for (a) uncalibrated and (b) calibrated model simulations.

FIG. 7. Projected changes in basin-averaged mean annual runoff (x axis; mm yr21) and evapotranspiration (y axis; mm yr21) across

different model structures and basins for the period fromOctober 2002 to September 2008. Results are displayed for (a) uncalibrated and

(b) calibrated model simulations.
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calibration in a way that allows similar responses from

different watershedmodels. The clearest example in this

case study is observed in the East River basin, where

monthly changes in runoff are very similar (Fig. 8b);

nevertheless, VIC compensates very large variations in

soil moisture with other variables such as ET and base

flow, and PRMS does the same with large variations in

ET, SWE, and surface runoff.

d. Projected changes in catchment behavior

Finally, we compare the effects of model choice and

parameter adjustment on projected changes in

TABLE 4. Values of fractional change [(PGW 2 current climate)/current climate] in basin-averaged total accumulated precipitation,

peak SWE, accumulated ET, accumulated surface runoff, accumulated base flow, and accumulated total runoff (sum of surface runoff and

base flow, including interflow if using PRMS) averaged for an average water year (from October 2002 to September 2008) obtained from

both uncalibrated and calibrated model simulations. Also included are the changes in dates of maximum SWE for each basin/model,

where the values represent CTRL minus PGW dates of maximum SWE. Mean values for each basin are given in boldface.

Yampa East Animas

Variable PRMS VIC

Noah

LSM

Noah-

MP Mean PRMS VIC

Noah

LSM

Noah-

MP Mean PRMS VIC

Noah

LSM

Noah-

MP Mean

Total

precipitation

0.02 0.02 0.02 0.02 — 0.02 0.02 0.02 0.02 — 0.03 0.03 0.03 0.03 —

Maximum SWE

Uncalibrated 20.12 20.08 20.12 20.09 20.10 20.10 20.10 20.14 20.09 20.11 20.12 20.14 20.14 20.10 20.12

Calibrated 20.16 20.10 20.11 20.12 20.12 20.19 20.04 20.09 20.04 20.09 20.22 20.06 20.08 20.06 20.11

Date of maximum SWE

Uncalibrated 25 32 7 13 19.25 18 13 3 12 11.50 12 31 46 31 30.00

Calibrated 25 2 7 0 8.50 25 4 4 6 9.75 12 1 5 0 4.50

Evapotranspiration

Uncalibrated 0.04 0.07 0.01 0.10 0.05 0.07 0.09 0.01 0.13 0.07 0.07 0.06 0.01 0.12 0.06

Calibrated 0.04 0.04 0.08 0.11 0.07 0.02 0.06 0.07 0.10 0.06 0.07 0.06 0.06 0.09 0.07

Base flow

Uncalibrated 0.03 20.04 0.08 20.08 0.00 20.02 20.05 0.05 20.04 20.02 20.03 0.00 0.07 20.04 0.00
Calibrated 20.04 0.01 20.08 20.08 20.05 0.01 20.03 20.04 20.05 20.03 20.11 20.02 20.03 20.04 20.05

Surface runoff

Uncalibrated 20.01 0.01 0.14 20.12 0.01 20.03 0.00 20.01 20.15 20.05 20.01 0.01 20.01 20.12 20.03

Calibrated 0.03 0.02 20.08 20.24 20.07 0.03 20.01 20.14 20.14 20.07 0.01 0.00 20.06 20.09 20.03
Total runoff

Uncalibrated 0.00 20.02 0.09 20.10 20.01 20.03 20.04 0.04 20.09 20.03 20.02 0.00 0.06 20.08 20.01

Calibrated 0.00 0.01 20.08 20.13 20.05 0.02 20.03 20.06 20.09 20.04 20.03 20.02 20.04 20.05 20.03

FIG. 8. Current (CTRL), future (PGW), and changes (PGW 2 CTRL) in basin-averaged monthly runoff for (a) uncalibrated and

(b) calibratedmodel simulations over a 6-yr average (fromOctober 2002 to September 2008). The black lines in CTRL represent historical

observations.
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hydrologic signatures. Figure 10 illustrates differences

between future (PGW) and current (CTRL) signature

measures of hydrologic behavior for all models/basins,

computed from both uncalibrated (Fig. 10, left) and

calibrated (Fig. 10, right) model runs. The main result

from Fig. 10 is that calibration helps to decrease the

uncertainty associated with model choice in projected

changes of those signatures closely related with the

objective function selected. Clear examples of this are

the response to large precipitation events (i.e., FHV)

and midrange flow levels (i.e., FMM). However, the

uncertainty due to model structure increases for some

signatures and basins [e.g., runoff seasonality (i.e.,

CTR) at Yampa and East, flashiness of runoff (i.e.,

FMS) at Yampa, and baseflow processes (i.e., FLV) at

Yampa and Animas]. Moreover, different hydrologic

model structures can provide opposite changes (signal)

of some signature metrics even after calibration (e.g.,

FLV and FMS).

It is interesting to see that for both uncalibrated and

calibrated model outputs, the only consistent signal

obtained with all models is a negative change in runoff

seasonality (CTR), which is directly related with an

expected decrease in snowpack under the PGW sce-

nario (i.e., shorter accumulation season and earlier

melt season). For the case of calibrated model simu-

lations, a general reduction of high-flow volumes

(FHV) occurs regardless of the model choice (except

PRMS at Yampa). The results in Fig. 10 illustrate the

strong interplay between model structure and model

parameters and suggest the following hypothesis: dif-

ferent calibration approaches may lead to very differ-

ent answers from those displayed in Fig. 10 (right) or,

put differently, that subjective decisions on configuring

and calibrating hydrologic models may have un-

expected and underappreciated impacts on the por-

trayal of climate change impacts. Current work is

focused on this problem in order to get a better com-

prehension of uncertainties introduced by model

structure selection and different parameter estimation

strategies.

5. Conclusions

This study aims to improve our understanding of the

effects of hydrologic model choice on the portrayal of

climate change impacts. Specifically, we assess the ef-

fects of model structure selection on: 1) historical

performance in terms of hydrologic signature measures

and 2) hydrologic changes due to a climate

FIG. 9. Monthly changes (PGW 2 CTRL) in basin-averaged fluxes and states (mm) for (a) uncalibrated and (b) calibrated model

simulations over a 6-yr average (from October 2002 to September 2008).
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perturbation, with focus on the overall water balance

and catchment processes. Because several efforts

aimed to characterize future changes on the hydrology

at the continental or global scales have made use of

hydrologic–land surface models with little or no cali-

bration, we include in our analysis a comparison be-

tween uncalibrated and calibrated model outputs. Our

main findings are as follows:

d Intermodel differences in portrayal of climate change

impacts are substantial, even after calibration. These

differences reflect on projected changes in overall

water balance, monthly changes in individual simu-

lated processes, and signature measures of hydro-

logic behavior.
d In this paper, better values for specific process

evaluation metrics (i.e., signature measures) were

obtained over the historical period from October

2002 to September 2008 only if their mathematical

formulation was close to the RMSE between simu-

lated and observed runoff (i.e., the calibration objec-

tive function).
d Consequently, single-objective calibration procedures

constrain intermodel differences in climate change

impacts for hydrologic metrics that are closely related

to the objective function. In this study, calibration

improved intermodel agreement on future projected

changes of the response to large precipitation events,

andmidrange flow levels. However, intermodel agree-

ment decreased when evaluating the change of other

metrics related with flashiness of runoff and baseflow

processes.
d Although traditional calibration methods certainly

improve intermodel agreement in projected changes

of the overall water balance (i.e., partitioning of

precipitation into ET and runoff), intermodel differ-

ences in the runoff–ET space are comparable and

even larger than the hydrologic change signal for the

scenario examined here.
d Single-objective calibration approaches aimed to

reduce errors in runoff simulations do not necessar-

ily enhance intermodel agreement in projected

changes of some hydrological processes such as ET

or snowpack. Moreover, identical changes in runoff

might be obtained with different hydrologic model

structures for very different reasons, indicating that

the calibration process is compensating structural

and parameter errors to give us ‘‘good’’ runoff

simulations, but not to correctly reproduce catch-

ment processes.

The main conclusion from this study is that subjective

decisions in the selection of hydrologic model struc-

tures and parameters have large effects on the

FIG. 10. Impact of climate change on signature measures of hy-

drologic behavior for both (left) uncalibrated and (right) calibrated

model simulations over a 6-yr average (from October 2002 to

September 2008).
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portrayal of climate change impacts. Moreover, these

effects may directly impact adaptation strategies. For

instance, 1) the diversity of projected changes in runoff

amounts and timing affects reservoir operations such

as release schedules and magnitudes (Miller et al.

2012); 2) uncertainty in responses to large precipitation

events propagates to flood frequency estimates, which

are required for design and safety assessment of in-

frastructure (Raff et al. 2009); 3) uncertainties in ET

projections relate with irrigation demands and should

therefore be considered in agricultural adaptation

plans; and 4) the diverse responses obtained in terms

of long-term base flow may impact future drought risk

evaluation (Wilby and Harris 2006) and policies re-

lated with minimum instream flow requirements

(Vano et al. 2014).

The implication of our findings is that previous

studies evaluating the impacts of climate change on

water resources may be overconfident. Moving for-

ward, it is necessary to have a much more compre-

hensive assessment of the myriad of uncertainties in

climate risk assessments; in particular, to improve

characterization of uncertainties in hydrologic model-

ing applications.
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APPENDIX

Parameters Included in the Calibration Process

The model parameters included in the calibration

process are selected based on background sensitivity

analysis performed for each hydrologic–land surface

model. In this study, we use the DELSA (Rakovec

et al. 2014) method to quantify parameter sensitivity,

using the RMSE between observed and simulated

streamflow as objective function. In DELSA, the as-

sessment of parameter sensitivity is based on local

gradients of the model performance index with re-

spect to model parameters at multiple points

throughout the parameter space. A number of soil,

vegetation, runoff, and snow parameters were con-

sidered in DELSA for each model: 17 for PRMS, 34

for VIC, 17 for Noah LSM, and 30 for Noah-MP.

Based on the sensitivity analysis results, the numbers

of parameters calibrated are 8 for PRMS, 9 for VIC, 11

for Noah LSM, and 14 for Noah-MP. These parameters

are listed in Tables A1–A4.

TABLE A1. Summary of PRMS parameters considered for calibration. If the parameter is distributed, calibration is performed on the

basis of multipliers. Although description and units refer to actual parameters, the values in boldface represent the multiplier values

(instead of actual parameter values). For parameter jh_coef, the range is provided for a multiplier applied to each monthly value.

Parameter Description Units Distributed

Calibration range

Min Max

jh_coef Monthly Jensen–Haise air

temperature coefficient

F No 0.36 2.86

fastcoef_lin Linear flow routing coefficient for

fast interflow

day21 No 0 10

fastcoef_sq Nonlinear flow routing coefficient

for fast interflow

in.21 day21 No 0 1.25

pref_flow_den Decimal fraction of the soil zone

available for preferential flow

— No 0 5

soil_moist_max Maximum volume of water per unit

area in the capillary reservoir

in. Yes 0 2.87

snarea_curve Snow area depletion curve values — Yes 0 1

tmax_allsnow Monthly maximum air temperature

at which precipitation is all snow

for the HRU

F No 210 40

tmax_allrain Monthly minimum air temperature

at an HRU that results in all

precipitation during a day

being rain

F No 0 90
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TABLE A2. Summary of VIC parameters considered for calibration. If the parameter is distributed, its calibration is performed on the

basis of multipliers. Although description and units refer to actual parameters, the values in boldface represent the multiplier values

(instead of actual parameter values).

Parameter Description Units Distributed

Calibration range

Min Max

binfilt Variable infiltration curve parameter — No 0.001 0.4

Ds Fraction of Dsmax where nonlinear base flow begins — No 1025 1

Dsmax Maximum velocity of base flow mmday21 Yes 0.01 2

Ws Fraction of maximum soil moisture where nonlinear

base flow occurs

— No 9 3 1024 1

depth2 Thickness of soil layer 2 m Yes 0.5 6

depth3 Thickness of soil layer 3 m Yes 0.5 6

newalb New snow albedo — No 0.7 0.99

albaa Base in snow albedo function (accumulation) — No 0.88 0.99

albtha Base in snow albedo function (melt) — No 0.66 0.98

TABLEA3. Summary of NoahLSMparameters considered for calibration. If the parameter is distributed, its calibration is performed on

the basis of multipliers. Although description and units refer to actual parameters, the values in boldface represent the multiplier values

(instead of actual parameter values).

Parameter Description Units Distributed

Calibration range

Min Max

maxsmc Soil porosity m3m23 Yes 0.88 1.18

satdk Saturated soil hydraulic conductivity m s21 Yes 0.41 1.39

quartz Soil quartz content — Yes 0.29 1.37
refdk Used with refkdt to compute runoff parameter kdt — No 2 3 1028 2 3 1024

fxexp Bare soil evaporation exponent — No 0.2 4

refkdt Surface runoff parameter — No 0.1 10

czil Zilitinkevich parameter — No 0.05 8

cmcmax Maximum canopy water capacity used in canopy evaporation m No 5 3 1025 2

rsmax Maximum stomatal resistance s m21 No 2 10

lvcoef Livneh coefficient for adjusting snow albedo — No 0 1

slope Linear coefficient used to compute subsurface runoff — No 0.2 1

TABLEA4. Summary of Noah-MP parameters considered for calibration. If the parameter is distributed, its calibration is performed on

the basis of multipliers. Although description and units refer to actual parameters, the values in boldface represent the multiplier values

(instead of actual parameter values).

Parameter Description Units Distributed

Calibration range

Min Max

maxsmc Soil porosity m3m23 Yes 0.88 1.18

wind_rp Empirical canopy wind parameter m21 Yes 0.7 1.3
slope_ps Slope of conductance-to-photosynthesis relationship — Yes 0.7 1.3

laimss Monthly LAI, one sided (spring–summer) — Yes 0.7 1.3

fff Runoff decay factor m21 No 1 8

rsbmx Baseflow coefficient mm s21 No 0.5 8

timean Grid cell mean topographic index — No 7.35 13.65

mexp Exponent used in the curves for the melting season — No 0.5 3

z0sno Snow surface roughness length m No 0.0002 0.02

snow_iwc Liquid water holding capacity for snowpack m3m23 No 0.02 0.06

swemx New snow mass to fully cover old snow mm No 0.1 20

albmin Minimum snow albedo — No 0.44 0.66

albmax Maximum snow albedo — No 0.68 1

albdecay Exponent in snow decay albedo relationship h21 No 0.001 0.1
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