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Abstract It has been widely shown that rainfall-runoff models often provide poor and biased simulations
after a change in climate, but evidence suggests existing models may be capable of better simulations if cal-
ibration strategies are improved. Common practice is to use ‘‘least squares’’-type objective functions, which
focus on hydrological behavior during high flows. However, simulation of a drying climate may require a
more balanced consideration of other parts of the flow regime, including mid-low flows and drier years in
the calibration period, as a closer analogue of future conditions. Here we systematically test eight objective
functions over 86 catchments and five conceptual model structures in southern and eastern Australia. We
focus on performance when evaluated over multiyear droughts. The results show significant improvements
are possible compared to least squares calibration. In particular, the Refined Index of Agreement (based on
sum of absolute error, not sum of squared error) and a new objective function called the Split KGE (which
gives equal weight to each year in the calibration series) give significantly better split-sample results than
least squares approaches. This improvement held for all five model structures, regardless of basin character-
istics such as slope, vegetation, and across a range of climatic conditions (e.g., mean precipitation between
500 and 1,500 mm/yr). We recommend future studies to avoid least squares approaches (e.g., optimizing
NSE or KGE with no prior transformation on streamflow) and adopt these alternative methods, wherever
simulations in a drying climate are required.

Plain Language Summary Rainfall-runoff models are useful tools in water resource planning
under climate change. They are commonly used to quantify the impact of changes in climatic variables,
such as rainfall, on water availability for human consumption or environmental needs. Many parts of the
world are projected to be substantially drier, possibly with threatened water resources. Given the
importance of water, reliable tools for understanding future water availability are vital for society. However,
literature would suggest that the current generation of rainfall-runoff models is not reliable when applied in
changing climatic conditions, underestimating the sensitivity of runoff to a given change in precipitation.
Many hydrologists have assumed deficiencies in the underlying model equations are to blame. However,
this paper demonstrates significant improvement without changing model equations, by using a different
‘‘objective function.’’ The objective function defines how the model is ‘‘tuned’’ to observations of river
discharge, and this article identifies objective functions that tend to make model simulations more robust
when applied in a drying climate. Using these objective functions can improve the accuracy and plausibility
of future water availability estimates made for climate change impact studies.

1. Introduction

Rainfall-runoff models have potential to be useful tools in planning for future climate variability. They are
often used when translating projected climatic shifts (e.g., in rainfall or temperature) into projected changes
in water availability (e.g., Bergstr€om et al., 2001; Bosshard et al., 2013; Chiew & McMahon, 2002; Chiew et al.,
2009; Christensen et al., 2004; Faramarzi et al., 2013; Forzieri et al., 2014; Fowler et al., 2007; Hagemann et al.,
2013; Vaze et al., 2011). They are particularly important in regions where future projections lie beyond the
scope of historical conditions, and/or where available data captures a relatively small portion of historic vari-
ability (cf. Cook et al., 2016; Gallant et al., 2011). Applying a rainfall-runoff model in such circumstances
assumes that the model remains fit for purpose despite being applied under a changed climatic regime
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compared to the calibration data (cf. Clarke, 2007; Ehret et al., 2014; Vaze et al., 2010). In reality, climate
change may cause shifts in dominant processes which may invalidate models parameterized on the past
(Beck, 2002; Peterson et al., 2009; Saft et al., 2015). Also, forcing data may be difficult to estimate because of
complex interactions, for example, between future vegetation and future PET (e.g., Curtis & Wang, 1998;
Rodriguez-Iturbe et al., 1999; cf. Donohue et al., 2010; Seiller & Anctil, 2015). Thus, hydrological projections
in changing climate are subject to many challenges.

Even when judged over the historic record, rainfall-runoff models often provide poor simulations with high
bias when applied in changed climatic conditions. For example, Vaze et al. (2010) tested four conceptual
rainfall-runoff model structures in 61 catchments in south east Australia and noted a reduction in model
performance and increase in bias, when evaluated in periods when rainfall was different to the calibration
period. This was particularly the case if the change was from wetter to drier (cf. Saft et al., 2016a, 2016b).
Coron et al. (2012) tested three conceptual model structures over 216 Australian catchments and reported
that ‘‘calibration over a wetter (drier) climate than the validation climate leads to an overestimation (under-
estimation) of the mean simulated runoff’’ (p. 1). These findings are not limited to single regions or model
types, with similar results in Europe (Coron et al., 2014; Merz et al., 2011; Wilby, 2005), Africa (Refsgaard &
Knudsen, 1996), and North America (Singh et al., 2011); and similar problems with physically based models
(Refsgaard & Knudsen, 1996) and simple relationships between annual rainfall and runoff (Saft et al., 2015).

These problems have prompted a variety of responses from hydrologists. Li et al. (2012, p. 1239) recom-
mend to minimize the degree of extrapolation in climate, stating that ‘‘if a hydrological model is set up to
simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic
record, and similarly a dry segment should be used for a dry climate scenario’’ (see also Broderick et al.,
2016). Similarly, authors such as Singh et al. (2011) and Vaze et al. (2010) recommended limits of acceptable
change in climatic conditions within which models are more likely to provide acceptable results. Other
authors have investigated patterns between parameter values and climatic conditions (Brigode et al., 2013;
de Vos et al., 2010; Merz et al., 2011; Wilby, 2005), such as Merz et al. (2011) who conducted separate calibra-
tions of the HBV model on multiple 5 year segments of the climatic record. They noted that the parameters
varied systematically with climate, particularly those governing snow melt and the nonlinearity of runoff
generation. Many researchers affirm the need for model improvements to better simulate runoff under
changing climatic conditions (e.g., Coron et al., 2014; Merz et al., 2011; Petheram et al., 2011) and some
studies have produced new model structures in this vein (e.g., Hughes et al., 2013; Ramchurn, 2012).

A complementary approach is to focus on improving calibration methods (Brigode et al., 2013; Thirel et al.,
2015). Common practice is to optimize models to ‘‘least squares’’ metrics such as the Nash Sutcliffe Effi-
ciency (NSE; Nash & Sutcliffe, 1970) or close variants like the Kling Gupta Efficiency (KGE; Gupta et al., 2009).
The literature consensus that rainfall-runoff models are unreliable in changing climates is largely based on
least squares methods or similar, sometimes applied with a penalty for model bias (e.g., Coron et al., 2014;
Li et al., 2012; Saft et al., 2016a; Silberstein et al., 2013; Vaze et al., 2010). However, recent evidence suggests
that least squares objective functions often do not choose parameter sets that are robust to changes in cli-
mate, even when such parameter sets are available within a model structure (Fowler et al., 2016). Least
squares methods tend to choose parameter sets that match hydrological behaviors during high-flow peri-
ods (Freer et al., 1996; Gan et al., 1997; Krause & Boyle, 2005; Legates & McCabe, 1999). This causes sensitiv-
ity to data errors during times of high flow (Berthet et al., 2010), potentially causing selection of parameter
sets that do not simulate natural processes to the best ability of the model. Even if data errors are negligible,
models may be unable to match all aspects of the flow regime with the same parameter set (the ‘‘smooth’’
trade-offs of Gharari et al. [2013]; cf. Efstratiadis & Koutsoyiannis, 2010). Preparing such a model for a drier
climate than the calibration period may require more emphasis on hydrologic behaviors at times of mid-to-
low flow, or during years that are drier than average within the calibration period, since these are the clos-
est available analogue of the future climate (Li et al., 2012), and thus may contain the most relevant
information.

The literature contains many examples of alternative calibration methods, some of which could be helpful
in changing climatic conditions. Applying transformations prior to least squares-type calculations may stabi-
lize error variance and thus improve parameter inference (Engeland et al., 2005). As already mentioned,
transformations may also place more emphasis on mid-to-low flow (Chiew et al., 1993, 1995; de Vos et al.,
2010; Freer et al., 1996; Pushpalatha et al., 2012). Some authors assert a more balanced consideration of
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‘‘average’’ model performance can be attained through absolute-error, rather than squared-error,
approaches (Willmott, 1982; Willmott & Matsuura, 2005). Hartmann and B�ardossy (2005) and Shamir et al.
(2005) demonstrated that robustness could be improved by evaluating catchment response on a variety of
time scales (e.g., annual) rather than using objective functions formulated on the daily time step only. For
example, this might cause calibration to consider whether year-to-year variability is matched, in addition to
day-to-day variability. B�ardossy and Singh (2008) investigated the utility of data depth (Tukey, 1975), a geo-
metric property among parameter sets in an ensemble. Parameter sets with high depth were relatively less
sensitive to data errors and more transferable to different time periods. Zhang et al. (2008) among others
demonstrate the use of meta-objective functions which consider various aspects of the flow regime sepa-
rately, then combine the results together into a single ‘‘meta’’ objective function, and this extra information
may improve parameter inference. Gharari et al. (2013) extend this logic to include multiple subperiods
within the calibration period, using a Pareto-based approach to search for parameter sets that provided the
best overall compromise over all periods and objectives considered (see also ‘‘limits of acceptability’’
approaches for similar logic applied on a time step-by-time step basis: Beven [2006] and Liu et al. [2009]). In
split-sample testing, the above methods generally outperformed least squares-based calibration methods.

However, few calibration methods have been systematically tested in regions of relatively high interannual
variability in historic climate, nor with data from periods of sustained (>5 yr) change in hydroclimatic condi-
tions. This is the motivation for the present study. We limit the scope to single-objective optimization,
examining objective functions that, a priori based on existing literature, are each expected to improve simu-
lations (relative to least squares methods) when models are applied in conditions that are drier than the cal-
ibration period. The aim is to systematically test these objective functions on a large set of catchments
located in a region with high interannual variability associated with historic instances of persistent dry con-
ditions. The results of such tests can help to guide future selection of calibration methods for studies exam-
ining rainfall-runoff model capabilities in changing climate and/or applying such models in climate change
impact assessments.

2. Methods

The methods section is structured as follows. Section 2.1 describes the selection of objective functions for
testing. Section 2.2 outlines the study catchments, and section 2.3 outlines the testing scheme based on
split-sample testing. Sections 2.4 and 2.5 outline the rainfall-runoff model structures and the algorithm used
to calibrate them, respectively, and section 2.6 outlines data sources.

2.1. Objective Function Selection
Based on the literature review in the previous section, numerous classes of objective function are expected
to provide improved model calibration in changing climate: (i) greater sensitivity to model bias through a
bias penalty; (ii) application of transforms to runoff values prior to least squares calculations; (iii) absolute-
error approaches; (iv) meta-objective functions that consider different aspects of the flow regime and then
combine these into a single-objective function; and (v) time-based meta-objective functions explicitly con-
sidering different subperiods of the calibration period.

This study tests at least one representative from each class, and for each class Table 1 summarizes why
improvement may be expected over least squares methods, in the context of a drying climate. In general,
the methods work by broadening the focus of the calibration so that there is less focus on high flows and a
greater focus on other aspects of the flow regime, including mid-low flows and/or dry years. The exception
is the bias penalty class, which simply corrects the tendency of least squares measures to ignore high bias
in cases of high flow variability (Gupta et al., 2009). Note that equations for each objective function are pro-
vided in the supporting information, Table S2.

All objective functions are selected from previous studies, with one exception, the Split KGE, which is new
for this study. The Split KGE is based on the principle of selecting parameter sets that are consistent in time
(Gharari et al., 2013). Standard calibration may not select such parameter sets because of undue focus on
some subperiods in the calibration data, such as wet years, at the expense of others. Gharari et al. (2013)
avoided this problem by explicitly considering model performance in separate subperiods, and ‘‘limits of
acceptability’’ approaches take this concept further by considering each time step individually (Beven, 2006;
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Liu et al., 2009). Although it is not possible to conduct Pareto-based or limits of acceptability methods in
the context of single-objective optimization, the Split KGE uses similar logic by splitting the calibration
period into subperiods of 1 year duration, calculating a global performance measure (the KGE) for each sub-
period, and taking the average value over all subperiods as the meta-objective function value.

The list includes objective functions used by many studies contributing to the literature consensus that
rainfall-runoff models are unreliable in changing climates. For example, NSE-bias was adopted by Vaze et al.
(2010), Silberstein et al. (2013), and Saft et al. (2016a); NSE by Wilby (2005) and Li et al. (2012); and KGE by
Coron et al. (2014). Thus, results here can be directly related to these studies.

In order to compare ‘‘like-with-like,’’ results are reported according to a common ‘‘reference’’ metric regard-
less of which objective function is used. The reference metric used in the body of this article is the KGE. Our
initial preference would have been the NSE as it is widely used and thus easily interpretable by most read-
ers; also, its components (mean, variability, correlation/timing: Gupta et al. [2009]) are important attributes
in the water resources context, which is often the focus for climate change impact assessments. However,
as mentioned, the NSE sometimes has a high score despite significant bias, due to interaction among com-
ponents (Gupta et al., 2009). Thus, we adopt the KGE, a metric with the same components but free of

Table 1
Objective Functions Tested in This Study and Reasons Why Improvement Is Expected

Class of obj. funct. Description
Reason to expect improvement (relative to

least squares, in drying climate)
Objective functions tested in this

article

Least squares
(common practice)

The error on each time step is squared,
and the objective is to minimize the sum
of squares for all time steps.

n/a KGE (Kling Gupta Efficiency; Gupta
et al., 2009)a

NSE (Nash Sutcliffe Efficiency; Nash
& Sutcliffe, 1970)

(i) Bias penalty on
least squares

Similar to least squares except bias is
penalized, sometimes using a nonlinear
function.

Counters the tendency of least squares
measures to ignore high bias in cases of
high flow variability (Gupta et al., 2009).

NSE-bias (NSE with bias penalty;
Viney et al., 2009)b

(ii) Use of transforms Similar to the above, except prior to least
squares calculations, simulated and
observed runoff values are raised by an
exponent (usually <1) or logged.

Smaller exponents increase emphasis on
times of mid and low flow, which may
contain information that is relevant to a
drier climate. Transformations may
stabilize the variance of errors, improv-
ing parameter inference (Engeland et al.,
2005) and reducing sensitivity to gaug-
ing error during floods (Berthet et al.,
2010).

NSE-sqrt (NSE on the square root of
flows; Chiew et al., 1995)

NSE-5th root (NSE on fifth root of
flows, used for emphasis on low
flow by Chiew et al. [1993])c

(iii) Absolute error
approaches

The objective is to minimize the sum of
absolute errors (not squared errors)

Not squaring the errors increases emphasis
on times of mid- and low-flow, which
may contain information that is relevant
to a drier climate, and makes calibration
less sensitive to gauging errors during
floods (Berthet et al., 2010).

Index of Agreement (Refined Index
of Agreement; Willmott et al.,
2012)

(iv) Meta-objective
functions

Multiple measures are calculated sepa-
rately, each considering different aspects
of the flow regime. Then they are
combined together into a meta
function.

Each measure considers different informa-
tion in the calibration data. Consider-
ation of a wider spread of information
may improve process representation
and parameter inference.

Zhang (Combined objective func-
tion from Zhang et al. [2008]).
Equally weighted combination of
metrics regarding high flows, low
flows, timing, and bias.

(v) Time-based
meta-objective
functions

Multiple measures, each considering differ-
ent subperiods of the calibration period,
are calculated separately, then com-
bined together into a meta function.

Ensures some attention is given to dry
years in the calibration period, which
may be a more suitable analogue for
drier climate. Such years may be largely
ignored by least squares. Consideration
of a wider spread of information may
improve process representation and
parameter inference.

Split KGE (new for this study, but cf.
Gharari et al. [2013], Beven
[2006], and Liu et al. [2009]). KGE
is calculated separately for each
year in the calibration period.
The Split KGE is the average of
the yearly values.

Note. Equations for each objective function are provided in the supporting information Table S2.
aTechnically this is not a least squares metric, but the formulation is very similar as per Gupta et al. (2009). bMany bias penalty functions exist; we adopt the

formulation of Viney et al. (2009), namely NSE-bias 5 NSE – 5 |ln(1 1 bias)|2.5. cSimilar to NSE of logged values, NSE fifth root emphasizes low flows, while
avoiding taking the log of zero on cease-to-flow days.
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unhelpful interactions. Given the importance of assessing simulations via a range of metrics, in the support-
ing information we also evaluate the results according to metrics proposed by Thirel et al. (2015): NSE, bias,
linear correlation, relative variability, and NSElow flow (Pushpalatha et al., 2012).

2.2. Study Catchments
This study is conducted in 86 catchments from southern and eastern Australia (Figure 1; cf. Fowler et al.,
2016). The study catchments are from a range of temperate climates within a region that has relatively high
hydroclimatic variability on an annual scale (Peel et al., 2004a). This region has experienced persistent
droughts during recorded history, and is projected to get hotter and drier in the future (Chiew et al., 2009;
Trenberth, 2011; Whetton et al., 2016). Thus, it provides an excellent case study of the need for hydrologic
models that can operate reliably in changing climatic conditions. In the south east of Australia, a key historic
event is the Millennium Drought (1997–2010) which effected large areas both coastal and inland (Potter
et al., 2010; van Dijk et al., 2013; Verdon-Kidd & Kiem, 2009). Judged by runoff reductions, this drought was
severe, with the return period estimated as 300 years by Potter et al. (2010) and 1,500 years by Gallant et al.
(2011). In many catchments, the Millennium Drought caused runoff reductions of greater than 80% for peri-
ods of up to 13 years (cf. van Dijk et al., 2013; Figure 1d). These reductions had significant impacts on Aus-
tralian society, including cessation of irrigation in some areas causing changes in rural communities,
revision of water allocation arrangements to include water trading and provision for environmental flows,
and installation of alternative sources such as desalination in the cities of Melbourne, Sydney, and Brisbane
(Aghakouchak et al., 2014; van Dijk et al., 2013).

A small number of catchments are included from the south west of Australia. In this region, rainfall, stream-
flow, and groundwater stores have been in decline since the 1970s (Hughes et al., 2012; Petrone et al.,
2010). Rain-bearing synoptic troughs have decreased in frequency, while stable high-pressure systems have
become more common, consistent with the effects of climate change (Hope et al., 2006). In response,
streamflow has declined by up to 75 percent (Petrone et al., 2010) and catchment average groundwater lev-
els have dropped significantly (Hughes et al., 2012), with implications for municipal and irrigation supply
(Yesertener, 2005).

Figure 1. (a) Map of study catchments and K€oppen-Geiger climate types in Australia (after Peel et al., 2007). (b) Mean annual precipitation over the nondry period,
for all study catchments. (c) Reduction in precipitation in the dry (evaluation) period compared to the nondry (calibration) period. As per the text, the dry (evalua-
tion) period is the driest run of 7 years in the historic record, and the nondry (calibration) period is the remainder of the historic record. (d) As with Figure 1c, but
for runoff.
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The hydroclimate of southern and eastern Australia is generally mild (Jones et al., 2009). Except in isolated
mountain pockets in the south east, snow is rare as temperatures rarely drop below freezing. Average daily
maximum temperatures during summer months are generally 308C or less, and average annual rainfall is
mostly between 600 and 1,500 mm/yr. Some parts of the study area are subject to dry summers, particularly
in the south west of Australia and south east South Australia (Figure 1; Peel et al., 2007). However, in the
south east and east, precipitation is more evenly spread year round.

The 86 study catchments are from a wider set of ‘‘Hydrologic Reference Stations’’ (Turner, 2012) defined by
Australia’s Bureau of Meteorology as a set of catchments ‘‘with minimal water resource development and
land use disturbances’’ (p. 6) such as regulation from large reservoirs and broad-scale land use changes. The
selection of catchments was subject to a variety of data quality checks, as described by Fowler et al. (2016).
The study catchments vary in size from 4.4 to 1,106 km2 (median �200 km2). Forest cover is generally high,
with tree cover exceeding 90% in over half of the catchments. Catchment elevation ranges from sea level
to 2,000 m, although most catchments do not exceed 1,500 m.

2.3. Testing Scheme
Objective functions are tested using the Differential Split-Sample Test (DSST). As outlined by Kleme�s (1986),
this involves evaluating model performance over an independent period with conditions that are different
to the calibration data. This independent period is often called a ‘‘validation’’ period; in this article the term
‘‘evaluation period’’ is used (cf. Oreskes et al., 1994). Periods are defined based on climatic conditions, using
the same period definition as Fowler et al. (2016), as follows. The seven driest consecutive years on record
are used for model evaluation and are referred to as the ‘‘dry (evaluation) period.’’ This period is defined
individually for each catchment based on streamflow. The remainder of the available time series is the cali-
bration period, referred to as the ‘‘nondry (calibration) period.’’ In addition, a warm-up period of two years is
used, chosen for each catchment separately as the two years immediately prior to the start of streamflow
gauging.

As mentioned in Fowler et al. (2016), given that the Millennium Drought duration is considered to be 1997–
2009 (Chiew et al., 2014), we considered adopting a length of 13 years, or alternatively a round figure such
as 10 years. However, in some places, the drought was punctuated by an average or wet year midway
through an otherwise dry spell (e.g., the year 2000 in the state of Victoria). Although such a sequence does
not invalidate the drought as a whole from being used as an analogue for climate change (i.e., even areas
subject to pronounced future drying may have occasional wet years), it was felt that such a year could dom-
inate the calculation of performance metrics across the evaluation period as a whole. To avoid this, the
adopted evaluation period duration is seven continuous years. The limits of using historic drought events as
analogues of future change are discussed further in section 4.4. Figure 1d shows that reductions in flow for
the dry (evaluation) period, compared to the nondry (calibration) period, exceed 80% in some cases (mini-
mum: 24%; median: 56%; maximum 99.8%).

2.4. Rainfall-Runoff Model Structures
The same set of rainfall-runoff model structures are used as Fowler et al. (2016). The intention is to test a
variety of model structures chosen to reflect common usage in the study area (particularly for water
resource studies) and breadth of design of conceptual rainfall-runoff models, leading to selection of five
model structures: GR4J, SIMHYD, IHACRES, GR4JMOD and SACRAMENTO. Table 2 provides references and
other details for these model structures, and supporting information Table S1 provides the parameter
ranges. GR4JMOD is an eight-parameter variant of GR4J, with changes intended to facilitate simulation
under changing climates (Hughes et al., 2013). Note that Hughes et al.’s (2013) module to account for
changes in Leaf Area Index is not adopted here. The modeling framework is implemented in a hybrid
Matlab-Fortran system where the rainfall-runoff models are run in Fortran 90 (using the code of the original
authors where available—Table 2).

2.5. Optimization Algorithm
Optimization is undertaken using the evolutionary algorithm CMA-ES (Hansen et al., 2003). This algorithm
compares favorably with commonly used optimizers (Arsenault et al., 2014) and has been used across vari-
ous fields (Hansen, 2006) including hydrology (Fowler et al., 2016; Peterson & Western, 2014). The output of
CMA-ES is a single parameter set purported to correspond to the highest possible value of the objective
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function. For more information on the reliability of this algorithm in hydrology, refer to the comparisons of
Arsenault et al. (2014) and Fowler et al. (2016, Figure S4). The software version used is CMA-ES v3.60,
sourced from www.lri.fr/~hansen/cmaesintro.html (accessed 20 May 2015).

For each of the eight objective functions separately, the CMA-ES optimizer is applied in each of the 86 study
catchments, for each of the five model structures, giving a total of 3440 CMA-ES runs. Consistency of results
is checked using the same method as in Fowler et al. (2016); namely, by running CMA-ES three separate
times and if the optimum objective function value is not the same within 1%, the number of restarts (the
only user-defined parameter in CMA-ES) is increased by one (starting from zero restarts). The process is
then repeated until consistency is achieved.

2.6. Data Sources
A lumped modeling approach is adopted, with the two main inputs being rainfall and potential evapotrans-
piration (PET), each derived as a time series on a daily time step. Rainfall is derived from the observation-
based gridded product of Jones et al. (2009; www.bom.gov.au/jsp/awap/) and PET is from the wet environ-
ment areal evapotranspiration of Morton (1983), from the gridded estimates of Jeffrey et al. (2001; www.
longpaddock.qld.gov.au/silo/). Catchment boundaries are derived from Shuttle Radar Topography Mission
(SRTM) data, using the version by Gallant et al. (2011) on a grid size of 1 s (�30 m). ESRI’s ArcHydro toolbox
is used to define flow pathways, using the D8 method. Catchment boundaries are available from the lead
author upon request. Streamflow data for the Hydrologic Reference Stations are publically available from
www.bom.gov.au/hrs (accessed 2 January 2014). Quality codes were inspected and periods of relatively low
quality are excluded from the analysis. Since quality code systems are different for each state of Australia,
the details of this checking depended on location.

3. Results

Figure 2 shows differential split-sample test results for each objective function. As mentioned, to compare ‘‘like-
with-like,’’ all values plotted are KGE values, regardless of which objective function is being tested. Boxplots
show distributions of values across the 86 study catchments, with evaluation (dry) period results shown in bold
boxplots, and nondry (calibration) period results in faded boxplots. Equivalent plots using different reference
metrics (NSE, bias, Linear Correlation, variability and NSElow flow) are given in the supporting information, Figures
S1–S5. The parameter values for the optimal solutions are also included in the supporting information, along
with a table listing the mean, median, and percentage of negative values for each boxplot in Figure 2.

The top panel shows results when KGE is used as the objective function. As expected, the calibration KGEs
(faded boxplots) are uniformly high but the evaluation KGEs (bold boxplots) are varied and, judged across
the whole sample, quite poor. Likewise, evaluation scores for NSE and NSE-bias are poor (similar to KGE

Table 2
Details of the Conceptual Rainfall-Runoff Model Structures Tested in This Study (After Fowler et al., 2016)

Name Original authors
Number of free

parametersa Source of Fortran code

GR4J Perrin et al. (2003) 4 Checked against code provided by
authors

SIMHYD Chiew et al. (2002) 7 Provided by authors
IHACRES Jakeman and

Hornberger (1993);
Ye et al. (1997)

8 Based on original papers and
Andrews (2013)

GR4JMOD Hughes et al. (2013) 8 GR4J (see above), with changes
implemented based on Hughes
et al.’s (2013) paper

SACRAMENTO Burnash et al. (1973) 16 Website of the National Oceanic
and Atmospheric Administration
(NOAA)b

aNote that IHACRES parameter PETref was set to zero. bhttp://www.nws.noaa.gov/iao/sacsma/fland1.f, accessed 30/
03/2015.
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results), while calibration scores are not as high for NSE and NSE-bias
as they are for KGE (as expected, since we have optimized to a differ-
ent metric to the one displayed on the x axis). NSE-bias shows only
limited improvements over NSE, for example, for the SIMHYD and
GR4JMOD structures. These three objective functions account for the
majority of large-sample DSST studies (e.g., Coron et al., 2014; Li et al.,
2012; Saft et al., 2016a; Silberstein et al., 2013; Vaze et al., 2010), and
the poor results here are consistent with these studies.

However, other objective functions show significantly improved results. In
particular, NSE-sqrt and Index of Agreement each provide significantly
higher KGE scores in evaluation. Note that, although similar, these two
objective functions are not identical; differences arise because minimizing
the difference between absolutes is not the same as minimizing the sum
of squares for values subject to prior transform by square root (i.e., ja2bj
6¼

ffiffiffi
a
p

2
ffiffiffi
b
p� �2

for most a and b). For the Refined Index of Agreement, the
mean (median) KGEdry (evaluation) period across all 430 case studies is 0.519
(0.635), an improvement from 0.323 (0.531) when KGE is used as objective
function. Further, the number of instances of KGEdry (evaluation) period< 0 is
reduced from 20.2% (KGE as objective function) to 7.0% (Refined Index of
Agreement as objective function). Supporting information Figures S1–S5
indicate that the Index of Agreement and NSEsquare root perform well
across a variety of evaluation metrics, with less biased simulations for all
model structures except IHACRES, and better low flow replication for all
model structures except GR4J (relative to using KGE as objective function).
A comparison of simulation bias (supporting information Figure S2) indi-
cates that the Refined Index of Agreement provides slightly less biased
simulations in evaluation than NSE-sqrt.

Another well-performing objective function is the Split KGE. Recall that
this is the same as the KGE except that no year can have more influence
than any other year (cf. Table 1). This relatively simple change signifi-
cantly improves the split-sample results: the mean (median) KGEdry (evalua-

tion) period across all 430 case studies is 0.516 (0.650), an improvement
from 0.323 (0.531) when KGE is used as objective function. Further, the
number of instances of KGEdry (evaluation) period <0 is reduced from 20.2%
(KGE as objective function) to 8.4% (Split KGE as objective function). As
with the Refined Index of Agreement, the Split KGE generally performs
well against other evaluation metrics (supporting information Figures
S1–S5), providing simulations of relatively low bias and the closest repli-
cation of flow variability in evaluation of any of the metrics tested.

Figure 3 focusses on the two best performing objective functions
(Refined Index of Agreement and Split KGE), comparing these with KGE as objective function. The scatter plots
show that improvement is not uniform across all catchments, and for cases where KGE performs well as an
objective function (x axis> 0.5) there is little advantage in swapping to the alternate objective functions. In
contrast, improvements are significant in cases where using KGE as objective function gives poor evaluation
performance (x axis< 0.5 in Figure 3). This is true across all model structures (Figures 3a-i and 3b-i).

Figure 3 also shows the spread of results for various catchment characteristics (smaller plots). For this set of
catchments, high rainfall (long-term average> 1,500 mm/yr) locations show negligible benefit from the alter-
native objective functions; using KGE as objective function generally leads to good results in these catchments
(Figures 3a-ii and 3b-ii). In contrast, catchments less than 1,500 mm/yr show significantly improved results
from using Index of Agreement or Split KGE compared to KGE. For this catchment sample, using Index of
Agreement or Split KGE as objective function provides improved split-sample results regardless of how steep
the catchment is (Figures 3a-iii and 3b-iii) and regardless of how forested (Figures 3a-iv and 3b-iv). We also
compare results based on how severe the drought was (Figures 3a-v and 3b-v), as measured by flow

Figure 2. Boxplots of split-sample results over all catchments (n 5 86) for differ-
ent objective functions. To compare ‘‘like-with-like,’’ all values plotted are KGE
values. Bold colors denote KGEdry (evaluation) period when the model was parame-
terized by optimizing the objective function over the nondry (calibration)
period. Faded colors denote the KGEnondry (calibration) period for the same parame-
terization. Boxplot color denotes model structure. The whiskers extend a
maximum of 1.5 times the interquartile range. Values beyond the whiskers are
marked as outliers and are denoted as 1. Boxplots containing outliers <–10
are marked with a cross at 210 accompanied by a gray number indicating how
many.
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reductions in the dry (evaluation) period relative to the nondry (calibration) period. Note that the greatest
reductions in flow (as a percentage) tended to occur in the driest catchments. In general, swapping the objec-
tive function from KGE to either Index of Agreement or Split KGE provides improved split-sample results
regardless of drought severity, but benefits are relatively greater in locations where the drought was more
severe.

In summary, the Refined Index of Agreement and the Split KGE were the two objective functions that pro-
vided the best performance. They performed significantly better in split-sample testing than the NSE, KGE
or NSE with bias penalty, regardless of model structure, catchment slope, or vegetation. For all except the
highest rainfall locations tested (i.e., mean annual rainfall> 1,500 mm/yr), results indicated significant bene-
fits in adopting these objective functions over least squares-type functions.

4. Discussion

4.1. Discussion of Successful Objective Functions
The results provide a strong case for improvement over commonly used objective functions such as the
NSE or KGE. We now review the reasons underlying the success of the objective functions Refined Index of
Agreement and Split KGE, with reference to selected case studies. As discussed in section 1, through the

Figure 3. Comparison between objective functions for all 86 catchments with results for all five model structures shown
together, thus n 5 430. The smaller plots are reproductions of the larger plot above. Both x and y ordinates are KGE values
in the dry (evaluation) period, but for different calibration objective functions. (a) Objective functions: Index of Agree-
mentnondry (y axis) versus KGEnondry (x axis). Colors differentiate results by (i) model structure, (ii–iv) catchment characteris-
tics, and (v) drought severity (flow reduction in dry period cf. nondry period). (b) Same as Figure 3a but with Split KGE
instead of Index of Agreement. KGE values <–10 are shifted to 210 and marked with a circle. Color bar ranges indicate
the minimum and maximum of the sample.
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squaring of errors on each time step, least squares methods cause the
influence of large errors to become larger, which tends to emphasize
high flow days because model error and measurement error usually
increase for higher values of flow (heteroscedasticity; cf. Criss & Win-
ston, 2008; Krause & Boyle, 2005; Legates & McCabe, 1999). Figure 4
shows graphically the consequences of this tendency. In the calcula-
tion of sum of squares over the year 1975 (Figure 4b), only the two
highest flow peaks influence the calculations, making the cumulative
time series appear as a sharp step function with near-zero gradient in
between flood peaks, and causing the blue parameter set to be con-
sidered superior to the red parameter set. Sum of absolute errors (as
in the Index of Agreement) still considers the high flow days (Figure
4c), but the step function is more rounded, and the inter-peak periods
have a more significant gradient, indicating that the mid-low flows on
either side of the peaks are considered with greater weight. This
means that the red parameter set is considered superior, acknowledg-
ing its closer tracking of recessions and subsidiary peaks. We suggest
that this more balanced consideration of the hydrograph is important
for preparing a model for drier climatic conditions, as information on
physical processes relevant to catchment drying may be contained in
mid- and low-flow periods, in addition to high flow periods.

Next, consider the Split KGE, which (as per Table 1) is calculated by
splitting the time series into individual years, calculating the KGE value
for each year in isolation, and then taking the average of these annual
values. Like in Figure 4, the effect is to ‘‘even out’’ the influence of
parts of the calibration time series, but the process happens on a time
scale of years (rather than days for the Refined Index of Agreement). A
given wet year may have a very high influence on the standard KGE
score, but with the Split KGE the influence is limited to 1/N (where N
is the number of years in the calibration period). Conversely, dry years
may be ignored by the standard KGE—despite potentially containing
the most relevant information for a drying climate—but with the Split
KGE their influence is guaranteed to be 1/N. Figure 5 shows a practical

example. The observed flows in each year are provided (top) to indicate wet and dry years. The simulated
flows are not directly plotted, but the daily KGE value for each year in isolation is given, for parameter set 1
(chosen when the standard KGE is the objective function) and for parameter set 3 (chosen when the Split
KGE is the objective function). The color coding shows that using the standard KGE as the objective function
provides good performance during most wet years but largely ignores poor performance during the dry
years, particularly toward the end of the calibration period. The Split KGE, in contrast, must consider each
year as equally weighted, leading to more accurate simulations of most dry years in the calibration period,
and subsequently better performance in the dry (evaluation) period. The application of the Split KGE can
thus be seen as a sacrifice in the (overall) KGE value during the calibration period, in exchange for better
consideration of average and dry calibration years, less ‘‘overfitting’’ to streamflow data in high flow years,
and improved evaluation performance.

It is noted that averaging of KGE values can be problematic because they have no lower bound—that is,
KGE can attain very negative values, resulting in highly skewed distributions (see Mathevet et al. [2006] for
a discussion of the NSE in this regard). Therefore, so long as very negative scores such as 210 or 2100 exist
in one or more years, Split-KGE optimization will focus on these years almost exclusively since they domi-
nate the calculation of averages. In cases where the very low scores result from data errors and it is impossi-
ble to raise these numbers further, this could distort the calibration over the other years in the data set. To
avoid these problems, an alternative and future research topic would be to apply the ‘‘split’’ logic to a metric
with bounded formulation (e.g., that by Mathevet et al. [2006] for sum of squared errors, or that by Willmott
et al. [2012] for sum of absolute errors, each of which ensure all values lie between 21 and 11; note that

Figure 4. (a) Observed and GR4J simulated flow during part of a calibration
period, for two parameter sets: parameterization by optimizing KGEnondry

(parameter set 1) and parameterization by optimizing Index of Agreementnondry

(parameter set 2). The example is Currambene Creek at Falls Creek (216004,
catchment area 93.5 km2, mean annual rainfall 1,130 mm/yr, runoff ratio 0.20).
(b) Cumulative evolution of the sum of squared errors over the same period. (c)
Cumulative evolution of the sum of absolute errors over the same period. Sum
of squared errors is very sensitive on days of high flow, but effectively ignores
other days, as indicated by the near-zero gradient in between floods. The sum
of absolute errors is still sensitive to floods but also considers lower flows.
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the latter is the Revised Index of Agreement tested in this paper). Adopting percentile values such as the
median is discouraged because their insensitivity to extreme values is counter to the intention of the Split
KGE (i.e., bad years should not be ignored!). For the present study, the favorable results for Split KGE suggest
that these issues are not salient in the data set used.

4.2. Distinguishing Calibration Objective From Modeling Objective
Based on the above arguments, it appears logical to swap objective function from least squares to either
the Index of Agreement or the Split KGE, or others that use similar logic, wherever simulations of a drying
climate are required. To some readers, this might be confusing, since the objective function is often chosen
to correspond closely with whatever the model is trying to achieve—for example, in a water resource study,
the KGE might be an appropriate choice, because the mean, variability, and timing of flows (all KGE compo-
nents) are each important to water resource modeling. Given such a purpose, most modelers would con-
sider it logical to adopt the same metric as the objective function, under the (false) assertion that the best
chance of maximizing a certain metric in the evaluation period is to optimize the same metric in the calibra-
tion period. In reality, robust simulation performance in drier or wetter conditions than the calibration data
depends on fidelity of process representation. Thus, calibration objective function(s) should be chosen to
extract information relevant to these processes from the calibration data. This discussion suggests that it is
useful to distinguish the calibration objective function(s) from the modeling objective(s), a principle that is
supported by the empirical results of this study. Put another way, if the modeling objective is to maximize
KGE when evaluating a model over a drought, Figure 2 suggests that the KGE is a poor choice of objective
function to achieve this goal.

4.3. Reliability of Numerical Optima
Single-objective optimization in hydrology often suffers from the problem of equifinality (e.g., Beven, 2006),
where many parameter sets may achieve near-optimal scores. This is a problem, particularly if these param-
eter sets diverge in behavior during the evaluation period. For example, in Figure 5, only one parameter set
is shown for each objective function; possibly, the second- or third-best parameter set may exhibit different
behavior. Due to the large scope of this paper (in particular, the large numbers of catchments, model struc-
tures, and objective functions) it is difficult to systematically analyze robustness while maintaining brevity.
However, this manuscript is part of a wider study that includes consideration of ensembles of parameter
sets, not just mathematically optimal solutions, described in Fowler (2017, Chapter 5). The analysis of Fowler
(2017) supports the robustness of the recommended objective functions because it demonstrated tenden-
cies in behavior across large ensembles of parameter sets that are consistent with the results shown here.

Figure 5. Annual observed flow (top) with tabulated KGE values for 41 separate calendar years (years are also shaded by
KGE value, to ease interpretation), for two parameter sets: parameter set 1 is the same as Figure 4 (optimizing KGEnondry);
parameter set 3 is from parameterization by optimizing Split KGEnondry. The case study is the same as in Figure 4 (GR4J in
216004). Optimization of standard KGE gives superior values during wet years while largely ignoring poor performance in
the drier years of the calibration period, whereas the Split KGE considers all years equally. In terms of conventional KGE
values, parameter set 1 attained KGEnondry (calibration) period 5 0.85 and KGEdry (evaluation) period 5 20.06, and parameter set 3
attained KGEnondry (calibration) period 5 0.59 and KGEdry (evaluation) period 5 0.61.
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4.4. Suitability for Climate Change Impact Studies
Even though the split-sample tests above showed significantly improved results over historic dry periods, this is
no guarantee that models thus calibrated will be adequate for future climates, for various reasons. Firstly, not all
models that obtain good scores in numerical metrics necessarily provide a good numerical match with evalua-
tion data. Simulations from models may be deficient in ways not captured by the criteria, and/or the criteria
may be poorly chosen and thus not reflect the modeling purpose (see previous section). A variety of checks and
visualizations (Bennett et al., 2013; Thirel et al., 2015) can assist here, in addition to choosing criteria that are
matched to the context as closely as possible, and/or using multiple criteria to more fully characterize the quality
of simulation. Second, even a model that provides a near-exact match in simulations across all time steps may
not do so for the right reasons. Different model components may combine to produce the same outcome, and
it can be difficult to tell which (if any) demonstrates fidelity with dominant processes (e.g., Beven, 2006). This is
particularly the case if calibration is based on streamflow only (Clark et al., 2011).

Third, even models that match historic data for the right reasons may not be adequate to simulate under
projected change because the future may be so different from the past as to change the mechanisms that
govern the rainfall-runoff relationship (Beck, 2002; Peterson et al., 2009; Saft et al., 2015, 2016b). The
droughts used as case studies in this article, while severe, are generally within the envelope of prior histori-
cal variability (Gallant et al., 2011; Potter et al., 2010)—that is, such hydroclimatic conditions have occurred
before in these locations. In contrast, climate change may cause a permanent change to conditions that
have never been seen before, and thus new processes may become dominant. Changing climate is com-
monly thought of as a change in the mean over many years, but it likely also entails differences in the sever-
ity and duration of extreme events (e.g., Forzieri et al., 2014). Living components of the system (e.g.,
vegetation) may respond unexpectedly due to complex feedbacks (Curtis & Wang, 1998; Rodriguez-Iturbe
et al., 1999). In some systems, changes in external forcing may cause a transition from one stable state to
another (Peterson et al., 2009; cf. D’Odorico & Porporato, 2004). Thus, difficulties in characterizing future pro-
cesses is a profound source of uncertainty in providing future runoff projections.

Lastly, even if all the above challenges are adequately addressed, it is important to ensure future projections
are driven by appropriate climatic boundary conditions, the selection of which is subject to considerable
uncertainty. A good example is the potential evapotranspiration input used in rainfall-runoff modeling (Seil-
ler & Anctil, 2015; Guo et al., 2017). Many formulations of PET do not consider numerous factors in their for-
mulation, such as wind, which can cause problems in representing historic behavior (Donohue et al., 2010).
Approximating future boundary conditions adds additional difficulties, since PET depends on vegetative
factors (e.g., albedo and canopy resistance) in addition to climatic factors, all of which are likely to change
under future climate, possibly as part of complex feedbacks (Rodriguez-Iturbe et al., 1999). Thus, ignoring
vegetation-climate interactions when estimating PET in a nonstationary climate is potentially a large source
of bias in runoff projections.

Thus, although the DSST (i.e., the test used in this manuscript) may be ‘‘the best possible evaluation
method’’ (Refsgaard et al., 2014), the adequacy of models that pass the DSST is far from guaranteed and the
quality of future projections depends on many factors.

4.5. Limitations and Further Research
This study found that the Index of Agreement and Split KGE objective functions provided improved split-
sample results, and that this did not depend strongly on catchment attributes (with the possible exception
of mean precipitation, as discussed above). Given the relatively large number of catchments tested (86), this
provides some confidence that the findings are generally applicable across the temperate parts of Australia.
Given no nontemperate catchments were included, the applicability of findings to other climate types is
untested, and we recommend that application to other climate types (or continents other than Australia) be
preceded by split-sample testing to confirm the local relevance of the findings of this paper.

Furthermore, no testing of a wetting climate was undertaken. In the split-sample testing undertaken here,
the evaluation period was always drier than the calibration period. It is recommended that future research
uses similar methods to identify suitable objective functions for use in a wetting climate.

Even using the recommended objective functions, model performance problems persist for many catch-
ments (Figure 1), and the cause of these problems is a potential future research topic. It is possible that
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rainfall errors play a role in some catchments, since rainfall may become more localized with drying climate.
However, using the same ‘‘nondry’’ and ‘‘dry’’ periods as in this study, Fowler et al. (2016) showed that robust
performance is often possible with a different choice of parameter set, as demonstrated by their multiobjec-
tive approach that explicitly defined separate objectives for each period. Their results would not be possible if
the errors were purely random, as would be expected if due to more localized precipitation. This may imply
systematic structural errors are common, as suggested by, for example, Petheram et al. (2011, p. 3622) and
Fowler (2017, p. 33). As stated, few studies provide systematic testing of calibration methods under changing
climatic boundary conditions. This article has aimed to fill this gap for single-objective optimization, but it is
recommended that future studies extend this to other calibration paradigms, including ensemble methods,
that is, calibration methods that explicitly consider many parameter sets, rather than the single ‘‘optimum.’’
Such methods have numerous advantages compared to single-objective optimization, including the ability to
estimate uncertainty in predictions, and to more fully characterize the ability of a model structure by analyzing
a broader pool of parameter sets. Ensemble methods useful in the context of changing climate could include
data depth methods (B�ardossy & Singh, 2008), limits of acceptability methods (Beven, 2006; Blazkova & Beven,
2009; Liu et al., 2009), Pareto methods (Gharari et al., 2013) and Approximate Bayesian Computation (Fowler,
2017; Nott et al., 2012; Vrugt & Sadegh, 2013). In addition, methods that explicitly separate error sources (e.g.,
Kavetski et al., 2006a, 2006b; Renard et al., 2010) have rarely been applied under changing conditions, so that
their potential for improving the robustness of predictions is untested.

5. Conclusions

Although the literature contains many calibration methods that may be relevant to rainfall-runoff modeling
in changing climatic conditions, relatively few studies systematically compare these methods in regions
with relatively high interannual variability in historic climate. This study has aimed to fill this gap for single-
objective optimization methods. Eight objective functions were tested in 86 catchments in southern and
eastern Australia, with a focus on performance when evaluated over historic droughts. Two classes of
method proved particularly effective:

i. Sum-of-absolute-error methods such as the Refined Index of Agreement of Willmott et al. (2012). The
practice of calculating the NSE on the square root of flows (termed NSEsqrt in this study) is similar to a
sum-of-absolute-error approach, and NSEsqrt provided similar evaluation results to the Refined Index of
Agreement but with slightly more bias.

ii. Methods which weight each year in the calibration series equally such as the Split KGE, which limits
the influence of wet years in calibration data and ensures dry years are not ignored.

These results suggest that there is information in calibration data that is not fully exploited by common
‘‘least squares’’ calibration methods applied on untransformed streamflow. The success of the above meth-
ods was consistent across the five rainfall-runoff models tested, across 86 temperate catchments regardless
of slope, degree of forestation, or severity of drought. However, the relative benefit of these methods was
less for the higher rainfall catchments tested (>1,500 mm/yr). The testing was limited to the case of climate
drying rather than wetting, and future research is recommended to confirm the generality of results on con-
tinents other than Australia, for other model structures and for wetting rather than drying climate.

We recommend future studies avoid ‘‘least squares’’ approaches (e.g., optimizing the NSE, RMSE or KGE on
untransformed streamflow) and adopt these alternative methods, wherever simulations of a drying climate
are required. Whereas some studies previously assumed that the poor performance of models under chang-
ing climate was due to the model structures themselves, this study demonstrated that improvements are
possible without changing the model structures. This should encourage future modelers to employ a range
of methods to extract information from data, rather than relying on commonly used methods of calibration.
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