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[1] Hydrologic models require the specification of unknown model parameters via
calibration to historical input-output data. For spatially distributed models, the large
number of unknowns makes the calibration problem poorly conditioned. Spatial
regularization can help to stabilize the problem by facilitating inclusion of additional
information. While a common regularization approach is to apply a scalar multiplier to the
prior estimate of each parameter field, this can cause problems by simultaneously
changing both the mean and the variance of the distribution. This paper explores a
multiple-criteria regularization approach that facilitates adjustment of the mean, variance,
and shape of the parameter distribution, using prior information to constrain the problem
while providing sufficient degrees of freedom to enable model performance
improvements. We also test simple squashing functions to help in maintaining
conceptually reasonable parameter values throughout the spatial domain. We apply the
method to three basins in the context of the Distributed Model Intercomparison Project
(DMIP2), obtaining considerable performance improvements at the basin outlet. However,
the prior parameter estimates are found to give much better performance at the
interior points (treated as ungauged), suggesting that the spatial information has not been
properly exploited. The results also suggest that basin outlet hydrographs may not be
particularly sensitive to spatial parameter variability and that an overall basin mean value
may be sufficient for flow forecasting at the outlet, although not at the interior points. We
discuss weaknesses in our study approach and suggest diagnostically more powerful
strategies to be pursued.
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1. Introduction

1.1. Background

[2] Hydrologic models typically assume some universal-
ity in model structure [Gupta et al., 2003], meaning that
there is an expectation that the model can provide accept-
able input-state-output (ISO) simulations for the watersheds
of interest. Therefore, for a particular watershed, the mod-
eling problem becomes ‘‘simply’’ that of specifying values
for the model parameters. Because many parameters are not
directly observable (or easily inferred from measurement
data), they must be estimated indirectly by an inverse
(calibration) process that conditions the parameter estimates
(and hence the model response) on historically observed
input-output data [e.g., Beven, 1996; Gupta et al., 1998,
2003, Madsen, 2003; Vieux and Moreda, 2003; Refsgaard
and Storm, 1996]. Some degree of calibration is therefore
generally unavoidable in hydrologic modeling [e.g., Beven,
1989; Gupta et al., 1998; Refsgaard and Storm, 1996].
[3] When implementing a spatially distributed hydrologic

model, the large number of unknowns results in a high-

dimensional parameter search space, which significantly
complicates the optimization problem [e.g., Beven, 1996;
Leavesly et al., 2003; Pokhrel et al., 2008; Refsgaard, 1997;
Vieux, 2001]. When this dimension becomes so large that
the unknowns cannot be uniquely constrained by the data,
the problem is said to be ill posed or poorly conditioned.
‘‘Regularization’’ is a mathematical strategy that helps to
stabilize ill-posed problems by the enabling the inclusion of
additional information [e.g., Tikhonov and Arsenin, 1977;
Lawson and Hanson, 1995;Weiss and Smith, 1998; Doherty
and Skahill, 2006; Linden et al., 2005; Tonkin and Doherty,
2005; Isaaks and Srivastava, 1989]. By using prior infor-
mation (either direct or indirect) related to the parameters,
regularization is able to ‘‘better condition’’ the objective
function response surface, either via some kind of penalty
function [Carrera and Neuman, 1986; Doherty and Skahill,
2006] or by imposing constraints that reduce the dimen-
sionality of the parameter search space [see Pokhrel et al.,
2008, 2009].

1.2. Strategies for Spatial Regularization

[4] In spatially distributed watershed modeling, a com-
mon and simple approach to regularization is to apply a
scalar multiplier m to each prior parameter field (specified
from data describing watershed characteristics: soils, vege-
tation, topography, land use, etc.) and to estimate a ‘‘best’’
value for this multiplier via calibration [e.g., Bandaragoda
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et al., 2004; Cornfield and Lopes, 2004; Eckhardt and
Arnold, 2001; Francés et al., 2007; Pokhrel et al., 2008;
Vieux et al., 2004; Yatheendradas et al., 2008]. In a model
with Ng grid cells and Np parameters per cell, the dimension
of the calibration problem is thereby reduced from Ng*Np to
1*Np. This so-called ‘‘multiplier’’ approach makes the
(hopefully reasonable) assumption that the prior parameter
field properly describes the spatial pattern of parameter
variation (the pattern of relative magnitudes from cell to
cell), but that the magnitudes of all the parameter values
must be adjusted to achieve a better simulation of the model
response. For example, the calibration approach described
in the manual for the Hydrology Lab Distributed Hydrology
Model [NOAA, 2007] uses prior spatial estimates of the
model parameters derived via the [Koren et al., 2000]
method from watershed soils information (STATSGO/
SSURGO), land use, vegetation and other data. Koren et
al. [2000] and Anderson et al. [2006] report that these
estimates provide good initial approximations, which can be
refined via manual and/or automated calibration using the
multiplier approach. Bandaragoda et al. [2004] used the
multiplier approach to refine spatial parameter estimates for
the TOPNET model derived from remote sensing and GIS
information. Vieux et al. [2004] used an ‘‘ordered physics-
based parameter adjustment’’ methodology in which scalar
multipliers, applied to the prior estimates of a parameter
field, were adjusted in stepwise fashion to calibrate a
physically based hydrologic model.
[5] In essence, the multiplier approach reduces the

dimension of the ‘‘distributed’’ model optimization problem
to that of an equivalent ‘‘lumped’’ model, so that existing
optimization algorithms (developed for lumped watershed
modeling) can be applied. But under what circumstances
should the multiplier approach be used, and what are the
implications of its use? Simple examination shows that
the multiplier simultaneously changes both the mean and the
variance of the parameter field. Let q = [q1. . .qg] represent the
prior values of parameters in the Ng grid cells and f =
[f1. . .fg] represent the corresponding posterior values after
adjustment by the multiplier m (i.e., fj = m � qj). The mean
and variance of the posterior distribution are given by

E ff g ¼ m � E qf g ð1Þ

Var ff g ¼ m2 � Var qf g ð2Þ

showing clearly that the mean and variance of the
distribution are adjusted in a linked fashion, whereby
‘‘small’’ prior values are adjusted by only small amounts
while ‘‘large’’ prior values are adjusted by much larger
amounts.
[6] One way to avoid this problem, less widely reported,

is to instead apply a scalar additive constant a to each spatial
parameter field so that only the mean of the parameter
distribution is adjusted (i.e., fj = qj + a) while leaving the
variance (and the absolute differences between the param-
eter values in the grid) unchanged [Vieux, 2001]. By
extension, the two approaches can be combined:

fj ¼ m � qj � Efqg
� �

þ a ð3Þ

to allow the mean and variance of each parameter field to be
adjusted independently [Vieux, 2001]; in this case there are
two values to be adjusted per spatial parameter field, and the
dimension of the regularized problem becomes 2* Np.
[7] By further extension, nonlinear transformations of the

following form can also be used:

fj ¼ m � qj
� �b þ a ð4Þ

[8] This approach has three values to be adjusted per
spatial parameter field (the multiplier m, additive constant a
and power term b), increasing the dimension of the regu-
larized problem to 3*Np. By increasing the degrees of
freedom, this strategy allows the optimization method to
deform the probability distribution of each parameter field
in more complex ways. Pokhrel et al. [2008] developed this
nonlinear regularization approach for application to water-
shed models in a different manner, where the qj terms refer
instead to the soils properties and other watershed character-
istics rather than the inferred prior parameter estimates.
[9] Regularization approaches of the kind mentioned

above are reasonable ways for using prior information to
constrain the calibration problem, making the optimization
problem better conditioned while allowing the model suffi-
cient degrees of freedom to match the observed behavior of
the watershed. To ensure clarity of communication, we
adopt the terminology introduced by Tonkin and Doherty
[2005] and refer to the coefficients of the regularization
constraint equations as ‘‘superparameters.’’

1.3. Dealing With Parameter Constraints

[10] When applying regularization strategies an interest-
ing question is how to deal with ‘‘feasible parameter
bounds.’’ For reasons of conceptual-physical consistency
and realism, model parameters are usually expected to
remain within (or close to) some range described by an
upper and lower bound. In spatially distributed models,
these constraints must be obeyed by the values in each and
every cell. However, when adjusting an entire parameter
field, some of the grid cell values can move outside the
feasible range, even though the spatial mean (and much of
the distribution) remains feasible. If the boundaries can be
considered ‘‘soft’’ (not well specified by prior information),
this might not matter much. But when the boundaries are
‘‘hard’’ (e.g., to prevent storage capacities from becoming
negative or to restrict drainage rate parameters to a [0–1]
range), violations of the boundaries can have severe com-
putational or conceptual implications.
[11] If the feasible parameter range constraints are treated

as hard boundaries, the optimization procedure can become
severely constrained, particularly if the variance of the priori
parameter distribution is initially large (with values close to
the feasible parameter bounds). This will prevent it from
adjusting the shape and location of the parameter field. One
solution is to ‘‘soften’’ the constraint boundaries and allow
the parameter probability distribution to partially violate the
constraints, but this cannot be done for capacity and rate
parameters that must obey constraints imposed by compu-
tational and conceptual consistency. An alternative approach
is to deform or ‘‘squash’’ the shape of the parameter
probability distribution to keep it within the boundaries,
thereby maintaining the degrees of freedom facilitated by
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parameter regularization. To our knowledge the use of
squashing functions for this purpose has not been examined
in the literature.

1.4. Model Performance at Interior Forecast Points

[12] A significant advantage of spatially distributed mod-
els is their ability to simulate hydrologic responses of the
watershed at interior locations. Brath et al. [2004] reported
obtaining good performance in simulating streamflows at
interior locations of a midsized catchment in north-central
Italy, based on calibrations at the outlet. Similarly, findings
were reported by Bandaragoda et al. [2004], Behnaz et al.
[2009] and Reed et al. [2004] although they generally
reported interior point performance to be worse than at
the outlet. Results from phase 1 of DMIP [Reed et al., 2004]
also suggest that reasonable interior point performance can
be achieved based on calibration to watershed outlet hydro-
graphs, but with a few notable exceptions. In general, not
enough investigations into this matter have been reported to
confidently say whether spatially distributed watershed
models are currently able to provide reliable estimates of
hydrological fluxes at ungauged interior locations.

1.5. Objectives and Scope of This Paper

[13] This paper is part of a broad investigation into how
prior information about the spatial distribution of model
parameters can be used to enhance the performance of a
distributed hydrological model. In particular, we seek a
spatial parameter estimation strategy that will (1) preserve
and exploit information regarding spatial ordering and
variability provided by prior parameter distributions,
(2) constrain the dimensionality of the optimization problem
to enable conventional search algorithms to be used, (3) allow
sufficient degrees of freedom to enable significant improve-
ments in model performance at the gauging points where
observational data are available, and (4) provide accurate
estimates of streamflow at ‘‘ungauged’’ locations along the
river network.
[14] Specifically, this paper examines the degree to

which the spatial parameter information provided by the
Koren et al. [2000] approach can serve as a suitable prior
for the Distributed Hydrology Model University of Ari-
zona (DHMUA) when applied to three test basins in the

Oklahoma-Arkansas area. The fundamental assumption is
that the Koren approach provides valuable information
regarding the relative spatial ordering and magnitude of the
parameter fields, but that adjustment of the shape and
position of their frequency distributions can help to improve
the behavior and performance of the model. This adjustment
is achieved by multiple-criteria calibration of the superpara-
meters of a nonlinear spatial regularization strategy, con-
strained using squashing functions, to obtain improved
model performance at the basin outlet. Model performance
is evaluated at both the basin outlet from which data were
used for model calibration, and at interior gauge points for
which data are available but withheld from use during
calibration. This work was performed in the context of
Distributed Model Intercomparison Project (DMIP2),
which encouraged the development of spatially distributed
watershed-scale models, with the specific goal of improving
operational flood forecasting by the U.S. National Weather
Service [Smith et al., 2006] (see also http://www.nws.noaa.
gov/oh/hrl/dmip/2/index.html).

2. Study Approach and Methods

2.1. Spatially Distributed Watershed Model

[15] The DHMUA model is a research version of the
Hydrology Lab Distributed Hydrologic Model (HL-DHM),
programmed inMATLABTM (version 7.0.1, www.mathworks.
com) and designed to run at an hourly time step on a
personal computer. The water balance component consists
of the Sacramento Soil Moisture Accounting Model
(SACSMA) [Burnash et al., 1973] having 16 parameters
(see Tables 1, 2, and 3) and 6 state variables, applied to each
grid cell. Eleven of the parameters are spatially distributed
and five are spatially lumped. Prior estimates for the
spatially distributed parameter fields were computed using
the Koren et al. [2000] approach (based mainly on soils
information in the top 2 m) and values for the lumped
parameters were fixed at values specified by the NWS [Reed
et al., 2004]. The routing component has been simplified by
removing the within-grid hillslope routing and by using the
Muskingum approach (with 2 spatially lumped parameters)
instead of kinematic wave for channel routing; Pokhrel
[2007] showed the impact of this modification to be

Table 1. Distributed SACSMA Parameters Used for Calibration

Name Description

Parameter Boundary Settings

Tight Boundary
Setting

Loose Boundary
Settings

UZTWM upper zone tension water capacity (mm) 10–300 0.01–1000
UZFWM upper zone free water capacity (mm) 5–150 0.01–1000
UZK upper zone free water withdrawal rate (mm/h) 0.1–0.8 0.001–0.99
REXP percolation equation exponent 1–5 1–5
LZTWM lower zone tension water capacity (mm) 5–500 0.01–2000
LZFSM lower zone supplemental free water

capacity (mm)
5–400 0.01–2000

LZFPM lower zone primary free water capacity (mm) 10–1000 0.01–2000
LZSK lower zone supplemental free water withdrawal

rate (mm/h)
0.01–0.35 0.0001–0.4

LZPK lower zone primary free water withdrawal
rate (mm/h)

0.001–0.05 0.00001–0.1

PFREE fraction of percolated water going directly to
lower zone free water storage

0.0–0.8 0.0–1.0

ZPERC maximum percolation rate coefficient 5–350 5–1000

W01505 POKHREL AND GUPTA: SPATIAL REGULARIZATION FOR IMPROVED MODELS

3 of 17

W01505



insignificant. Applying equation (4) with 3 regularization
superparameters to 11 distributed parameter fields and
including 2 routing parameters results in 35 calibration
terms (3*11+2) that can be adjusted to improve the perfor-
mance of the model.

2.2. Study Watersheds and Data

[16] The study was conducted on three DMIP2 study
basins, the Illinois and Baron Fork River basins straddling
the Oklahoma-Arkansas border and the Blue River basin in
southern Oklahoma (Figure 1). The gently sloping 1645 km2

Illinois River basin is mostly composed of silty clay and
silty clay loam, and ranges in elevation from 202 to 486 m.
The gently sloping 795 km2 Baron Fork river basin is
composed mostly of silty clay and silt loam, and ranges in
elevation from 214 to 443 m. The 1233 km2 Blue River
basin is a narrow elongated river valley, ranging in elevation
from 154 to 427 m, composed mostly of clay and loam (see
Smith et al. [2004] for details).
[17] Spatially distributed precipitation estimates are

derived from a combination of Next Generation Weather
Radar (NEXRAD) and rain gauge data, and quality con-
trolled by the NWS. The data have a temporal resolution of
1 h, and spatial resolution of approximately 4 � 4 km2 over
a rectilinear Hydrologic Rainfall Analysis Project (HRAP)
grid with 100 units over the Illinois, 50 units over the Baron
Fork, and 78 units over the Blue. Potential evaporation
estimates are based on annual free water surface (FWS)
evaporation maps and mean monthly station data (V. Koren
et al., PET upgrades to NWSRFS, unpublished report,
National Weather Service, NOAA Washington, D. C.,
13 August 1998) available from the DMIP Web site
(www.weather.gov/oh/hrl/dmip/2/evap.html), and corrected
to account for the effects of vegetation.
[18] For each basin, the U.S. Geological Survey records

hourly instantaneous river discharge estimates at the basin
outlet. The average annual rainfall at Illinois, Baron Fork
and Blue are 1175 mm, 1160 mm and 1036 mm, respec-
tively, and the average annual flow at their outlets are
302 mm, 340 mm and 176 mm, respectively. The long-
term runoff ratios are approximately 0.26, 0.29 and 0.17
[Smith et al., 2004]. Additional streamflow data are avail-
able at interior gauging points for the Illinois and Baron
Fork. For the Illinois, the interior point gauge at Savoy
drains an area of 433 km2 (about a quarter of the entire
basin), and for Baron Fork, the interior point gauge at Dutch
drains an area of 105 km2 (less than a quarter of the basin).

The long-term runoff ratios at Savoy and Dutch are approx-
imately 0.29 and 0.23, respectively.
[19] Six years of data (1 October 1999 to 30 September

2005) were used for this study: the first water year (WY
99–00) for model spin-up to reduce sensitivity to state
initialization errors, the next 2 years (WY 00–02) for model
calibration, and the final 3 years (WY 02–05) to evaluate
model performance. Model performance for the Illinois and
Baron Fork was also evaluated at interior points, to examine
to what degree the distributed modeling approach (with
regularized parameter fields) was able to provide satisfac-
tory streamflow estimates at ungauged locations.

2.3. Regularization Methods Tested

[20] It should be pointed out that no hydrologically
relevant reason has yet been presented in the literature for
why any specific kind of spatial regularization (multiplica-
tive, additive, power transformation, or any other form)
should be applied in the case of watershed modeling. In
general, however, we can assume that (1) the regularization
strategy should preserve the relative spatial ordering of the
magnitudes of the parameter values from grid cell to grid
cell (i.e., the parameter values should retain their sort order
in the probability distribution function, regardless of spatial
location), and (2) the adjusted parameter distribution must
not violate boundaries imposed by conceptual-computational
consistency. Based on this, we adopt a general nonlinear
regularization approach (equation (4)) with three super-
parameters per parameter field, similar to that proposed by
Pokhrel et al. [2008]. Specifically, we explore the impact
(and relative value) of using each of the three superpara-
meter types (multiplicative, additive and power) indepen-
dently and in combinations, to determine (1) if the
dimension of the superparameter optimization problem
can be further reduced and (2) whether certain types of
superparameters (or combinations) are better suited to

Table 2. Uniform SACSMA Parameters Used for Calibration

Name Description
Illinois River

Basin
Baron Fork
River Basin

Blue
River Basin

RSERV fraction of lower zone free water not
transferable to lower zone tension
water storage

0.3 0.3 0.3

SIDE ratio of deep recharge to channel
base flow

0 0 0

PCTIM minimum impervious areaa 0.005 0 0.005
ADIMP additional impervious areaa 0.1 0.0 0.0
RIVA riparian vegetation areaa 0.02 0.035 0.03

aDecimal fraction.

Table 3. State Variables of the SACSMA Model Used for

Calibration

Description

ADIMC water contents of the ADIMP area (mm)
UZTWC upper zone tension water contents (mm)
UZFWC upper zone free water contents (mm)
LZTWC lower zone tension water contents (mm)
LZFSC lower zone free supplemental contents (mm)
LZFPC lower zone free primary contents (mm)
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certain kinds of model parameter fields (capacities, rate
constants, etc).
[21] Our test of regularization methods was conducted as

follows. First, we evaluated the impact and relative value of
using each superparameter independently, to see if there are
clear advantages to using only multipliers (fj = m � (qj)),
adders (fj = (qj) + a), or power terms (fj = (qj)b) to
regularize the fields. These three regularized multiple-
criteria optimization cases are called RMO-m, RMO-a, and
RMO-b, respectively. Next, we examine the marginal benefit
of increasing degrees of freedom, by using the linear two-
superparameter strategy (fj = m � (qj) + a; RMO-ma) and the
nonlinear three-superparameter strategy (fj = m � (qj)b + a;
RMO-mba). In each calibration case, we also optimize the
two routing parameters along with the superparameters.

2.4. Methods to Handle Parameter Boundaries

[22] For reasons of conceptual-physical consistency and
realism, the model parameters must remain within (or close
to) their feasible parameter ranges specified in terms of
upper and lower bounds. When the values in one or more

grid cells try to pass outside of the feasible parameter
bounds, we can either make the feasible ranges wider (while
still maintaining conceptual realism such as nonnegativity,
etc.) or permit the shapes of the parameter distributions to
deform. For this study we explore the following four
boundary settings:
2.4.1. Setting 1: Tight Bounds (TB)
[23] The parameter constraints are set as ‘‘hard’’ and fixed

at the feasible bounds used by the NWS (Tables 1–3) [Koren
et al., 2003], with one exception: because the largest prior
value for parameter UZK in the Blue was already at the
upper bound, the bound was increased from 0.75 to 0.8 to
allow more space for the distribution to move.
2.4.2. Setting 2: Loose Bounds (LB)
[24] Where possible, the parameter bounds were widened

to create a relaxed set of hard constraints (Tables 1–3).
Capacity parameter ranges were expanded more than double
maximum values and to bring minimum values close to
zero. Rate parameter ranges were increased to the maximum
extents allowable, while ensuring computational stability
and preserving their physical-conceptual properties.

Figure 1. (top left) Oklahoma State showing the positions of the Blue, Illinois, and Baron Fork River
basins, (bottom left) Blue River basin with the model grid overlay (HRAP grids, extending from
�33�540N, 96�480W bottom left corner to 34�420N, 96�120W top right corner), and (right) Illinois and
Baron Fork River basins (extending from �35�440N, 94�52W bottom left to 36�240N, 94�400W top right)
with grid overlays and the location of the gauging stations.
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2.4.3. Setting 3: Loose Bounds With Tight
Initialization (LBTI)
[25] The loose bounds specified in setting 2 were used, but

the optimization was initialized at points wholly inside the
tight bounds specified in setting 1. This biases the search to
the region of the NWS feasible values (tight bounds) but
allows it wander outside to improve calibration performance.
2.4.4. Setting 4: Tight Bound Squash (TBS)
[26] The tight bounds specified in setting 1 were used, in

conjunction with a simple ‘‘squashing function’’ that
deforms the parameter distribution as it approaches the
boundaries [Leavesly et al., 2003]. If a parameter tries to
pass outside the NWS feasible range it is constrained to
remain at the boundary. Hence, the distribution can vary
freely within the boundaries, and in the extreme case all the
grid cells can be assigned the same upper or lower boundary
value.

2.5. Method for Multiple-Criteria Optimization

[27] Model calibration was performed via multiple-
criteria optimization using the Multiple Objective Shuffled
Complex Evolution Metropolis (MOSCEM) global search
algorithm [Vrugt et al., 2003]. To obtain balanced model
performance on both high and low flows at the basin outlet,
two criteria were used: the mean squared error (MSE) to
emphasize high-flow performance (equation (5)) and the
MSE applied to log-transformed flows (MSEL) to empha-
size low-flow performance (equation (6)):

MSE ¼ 1

n

Xn
i¼1

Oi � Sið Þ2 ð5Þ

MSEL ¼ 1

n

Xn
i¼1

log Oið Þ � log Sið Þð Þ2 ð6Þ

where n is the number of time steps used for the evaluation,
S is the simulated flow and O is the observed flow.
Optimizing both criteria at once, results in a set of mutually
nondominated parameter combinations [Gupta et al., 1998,
2003], also called Pareto-optimal solutions, which have the
property that when moving from one to another point at
least one criterion is improved while another gets worse
(a trade-off occurs) and it is not possible to find any other
solution within the feasible parameter space for which all
the criteria can be simultaneously improved. The method
has been widely applied in calibration of hydrological
models [e.g., Vrugt et al., 2003; Leplastrier et al., 2002; Xia
et al., 2002; Demarty et al., 2005].
[28] Four additional criteria were used in manual selec-

tion of a single compromise solution from the set of non-
dominated solutions: the percentage volume bias (PVB)
(equation (7)) [Boyle et al., 2000], the modified correlation
coefficient (MCC) (equation (9)) [Smith et al., 2004;
McCuen and Snyder, 1975], the cumulative sum of absolute
monthly volume bias (CMVB) (equation (11)), and the
difference between the observed and simulated variance
(Ds2):

PVB ¼

XN
i�1

Si � Oið Þ

XN
i¼1

Oi

ð7Þ

where N is the total number of time steps, S is the simulated
flow and O is the observed flow:

r ¼
N
XN
i¼1

SiOi �
XN
i¼1

Si
XN
i¼1

Oiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN
i¼1

S2i �
XN
i¼1

Si

 !2
2
4

3
5 N

XN
i¼1

O2
i �

XN
i¼1

Oi

 !2
2
4

3
5

vuuut
ð8Þ

MCC ¼ r
min ssim;sobsð Þ
max ssim; sobsð Þ ð9Þ

where S is the simulated flow, O is the observed flow, N is
the number of time steps, ssim is the standard deviation of
the simulated flow and sobs is the standard deviation of the
observed flow:

MBk ¼

XMk

j¼1 Sj � Oj

� �
XMk

j¼1
Oj

ð10Þ

CVMB ¼
X12
k¼1

MBkj j ð11Þ

where MB is the monthly volume bias and M is the number
of time steps in the kth month. The compromise solution
was subjectively chosen so that PVB, CVMB andDs2 were
close to zero and MCC was as close to 1.0 as possible.

2.6. Method for Model Performance Evaluation

[29] The basin outlet (calibration point) performance of
the regularized-calibrated model was evaluated over an
independent 3 year period not used for model calibration.
For the Illinois and Baron Fork basins performance was also
evaluated at interior gauging points for which data were
available but withheld from use in model calibration.
[30] In each case, model performance was compared

against three benchmark runs. The first benchmark (labeled
NWS-U), used the parameter values obtained by NWS via
manual calibration of the ‘‘lumped’’ SACSMA model [Reed
et al., 2004] applied in uniform fashion to all of the grids of
our distributed structure model. This corresponds to trans-
ferring parameters from a lumped to distributed version of
the model. The second benchmark (labeled NWS-K),
applies the Koren et al. [2000] spatially distributed param-
eter estimates to the basin; this corresponds to use of prior
parameter estimates without calibration. The third bench-
mark (labeled NWS-KU), applies the means of the Koren
spatially distributed parameter values in uniform fashion
over all grids of the distributed model; when compared to
the previous case this illustrates the marginal loss of using
uniform instead of distributed parameter fields. For all three
benchmark cases, the two routing parameters were adjusted
to optimize model performance using the same multiple-
criteria calibration approach described above.
[31] Finally, one additional comparison case was run

(labeled MO-U), in which the model parameters were
treated as uniform over the basin, but calibrated to optimize
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performance at the basin outlet; this corresponds a lack of
prior parameter information to constrain the calibration.

3. Results

3.1. Baseline Performance Provided by the Benchmark
Runs

[32] The benchmark runs provide a basis against which to
compare performance of the various regularized calibration
strategies. The top plots in Figure 2 show basin outlet
performance at each study basin and the bottom plots show
interior gauging point performance (no interior point avail-
able for Blue); calibration period is indicated by black
symbols and evaluation period by gray symbols. Perfor-
mance is evaluated using two normalized criteria: the
NMSE statistic that has a high-flow emphasis (MSE nor-
malized by the variance of the observed flows) and the
NMSEL statistic that has a low-flow emphasis (MSEL
normalized by the variance of the log transformed flows).
The normalization facilitates comparison across locations
and time periods, while partially accounting for temporal
nonstationarity of the data variance between data periods
(see Pokhrel et al. [2009] for a discussion of data non-
stationarity in the Blue River basin). Note that 1.0-NMSE
corresponds to the popular Nash Sutcliffe efficiency (NSE)

measure [Nash and Sutcliffe, 1970]; see limitations dis-
cussed by Schaefli and Gupta [2007] and 1.0-NMSEL
corresponds to its counterpart in the log-transformed space
(NSEL). Therefore NMSE > 1 and NMSEL > 1 each
indicate very poor performance in their corresponding flow
transformation space.
[33] Surprisingly, at the outlets of all three basins, the

NWS-U benchmark (black circles) consistently provides
best model performance (�0.2–0.4) on both calibration
and evaluation periods, with similar performance during
both calibration and evaluation. In contrast, the two cases
based on Koren prior parameter estimates (black squares
and pluses) give relatively poor low-flow performance
(NMSEL criterion), particularly on Illinois and Baron Fork,
and show marked deterioration in performance from cali-
bration-to-evaluation periods. In the Blue, we see somewhat
different behavior with significant deterioration of high-
flow performance. Meanwhile, the uniform (NWS-KU, gray
pluses) and distributed (NWS-K, gray squares) versions of
the Koren prior parameter estimates give very similar
performance to each other.
[34] At the interior gauging points the results are not so

clear-cut. For the Baron Fork calibration period (black
symbols), the NWS-KU (pluses) is better than NWS-K
(squares), which is better than NWS-U (circles); in other

Figure 2. Benchmark runs in all three basins. Arrows indicate the change in function values when
going from calibration to evaluation period.
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words the spatially distributed and uniform applications of
the Koren prior parameter estimates both perform better
than the NWS manually calibrated estimates. For the
evaluation period, NWS-U (gray circles) and NWS-K (gray
squares) are similar and better than NWS-KU (gray pluses).
For Illinois, the evaluation performance is better than
calibration for all cases and the Koren prior parameter
estimates perform better than NWS-U.
[35] Overall, the tendency is for the NWS-U uniform

parameter set to give better performance at the outlet and for
the Koren-based NWS-K spatially distributed prior param-
eter estimates to give better performance at the interior
point. Also, the best model performance is generally poorer
at the interior point than at the basin outlet.

3.2. Performance Using Regularized Multiple-Criteria
Optimization

[36] The multiple-criteria optimization cases illustrate the
impact and relative value of using different types of param-
eter regularization, and also whether a preferred boundary
setting exists for parameter constraining. Each calibration
case was run with the 4 boundary settings. For the RMO-m,
RMO-a, RMO-b, and MO-U cases, the problem dimension
was 13 (1 superparameter for each parameter field, plus
2 routing parameters), and MOSCEM was run with 20 com-
plexes (population size 540 points) and generally terminated
after 65 loops, requiring �24 h on a Macintosh Xserve
Quad Xeon 2.66GHz, 4GB RAM machine. For the RMO-
ma case, the problem dimension was 24 (2 superparameters
per field plus 2 routing parameters), and MOSCEM was run
with 35 complexes requiring �72 h of computer time. For
the RMO-mba case, the problem dimension was 35 (3
superparameters per field plus 2 routing parameters), and
MOSCEM was run with 45 complexes requiring �144 h of
computer time.
[37] The results are first presented for the Illinois and

Baron Fork River basins which are quite similar (and for
which interior point data are available), and then for the
Blue River basin. For each case we examine the multiple-
criteria function tradeoff curve (Pareto frontier), flow dura-
tion curve, and posterior parameter distribution.
3.2.1. Illinois and Baron Fork River Basins
3.2.1.1. Multiple-Criteria NMSE Versus NMSEL
Performance at the Basin Outlets
[38] Figure 3 shows calibration cases for each basin. In

each plot, we show both calibration period (closed dots) and
evaluation period (squares) performance. The open black
circle corresponds to the best performing benchmark (NWS-
U) with calibration performance indicated by black and
evaluation performance by gray. For the Illinois and Baron
Fork river basins, these plots show the following.
[39] 1. The four boundary settings performed comparably

well, due to several related reasons: (1) the prior parameter
distributions for these basins are narrow compared to their
feasible parameter ranges (relative spatial variation is
small), (2) the optimization did not try to push the parameter
distributions outside of the bounds, and (3) parameter
sensitivity was low for the few parameter fields that did
hit the bounds. Therefore, to keep the plots simple we show
only the TB (black symbols) and TBS cases (gray symbols).
[40] 2. All six calibration cases (the five regularized cases

RMO-m, RMO-a, RMO-b, RMO-ma, and RMO-mba, and
the unregularized MO-U case) generally perform better than

the best benchmark run (NWS-U) at the outlet, during both
calibration and evaluation, indicating that the calibration
strategy is successful at finding improved (posterior) pa-
rameter fields. Further, the performance change from cali-
bration to evaluation periods is similar for all five
regularization cases.
[41] 3. There is no significant performance difference

between the multiplier (RMO-m), power (RMO-b) and
adder (RMO-a) types of regularized calibration (the posi-
tions of the NMSE versus NMSEL Pareto frontiers are
almost identical).
[42] 4. There is only slight improvement when increasing

the degrees of freedom to RMO-ma, and no added benefit in
using RMO-mba. For this reason, the latter results are not
shown.
[43] 5. The MO-U calibration case, which uses a uniform

(as opposed to spatially varying) parameter distribution,
gives comparable performance during calibration but does
not perform as well during evaluation for Baron Fork.
[44] Admittedly these are only two study locations, but

the results suggest that calibration using regularized spatial-
ly distributed parameter fields gives some performance
benefit at the basin outlet (compared to spatially uniform
fields), albeit marginal. The surprising result is that the
different kinds of individual superparameter regularization
(RMO-m, RMO-b, and RMO-a) give very similar NMSE
versus NMSEL performance.
3.2.1.2. Parameter Values
[45] Figure 4 shows the posterior parameter distributions

(we show only the TB case for the Illinois). Each set of plots
shows a different model parameter, arranged from top to
bottom as UZTWM, UZFWM, UZK, REXP, PFREE,
LZTWM, LZFPM, LZFSM, LZPK, LZSK and ZPERC
(parameter functions explained in Table 1). The x axis
shows the parameter range, the gray scale indicates the
shape of the parameter frequency distribution (darker values
indicate higher frequency), and the y axis shows how the
parameter distribution varies from one end of the Pareto
frontier to the other (indicated in terms of the NMSE value;
high NMSE corresponds to low NMSEL and vice versa).
These plots show the following.
[46] 1. The RMO-m, RMO-b, and RMO-a strategies have

all arrived at similar posterior parameter distributions (com-
pare the three left sets of plots).
[47] 2) For some parameters (UZK, REXP, LZFPM,

LZFSM), the distribution does not vary significantly across
the Pareto frontier (top to bottom along the y axis),
indicating little sensitivity to high-flow/low-flow perfor-
mance trade-off. Other parameters (UZFWM, PFREE,
and LZPK) show strong high-flow/low-flow performance
sensitivity.
[48] 3.) The three sets of plots on the right show the

corresponding optimized values of the superparameters,
leading to a similar conclusion. Here, m = 1, b = 1 or a =
0 indicates no change of the posterior parameter distribution
from its prior value. A sloping line indicates high-flow/low-
flow tradeoff sensitivity across the Pareto frontier while a
vertical line indicates none. The degree of identifiability of
each parameter field is indicated by the thickness of the top
to bottom line; a thin line with little scatter indicates greater
identifiability (UZFWM, LZPK) than a line having large
scatter (ZPERC, REXP, LZPK).
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3.2.1.3. Multiple-Criteria NMSE Versus NMSEL
Performance Results at Interior Points
[49] Figure 5 shows the multiple-criteria performance

results, with calibration and evaluation period results sepa-
rated into different plots. The following points are immedi-
ately clear.
[50] 1. Simulation performance is considerably worse at

the interior basin points than at the basin outlets, in terms of
both high-flow (NMSE) and low-flow (NMSEL) perfor-
mance (compare Figure 5 with Figure 3).
[51] 2. The model performance obtained by the multiplier,

power and adder superparameter regularization strategies

(RMO-m, RMO-b, and RMO-a) and the unregularized case
(MO-U) are similar.
[52] 3. The multiplier-plus-adder regularization case

(RMO-ma) gives slightly better high-flow and worse low-
flow performance.
[53] 4. When compared with the prior parameter esti-

mates, the calibration runs generally provide better repro-
duction of high flows (lower NMSE) while the Koren-based
NWS-K (gray squares) and NWS-KU (gray pluses) param-
eter estimates provide better reproduction of low flows
(lower NMSEL). However, there is some inconsistency:
on Baron Fork, the NWS-KU (gray pluses) prior parameter

Figure 3. Pareto frontier obtained (during calibration and evaluation periods) from model simulations
using the data from the outlet of Illinois, Baron Fork, and Blue River basins: Pareto frontier obtained
during (top to bottom) RMO-m, RMO-b, RMO-a, RMO-ma, and MO-U. Black, TB; gray, TBS. Solid
dots represent Pareto frontier at the calibration period, and the solid squares represent the evaluation
period. Benchmark symbols (NWS-U) are given by open circles (black, calibration period; gray,
evaluation period).
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set gives better overall performance during calibration but
worse overall performance during evaluation.
[54] 5. The NWS-K (gray squares) provides the most

consistent overall performance (although poor on high
flows).
3.2.1.4. Flow Duration Curves
[55] Figure 6 shows the flow duration curves (FDCs)

(more correctly called flow exceedance plots or cumulative
distribution curves) for the compromise solution parameter
set selected for the Illinois Basin. The top plots show the
benchmark cases and the bottom plots show the calibration
cases. The first and second sets of plots correspond to the
basin outlet while the third and fourth sets of plots corre-
spond to the interior point. For ease of comparison, a thick
black line is used to indicate the observations. The results
show the following.
[56] 1. The three regularized calibration cases (different

kinds of stars) all show remarkably good (and very similar)
fits to the observed FDC at the basin outlet during calibration,

but with a slight tendency toward underestimation during
evaluation. At the interior point, they show a strong tendency
toward overestimation of low flows.
[57] 2. The NWS-K (squares) and NWS-KU (pluses)

benchmarks behave almost alike and tend to underestimate
the FDC at the basin outlet (on both calibration and
evaluation periods). At the interior point, they give the best
performance of all the cases (calibrated and benchmark).
[58] 3. The NWS-U (circles) benchmark parameter set

and the MO-U (triangles) calibrated parameter set track the
observed FDC well at the basin outlet (on both calibration
and evaluation periods), but tend to overestimate low flows
at the interior point.
[59] In summary, the regularized calibration runs give

best performance at the basin outlet while the NWS-K and
NWS-KU benchmark parameter sets (based on the Koren
spatially distributed prior parameter estimates) give the best
performance at the interior point. The three types of super-
parameter regularization give similar calibration and evalu-

Figure 4. Two-dimensional parameter distribution plots for Illinois River basin using the TB boundary
settings for SACSMA parameters (top to bottom) UZTWM, UZFWM, UZK, REXP, PFREE, LZTWM,
LZFPM, LZFSM, LZPK, LZSK, and ZPERC. From left to right, the first three sets of plots represent
SACSMA parameter distribution for RMO-m, RMO-b, and RMO-a cases, and the next three sets of plots
represent superparameter distributions in the same order. The gray vertical dashed lines in the last three
sets of plots correspond to the range within which the superparameters were allowed to vary for the TB
boundary setting (the total range of the plot corresponds to TBS setting). The solid gray lines correspond
to prior values of the superparameters (either 0 or 1).
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ation period performance. Increasing the degrees of freedom
(by increasing complexity of the regularization equation)
did not provide significant performance improvements for
these two basins. The use of different boundary settings did
not provide added benefit over the use of hard constraints.
3.2.2. Blue River Basin
3.2.2.1. Multiple-Criteria NMSE Versus NMSEL
Performance Results at Basin Outlets
[60] The results show the following (third sets of plots in

Figure 3).
[61] 1. There is little apparent difference in performance

among the three individual superparameter regularized
calibration cases.
[62] 2. The best overall performance is provided by the

RMO-ma calibration (during both calibration and evaluation

periods), indicating that the increased degrees of freedom
results in improved performance, mainly in reproduction of
high flows.
[63] 3. The Blue behaves differently from the Illinois or

Baron Fork. In contrast with those basins, the main deteri-
oration in calibration to evaluation period performance is in
the reproduction of high flows (NMSE).
[64] 4. Because the prior parameter distributions for the

Blue are much wider relative to the feasible parameter
ranges, the squashing function enables significant improve-
ments in high-flow model performance by permitting dis-
tortions of the parameter distributions (compare TBS Pareto
frontier (gray dots) to TB Pareto frontier (black dots)). This
performance improvement persists from calibration to eval-
uation periods.

Figure 5. Pareto frontier obtained (during the calibration and evaluation periods) from model
simulations using the data from the interior points of Illinois and Baron Fork River basins for (top to
bottom) RMO-m, RMO-b, RMO-a, RMO-ma, and MO-U. Black, TB settings; gray, TBS settings.
Benchmark symbols: pluses, NWS-KU; squares, NWS-K; open circles, NWS-U.
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[65] 5. The MO-U calibration (using uniform parameter
sets) achieves similar performance to the RMO-ma calibra-
tion (using spatially distributed parameter sets), at the basin
outlet.
[66] In addition, FDCs at an interior point (selected

roughly at the middle of the basin) showed that the
RMO-ma results in lower-flow volumes compared to
MO-U (plots not shown). Unfortunately, no data exist to test
the model performance at this (interior) point.
3.2.2.2. Parameter Values
[67] Figure 7 shows the posterior parameter distributions

obtained by regularized calibration using the tight boundary
setting (TB). This case is shown because it clearly illustrates

the problems of imposing feasible parameter constraints
when performing distributed parameter calibration.
[68] 1. Contrary to Illinois and Baron Fork, the

parameter distributions obtained by the different regular-
ization schemes are quite different.
[69] 2. Variations in parameters UZTWM (top set of plots

in Figure 7) and UZK (third set of plots in Figure 7) account
for most of the calibration performance improvements
obtained on this basin, particularly with respect to high flows
(NMSE).
[70] These results are explained by the following facts.

First, the Blue has a lower runoff ratio than the other two
basins (0.17 compared to 0.26–0.29), and its fractional

Figure 6. Flow duration curves obtained using the simulations from the outlet and the interior of the
Illinois River Basin.
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contribution of interflow is around 65–70% (compared to
15–20%). UZTWM, which controls about 90% of the total
evapotranspiration (ET), therefore needs to be large to
simulate the larger ET losses. This in turn reduces the
fraction of time that the upper zone is saturated, and results
in the need for larger values of the parameter UZK to
generate sufficient interflow to match the shape and timing
of the flood peaks. These findings are consistent with
Yilmaz et al. [2008] and Wagener et al. [2009].
[71] Second, a problem arises in the way that the

optimization wants to modify the prior spatial distributions
(Figures 7 and 8, top). For UZTWM (size of the upper zone
tension storage capacity), the multiplier (RMO-m) and
power (RMO-b) regularization strategies cause the variance
(width) of the UZTWM parameter distribution to increase,
so that the distribution runs up against the feasible bounds
and the mean value is prevented from changing. When the
adder (RMO-a) strategy is used, the parameter variance
remains constant allowing the parameter mean to change
without being constrained by the bounds; hence the mean of

the UZTWM distribution can vary significantly across the
Pareto frontier (Figure 7, top), preferring higher values at
lower NMSE (high-flow performance), consistent with a
tradeoff between high- and low-flow fitting.
[72] Third, the prior distribution of UZK (upper zone

lateral drainage rate) covers most of the feasible parameter
range (Figure 8, third set of plots from the top), so that none
of the individual superparameter regularization strategies
can distort the distribution sufficiently to allow the param-
eter mean to increase. We conducted an additional regular-
ized calibration run (not shown here), in which all parameters
were treated as spatially distributed while UZK was made
spatially uniform; the value of UZK moved very close to the
upper bound.
[73] Together, this explains why the squashing function

(TBS setting) and looser bounds (LB and LBTI settings)
improved the NMSE (high-flow) performance on the Blue
River basin. It also explain why RMO-ma and MO-U
calibrations did so well; RMO-ma can vary the mean and
variance of the distribution independently thereby remain-

Figure 7. Two-dimensional parameter distribution plots for Blue River basin using the TB boundary
settings for SACSMA parameters (top to bottom) UZTWM, UZFWM, UZK, REXP, PFREE, LZTWM,
LZFPM, LZFSM, LZPK, LZSK, and ZPERC. From left to right, the first three sets of plots represent
SACSMA parameter distributions for RMO-m, RMO-b, and RMO-a cases, and the next three sets of
plots represent superparameter distributions in the same order. The gray vertical dashed lines in the last
three sets of plots correspond to the range within which the superparameters were allowed to vary for the
TB boundary setting (the total range of the plot corresponds to TBS setting). The solid gray lines
correspond to prior values of the superparameters (either 0 or 1).
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ing relatively unconstrained by the boundaries (the final
distribution for UZK has a mean close to the upper
boundary and a very small variability; see Figure 8, third
plot from the top on the far right).
[74] Overall, for the Blue River at the outlet, the mean

values of the parameter fields may be more important than
their spatial distributions. Of course, this result is very likely
not true for flow simulations at interior points, which cannot
be checked without the existence of interior point data.

4. Summary, Conclusions, and Discussion

4.1. Summary

[75] This study has examined whether a regularized
multiple-criteria calibration strategy, based on the use of
prior spatial parameter distribution information, can im-
prove the performance of a distributed hydrological model.
Our nonlinear regularization strategy has three superpara-
meters per parameter field and is designed to preserve the
relative spatial ordering of the magnitudes of the parameter

values across grid cells. We explored the impact (and
relative value) of using each of the three superparameter
types (multiplicative, additive and power terms) indepen-
dently and in combinations. We also examined the use of
simple squashing functions to ensure that the adjusted
parameter distribution does not violate any boundaries
imposed by conceptual-computational consistency, there-
by maintaining reasonable values throughout the spatial
domain.
[76] The method was tested on three study basins, using

spatial parameter distribution information provided by the
Koren et al. [2000] approach. Our fundamental assumption
is that these prior parameter estimates provide valuable
information about relative spatial ordering and magnitude
of the parameters, but that adjusting the shape and position
of their frequency distributions can help to improve model
performance. The calibration was performed using stream-
flow data at the basin outlets, and performance was evalu-
ated on an independent evaluation period and at the basin
interior points.

Figure 8. Blue River basin parameter distribution plot for RMO calibration (TB settings) for (top to
bottom) UZTWM, UZFWM, UZK, ZPERC, REXP, PFREE, LZTWM, LZFPM, LZFSM, LZPK, and
LZSK. From left to right, the first set of plots represents NWS-K (gray histogram), NWS-U (solid black
line), and NWS-KU (dashed black line). The gray histograms in the next three sets of plots represent
RMO-m, RMO-b, and RMO-a, respectively, and the dash-dotted line represents MO-U. In the far right
set of plots, the gray histogram represents RMO-ma, and the dash-dotted line represents MO-U.
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[77] The overall results can be summarized as follows.
[78] 1. The regularized multiple-criteria calibration con-

siderably improved performance at the basin outlet, indi-
cating success in finding improved (posterior) parameter
fields.
[79] 2. At interior points, the Koren prior parameter

estimates give better performance than the calibrated pos-
terior fields, although model performance is generally much
poorer than at the basin outlet.
[80] 3. None of the three superparameter types showed

clear advantages when used individually. They tended to
arrive at similar posterior parameter distributions.
[81] 4. Increasing degrees of freedom to allow more

complex distortions of the parameter distributions did not
help for basins where prior spatial variability of the param-
eter fields was small compared to the feasible ranges, but
did help where the prior spatial variability of the parameter
fields was large.
[82] 5. Use of a squashing function in conjunction with

the commonly used ‘‘tight bounds’’ parameter constraining
strategy helped to improve model performance.
[83] 6. Unregularized multiple-criteria calibration, using

uniform parameter fields (ignoring prior spatial informa-
tion), provided basin outlet performance comparable to that
achieved by regularized calibration (except for Baron Fork).
However, interior point performance was poor, especially
for high flows.

4.2. Conclusions and Discussion

[84] In conclusion, multiple-criteria regularized calibra-
tion significantly altered the prior distributions of parameter
values, giving consistent improvements in model perfor-
mance at the basin outlet that persisted during evaluation.
However, calibration using uniform parameters gave com-
parable performance, indicating that spatial parameter var-
iability was not particularly helpful in improving basin
outlet performance. These results suggest that the outlet
response for these basins is not strongly sensitive to spatial
parameter variability so that an overall basin mean param-
eter value performs just as well. However, we cannot
conclude from these results that the spatial parameter
information is not valuable, because our approach has the
characteristic of lumping together all the temporal hydro-
graph information into a single time-aggregated measure,
making it difficult to extract information about spatial
parameter variability from the basin outlet hydrographs.
Further, there can be several causes of the lack of outlet
sensitivity to spatial parameter variation, including structural
considerations such as the smoothing effects of channel
routing, and in general the reasons will require considerable
additional investigation to uncover. The temporal sensitivity
of hydrographs to spatial information [e.g., van Werkhoven
et al., 2008a] is one factor that needs to be pursued, so that
methods for improving information extraction can be
designed.
[85] In this regard, an important result is that the Koren

prior parameter estimates (NWS-K and NWS-KU) gave
better performance at the interior points, than obtained by
any of the calibrations. Clearly these prior parameter dis-
tributions provide considerable value, and calibration made
matters worse at the interior points. Two major questions
that arise from this are (1) Do outlet hydrographs provide

sufficient information to properly infer the catchment be-
havior in the interior? (2) What calibration methods can be
used to obtain better representation of watershed behavior at
interior points?
[86] Clearly, there is a clear need to design improved

calibration strategies that achieve performance improve-
ments at the calibration points, incorporate regularization
based on spatial parameter patterns, and prevent prior
parameter estimates from being changed in locations show-
ing little sensitivity to calibration point data. By extension,
this sensitivity should be evaluated for both spatial and
temporal variations (rather than treated as fixed, as in this
study), to improve overall information extraction (suggested
also by Gupta et al. [2006] and Wagener and Gupta
[2005]).
[87] Overall, our results support the use of a regularization

strategy having the form fj = m � (qj � E{q}) + E{q} + a,
where the adder a shifts the distribution mean and the
multiplier m adjusts the distribution variance. In this way,
the superparameters will have a clearer interpretation, such
that

E ff g ¼ E qf g þ a ð12Þ

Var ff g ¼ m2 � Var qf g ð13Þ

[88] Finally, this work has explored using two kinds of
information to enhance the calibration of distributed mod-
els: (1) information in hydrographs and (2) information in
prior estimates of spatially distributed parameter fields.
However, more sophisticated ways of extracting informa-
tion from these two sources need to be explored, including
use of diagnostically more powerful criteria that have better
hydrological relevance [Gupta et al., 2008; Yilmaz et al.,
2008; Pokhrel et al., 2009; Herbst et al., 2009; Gupta et al.,
2009] and are better able to recognize and exploit spatial
and temporal variability in the input activations [van
Werkhoven et al., 2008a, 2008b]. Other strategies for
constraining the parameter space could include the use
of interior point data [Khu et al., 2008], soft information
[Seibert and McDonnell, 2002; Dunn, 1999], and manual
calibration within a Tikhonov regularization framework
[Tikhonov and Arsenin, 1977; Tonkin and Doherty,
2005]. As always, we invite dialog on these and related
issues related to hydrological model identification.
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