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[1] A fundamental tradeoff exists in watershed modeling between a model’s flexibility for
representing watersheds with different characteristics versus its potential for
overparameterization. This study uses global sensitivity analysis to investigate how a
commonly used intermediate-complexity model, the Sacramento Soil Moisture
Accounting Model (SAC-SMA), represents a wide range of watersheds with diverse
physical and hydroclimatic characteristics. The analysis aims to establish a detailed
understanding of model behavior across watersheds and time periods with the ultimate
objective to guide model calibration and evaluation studies. Sobol’s sensitivity analysis is
used to evaluate the SAC-SMA in 12 Model Parameter Estimation Experiment (MOPEX)
watersheds in the US. The watersheds span a wide hydroclimatic gradient from arid to
humid systems. Four evaluation metrics reflecting base flows, midrange flows, peak
flows, and long-term water balance were used to comprehensively characterize trends in
sensitivity and model behavior. Results show significant variation in parameter
sensitivities that are correlated with the hydroclimatic characteristics of the watersheds and
time periods analyzed. The sensitivity patterns are consistent with the expected dominant
processes and demonstrate the need for moderate model complexity to represent different
hydroclimatic regimes. The analysis reveals that the primary model controls for some
aspects of the simulated hydrograph are different from those typically assumed for the
SAC-SMA. Results also show that between 6 and 10 parameters are regularly identifiable
from daily hydrologic data, which is about twice the range that is often assumed (i.e., 3 to
5). Synthesized results provide comprehensive SAC-SMA calibration guidance,
demonstrate the flexibility of the model for representing multiple hydroclimatic regimes,
and highlight the great difficulty in generalizing model behavior across watersheds.
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1. Introduction

[2] Watershed-scale hydrologic models are essential for
flood and drought prediction, water resources planning and
allocation, erosion and sedimentation studies, nonpoint
source pollution and remediation, climate and land use
change assessments, hydropower operations, etc. [Singh
and Frevert, 2006]. The extensive array of models that
have been developed to date include both simple [e.g.,
Jakeman et al., 1990] and highly complex structures [e.g.,
Abbott et al., 1986; Reggiani et al., 2000]. For some
applications, such as operational forecasting, a single model
structure may be used to represent a wide range of water-
sheds with varying physical and hydroclimatic character-
istics. Such cases may require a model with sufficient
flexibility (and therefore complexity) to represent the dif-
ferent watersheds. However, as a consequence of increasing
model flexibility (and/or complexity) there is an associated
increase in the number of model parameters that must be

estimated. The potential for equifinality and overparamete-
rization thus also increases for complex models, resulting in
parameter values that are not always easily identifiable in
the calibration process [Beven, 1989]. Studies have shown
[e.g., Jakeman and Hornberger, 1993;Wagener et al., 2003;
Wagener and Wheater, 2006] that as model complexity
increases, the number of unidentifiable parameters also
increases, preventing (for those unidentifiable parameters)
the possibility of locating one parameter value that is any
better than another in the calibration process.
[3] Sensitivity analysis has become a popular tool in

watershed modeling to explore high-dimensional parameter
spaces, assess parameter identifiability, and understand
sources of uncertainty. [Hornberger and Spear, 1981; Freer
et al., 1996; Saltelli et al., 1999;Wagener et al., 2001, 2003;
Wagener, 2003; Hall et al., 2005; Muleta and Nicklow,
2005; Sieber and Uhlenbrook, 2005; Bastidas et al., 2006;
Pappenberger et al., 2006, 2008; Van Griensven et al.,
2006; Demaria et al., 2007; Tang et al., 2007b, 2007c]. In
this context, sensitivity analysis is commonly used to deter-
mine which parameters have a significant impact on the
model response and should be the focus of estimation efforts,
and conversely, which have an insignificant impact (e.g.,
owing to overparameterization) and could be fixed to some a
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priori or regional estimates. In several previous studies,
model output sensitivity to parameter values (herein referred
to as ‘‘parameter sensitivity’’) has been shown to vary
significantly across watersheds, time periods and timescales,
and evaluation metrics [Wagener et al., 2001; Sieber and
Uhlenbrook, 2005; Demaria et al., 2007; Tang et al., 2007c,
2007b]. However, no studies have characterized this varia-
tion for a single model across a well-defined hydroclimatic
gradient using multiple metrics and time periods/timescales.
Therefore an understanding of model behavior, and its
dependency on hydroclimatic regime, remains limited.
[4] For the case in which a model is used to simulate

watersheds with widely varying characteristics, an assess-
ment of why and how parameter sensitivities vary across
watersheds for a suite of flow condition metrics can help to
determine if the model structure is fully exploited and/or if it
is overparameterized in all cases. Some studies have sug-
gested that relatively few (e.g., 3 to 5) parameters are
identifiable from observations of streamflow for hydrologic
models [Jakeman and Hornberger, 1993]. However, the
existence of significant sensitivity variation across water-
sheds, time periods/timescales, and evaluation metrics
would suggest that the number of identifiable parameters
found in their study is more a function of the experimental
design and cannot be generalized. A comprehensive analy-
sis of varying model behavior would test this hypothesis as
well as provide valuable understanding and guidance for
calibration. Such information is particularly useful for
watershed models that are used extensively in operational
environments. These models often require calibration across
a wide range of watersheds and are used in multiple
applications. As an example, the Sacramento Soil Moisture
Accounting Model (SAC-SMA) is the primary model used
by the National Weather Service (NWS) River Forecast
Centers (RFC) throughout the United States. Several studies
have presented automatic or semiautomatic methods that

could facilitate calibrating this model for the hundreds of
watersheds across the United States, as is required for a
countrywide forecasting system [Brazil, 1988; Sorooshian
et al., 1993; Duan et al., 1994; Boyle et al., 2000, 2001;
Vrugt et al., 2003a; Hogue et al., 2006; Tang et al., 2006;
Vrugt et al., 2006]. Other studies have focused on the
development and assessment of a priori parameter estimates
for the SAC-SMA [Koren, 2000; Duan et al., 2001; Koren
et al., 2003; Anderson et al., 2006; Gan and Burges, 2006].
However, to date, few sensitivity analyses of the SAC-SMA
exist in the literature despite its common use in operations
and hydrologic research. Furthermore, our previous work
[Tang et al., 2007b, 2007c] has suggested that some
common assumptions about parametric sensitivities of the
SAC-SMA model structure are not valid. These findings
have implications for methodologies based on a priori
assumptions about parameter sensitivity, such as ‘‘step-
wise’’ or ‘‘stepped’’ calibration approaches [e.g., Hogue et
al., 2000, 2006; Fenicia et al., 2007] and warrant further
investigation. Finally, as efforts continue to reformulate this
model into a distributed configuration [Koren et al., 2004],
a complete understanding of its parameter sensitivities
becomes increasingly vital.
[5] The main objective of this study is to use Sobol’s

variance-based global sensitivity analysis to build a com-
prehensive picture of parametric sensitivity for the SAC-
SMA and understand its variation across hydroclimatic
regimes, flow types, time periods, and timescales. Further
objectives are to determine how the variation informs us
about model behavior and to what extent the variation is
related to the hydroclimatic characteristics of the watersheds
and/or simulated time periods. The analysis is intended to
demonstrate (1) if moderate model complexity is warranted
(or proven excessive) when modeling a range of water-
sheds, (2) comprehensive trends in SAC-SMA model be-

Figure 1. Location and elevation of 12 Model Parameter Estimation Experiment (MOPEX) watersheds.
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havior for calibration guidance, and (3) the validity of
typical parameter sensitivity and identifiability assumptions.

2. MOPEX Basins and Data

[6] The hydrometeorological data sets used in this study
were developed as part of the Model Parameter Estimation
Experiment (MOPEX) and include data for 12 watersheds
in the United States that span different hydroclimatic
regimes and geographic locations [Duan et al., 2006].
Previous studies [Duan et al., 2006; Gan and Burges,
2006] summarized the performance of the SAC-SMA in
these watersheds.
[7] From the MOPEX data set, daily precipitation and

daily streamflow for 39 years (1960–1998) of data were
used, along with mean monthly estimates of potential
evaporation and vegetation adjustments. The relative loca-
tions of the 12 watersheds are shown in Figure 1 and their
characteristics are listed in Table 1. In this table and in
subsequent figures, the watersheds are ordered from dry to
wet based on the wetness index, which is defined as the ratio
of mean annual precipitation (P) to mean annual potential
evaporation (PE). Throughout this paper, the watersheds will
be identified using the three-letter IDs listed in Table 1.
[8] As illustrated in Figure 1, the watersheds’ drainage

areas range from the smallest (BLU) case encompass-
ing 1021 km2 to the largest (EAS) watershed draining
4421 km2. They are located in the general southeastern
region of the United States and include a variety of
topographic and land cover characteristics. The wide ranges
of mean annual P (765–1564 mm/a), mean annual runoff
coefficient (ROC) (0.15–0.63), and mean annual PE (711–
1528 mm/a) exemplify the diverse hydroclimatic regimes
represented in the data set. A further summary of watershed
characteristics is presented in Figures 2a–2e. Additional
physical characteristics of these watersheds are presented by
Duan et al. [2006] and Gan and Burges [2006].

3. Methods

3.1. Sacramento Soil Moisture Accounting Model
(SAC-SMA)

[9] The SAC-SMA is a conceptual rainfall-runoff model
that represents the soil column by an upper and lower zone
of multiple storages [Burnash, 1995]. It has been used
extensively in both research and operational applications
where it is the primary rainfall-runoff model used for river

forecasting by the National Weather Service (NWS) River
Forecast Centers (RFCs) across the United States. Figure 3
shows the structure of the SAC-SMA and the main function
of its 16 model parameters (shown in bold). Beyond these
main functions, several parameters have secondary func-
tions as part of the percolation component, which connects
upper and lower zones. The representation of the percola-
tion process is somewhat different in the SAC-SMA than in
some other commonly used watershed models (e.g., PRMS,
VIC, TOPMODEL). In the SAC-SMA, percolation is a
function of both the upper zone moisture availability and the
lower zone moisture deficit (versus only moisture availabil-
ity as in many other models). Therefore parameters that
control the moisture content of both the upper and lower
zones also impact the amount of percolation.
[10] In the parameter estimation process, two of the

16 SAC-SMA model parameters are typically set to stan-
dard values (SIDE and RSERV) for all watersheds. The
remaining 14 parameters must be estimated by some
means (calibration or otherwise) for each watershed. These
14 parameters were the focus of this study and are described
in Table 2 along with the allowable ranges used in the
sensitivity analyses [Anderson, 2002]. Our objective was to
investigate the parameter sensitivities within the ranges
defined as reasonable by the NWS for standard SAC-
SMA model calibration over the variety of watershed types
found in the United States.

3.2. Sobol Sensitivity Analysis

[11] Sobol’s [1993] sensitivity analysis method is a var-
iance-based approach in which the model output variance is
decomposed into relative contributions from individual
parameters and parameter interactions. This method was
selected based on previous work that demonstrated it to be
more robust than other sensitivity analysis methods for the
evaluation of hydrologic models [Tang et al., 2007b]. In
addition, Sobol’s method explicitly includes the effects of
parameter interactions and quantifies sensitivity with easily
compared indices, a necessity for our analysis. The method’s
primary drawback is its relatively large computational
requirements.
[12] In Sobol’s method, sensitivity to each parameter or

parameter interaction is assessed based on its percent
contribution to the total output variance. The variance in
model output is typically measured as the variance in a
model evaluation metric such as the root mean square error

Table 1. MOPEX Watershed Characteristics

ID River Outlet Location Area, km2 Mean Annual, mm
Mean Annual
ROC (Q/P)

Mean Annual
PE, mm

GUA Guadalupe Spring Branch, TX 3406 765 0.15 1528
SAN San Marcos Luling, TX 2170 827 0.22 1449
ENG English Kalona, IA 1484 893 0.30 994
SPR Spring Waco, MO 3015 1076 0.28 1094
RAP Rappahannock Fredericksburg, VA 4134 1030 0.37 920
MON Monocacy Frederick, MD 2116 1041 0.40 896
EAS East Fork White Columbus, IN 4421 1015 0.37 855
POT S. Branch Potomac Springfield, WV 3810 1042 0.33 761
BLU Bluestone Pipestem, WV 1021 1018 0.41 741
AMI Amite Denham Springs, LA 3315 1564 0.39 1073
TYG Tygart Valley Phillipi, WV 2372 1166 0.63 711
FRE French Broad Ashville, NC 2448 1383 0.58 819
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Figure 2. MOPEX watershed characteristics: (a) mean monthly runoff volume in millimeters, (b) mean
monthly precipitation, (c) mean monthly potential evaporation, (d) hydrologic ratios, and (e) flow duration
curves.

Figure 3. Conceptualization of the SAC-SMA.
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(RMSE). Throughout this section, references to the variance
in model output should be interpreted as the variance in an
evaluation metric. The four metrics used in this study will
be described in section 3.3. Sobol’s variance decomposition
can be represented as:

D fð Þ ¼
X
i

Di þ
X
i<j

Dij þ
X
i<j<k

Dijk þ D12...p ð1Þ

where f is the distribution of model output, D( f ) is the total
output variance; Di is the output variance due to the ith
component of the input parameter vector Q; Dij is the output
variance due to the interaction of parameter qi and qj; Dijk

represents third-order interactions; D12. . .p represents all
interactions greater than third-order; and p defines the total
number of parameters. In this study, we were primarily
interested in each parameter’s total contribution to output
variance, as well as howmuch of that contribution was due to
individual effects versus interactions with other parameters
(i.e., the difference between the total and individual effects).
The first-order and total Sobol sensitivity indices were
calculated to measure these contributions and are defined as:

firstorder index : Si ¼
Di

D
ð2Þ

total index : STi ¼ 1� D�i

D
ð3Þ

where the first-order index, Si, measures the model sensitivity
to the individual effect of parameter qi, and the total index,
STi, measures the sensitivity due to the combined effect of
parameter qi plus its interactions with all other parameters in
the analysis. In equation (3), the term D�i refers to the
variance resulting from all of the parameters except qi. In
other words, if parameter qi were removed from the analysis,
the resulting reduction in output variance is equivalent to the
total impact of parameter qi. Since the indices are ratios of a
portion to the total output variance, their values range from 0
to 1 and can be directly compared. If a particular parameter
has a small first-order index but a large total sensitivity index,
then that parameter impacts the model primarily through
parameter interactions.
[13] The variance terms (i.e., D terms) in equations (1)–

(3) can be approximated by numerical integration in a

Monte Carlo framework. Distributions of model parameters
are sampled and evaluated to generate distributions of
model output. The total output variance, D, is simply the
statistical variance of the output distribution, as follows:

f̂o ¼
1

n

Xn
s¼1

f Qsð Þ ð4Þ

D̂ ¼ 1

n

Xn
s¼1

f 2 Qsð Þ � f̂ 2o ð5Þ

where f is the model output, fo is the mean model output, n
is the sample size, and Qs is the sampled parameter vector.
Calculation of the variance contributions is somewhat more
complicated. An important aspect of Sobol’s method is the
use of two different samples, generated by the same scheme
and with the same number of elements. The model is
evaluated using the first sample to calculate the overall
output mean and variance (i.e., the combined effects of all
parameters). The second sample is then used to resample
each parameter, rather than setting each to a fixed value, for
the calculation of total and individual variance contribu-
tions. For the latter calculations, parameter vectors are
constructed systematically, with values selected from the
two samples in specific combinations defined by which
parameter’s contribution is being calculated. The resulting
distributions of the parameter vectors are evaluated to obtain
the corresponding distributions of model output that are
used in the approximations for Di and D�i. The expressions
for Di and D�i as defined by Sobol [1993, 2001], Hall et al.
[2005], and Saltelli [2002] are

D̂i ¼
1

n

Xn
s¼1

f Q að Þ
s

� �
f Q bð Þ

�ið Þs;Q
að Þ
is

� �
� f̂ 2o ð6Þ

D̂�i ¼
1

n

Xn
s¼1

f Q að Þ
s

� �
f Q að Þ

�ið Þs;Q
bð Þ
is

� �
� f̂ 2o ð7Þ

where (a) and (b) are two different samples (both of size n).
The Q symbols, defined in Table 3, indicate from which
samples the parameters values are taken. In this study
Sobol’s quasi-random sequence was used to sample points

Table 2. Description of SAC-SMA Parameters and Ranges Analyzed in This Study

Parameter Units Description Allowable Range

UZTWM mm Upper zone tension water maximum storage 25–125
UZFWM mm Upper zone free water maximum storage 10–75
UZK d�1 Upper zone free water withdrawal rate 0.2–0.5
PCTIM %/100 Percent permanent impervious area 0.0–0.05
ADIMP %/100 Percent area contributing as impervious when saturated 0.0–0.2
RIVA %/100 Percent area affected by riparian vegetation 0.0–0.2
ZPERC dimensionless Maximum percolation rate under dry conditions 20–300
REXP dimensionless Percolation equation exponent 1.4–3.5
PFREE %/100 Percent of percolation going directly to lower zone free water 0–0.5
LZTWM mm Lower zone tension water maximum storage 75–300
LZFPM mm Lower zone free water primary maximum storage 40–600
LZFSM mm Lower zone free water supplementary maximum storage 15–300
LZPK d�1 Lower zone primary withdrawal rate 0.001–0.015
LZSK d�1 Lower zone supplementary withdrawal rate 0.03–0.2
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more uniformly in the parameter space than uncorrelated
random sampling. Details of this sampling scheme can be
found in the work of Sobol [1967, 1993], Brantley and Fox
[1988], and William et al. [1999].

3.3. Metrics for Model Evaluation

[14] Applications of watershed models are inherently
multiobjective [Gupta et al., 1998; Madsen, 2000; Buras,
2001; Vrugt et al., 2003b; Bekele and Nicklow, 2005; Tang
et al., 2007a]. In this study, we used four different model
evaluation metrics to assess parameter sensitivity, two of
which are common statistical metrics and two that are
aggregate measures of overall hydrologic response. Each
metric replaces the function f in the equations for Sobol’s
method defined above. Figure 4 illustrates that the metrics
capture four important components of the hydrograph,
including high flows, low flows, variability in midrange
flows (streamflow regime), and the long-term water
balance. The high flow metric is the commonly used root
mean square error (RMSE), defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
t¼1

Qs;t � Qo;t

� �2s
ð8Þ

where m is the number of time steps, Qs,t is the simulated
flow for time step t, and Qo,t is the observed flow in time
step t. For the low flow metric, the simulated and observed
flow time series are first transformed by a Box-Cox
transformation (equation (9)) with a l value of 0.3, which
has a similar effect as a log transformation. The RMSE of the
transformed flows is then calculated to obtain a metric that

emphasizes low flow, referred to here as the transformed root
mean square error (TRMSE) (equation (10)).

Z ¼ 1þ Qð Þl�1

l
ð9Þ

TRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
t¼1

Zs;t � Zo;t
� �2s

ð10Þ

where m is again the number of time steps, Zs,t is the
transformed simulated flow for time step t, and Zo,t is the
transformed observed flow in time step t. The next metric,
referred to as slope of the flow duration curve error (SFDCE),
measures how well the model captures the distribution of
midlevel flows. The slope of a watershed’s flow duration
curve indicates the variability, or flashiness, of its flow
magnitudes. The SFDCE metric is thus simply the absolute
error in the slope of the flow duration curve between the 30
and 70 percentile flows as follows:

SFDCE ¼ abs
Qs;70 � Qs;30

40
� Qo;70 � Qo;30

40

� 	
ð11Þ

where Qs,30 and Qs,70 are the 30 and 70 percentile flows of
simulated flow duration curve and Qo,30 and Qo,70 are the 30
and 70 percentile flows of observed flow duration curve.
Since this metric first combines the flows into one value (in
this case slope) before calculating the error, it is an aggregate
measure of overall model response and less biased by
individual events. Similarly, the final metric, the runoff
coefficient error (ROCE) captures the overall accuracy of the
water balance by first combining the flows into one
characteristic hydrologic descriptor, the mean annual runoff
coefficient. The absolute error in the runoff coefficient is then
calculated and thus the ROCE is defined as

ROCE ¼ abs
Qs

P
� Qo

P

� 	
ð12Þ

Table 3. Definition of the Q Symbols in Equations (4)–(7) of

Sobol’s Method

Symbol Definition

Qs Sampled parameter vector
Qis

(a) Parameter qi taken from sample (a)
Qis

(b) Parameter qi taken from sample (b)
Q(�i)s

(a) All parameters except qi taken from sample (a)
Q(�i)s

(b) All parameters except qi taken from sample (b)

Figure 4. Hydrograph components captured by the four selected evaluation metrics.
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where Qs and Qo and are the simulated and observed mean
annual runoff volume, and P is the mean annual precipitation.

3.4. Spearman Rank Correlation

[15] The Spearman rank correlation coefficient was used
in this study to assess the relationships between parameter
sensitivities and hydroclimatic characteristics. It provided a
means to quantify the strength of a monotonic relationship
between two variables, with no assumptions of frequency
distribution or linearity [Lehmann and D’Abrera, 1998].
Since some of the relationships were highly nonlinear in this
study (as will be shown in section 5), the Spearman rank
coefficient was preferable to a traditional linear correlation
coefficient. To calculate it, values of each of the variables
(in this case watershed characteristics and sensitivity
indices) are ranked and the correlation is calculated based
on the difference in rankings as follows:

R ¼ 1� 6
P

d2

v v2 � 1ð Þ ð13Þ

where d is the difference in rank between the variables for a
given value and v is the number of values.

4. Approach

[16] The methods described above were used to perform a
comprehensive sensitivity analysis of the SAC-SMA for 12
watersheds using four model evaluation metrics for both a
long-term 39 year period as well as yearly periods. A Monte
Carlo sampling scheme [Saltelli, 2002; Tang et al., 2007b]

was used with 8096 samples and a warm-up period of 1 year
(i.e., the first year was not included in the sensitivity
calculations to allow the model states to warm up and
remove any impact of uncertain initial conditions). The
method was repeated for the four evaluation metrics
described in section 3.3, resulting in 48 separate sets of
sensitivity results (a ‘‘set’’ refers to a group of 14 individual
and 14 total indices that result for the 14 model parameters
in each run). The total-order Sobol indices were compared
across watersheds and across the objectives to identify any
visible patterns of variation in sensitivity. To quantify the
variation, relationships between parameter sensitivity and
several hydroclimatic characteristics were developed as
scatter plots and correlation was calculated by the Spearman
rank correlation method. Results of the long-term sensitivity
and correlation analysis are presented in section 5.1.
[17] Beyond the long-term analysis, an interannual anal-

ysis was performed to investigate the year-to-year variation
in sensitivity within each watershed. Sobol’s method was
applied using the same sampling scheme described above.
For each sample, model simulations were again generated
for a 39-year period, however, evaluation metrics and
Sobol’s indices were calculated separately for each individ-
ual calendar year. Therefore the results of each year are
based on the same parameter samples and can be directly
compared. As in the long-term analysis, the first year was
used as a warm-up period and not included (leaving 38
separate years for analysis). Annual sensitivity indices were
generated using this method for the 12 watersheds, 38
individual years, and four evaluation metrics. The results
were plotted to identify patterns of temporal variation within

Figure 5. Long-term Sobol sensitivity indices for 12 watersheds and 14 parameters based on a 38-year
period: Total (individual plus interactions) sensitivities, first-order (individual contributions) and
interaction contributions for (a) RMSE, (b) TRMSE, (c) ROCE, and (d) SFDCE.
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watersheds, as well as to identify trends across watersheds
that were masked in the long-term analysis. Relationships
between interannual hydroclimatic characteristics and the
interannual sensitivity indices were plotted and quantified by
Spearman rank correlation. Results of the interannual sensi-
tivity and correlation analysis are presented in section 5.2. As a
final step, the results from both the long-term and interannual
sensitivity analyses are synthesized to provide some general
overall guidance for SAC-SMA model identification in
section 5.3.

5. Results and Discussion

5.1. Long-Term Sensitivities

[18] In the following sections, the results are organized by
the different aspects of the flow that have been assessed
through the four evaluation metrics. In each section, dom-
inant patterns of sensitivity are highlighted first, followed
by discernible trends across the watersheds. Grids of long-
term Sobol sensitivity indices across the 12 watersheds and
14 model parameters are presented in Figures 5a–5d. Note
that in each grid, watersheds (x-axis) are ordered from dry
to wet (left to right) based on the wetness index as in
previous figures and tables. The model parameters (y-axis)
are generally structured with upper zone parameters at the
top, percolation parameters in the middle, and lower zone
parameters at the bottom. Total indices (individual plus
interactions), first-order indices (individual), and indices
representing all parameter interactions (total index minus
first-order index) are displayed separately to demonstrate
the varying impact of parameter interactions.
5.1.1. High Flows: RMSE
[19] Some dominant patterns are observable in the total

indices for the high flow metric (RMSE) (top grid of
Figure 5a), where the amount of variable contributing area
(ADIMP), the percolation multiplier (ZPERC), and the sizes
of the lower zone free storages (LZFPM, LZFSM) are
consistently sensitive across the watersheds. The sensitivity
of variable contributing area (ADIMP) reflects that param-
eter’s impact on high peaks (mainly at the high end of its
allowable range). The strong sensitivity to lower zone
parameters for this metric, however, is initially surprising

and counter to typical a priori assumptions that mainly
upper zone parameters dominate high flow simulations.
However, in the SAC-SMA, the lower zone free water
storages and recession rates are directly involved in the
calculation of percolation. Since percolation controls the
partitioning of water between the upper and lower zones, it
also impacts how much of a given event is generated by
faster, higher-peaking runoff components from the upper
zone (i.e., interflow, surface runoff, or direct runoff) versus
slower, lower-peaking components from the lower zone
(base flow). In this capacity, parameters that control perco-
lation (including ZPERC and lower zone storages and
recessions) impact high-flow simulations as reflected by
the sensitivity indices. The importance of interactions
among these parameters is illustrated in Figure 5a (middle
and lower grids). In some cases (e.g., lower zone recessions,
LZPK and LZSK), a parameter’s total sensitivity comes
almost entirely from the effects of interactions. Overall the
contributions by parameter interactions are a significant part
of the total sensitivity picture for RMSE.
[20] Comparing parameter sensitivities across the water-

sheds for RMSE (i.e., across rows of Figure 5a), several
trends are visible that provide insight into model behavior
across hydroclimatic regimes. For example, the strong trend
of increasing sensitivity from dry to wet watersheds for the
upper zone free storage (UZFWM) and the opposite (though
not as strong) trend for percent impervious area (PCTIM)
demonstrates a shift in mechanisms for generating peaks.
These trends suggest that in wet watersheds, simulated
peaks are more often generated by saturation of the upper
zone free water storage, while in dry watersheds peaks are
largely controlled by direct runoff from impervious areas.
This observation is intuitive as dry watersheds rarely receive
enough rainfall to saturate both the tension storages and
upper zone free water (which is required to generate surface
runoff). Thus in many events impervious area will be the
dominant or even the only mechanism of producing runoff
in the model. Conversely, wet watersheds regularly saturate
and produce surface runoff (which ‘‘overshadows’’ imper-
vious runoff in the RMSE measure). Figure 6a (top)
illustrates the trend of increasing upper zone free storage
sensitivity with watershed wetness index. The Spearman

Figure 6. Scatterplots demonstrating Spearman rank correlation (R) between selected parameters’ long-
term Sobol sensitivity indices (SI) and long-term hydroclimatic variables across watersheds for
(a) RMSE, (b) TRMSE, (c) ROCE, and (d) SFDCE. Watersheds are indicated by the marker symbols and
the selected parameter is labeled on the y-axis.
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rank correlation coefficient for this relationship is 0.74.
Another informative trend is the higher sensitivities of the
tension storages in dry watersheds. Figure 6a (bottom)
shows the strong negative rank correlation (R = �0.92)
between lower zone tension storage (LZTWM) sensitivity
and watershed wetness coefficient. This indicates the greater
importance or ‘‘activation’’ of thresholds in dry watersheds
for simulating peaks. In these watersheds, longer and more
frequent dry periods (and less overall volume of precipita-
tion) lead to tension storages drying out more often.
Therefore the sizes of the tension storages become impor-
tant in determining if and when thresholds are crossed and
when runoff is generated. On the other hand, in wet water-
sheds the tension storages may regularly be full (for nearly
any size) and thus not have a significant impact on peak
simulations.
5.1.2. Low Flows: TRMSE
[21] Moving to Figure 5b and the low-flow (TRMSE)

evaluation metric, the pattern of sensitivity is similar to that
of the high-flow (RMSE) metric (e.g., prominent lower
zone sensitivity) though some differences exist. For exam-
ple, the switch in the parameter with highest sensitivities
from the secondary to primary base flow storage (i.e., from
LZFSM to LZFPM) reflects the greater importance of
slower-receding (primary) base flow for low-flow versus
high-flow periods. In addition, the reduced sensitivity of the
percolation curve multiplier (ZPERC) suggests that the
percolation in dry conditions (which is when ZPERC
controls percolation) is less important than it was for high
flows. This result is expected since much of percolation in
dry conditions goes to lower-zone tension storage and does
not recharge base flow. The lower-zone sensitivities in
TRMSE are likely due to both the main parameter functions
(i.e., control of the potential volume of base flow and slope
of recession) as well as its role in the percolation during
saturated soil conditions. Another difference between the
high-flow (RMSE) and low-flow (TRMSE) results is the
reduction in upper zone free storage (UZFWM) sensitivity.
This difference makes sense since this parameter primarily
impacts interflow and surface runoff generation (high-flow
components) rather than base flow. The emergence of some
sensitivity in parameters that control evapotranspiration (ET)
losses (RIVA, LZTWM, PFREE) represents additional over-
all shifts in model control, as ET losses have a larger impact
on low flows than on high flows. Finally, in Figure 5b, the
contribution of interactions to total parameter sensitivity is
again apparent (as for RMSE), further supporting the impor-
tance of accounting for parametric interactions.
[22] Comparing sensitivities across watersheds for

TRMSE (i.e., across rows of Figure 5b), we find that the
overall variability is somewhat larger than it was for RMSE.
There are fewer parameters in this case that are sensitive
across all watersheds. Most noticeably, the two driest water-
sheds (SAN, GUA) have distinctly different patterns of
sensitivity than the other (particularly the wettest) water-
sheds. The lower sensitivity for the lower-zone free primary
storage (LZFPM) in the dry watersheds (Figure 6b, top)
reflects the limited importance of base flow for low flow
simulations in these watersheds (where base flow may be
intermittent). In contrast, the greater impact of ET on low
flows in dry watersheds stands out strongly in the higher
lower zone tension storage (LZTWM) sensitivities, riparian

vegetation area (RIVA) sensitivities, and lower-zone parti-
tioning (PFREE) sensitivities. The latter trend is shown and
quantified in Figure 6b (bottom) with Spearman rank
correlations of �0.96. These parameters’ impacts on ET
loss are discussed further in the next section.
5.1.3. Water Balance: ROCE
[23] The overall parameter sensitivity pattern for the

long-term water balance metric (ROCE) is distinctly differ-
ent than that of the other metrics (Figure 5c). Rather than
being dominated by the lower-zone parameters, the pattern
for ROCE is controlled across all watersheds by parameters
that affect the volume of ET losses (UZTWM, PCTIM,
RIVA, LZTWM, PFREE). This result reflects the fact that
these parameters largely control the volume (rather than the
shape) of the hydrograph, which impacts the long-term
water balance. In the SAC-SMA, ET losses occur primarily
from the upper and lower zone tension storages and from
riparian areas. The amount of loss from each store depends
on the demand (potential ET for that time of year) and on
the supply (water content of the storage). The parameters
that are sensitive to the long-term water balance are those
that affect not only the size of these storages (i.e., the
potential volume of losses) but also the amount of water that
goes into these storages. For example, the percent impervi-
ous area controls the volume of runoff that enters the
channel directly and is therefore unavailable to ET (i.e., it
is the volume that does not enter the upper zone tension
storage). Similarly, in the lower zone, percolated water is
partitioned between tension and free storages by parameter
PFREE. The volume that goes directly into free storage
(rather than tension storage) is effectively unavailable for
ET loss. These two parameters thus may be sensitive in
addition to the parameters controlling the size of the ET
source zones (UZTWM, LZTWM, RIVA).
[24] Evaluating the effects of interactions in Figure 5c

(lower row), it is clear that interactions are not significant
for ROCE, in contrast to RMSE and TRMSE. The individ-
ual sensitivity pattern (middle) is nearly identical to the total
sensitivity pattern (top) and the contributions from inter-
actions (lower) are largely zero, with a few exceptions. This
observation reflects that these parameters are sensitive due
to their main, independent functions in the model (rather
than due to any interacting process like percolation). The
reasons for interaction sensitivities for a few watersheds
(e.g., POT and EAS) could not be determined though these
interactions may be a result of hydroclimatic characteristics
not included in this analysis (e.g., precipitation distribution)
or of errors in the data.
[25] Comparing results across watersheds for ROCE,

large sensitivity differences are apparent between the two
driest watersheds (SAN, GUA) and the rest of the water-
sheds. Here the upper zone tension storage (UZTWM) and
the lower zone partitioning (PFREE) become sensitive.
These trends likely relate to the frequency or infrequency
of saturation of the upper and lower zone tension storages.
If the lower zone is usually dry, the percolation partitioning
(PFREE) is more important due to its control over the
volume of percolation going into the tension storage (and
eventually lost to ET as discussed above) during unsaturated
lower zone conditions. If the lower zone is saturated, no
percolation goes into tension storage, and the partitioning
parameter has no effect. Similarly, if the upper zone tension
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water storage is frequently full, the volume of ET loss is less
variable than if this storage is often dry. ET losses always
occur at the potential rate under saturated conditions, thus if
a watershed’s upper zone is often saturated, water balance
sensitivity to upper zone tension storage will be low (and
vice versa). The strong negative rank correlation associated
with this trend is presented in Figure 6c (top). The second
trend illustrated for ROCE involves the lower zone tension
storage sensitivity (Figure 6c, bottom). This trend is differ-
ent than others in that it shows a nonmonotonic relationship
with watershed characteristics since the highest sensitivities
occur for the midwetness watersheds. Lower sensitivities
occur for both the wettest and driest watersheds, producing
the inverse V shape seen in the scatterplot of this parameter
in Figure 6c. The reduction in sensitivity for wet watersheds
is again likely due to more frequent saturation of the lower-
zone tension storage and thus less impact of its size on the
volume of losses to ET. Similar to UZTWM, in some years
the storage may fill for all parameter values and the volume
of ET loss is unaffected by that parameter for those periods.
Conversely, in very dry watersheds there are potentially
long periods in which the upper-zone tension storage never
fills and thus no water percolates to the lower zone (and
LZTWM has no effect).
5.1.4. Medium Flow Regime: SFDCE
[26] The final metric, SFDCE, evaluates the error in the

slope of the flow duration curve between the 30 and 70
percentile flow magnitudes. It thus captures the distribution
(i.e., the variability of flow magnitudes) within the range of
midlevel flows. The hydrograph components that fall into
the 30–70% range vary by watershed, but will generally
include small peaks and high base flows (e.g., just after
large storms). The distribution of these flow magnitudes
(i.e., relative frequencies or ‘‘flashiness’’) determines the
steepness (or mildness) of the FDC slope. Figure 5d shows
that for this metric, lower-zone parameters again dominate
the sensitivity pattern as they did for RMSE and TRMSE. In
contrast to those metrics’ results, however, the lower-zone
tension storage parameter (LZTWM) and lower-zone parti-
tioning parameter (PFREE) are also sensitive for most of the
watersheds. These sensitivities, along with lower-zone sto-
rages and recessions, reflect the importance of both perco-
lation and lower-zone partitioning (between tension and free
storages) for reproducing the flow regimes of the water-
sheds. The percolation function, as mentioned, determines
how much water infiltrates to slow-responding base flow
(less variable flow magnitudes) versus how much moves
through the upper zone to become faster-responding (more
variable) interflow or surface runoff. Lower-zone partition-
ing then impacts the amount of percolation that recharges
base flow after events (versus enters tension storage and is
lost to ET). Watersheds with higher percolation and sus-
tained base flow generally show less variability in flow
magnitude (less ‘‘flashy’’ regime) than those with less
percolation and therefore more surface runoff and interflow.
Figure 5d (bottom) shows that the effects of interactions for
the SFDCE metric are again significant as they were for
RMSE and TRMSE (where percolation was also important).
If only individual effects were considered (middle plot) the
parameter sensitivity results would be incomplete due to the
large contribution by parameter interactions (bottom plot).
The importance of interactions for RMSE, TRMSE and

SFDCE, though not for ROCE, supports a hypothesis that
parameter interactions in the SAC-SMA are largely a result
of the percolation function.
[27] Comparing sensitivities across the watersheds for

this metric, it is seen that for the drier watersheds the ET-
controlling parameters of the upper zone (UZTWM,
PCTIM, and RIVA) again become sensitive for SFDCE as
they did for ROCE. In this case, however, the reason for
their sensitivity is their impact on the variability in flow
magnitudes (rather than their impact on long-term runoff
volume as for ROCE). This impact is greater for dry
watersheds than wet watersheds for two reasons. First, in
dry watersheds the parameters will be more frequently
‘‘activated’’ over the 30–70 percentile range of flows
(whereas in wet watersheds the upper zone will be more
often full over this range of flows and UZTWM and RIVA
will have less impact). Second, since relatively high flows
occur less frequently in dry watersheds than in wet water-
sheds, the 30–70 percentile range will shift downward to
include lower flows (relative the that watershed’s range of
flows). Therefore the small peaks generated by impervious
area and the recessions that are affected by riparian and
upper zone ET will more likely fall into the 30–70 range.
Figure 6d (top) demonstrates the decreasing dry to wet trend
(R = �0.93) between watershed wetness and percent
impervious area sensitivity (PCTIM). Figure 6d (bottom)
also shows a bimodal trend for lower zone tension storage
(LZTWM), similar to the trend for the ROCE evaluation
metric (and likely for similar reasons of saturation frequency/
infrequency as discussed in section 5.1.3.).

5.2. Interannual Sensitivities

[28] The interannual sensitivity analysis provides addi-
tional information about the variability of parameter sensi-
tivities and model behavior across the watersheds. Temporal
patterns (Figures 7–8) were plotted to observe how sensi-
tivities change from year to year and how much interannual
variability (or consistency) is present within each water-
shed. For all metrics and watersheds in Figures 7–8,
variability in sensitivity patterns is evident. On the basis
of the results in section 5.1, it is reasonable to infer that
differences in flow and forcing characteristics from year-to-
year could also result in different sensitivity patterns (as
seen in Figures 7–8) from year-to-year. The interannual
correlation analysis supports this premise as trends were
found for all watersheds between the hydroclimatic charac-
teristics and the parametric sensitivity results for each year.
Some trends found in the interannual analysis were similar
to trends in the long-term analysis (i.e., patterns across wet
and dry years within a watershed are similar to long-term
patterns across wet and dry watersheds). Other interannual
trends, however, did not exist in the long-term analysis
since they seem to represent more specific combinations of
long- and short-term climatic characteristics at a certain
location.
[29] In one bounding case the wet conditions in the FRE

watershed show an increasing trend in high flow sensitivity
for the upper zone free water storage (UZFWM) with
annual maximum flow in watershed FRE (Figure 9a, top).
In the long-term analysis, this watershed (FRE) had the
highest sensitivity to the upper zone free storage (UZFWM)
parameter (see Figure 5a). The high sensitivity is attributed
to more frequent saturation of the upper zones. In the
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interannual analysis, years with high annual maximum flow
indicate when large event(s) occurred and thus when the
upper zone storages of the SAC-SMA are most likely to be
saturated. In such cases (as discussed in section 5.1), runoff
is produced in the model mainly by surface runoff (i.e.,
saturation excess). Thus the size of the upper zone free
storage has a large impact on simulations particularly in

those years, as demonstrated in Figure 9a. Another similar
trend between the long-term and interannual analysis is the
bimodal behavior of lower-zone tension store sensitivity. In
dry watersheds the interannual trend is positive (Figure 9d,
top) and in wet watersheds the trend is negative (Figure 9d,
bottom). Similar reasons apply as were discussed in section
5.1 (relative frequencies of lower zone saturation).

Figure 7. Interannual Sobol sensitivity indices for the six driest watersheds over the period 1980–1998.
The overall sensitivity (last column in each grid) is the corresponding result from the long-term analysis
shown in Figure 5. Total annual precipitation (left axis) and the runoff coefficient (right axis) for each
year is shown above each sensitivity grid.
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[30] An example of a trend not apparent in the long-term
analysis is the water balance (ROCE) sensitivity trend seen
in watershed GUA for the percent impervious area
(Figure 9c, top). The long-term sensitivity for this case
(watershed GUA and parameter PCTIM in Figure 5c) was
actually lower than most other watersheds. In the interan-

nual analysis, however, percent impervious area becomes
more sensitive in the dry years of watershed GUA than it
does in nearly all years of other watersheds (Figure 7). This
suggests a unique model behavior develops in the driest
years of the driest watersheds that is not present for other
conditions. In such cases total runoff is likely so low and

Figure 8. Interannual Sobol sensitivity indices for the six wettest watersheds over the period 1980–
1998. The overall sensitivity (last column in each grid) is the corresponding result from the long-term
analysis shown in Figure 5. Total annual precipitation (left axis) and the runoff coefficient (right axis) for
each year is shown above each sensitivity grid.
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storages so regularly dry that impervious runoff from the
few infrequent events is the only runoff-generating mecha-
nism and thus has a large impact on the water balance for
that year. Another difference with long-term results is
exemplified by the lower zone partitioning parameter
(PFREE) in watersheds SAN and GUA. This parameter is
sensitive for high flows in several of the individual years
(Figure 7). However, the sensitivity does not appear in the
long-term results (last column). As discussed in section 5.1,
PFREE controls lower zone partitioning between tension
and free water zones and generally affects low to middle
flows and the water balance (in dry watersheds). In the dry
years for these watersheds, peaks may be relatively low and
PFREE will also impact the high flow metric. However, the
total variance contribution to long-term results in those
years is likely small (relative to years with high peaks)
and the influence is therefore not discernible in the long-
term result. This observation points out the potential of
certain events to dominate long-term results and the ability
to extract more information from the data when analyses are
performed at shorter timescales. In addition, similarities and
differences between the interannual and long-term analyses
highlight the influence of timescale on model behavior; a
parameter’s influences will be most discernible on time-
scales for which the processes it controls are dominant.
[31] A final point in the interannual results is the tenden-

cies of some watersheds to ‘‘look’’ like other (wet or dry)
watersheds in certain years. For example, watershed RAP
(see Figure 7) has a low-flow (TRMSE) sensitivity pattern
in 1998 that is generally similar (e.g., with a limited
sensitivity to PFREE) to the dominant pattern in the wet
watersheds. However, its pattern in 1982 resembles the
overall pattern of the dry watersheds. This fluctuating
sensitivity pattern could be related to the fact that this
watershed has a long-term P/PE value near 1 (thus it may
fluctuate between energy-limited and water-limited years).
As another example, the sensitivity patterns in years when
major floods occur cause patterns of drier watershed to
resemble patterns of wet watershed. For example, the
Mississippi Flood of 1993 is evident in watershed ENG

and the Winter Flood of 1996 in the Mid-Atlantic shows up
in watersheds MON and POT. This also demonstrates that
two watersheds with different locations and hydroclimatic
characteristics can potentially have the same sensitivity
pattern in a given year (such as ENG and AMI in 1993)
under extreme changes in forcing. Overall, Figures 7 and
8 emphasize the risk of assuming a model’s sensitivity
based on results from a different watershed or analysis time
period.

5.3. Synthesis of Results

[32] Sensitivity analysis is often performed in an effort to
determine which parameters are most identifiable (i.e., most
sensitive) and should be the focus of calibration efforts. The
results in the previous sections have demonstrated that
parameter sensitivities vary depending on the hydroclimatic
characteristics of the watershed and time period of analysis,
as well as on the metrics used for the analysis. On the basis
of these findings, it becomes clear that to determine param-
eter sensitivity for a particular watershed and period of
record, it is best to perform a complete sensitivity analysis
for that specific case. However, computational and time
costs may often make this infeasible. Therefore to provide
some general guidance for SAC-SMA model identification,
the results of the interannual and the long-term analyses are
combined to create a summary of expected parameter
sensitivity by watershed type and time period (Figure 10).
Watersheds are grouped into three categories (dry, middle,
and wet watersheds) based on indicated ranges of the
wetness index. For each watershed group their behavior
for dry, middle, and wet years is classified as highly
sensitive, sensitive, or not sensitive based on sensitivity
indices of the corresponding watersheds and time periods.
Highly sensitive subcategories have a majority sensitivity
index greater than 0.1 (e.g., the majority of the indices in the
driest years of the dry watersheds are greater than 0.1).
Sensitive subcategories have a majority index between 0.01
and 0.1 and nonsensitive subcategories have a majority
index less than 0.01. Given a particular watershed and
period of record (i.e., how wet/dry is the period),

Figure 9. Scatterplots demonstrating Spearman rank correlation (R) between parameters’ annual Sobol
sensitivity indices (SI) and annual hydroclimatic variables. Each plot displays the result for a particular
watershed and parameter combination. The watershed is indicated by the marker and the parameter is
labeled on the y-axis.
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Figure 10 provides some general indication as to which
parameters are likely to be the most identifiable, which are
less (but still somewhat) identifiable, and which (if any) are
largely unidentifiable.
[33] The most evident indication in Figure 10 is the need

to focus on the lower zone parameters (LZFSM, LZFPM,
LZSK, LZPK) in model identification efforts, particularly
for midwetness and wet watersheds. Section 5.1 discussed
the involvement of these parameters in percolation and
therefore their impact on low, middle, and high flow types.
Significant information is also present for these watersheds
to identify percent impervious area and lower zone tension
storage using the water balance and midflow regime met-
rics. While high flows contain consistent information for
identification of additional impervious area (ADIMP). In-
formation for most of the remaining parameters is present in
midwetness and wet watersheds but is weaker and less
consistent (i.e., not present in all years). In dry watersheds,
model identification focus should shift to parameters impact-
ing ET losses (UZTWM, PCTIM, RIVA, LZTWM, and
PFREE) as discussed throughout section 5.1. The remaining
parameters (including percolation-related parameters) are
less consistently sensitive in dry watersheds and would
require targeting specific time periods for identification.
[34] As a final point, it should be noted that similar

variation in parameter sensitivity was found at shorter time
scales (e.g., intra-annual) than those presented in this paper.
We performed the sensitivity analysis on some test cases at

a monthly timescale. Sensitivity patterns were still largely
driven by hydroclimatic variation as in the longer time
scales. These results were not included in this paper as
long-term and interannual variation were deemed most
relevant for current calibration approaches (i.e., static pa-
rameter values are determined based on aggregates meas-
ures of model predictions for years to decades).

6. Summary and Conclusions

[35] This study demonstrates that intermediate-complexity
watershed models, like the SAC-SMA, include necessary
flexibility for representing a wide range of watersheds
located in different hydroclimatic regions. An in-depth
analysis is presented of the SAC-SMA’s parametric sensi-
tivity variation across watersheds composing a hydrocli-
matic gradient for multiple time periods/timescales and a
suite of flow types. The sensitivity patterns demonstrate
how different model components become dominant due to
changes in forcing (hydroclimatic) conditions. This flexi-
bility, combined with the lack of any consistently insensitive
parameter (see Figure 10), substantiate that SAC-SMA’s
level of complexity is warranted (i.e., the model is not
consistently overparameterized) for simulating watersheds
across a range of hydroclimatic conditions. Results also
provide detailed guidance for SAC-SMA calibration and
refute some commonly employed a priori assumptions
about the model’s parametric sensitivity. The analysis has

Figure 10. Summary of SAC-SMA parameter sensitivity results and guidance for parameter estimation.
Highly sensitive (black) parameters are those where the majority of years have an SI > 0.1, sensitive
(gray) are those where the majority are in the range 0.01 < SI < 0.1; and not sensitive (white) are those
where the majority of years have an SI < 0.01.
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broader implications with respect to hydrologic model
behavior and identification in general, as discussed below.
[36] Across watersheds, we found that model behavior

could be explained largely based on saturation of the upper
and/or lower zones. In the upper zone the free water storage
is important in watersheds or time periods in which that
zone is frequently saturated and therefore producing surface
runoff. In contrast, the impact of the upper zone tension
storage is greater under conditions of infrequent saturation
and therefore variable ET loss. In each case the respective
conditions for sensitivity reflect conditions when the storage
is actively impacting model predictions and reasonably
represents the expected dominant processes. The structure
of the upper zone in the SAC-SMA is similar to many
hydrologic models in its partitioning between tension (ET-
drained) and free water (gravity-drained) storages. Thus this
moisture- and ET-driven model behavior of the upper zone
would be relevant across many models.
[37] The lower zone structure of the SAC-SMA, however,

is somewhat unique (amongmodels of similar complexity) in
its coupling with the upper zone through the demand-based
percolation function. As a result of the percolation structure,
lower-zone model behavior was found to extend beyond its
more typical and assumed influences (low flows) to impact
middle and high flows across most watersheds. This behavior
was most evident in watersheds with appreciable levels of
lower-zone saturation (midwetness and wet watersheds) due
to the variable percolation demand in such watersheds.
[38] The patterns in model behavior for upper zone, lower

zone, and percolation components of the SAC-SMA were
interpreted across dry to wet watersheds based on the above-
discussed, moisture-related mechanisms. Wet watersheds
and dry watersheds resulted in distinctly different patterns
of parametric control. The differences were reasonable and
intuitive based on differential model forcing, evapotranspi-
ration, and storage across watersheds. Similarly within water-
sheds, reasonable patterns of sensitivity were produced by
wet years and dry years of the analysis record. It follows that
similar model behavior variations would be expected to result
from nonuniform forcing and storage across a spatially
distributed model domain. Wet cells would be expected to
have patterns of parametric control similar to wet year/
watersheds of this analysis. And likewise dry cells would
be expected to follow patterns of dry years/watersheds. Thus
implications of this study are likely to apply (and be com-
pounded) for a distributed configuration of the SAC-SMA.
[39] The differences in model behavior demonstrate that a

moderate level of complexity (as in the SAC-SMA) is
warranted to appropriately represent the hydrology of water-
sheds across a hydroclimatic gradient. Although some model
components were found to be inactive for a single given
watershed and/or flow type, a comprehensive evaluation
across a range of watersheds and conditions revealed that
nearly every model component is important in certain cases.
Therefore generalizing model behavior and reducing the
number of parameters that require calibration for this model
would be difficult if all watersheds and all aspects of the
hydrograph should be well represented. These results also
demonstrate counter-evidence for the premise that no more
than 3–5 parameters can regularly be identified from hydro-
logic data. We show that when results are combined across
four metrics, substantial information exists for 6–10 param-

eters (highly sensitive parameters), and ‘‘some’’ information
exists for most of the remaining parameters. Additionally, the
fact that the dominant parameters are often similar across
multiple metrics (particularly the commonly used statistical
metrics) limits the feasibility of dividing parameters into
nonintersecting groups for calibration, which is the basic
premise of ‘‘step-wise’’ or ‘‘stepped’’ calibration procedures.
[40] The need to actively couple sensitivity analysis with

calibration procedures is clearly indicated by the variation in
sensitivity patterns found in this study. Assumptions of
parametric controls based on extrapolation of sensitivity
analysis results from different watersheds or time periods
are likely to be invalid or inapplicable. Furthermore, some
common assumptions with respect to the SAC-SMA (e.g.,
that lower zone parameters do not impact high flows) are
incorrect, demonstrating the difficulty of discerning para-
metric controls a priori without rigorous computational
analysis. To most effectively identify important model
parameters for calibration of a given watershed and analysis
period, sensitivity analysis should be performed for that
specific case. An extension of this study is currently in
progress to investigate how parameters of varying sensitiv-
ity impact the overall model performance. Results of that
study will address the feasibility for different watershed
types of removing (fixing to constants) parameters from the
calibration process.
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