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Abstract

This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model
states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman
filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination
of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are con-
ducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of
streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near
the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because
a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage
occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins
where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow sim-
ulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation
strategy.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Remotely sensed snow covered area (SCA) informa-
tion has been used in hydrologic simulation models in
a large number of applications (e.g., [17,18,21–
23,30,9,28,3,4,19]). One approach is to use SCA as a
hydrologic model input. For example, in the snowmelt
runoff model (SRM) the snowmelt equations are applied
to the fraction of the basin that is covered in snow (e.g.,
0309-1708/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advwatres.2005.10.001
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[18]). In this approach snow water equivalent (SWE) is
not computed directly by the model, but can be inferred
from snow cover depletion curves [9], facilitating
streamflow forecasts.

Another approach is to use SCA information to alter
the sub-basin distribution of SWE. For example, Turpin
et al. [30] replaced modeled SWE with modeled SWE
from a different date that had similar fractional SCA
to the SCA in a Landsat image. Barrett [4] and Mcguire
et al. [19] both used rule-based approaches to modify the
sub-basin SWE distribution. Barrett [4] updated snow in
two ways. In grid cells where the model estimated snow
and the satellite did not, SWE was either removed from
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Fig. 1. Conceptual diagram of the snowpack water-balance model
configured for this study. A specified fraction of water inputs
(rainfall + snowmelt) is extracted as direct runoff (based on parameter
frdir). The soil moisture reservoir is represented as an impervious
bucket, and drainage only occurs once it has reached capacity (defined
by parameter smcap, Eq. (11)). Groundwater storage is infinite, with
baseflow parameterized as a function of the groundwater storage
(parameter fr2gw; Eq. (15)). Streamflow is taken as the sum of direct
runoff and baseflow (normalized by basin area).
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the basin, or SWE was redistributed to areas where the
satellite and model agree (generally higher elevations).
Barrett added a thin layer of snow to grid cells where
the satellite estimated snow and the model did not.
Results showed, somewhat predictably, that streamflow
decreased when snow was removed from the basin, and
that the peak streamflow was delayed when snow was
added to higher elevations. In most cases snow updating
decreased the skill of streamflow simulations. Mcguire
et al. [19] used the following rules: if the modeled
SWE was zero and the satellite estimate of fractional
SCA was greater than 50%, then a thin layer of snow
was added to the grid cell; if the modeled SWE was
non-zero and the fractional SCA was less than 50%,
then snow was removed from the grid cell. Mcguire
et al. [19] showed that their snow updating procedures
improved short-term (14-day) forecasts in a subset of
the basins studied.

There are two main problems with these rule-based
approaches to snow updating. First, rule-based methods
simply replace model simulations with satellite obser-
vations [this is known as the ‘‘direct-insertion’’ approach
to data assimilation]. The direct-insertion approach
assumes that satellite observations are perfect and
implies that there is no useful information in the model
simulations of snowpack. A second problem with these
rule-based snow updating methods is that it is difficult
to propagate information to other model state variables.
For example, Mcguire et al. [19] assume that in cases
when the model shows snow and the satellite does not,
that water has ‘‘left’’ the basin. In reality, water may lin-
ger in soil and groundwater reservoirs before being
‘‘seen’’ as streamflow at the basin outlet. A superior
approach is a Kalman-type data assimilation strategy
(e.g., [25,26]) that blends satellite products with model
simulations so as to exploit the relative strengths in both
the model simulations and satellite observations. More-
over, in the Kalman-type data assimilation methods it is
fairly straightforward to update other model states (e.g.,
soil moisture) based on the modeled covariance across
model states.

The purpose of this paper is to demonstrate how
satellite observations of SCA can be used as part of a
Kalman-type data assimilation strategy to improve
model simulations of streamflow. Results are based on
sensitivity experiments with a fairly simple snowpack/
water-balance model. The remainder of this paper is
organized as follows. The hydrologic model is described
in the next section. The data assimilation strategy is
described in Section 3, and the probabilistic approach
to model simulation is described in Section 4. Model
covariance is discussed in Section 5, and data assimila-
tion experiments are described in Section 6. The paper
concludes with discussion of the potential utility of
SCA information for model updates in a range of differ-
ent snow environments.
2. Model description

The hydrologic model configured for this study uses
temperature index methods to model snow accumula-
tion and ablation processes (e.g., [24]). The basin water
balance and streamflow are modeled using conceptual
storage reservoirs. Fig. 1 presents a conceptual diagram
of the model, summarizing the main equations and
parameters. The simplicity of this model has some
advantages in that the effects of model parameters and
state updating are easy to understand. The main advan-
tage is that large ensemble simulations can be performed
with little computational effort.
2.1. Snow model

SWE and fractional SCA are modeled using sub-grid
parameterizations similar to those described by Luce
et al. [16] and Liston [14]. The basic premise is that
the variability in snow within a grid cell can be described
by a parametric probability distribution function
(p.d.f.). Consider the two-parameter lognormal p.d.f.
used by Liston [14]:
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where w is snow water equivalent (mm), l is the mean of
the probability distribution, and CV is the coefficient of
variation (parameter scvar).

Luce et al. [16] and Liston [14] both define the p.d.f.
in terms of total accumulation, and assume that melt is
spatially uniform over a grid cell. In this implementation
it is only necessary to model total snow accumulation,
Da (mm), and total melt depth, Dm (mm). Here,
Da = l in Eq. (1), and is defined as the sum of individual
snowfall events. Likewise, Dm is defined as the sum of
individual melt events. Assuming uniform melt, SCA
and SWE are estimated by integrating over the p.d.f.
defined by Da and CV (Eq. (1)), that is
Fig. 2. Various lognormal probability distribution functions (p.d.f.s) describi
(dark lines) and mean = 200 mm (light lines), and coefficient of variation para
of the distribution of SWE associated with each p.d.f.; (c) effects of melt on the
parameterization of SWE.
SCA ¼
Z 1

Dm

f ðwÞdw ð2Þ

SWE ¼
Z 1

Dm

ðw� DmÞf ðwÞdw ð3Þ

Note that Dm is the lower limit of integration. Physically
speaking, these equations amount to identifying areas of
equal SWE amount across a basin (e.g., 3.5% of the basin
has SWE of 500 mm; 2.7% of the basin has SWE of
510 mm; and so forth), and computing the weighted
sum of SWE amounts (weighted by area). SCA is simply
the sum of areas with SWE on the ground. Liston [14]
presents analytical solutions to Eqs. (2) and (3).

P.d.f.s computed using different CV parameters are
illustrated in Fig. 2a, and a conceptual example of the
resultant distribution of snow is provided in Fig. 2b
(the lines in Fig. 2b are essentially the cumulative
p.d.f.s flipped on their side). The effects of melt are illus-
trated for the p.d.f.s in Fig. 2c, and for the example
snow distribution in Fig. 2d. Conceptually, the shallow
portions of the grid cell will melt first, reducing the snow
covered area in the grid cell (geometrically, melt causes
ng sub-grid variability in SWE, showing (a) p.d.f.s for mean = 100 mm
meter = 0.3 (thin lines) and 0.7 (thick lines); (b) conceptual illustration
p.d.f.s; and (d) conceptual illustration of the effects of melt on sub-grid
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the p.d.f. to shift left (Fig. 2c)). Because the sub-grid var-
iability in SWE is determined based on total accumula-
tion, snow can remain in the grid cell even if total melt is
greater than total accumulation.

As just noted, total snow accumulation Da (mm) is
defined as the sum of precipitation from daily snowfall
events. Precipitation is modeled as snow if the tempera-
ture is below a prescribed threshold; otherwise precipita-
tion is rain:

P s ¼
P � pbias; T d < tsnow

0; T d P tsnow

�
ð4aÞ

P r ¼
0; T d < tsnow

P � pbias; T d P tsnow

�
ð4bÞ

Here P is precipitation (mm d�1), Ps and Pr are precip-
itation in the form of snow and rain, respectively
(mm d�1), pbias is a dimensionless parameter defining
the bias in precipitation, Td is the mean daily tempera-
ture (�C), and tsnow is a model parameter for the tem-
perature threshold that determines precipitation phase
(�C). Rain percolates through the snowpack without de-
lay, and is immediately available to the water-balance
model.

Snowmelt, Ms (mm d�1), is estimated using tempera-
ture index methods described in Rango and Martinec
[24]:

M s ¼
ðT d � tmeltÞ � ddpar; T d > tmelt

0; T d 6 tmelt

�
ð5Þ

As before, Td is the mean daily temperature (�C), and
ddpar (mm �C�1 d�1) and tmelt (�C) are model parame-
ters. In Rango and Martinec�s implementation of this
method, ddpar is a parameter that increases through
the melt season to account for seasonal changes in solar
radiation, snow temperature, and so forth. Here ddpar
is estimated based on the mean temperature for the past
30 days (T30):

ddpar ¼
jðT 30 � tbaseÞtpowr

; T 30 > tbase

j tbase; T 30 6 tbase

(
ð6Þ

where T30 tbase are in �C and tpowr is dimensionless.
The constant j = 1 (mm �C�2 d�1) is included solely to
ensure Eq. (6) is dimensionally correct and is not used
as an adjustable parameter. Because the degree-day
parameter is frequently set to different values for differ-
ent times in the melt season [24], Eq. (6) accounts for the
seasonality in melt without adding any additional
parameters.

The daily depth of snowmelt, Md (mm d�1) is com-
puted by integrating over the positive portion of the
snow depth p.d.f. (see also Eq. (3))

Md ¼
Z 1

Dm

ðminðM s;w� DmÞÞf ðwÞdw ð7Þ
which reduces melt over the zero and shallow areas of
the grid cell.

The sub-grid snow parameterization must account
for situations when new accumulation interrupts melt.
In these situations the new snow may fall over the entire
grid cell, and then melt rapidly to leave the original dis-
tribution of snow before the accumulation event. These
situations have historically been handled by keeping
track of the new accumulation, and setting snow cov-
ered area to 100% until a prescribed percentage of the
new accumulation has melted (e.g., 1,13,16,15). In Lis-
ton�s model, new accumulation is removed from total
melt, Dm, until total melt is zero, then new accumulation
is added to total accumulation, Da. This procedure
allows the snow covered area to expand and contract
over the grid cell during periods when snow is ephem-
eral. As noted by Liston [14], the procedure seldom per-
mits new accumulation to cover the entire grid cell,
which may be unrealistic in some circumstances. How-
ever, this procedure preserves the statistical relations
between total accumulation and total melt, and SWE
and fractional SCA—a feature that is important for
the assimilation strategy outlined in Section 3. In this
paper we use Liston�s method to model transient accu-
mulation events.

2.2. Water-balance model

Rain plus melt from the snow model is used as input
to a two-layer water-balance model. A prescribed frac-
tion of rain + melt is extracted for direct runoff, Qd

(mm d�1):

Qd ¼ frdir � ðP r þMdÞ ð8Þ
W i ¼ P r þMd � Qd ð9Þ

where frdir is a dimensionless model parameter repre-
senting the fraction of rain + melt to direct runoff, and
Wi is the residual water input to the top layer of the
water balance model (mm d�1). As in Section 2.1, Pr is
precipitation in the form of rain and Md is daily snow-
melt (both in mm d�1).

The water balance of the top layer is defined by

dW u

dt
¼ W i � D� E ð10Þ

where Wu is the water content of the upper layer (mm),
D is the drainage from the upper layer to the lower layer
(mm d�1), and E is evaporation (mm d�1). The model
uses daily time steps. D is computed as

D ¼
W u � smcap; W u > smcap

0; W u 6 smcap

�
ð11Þ

where smcap is a model parameter defining the maxi-
mum soil moisture capacity (mm). Consequently, drain-
age only occurs if Wu > smcap. E is computed as



Table 1
Model parameters and parameter bounds

Parameter Description Lower bound Upper bound

pbias Bias in precipitation 0.5 1.5
tsnow Temperature threshold for snowfall �2.0 2.0
tmelt Temperature threshold for snowmelt �2.0 2.0
tbase Base parameter for the melt factor �20.0 20.0
tpowr Exponent for the melt factor 0.1 0.9
scvar Coefficient of variation for sub-grid SWE 0.1 0.9
etpar Control on the rate of evapotranspiration 0.001 0.1
smcap Soil moisture capacity 20.0 300.0
frdir Fraction of rain + melt to direct runoff 0.005 0.1
fr2gw Fraction of subsurface storage to baseflow 0.005 0.2
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E ¼ PET � W u

smcap
ð12Þ

with PET as potential evapotranspiration (mm d�1),
which is computed using the Hamon empirical formula-
tion [11]

PET ¼ etpar � L � qvðsatÞ ð13Þ

where L is the length of daylight (in hours) and qv(sat)

(g m�3) is the saturation absolute humidity, computed
using the mean daily temperature (see [8]). Here etpar
is an adjustable model parameter.

The water balance of the bottom layer is defined by

dW b

dt
¼ D� Qb ð14Þ

Qb ¼ frtgw � W b ð15Þ

where Wb is the storage in the lower layer (mm), Qb is
baseflow (mm d�1), and frtgw is a model parameter that
defines the fraction of the groundwater storage that
drains as baseflow per day (d�1).

Daily runoff, Q (mm d�1) is then

Q ¼ Qd þ Qb ð16Þ

Table 1 summarizes model parameters and parameter
ranges.
3. Data assimilation strategy

The data assimilation strategy follows the sub-grid
SWE parameterization. With the model structure pre-
sented in the previous section, differences between remo-
tely sensed and modeled SCA suggests that one or more
of three things is inaccurate: (1) snow accumulation; (2)
snowmelt; or (3) the variability in sub-grid SWE (see
Fig. 2). Thus, SCA information is used to update total
accumulation, total melt, and the coefficient of variation
parameter. Because snowmelt lingers in soil and ground-
water reservoirs, SCA information is also used to update
soil and groundwater storages. In this approach SWE is
not modified directly, but is altered based on updates to
total accumulation, Da, total melt Dm and the coefficient
of variation parameter, CV (see Eq. (3)).

Our implementation of the ensemble Kalman filter
[25] is formalized as follows [10]. Let Xb be the m · n

matrix of ensemble background model states, that is

Xb ¼ ðxb
1 ; . . . ; xb

nÞ ð17Þ
where xb

1; . . . ; xb
n are vectors of the m model states for

each of the n ensemble members. In this study,
n = 100 ensemble members are generated for m = 6
model states, where the model states are (1) total accu-
mulation depth, Da; (2) total melt depth, Dm; (3) the
coefficient of variation in sub-grid SWE, CV; (4) the soil
moisture content, Wu/smcap; (5) the water stored in the
sub-surface reservoir, Wb; and (6) the fractional snow
covered area, SCA. Section 4 outlines methods for pro-
ducing ensemble model simulations.

The model error is estimated directly from the ensem-
ble, in which the ensemble mean is used as a index of
truth (the notation below follows [10]). The ensemble
mean �xb is defined as

�xb ¼ 1

n

Xn

i¼1

xb
i ð18Þ

The perturbation from the mean for the ith ensemble
member is x0bi ¼ xb

i � �xb, and the ensemble of perturba-
tions is defined as

X0b ¼ ðx0b1 ; . . . ; x0bn Þ ð19Þ
An estimate of the m · m model error covariance, bPb

, is
computed directly from the X 0b ensemble, that is

bPb
¼ 1

n� 1
X0bX0b

T ð20Þ

Having bPb
, it is relatively straightforward to update

model states.
The update equation is

xa
i ¼ xb

i þ bKðyi �Hxb
i Þ ð21Þ

where

bK ¼ bPb
HTðHbPb

HT þ RÞ�1 ð22Þ
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Here xb
i is the m-element background vector of model

states for the ith ensemble member, yi is the p-dimen-
sional set of observations, H is the m · p operator that
converts the model state to the observation space, bK is
the Kalman gain, and xa

i is the m-element analysis vector
of model states. R is the p · p observation error covari-
ance matrix (Eq. (22)). In this case there is a 1:1 corre-
spondence between observations and model states,
which avoids the need for interpolation weights in the
H matrix. Because only observations of fractional

SCA are available, H = [0,0,0,0,0,1], and HbPb
HT þ R

is a scalar representing the sum of model and observa-
tion errors. Accordingly, the Kalman gain bK is a 6-ele-
ment column vector in which the covariance between

fractional SCA and all other model states, bPb
HT, is

divided by the sum of model and observation errors,

HbPb
HT þ R (Eq. (22)).

A critical component of the ensemble Kalman filter is
the treatment of observations. In its traditional imple-
mentation (Eqs. (21) and (22)), the n elements of y are
sampled from a distribution with zero mean and covari-
ance R, that is y0i � Nð0;RÞ, providing n sets of observa-
tions that are used to update each of the n ensemble
members (see [5]). Whitaker and Hamill [32] introduced
an alternative form of the ensemble Kalman filter that
does not require perturbed observations. This is the
ensemble square root Kalman filter and is used in this
study. Under this method the ensemble is broken into
mean and anomaly portions, which are updated
separately:

�xa ¼ �xb þ bKðy�H�xbÞ ð23aÞ
x0a ¼ x0b þ eKHðx0bÞ ð23bÞ

The anomalies (x 0) are updated using a reduced gain
ðeKÞ, given by

eK ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

HbPHT þ R

s !�1 bK ð24Þ

The reduced gain is used because the analysis error
covariance is underestimated in the standard ensemble
Kalman filter, which in turn can diminish the spread
of the model ensemble and promote filter divergence
[5,32].

For demonstration purposes, R is specified in this
application to be 0.05 (i.e., 5% error). Obtaining reliable
spatially explicit error estimates from satellite radiances
is a difficult proposition. The biggest challenge involves
unscrambling the radiance from snow from other land
cover types in a pixel. These problems are compounded
when snow cover is obscured by the vegetation canopy.
While the analytical framework presented here is appli-
cable for any level of observation error, the Kalman
gain clearly depends on the relative magnitude of obser-
vation and model error. The 5% error is used only to
demonstrate the applicability of the ensemble Kalman
filter for SCA assimilation—we acknowledge that fur-
ther work on quantifying observational errors is neces-
sary to improve filter performance in real-world
applications.
4. Probabilistic model simulations

The m · n matrix of ensemble background model
states, Xb, described in the previous section, is generated
by running the simple water balance model with an
ensemble of model inputs and a corresponding ensemble
of model parameters.

Generating the necessary ensembles requires real data.
Streamflow simulations in this study were produced for
Middle Boulder Creek, at Nederland, Colorado (United
States Geological Survey gage identification number
06725500). The basin was modeled as a single unit (i.e.,
lumped rather than distributed simulations). The sub-
grid variability in snow is handled using the p.d.f.s defined
in Eqs. (1)–(3).

Middle Boulder Creek is a snowmelt-dominated
mountain basin with a drainage area of 93.76 km2

(Fig. 3). Ensemble precipitation and temperature esti-
mates produced for the Lake Eldora SNOTEL site using
the methods described in Section 4.1 were used as forc-
ing data (see also [6,29]). The Lake Eldora SNOTEL is
located within the Middle Boulder Creek drainage
(Fig. 3). It is assumed that the ensemble precipitation
and temperature estimates for Lake Eldora are represen-
tative of the entire Middle Boulder Creek drainage
[a large number of surrounding stations were used to
produce the Lake Eldora ensembles [6]]. Middle Boulder
Creek has streamflow measurements extending until
1995. The probabilistic precipitation and temperature
estimates for Lake Eldora were produced starting in
1985. This provides 11 years of data (1985–1995) for
which streamflow simulations can be compared against
observations.

4.1. Ensemble model forcings

Ensemble forcing data were produced using the geo-
statistical method introduced by Clark and Slater [6].
The method is based on locally weighted regression, in
which spatial attributes from station locations (latitude,
longitude, elevation) are used as explanatory variables
to predict spatial variability in precipitation and temper-
ature. For each time step, regression models are used to
estimate the cumulative distribution function (c.d.f.) of
precipitation and temperature at a given point (or grid
cell).

The precipitation c.d.f. for a given point (and day) is
computed using locally weighted logistic regression to
estimate the probability of precipitation (POP) and



Fig. 3. Contour map of the Middle Boulder Creek drainage. The Basin was modeled as a single units (i.e., lumped rather than distributed
simulation).
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locally weighted linear regression to estimate precipita-
tion amounts (PCP), with errors (E) in the amounts esti-
mated obtained by locally weighted cross-validated
estimates from interpolations at surrounding stations:

POP ¼ 1

1þ expð�ZTbÞ
ð25Þ

PCP ¼ ZTba ð26Þ

E ¼
Pnsta

ista¼1W istaðPCPista � Y istaÞ2Pnsta
ista¼1W ista

 !1=2

ð27Þ

where Z = (1, lat, lon,elev)T is the vector of spatial attri-
butes at the target location, b and ba are the regression
coefficients for the logistic and ordinary least squares
equations respectively, Y is the precipitation amount
at a given station, and W is a vector of weights com-
puted based on the distance from the target station.
The regression coefficients (b and ba) are estimated using
local algorithms (see [6] for specific details). The temper-
ature c.d.f. is computed in a similar fashion, although it
can be completely defined using Eqs. (26) and (27). Dai-
ly precipitation and temperature ensembles are extracted
from the estimated c.d.f. at the target location, and the
ensembles are re-ordered to preserve the observed
space–time correlation structure and correlation among
variables (see [7] for more details). Example forcing
ensembles are shown for water year 1995 (Fig. 4).

4.2. Ensemble model parameters

The ensemble of model parameters (Table 1) is esti-
mated using Monte Carlo Markov Chains [12,31]. The
method proceeds as follows for a given parameter
ensemble:
1. Randomly select values for all model parameters
from the feasible parameter space (Table 1), use this
parameter set to simulate streamflow, and compute
the difference between model simulations and obser-
vations (summarized using the root mean squared
error (RMSE) metric).

2. Randomly select a new parameter set from the
feasible parameter space, and compute the RMSE
value.

3. Accept the new parameter set if the RMSE value is
lower than the RMSE value from the old parameter
set.

4. Go back to step 2, and continue until convergence
criteria are satisfied or the maximum number of iter-
ations reached (400 iterations in this study).

This process was repeated for 100 ensemble members,
producing an ensemble of 100 parameter sets that are
consistent with the data. To ensure parameter values
were not ‘‘over-fit’’ to the noise in any given forcing
ensemble, the RMSE was calculated from streamflow
simulations forced with 10 randomly selected forcing
ensembles. Fig. 5 shows the RMSE value for each
parameter set for the first 100 iterations (later iterations
are in gray shades), and the probability distribution
function for each parameter after 400 iterations. The
range of parameter values (Table 1) was deliberately
set to be quite large, partly to test the capability of the
Monte Carlo Markov Chain method to select realistic
parameter values. Consistent with known precipitation
under-catch problems, the method selects pbias values
above 1.0 (Fig. 5). Also, note that while some parameter
values clearly produce more accurate streamflow simula-
tions, a large number of different parameter sets are con-
sistent with the data.



Fig. 4. Example forcing ensembles for the coordinates of Lake Eldora SNOTEL site for water year 1995. The dots are station observations (not used
to construct the ensembles), and the shading depicts percentiles from the ensemble (0.05, 0.25, 0.45, 0.55, 0.75, 0.95). While these ensembles were
constructed for a specific point, we assume for the purposes of our demonstration that these forcing ensembles are valid for the entire Middle Boulder
Creek drainage.

Fig. 5. Root mean squared error for different model parameter sets, as obtained from the Monte Carlo Markov chains. The plus signs depict
parameter sets for the first 100 iterations (later iterations are shaded gray), and the lines depict the probability distribution functions for each
parameter after 400 iterations. See Table 1 for parameter definitions.
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4.3. Implementation

Having estimated an ensemble of model forcings and
an ensemble of model parameters, it is now possible to
produce ensemble model simulations that concurrently
account for uncertainties in model forcings and uncer-
tainties in the choice of model parameters. To achieve
this, we constructed 100 model ensembles in which we



Fig. 6. Ensemble simulations of streamflow for Middle Boulder Creek for the period 1984–1995 (every second year is shown). The dots are
streamflow observations, and the shading depicts percentiles from the ensemble (0.05, 0.25, 0.45, 0.55, 0.75, 0.95).
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randomly selected (without replacement) one forcing
ensemble and one parameter ensemble. This is done only
to avoid the extra computational expense of 10,000
ensembles (i.e., all possible combinations of forcing
and parameter ensembles). Fig. 6 illustrates probabilistic
streamflow simulations for every second year in the per-
iod 1985–1995. The dots are streamflow observations
from the Middle Boulder Creek gage at Nederland,
and the shading depicts percentiles from the simulated
ensemble (i.e., 0.05, 0.25, 0.45, 0.55, 0.75, 0.95). The
probabilistic estimates encompass the observations
fairly well.
5. Model covariance

For assimilation of SCA to have any effect on other
model state variables, there must be significant covari-
ance between SCA and the other model states (e.g.,
see Eq. (22)). To assess covariance across model states,
we present in Fig. 7 the correlation (the normalized
covariance) between SCA and the other model state
variables for each of the 11 years in our study period.
The coefficient of variation parameter has generally neg-
ative correlations, which implies that ground is exposed
earlier (less snow coverage) when snow cover is more
variable. Positive correlations for total accumulation
imply that more snow accumulation is associated with
more snow coverage, and the negative correlations with
total melt imply that more melt is associated with less
snow coverage. The correlations between SCA and
SWE are positive (note that SWE is not used as a state
variable but is derived from total accumulation and
total melt).

Turning to the state variables in the water-balance
model: correlations are much stronger with the ground-
water storage than with soil moisture. This occurs
because the soil moisture reservoir is an impervious
bucket, in which all water spills to groundwater storage
once the bucket has reached capacity (defined by the
parameter smcap; Eq. (11)). The soil moisture reservoir
is filled early in the melt season, which means fractional
soil moisture is almost constant across model ensembles.
Groundwater storage is represented as a bucket of infi-
nite size, with baseflow dependent on the amount of
water in the bucket (see Eqs. (14) and (15)). The negative
correlations at the start of the melt season mean that
increased snow coverage is associated with decreased
groundwater storage—that is, groundwater storage is
lower when melt is delayed. The positive correlations
at the end of the melt season mean that increased snow
coverage is associated with higher groundwater stor-
age—in this case higher snow coverage implies a length-
ening of the snow season and maintenance of the high
groundwater levels typical of snowmelt periods. Updat-
ing state variables in the water-balance model is essential



Fig. 7. Correlations among model states for each of the 11 years in the study period. Each year is represented by a separate line.
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to keep track of the water in the basin and improve sim-
ulations of streamflow.
6. Data assimilation experiments

Synthetic ‘‘identical twin’’ experiments (e.g., [25–27])
were used to evaluate the potential of the proposed data
assimilation strategy. In twin experiments the model is
first run for the period of record using the best possible
forcing data and parameter sets. This serves as the
‘‘true’’ solution and is meant to represent nature [27].
The model is then run with degraded forcing and param-
eter sets. These simulations, termed ‘‘control’’ or ‘‘open
loop’’ model runs, are meant to represent the current sit-
uation in which models cannot replicate nature. Finally,
model states from the ‘‘true’’ solution are assimilated
into the ‘‘control’’ runs. These simulations are termed
the ‘‘assimilation’’ model runs. Potential benefits of data
assimilation can be evaluated by comparing output from
the ‘‘control’’ and ‘‘assimilation’’ runs against model
output from the ‘‘true’’ model run. The advantage of
twin experiments is that there are synthetic data for all
model states, for which observations are often
unavailable.
For this study, the twin experiment proceeds slightly
differently. It is assumed that each parameter/forcing
combination is an equally likely description of nature.
The first parameter set and forcing ensemble are selected
and the model is run for the 11-year period (1985–1995).
This model run is assumed to be truth. Next, the model
is run for the other 99-parameter/forcing ensembles.
These ensemble simulations are considered as the con-
trol run. Finally, the fractional SCA is assimilated from
the first ensemble into the control ensemble. This pro-
cess is repeated for all 100-ensemble members (i.e., each
ensemble member is eventually used as ‘‘truth’’). This
experiment provides 1100 synthetic years to evaluate
the effect of the assimilation strategy (11 years * 100
ensemble members). Assimilation started on March
1st, to focus on the spring period when snow cover is
variable.

Based on the correlations in Fig. 7, assimilation of
SCA should have a dramatic effect on model simulations
of snowpack and the basin water balance. Fig. 8 pre-
sents example results for one twin experiment for water
year 1995, showing the control ensemble (left column),
the assimilation ensemble (middle column), and the con-
trol and assimilation p.d.f.s for July 1st (right column).
Fig. 8 shows that the ‘‘true’’ fractional SCA is lower



Fig. 8. Example ensemble simulations of model states and streamflow for water year 1995. The left column shows results for the ‘‘control’’ ensemble,
the middle column shows results for the ‘‘assimilation’’ ensemble, and the right column shows example p.d.f.s for July 1st (light line is control, dark
line is assimilation). Synthetic observations from the ‘‘truth’’ simulation are shown as dots, and the shading depicts percentiles from the ensemble
(0.05, 0.25, 0.45, 0.55, 0.75, 0.95). See text for further details.
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than most of the control ensembles (top row); that is,
bare ground is exposed earlier in the �true’’ simulation.
Early exposure of bare ground may be due to higher
variability in sub-grid SWE (i.e., a higher CV parame-
ter), which implies more shallow snow. Consistent with
this notion, assimilating fractional SCA from the ‘‘true’’
simulation results in an increase in the CV parameter
(second column of Fig. 8). Increases in the CV parame-
ter are restricted to the month of June when SCA is var-
iable. Bare ground can also be exposed earlier if there is
less total snow accumulation in nature than in the con-
trol simulations. The assimilation of fractional SCA
from the ‘‘true’’ simulation results in a decrease in total
snow accumulation (Fig. 8). Finally, bare ground can be
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exposed earlier if there is more total melt in nature than
in the control simulations. In this example, there are
only minor changes in total melt, which may occur as
a result of the covariability between melt and other
model state variables. The ensemble streamflow simula-
tions (bottom row of Fig. 8) have a better correspon-
dence to the synthetic observations after fractional
SCA is assimilated.

Fig. 9 illustrates seasonal cycles in the mean ensemble
variance in simulated streamflow (top row), and the
RMSE of the ensemble mean streamflow (bottom
row), averaged over the 1100 synthetic water years. Both
the variance in the ensemble streamflow simulations and
the RMSE is slightly lower in the assimilation runs (light
line) than in the control simulations (dark line). The
reductions in variance and errors are most pronounced
during the months of June and July. The relatively small
effect of SCA assimilation occurs for two reasons. First,
a substantial proportion of spring streamflow occurs
before any bare ground is exposed, meaning that assim-
ilating fractional SCA information will always have only
a limited effect on ensemble simulations of streamflow.
Second, the transition from conditions when 100% of
the basin is snow covered to conditions when 100% of
Fig. 9. Mean ensemble variance (top row) and the root mean squared
error (bottom row) averaged over 1100 synthetic water years. The
control run is depicted by the dark line, and the assimilation run is
depicted by the light line.
the basin is snow free can occur fairly quickly (e.g.,
occasionally within a 2-week period), providing a very
short temporal window for using fractional SCA
information.
7. Summary and discussion

An alternative analytical framework for assimilating
fractional snow covered area (SCA) information in
hydrologic and land-surface models was presented.
The assimilation method uses SCA information in an
ensemble Kalman filter to alter the sub-grid probability
distribution function (p.d.f.) of snow (defined in terms
of total accumulation, total melt, and the variability of
SWE). It was demonstrated that assimilating SCA infor-
mation effectively modifies the sub-grid distribution of
SWE, as well as the basin water balance. Assimilation
of SCA also modifies the ensemble simulations of
streamflow.

The summary statistics presented in this paper demon-
strate that for the basin examined in this study assimilat-
ing SCA information provides only minor increases in
model accuracy. This occurs because a substantial pro-
portion of spring streamflow occurs before any bare
ground is exposed, and because the transition from con-
ditions when 100% of the basin is snow covered to condi-
tions when 100% of the basin is snow free often occurs
fairly quickly. While these two factors do constrain appli-
cations of satellite SCA information in basins worldwide,
the relative importance of these two factors will be basin-
dependent. We expect satellite SCA information to be
most useful in basins where snow cover is ephemeral.
The improvements in streamflow simulation demon-
strated in this study indicate that fractional SCA is an
important source of independent information that is use-
ful as part of an integrated data assimilation strategy.

The results presented in this paper are based on syn-
thetic experiments and are still a few steps away from
real-world applications. Andreadis and Lettenmaier [2]
recently completed a pilot study assessing the use of
the ensemble Kalman filter to assimilate remotely sensed
SCA information in the Snake River basin, Idaho, USA.
They constructed forcing ensembles by perturbing pre-
cipitation inputs with fixed error limits (25%), and spec-
ified observation errors at 10%. Comparison with point
observations showed the filter significantly reduced
errors in model simulations of SWE in the ablation sea-
son. Consistent with the results in our study, reduction
in errors were minimal in the accumulation season when
snow cover is always close to 100%, and the reduction in
errors were much lower at high elevations, where snow
cover is also more continuous.

There are a number of ways to improve filter perfor-
mance. First, it is necessary to account for temporal per-
sistence in the model updates (e.g., [25]). Not doing so
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can be viewed as analogous to repeatedly assimilating
the same observation in a single model time step—this
will reduce the variance of the ensemble, meaning that
the filter will increasingly favor the model predictions.
Hence, the filter will operate in a sub-optimal manner.
Slater and Clark [29] provide a simple remedy to this
issue. Another area that needs more attention is the
assumption of normally distributed errors. In many
hydrologic systems errors are certainly not normally dis-
tributed, which can also lead to sub-optimal model
updates. New approaches are emerging that can address
more complex error structures (e.g., [33,20]). These
issues notwithstanding, the biggest challenge in effec-
tively applying data assimilation techniques lies in quan-
tifying the model and observation error statistics. Too
often model and observation errors are either pre-
scribed, or crudely parameterized. It is necessary to
attack this error estimation problem with fervor and
gusto.
Acknowledgments

This work was primarily supported by the National
Weather Service Office of Hydrologic Development
(Award NWS4620014). Partial support was also
provided by the NOAA GAPP Program (Award
NA16GP2806), and the NOAA RISA Program (Award
NA17RJ1229). This support is gratefully acknowledged.
Three anonymous reviewers provided useful suggestions.
References

[1] Anderson EA. National Weather Service river Forecast System—
snow accumulation and ablation model. NOAA technical mem-
orandum NWS HYDRO-17. Silver Spring, MD: US Depart-
ment of Commerce; 1973.

[2] Andreadis KM, Lettenmaier DP. Assimilating remotely-sensed
snow observations into a macroscale hydrology model. Adv
Water Resour, in press. doi:10.1016/j.advwatres.2005.08.004.

[3] Barrett AP, Leavesley GH, Viger RL, Nolin AW, Clark MP. A
comparison of satellite-derived and modeled snow-covered area
for a mountain drainage basin. In: Owe M, Brubaker K, Ritchie J,
Rango A, editors. Remote sensing and hydrology 2000 (Proceed-
ing of a symposium held at Santa Fe, New Mexico, USA, April
2000). IAHS Publ. No. 267, 2001. p. 569–73.

[4] Barrett AP. Integrating remotely sensed snow cover with a
distributed hydrologic model. Hydrol Process, submitted for
publication.

[5] Burgers G, van Leeuwen PJ, Evensen G. Analysis scheme in the
ensemble Kalman filter. Mon Wea Rev 1998;126(6):1719–24.

[6] Clark MP, Slater AG. Probabilistic quantitative precipitation
estimation in complex terrain. J Hydrometeorol, in press.

[7] Clark MP, Gangopadhyay S, Hay LE, Rajagopalan B, Wilby RL.
The Schaake Shuffle: a method for reconstructing space–time
variability in forecasted precipitation and temperature fields.
J Hydrometeorol 2004;5:243–62.

[8] Dingman LS. Physical hydrology. New Jersey: Prentice-Hall;
1994. 575 p.
[9] Gomez-Landsea E, Rango A. Operational snowmelt runoff
forecasting in the Spanish Pyrenees using the snowmelt runoff
model. Hydrol Process 2002;16:1583–91.

[10] Hamill TM. Ensemble-based atmospheric data assimilation. In:
Palmer TN, Hagedorn R, editors. Predictability of weather and
climate. Cambridge Press, 2006, in press.

[11] Hamon WR. Estimating potential evapotranspiration. J Hydraul
Div, Proc Am Soc Civil Eng 1961;87:107–20.

[12] Kuczera G, Parent E. Monte Carlo assessment of parameter
uncertainty in conceptual catchment models: the Metropolis
algorithm. J Hydrol 1998;211:69–85.

[13] Leavesley GH, Lichty RW, Troutman BM, Saindon LG. Precip-
itation-runoff modeling system: users manual. US Geological
Survey Water Resources Investigation Report, 83-4238, 1983.

[14] Liston GE. Representing subgrid snow cover heterogeneities in
regional and global models. J Climate 2004;17:1381–97.

[15] Luce CH, Tarboton DG. The application of depletion curves for
parameterization of sub-grid variability of snow. Hydrol Process
2004;18:1409–22.

[16] Luce CH, Tarboton DG, Cooley CR. Sub-grid parameterization
of snow distribution for an energy and mass balance snow cover
model. Hydrol Process 1999;13:1921–33.

[17] Martinec J. Limitation in hydrological interpretations of the snow
coverage. Nordic Hydrol 1980;11:209–20.

[18] Martinec J, Rango A, Roberts R. Snowmelt runoff model (SRM)
users manual. Geographica Bernensia, Department of Geogra-
phy, University of Bern; 1994. p. 65.

[19] Mcguire M, Wood AW, Hamlet AF, Lettenmaier DP. Use of
satellite data for streamflow and reservoir storage forecasts in the
Snake River basin, ID. J Water Resour Planning Manage, 2005, in
press.

[20] Moradkhani H, Hsu K, Gupta H, Sorooshian S. Uncertainty
assessment of hydrologic model states and parameters: sequential
data assimilation using the particle filter. Water Resour Res
2005;41:W05012. doi:10.1029/2004WR003604.

[21] Rango A. Operational applications of satellite snow cover
observations. Water Resour Bull 1980;16:1066–73.

[22] Rango A. Progress in snow hydrology remote sensing research.
IEEE Trans Geosci Remote Sensing 1986;GE-24:47–53.

[23] Rango A. Spaceborne remote sensing for snow hydrology
applications. Hydrol Sci J 1996;41:477–93.

[24] Rango A, Martinec J. Revisiting the degree-day method for
snowmelt computations. Water Resour Bull 1995;31:657–69.

[25] Reichle RH, McLaughlin DB, Entekhabi D. Hydrologic data
assimilation with the ensemble Kalman filter. Mon Wea Rev
2002;130(1):103–14.

[26] Reichle RH, Walker JP, Koster RD, Houser PR. Extended versus
ensemble Kalman filtering for land data assimilation. J Hydro-
meteorol 2002;3(6):728–40.

[27] Reichle RH, Koster RD. Assessing the impact of horizontal error
correlations in background fields on soil moisture estimation. J
Hydrometeorol 2003;4(6):1229–42.

[28] Rodell M, Houser PR. Updating a land surface model with
MODIS-derived snow cover. J Hydrometeorol 2004;5:1064–75.

[29] Slater AG, Clark MP. Snow data assimilation via an ensemble
Kalman filter. J Hydrometeorol, in press.

[30] Turpin O, Ferguson R, Johansson B. Use of remote sensing to test
and update simulated snow cover in hydrologic models. Hydrol
Process 1999;13:2067–77.

[31] Vrugt JA, Gupta HV, Bouten W, Sorooshian S. A shuffled
complex evolution metropolis algorithm for optimization and
uncertainty assessment of hydrologic model parameters. Water
Resour Res 2003;39(8). doi: 10.1029/2002WR001642.

[32] Whitaker JS, Hamill TM. Ensemble data assimilation without
perturbed observations. Mon Wea Rev 2002;130(7):1913–24.

[33] Zupanski M. Maximum likelihood ensemble filter. Theoretical
aspects. Mon Wea Rev 2005;133:1710–26.

http://dx.doi.org/10.1016/j.advwatres.2005.08.004
http://dx.doi.org/10.1029/2004WR003604

	Assimilation of snow covered area information into hydrologic and land-surface models
	Introduction
	Model description
	Snow model
	Water-balance model

	Data assimilation strategy
	Probabilistic model simulations
	Ensemble model forcings
	Ensemble model parameters
	Implementation

	Model covariance
	Data assimilation experiments
	Summary and discussion
	Acknowledgments
	References


