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Abstract
Sensitivity analysis (SA) is an important tool for assessing and reducing uncer-
tainties in computer-based models. This chapter presents a comprehensive review
of some commonly used SA methods, including gradient-based, variance-based,
and regression-based methods. Features and applicability of those methods are
described and illustrated with some examples. Merits and limitations of different
methods are explained, and the criteria of choosing appropriate SA methods for
different applications are suggested.
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1 Introduction

Computer-based models are used to predict real-world processes and are important
tools for facilitating understanding of complex, real-world phenomena or solving
challenging engineering design problems. They have become indispensable in many
fields of science and engineering, from finance to life sciences, from quantum
physics to earth sciences and environmental engineering (Gan et al. 2014). Different
sources of uncertainties, such as forcing data, observational data, and model struc-
ture and parameters, exert great influences on model performance (Renard et al.
2010; Walker et al. 2003). Consequently, output uncertainties should be assessed and
attributed to different sources to increase our understanding and confidence of the
model based predictions.

Uncertainty analysis (UA) and sensitivity analysis (SA) are two of the funda-
mental steps in assessing and reducing model uncertainties, a discipline known as
“uncertainty quantification (UQ),” with the former a forward propagation, whereas
the latter an inverse assessment of model uncertainties (Jakeman et al. 2006). UA
focuses on quantifying uncertainty in model outputs, while SA refers to the study of
how the uncertainty in the model outputs can be apportioned to different input
uncertainty sources (Cariboni et al. 2007; Saltelli et al. 2008). In general, output
uncertainty can be numerically represented by statistical measures such as means,
standard deviations, skewness, kurtosis, and confidence intervals or pictorially
described by probability density functions, cumulative distribution functions, and
box plots. Although UA should be run in tandem with SA, it is beyond our scope to
give a full review of the UA methods, and hence we refer the readers to Uusitalo
et al. (2015) for an overview of UA methods. Yet most commonly, SA is focused on
evaluating the influences of model parameters (also called experimental factors) on
model outputs (also called responses) (Rakovec et al. 2014). This is because
parameters govern many aspects of a model and are of great uncertainty, even if
the model structure is correct and the data errors are assumed negligible. However,
focusing on SA of model parameters does not mean, for example, the model
structure or data are not important, but should help understand the roles played
by them.

SA has been employed by many researchers to evaluate the influence of each
parameter on model performance and then screen out insensitive parameters from
analyses (Borgonovo et al. 2012; Campolongo et al. 2007). It yields key insights into
model parameter behaviors and would help reduce parameter dimensionality for
subsequent analyses such as parameter estimation (PE), a process for calibrating
model simulations to historical observations by tuning influential parameters (Duan
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et al. 2006). On the other hand, a full understanding of parameter behaviors would
facilitate model verification and validation throughout the course of model develop-
ment and refinement (Frey and Patil 2002; Sieber and Uhlenbrook 2005). In addi-
tion, SA can identify critical regions of parameter space that can aid in model
calibration.

Numerous SA approaches have been developed over the years, and they can be
classified in a variety of ways. Usually, they are categorized into two groups as local
and global methods according to their action ranges (Saltelli et al. 2008). Local SA
methods explore the changes of model response by varying one parameter at a time
while keeping other parameters constant, using partial derivatives or finite differ-
ences at a fixed parameter location as the measure of parametric sensitivity. Though
simple and intuitive, local SA methods measure only local sensitivity whose value is
obviously location dependent. Consequently, they are applicable only for linear and
monotonic problems. On the other hand, global SA methods examine the changes of
model response by varying all or a subset of the parameters simultaneously over the
entire parameter space, allowing them to provide robust measures in the presence of
nonlinearity and interactions among the parameters (Wainwright et al. 2014). Other
classifications include methodological categories as mathematical, statistical, and
graphical methods by Frey and Patil (2002) and capability categories as qualitative
and quantitative methods by Saltelli et al. (1999). Qualitative SA methods aim to
screen out a subset of non-influential parameters using a small number of model
evaluations, whereas quantitative SA methods aim to measure each parameter’s
contribution to the response variance, a process that requires a large number of
model evaluations (Campolongo et al. 2011; Cariboni et al. 2007). There are many
different software packages which include a variety of different SA methods. An
excellent review of available software packages that could be adopted for SA, as well
as UA and PE, is available in Matott et al. (2009) and Wang et al. (2016).

The selection of the appropriate SA methods for specific problem is not a trivial
issue in practice but a potentially tricky task to those who have a minimal amount of
experience in mathematical and statistical theories. We later review a series of
commonly used SA methods by applying them to a few illustrative examples and
discuss their strengths and limitations. The objectives are to present a systematic
introduction and illustrative application of those methods, as well as to provide
guidance on choosing the appropriate techniques for specific applications.

The remainder of this chapter is arranged as follows: Methodologies of some
commonly used SA methods are presented in Sect. 2. An overview of literature on
comparison of different SA methods is given in Sect. 3. Finally, we discuss the
criteria for selecting appropriate SA methods for specific applications in Sect. 4.

2 Methodologies and Applications

A comprehensive review of different SA methods is given in this section. The SA
methods are divided into three categories according to their mathematical
approaches used to compute the sensitivity indices: (1) gradient-based,
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(2) variance-based, and (3) regression-based. The features of different SA categories
are summarized in Table 1. The methodologies of those SA methods are presented
below with some illustrative examples.

2.1 Gradient-Based Methods

Gradient-based methods compute the sensitivity indices based on the change in
response gradient to the variation of an input factor. If the response gradient induced
by a varying factor is larger than that of other factors, it indicates that the varying
factor is more sensitive than the other factors. There are numerous gradient-based SA
methods. Some of them are reviewed below.

2.1.1 One-At-a-Time
The one-at-a-time (OAT) method (Daniel 1958) is perhaps the most fundamental and
intuitive SA method, which assesses parameter sensitivity by sequentially perturbing
one parameter at a time while keeping the other parameters at their baseline values. A
schematic diagram of three-parameter OAT design is given in Fig. 1.

Assume that we have an n-dimensional parameter space, sensitivity index of the
OAT method for parameter Xi (i ¼ 1, 2, � � �, n) is

Si ¼ Y X 1, � � �, X i�1, X i � ΔX i, X iþ1, � � �, X nð Þ � Y Xð Þ
ΔX i

(1)

where ΔXi is the increment for the ith parameter. The OAT method requires only
n + 1 experiments for an n-dimensional problem, i.e., an experiment for the base
point plus n experiments for small perturbation in each of the n parameters.

The OAT method is also known as local SA method since it explores only a local
space around the base point. However, the OAT method has been extensively used
because it is easy to implement, computationally inexpensive, and useful to provide
a glimpse at the model behavior (Saltelli 1999). By reviewing 33 SA-related papers
published in Science between 1997 and 2003, Saltelli et al. (2006) found that the
OAT method has been improperly applied by many researchers, even though this
method is actually only justified for linear models.

2.1.2 Fractional Factorial Screening
The fractional factorial (FF) screening makes use of FF sampling (Box and Hunter
1961a, b) to design a small number of experiments for estimating parameter sensi-
tivity. Assume that a model has n parameters with each of them having p levels. A
full factorial design would require pn experiments, while a FF design needs only 1/pk

fraction of the experiments of the full factorial design (i.e., pn � k experiments),
where k is the number of generators. For example, a 25–2 FF design is 1/4 of a
two-level five-parameter full factorial design (Table 2). If we denote the two levels of
each parameter as “�” (the low level) and “+” (the high level), the 25–2 FF design
can be generated from a three-parameter (say A, B, and C) full factorial design and
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then choosing to confound the two remaining parameters D and E with interactions
generated byD= A� B and E= A� C. These two expressions are the generators of
the 25–2 FF design, with D = A � B means that the main effect of D is confounded

X2

X1

X3

A

BC

O

X2

X1

X3

A

B

C

O

)b()a(

X2

X1

X3

A

B

C

O

X2

X1

X3

A

BC

O

)d()c(

Fig. 1 Illustration of three-parameter one-at-a-time (OAT) design

Table 2 A 25–2 fractional factorial design

Treatment combination

Factor effect

I A B C D = AB E = AC

de + � � � + +

a + + � � � �
be + � + � � +

abd + + + � + �
cd + � � + + �
ace + + � + � +

bc + � + + � �
abcde + + + + + +
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with the interactions involving A and B, while E = A � C means that the main effect
of E is confounded with the interactions involving A and C.

The FF design shares the balance property of corresponding full factorial design,
meaning that every level of a parameter appears the same number of times. However,
some parameter effects of the FF design would inevitably be aliased with others
since it uses only a fraction of the experiments of the full factorial design. A critical
consideration when selecting a proper FF design is that the effects of primary interest
are aliased only with higher-order interactions that are negligible.

For parameter screening purpose, two-level FF experiments are often designed to
investigate parameter main effect. Suppose that parameter Xi i ¼ 1, 2, � � �, nð Þ has
two levels as “high” (denoted asX ðþÞ

i ) and “low” (denoted as X ð�Þ
i ), the main effect of

Xi can be obtained by

Si ¼
�Y þð Þ
i � �Y

�ð Þ
i

X þð Þ
i � X �ð Þ

i

(2)

where �Y þð Þ
i and �Y �ð Þ

i are mean response values when Xi equals to high and low levels,
respectively. FF screening is effective only if the parameter-response relationship is
linear or monotonic.

Henderson-Sellers (1993) designed three sets of 32-run two-level FF experiments
for assessing the relative importance of 23 ecotype parameters of the Biosphere-
Atmosphere Transfer Scheme (BATS) (Dickinson et al. 1986) under three different
climatic regimes. A detailed description of the FF screening method for parameter
sensitivity analyses of environmental models was given by Henderson-Sellers and
Henderson-Sellers (1996).

2.1.3 Plackett-Burman Screening
Take a two-level ten-parameter problem, for example, a 1/4 FF design would still
require 256 (=28) experiments. The cost of FF design is sometimes prohibitive for
time-consuming high-dimensional problems. Plackett-Burman (PB) design (Plackett
and Burman 1946) provides an alternative when the FF design is impractical to
implement. With a N-run PB design, one can run a screening experiment for up to
N � 1 parameters, where N is a multiple of four. The design matrices for two-level
n-parameter problem with a sample size up to 100 except 92 are given in Plackett
and Burman (1946). Briefly, PB design can be generated by taking a
one-dimensional matrix with “+” and “�” signs as the first column (or row), shifting
it cyclically one place N � 2 times, and adding a final row of “�” signs to complete
the design. A 12-run two-level PB design is shown in Table 3, and it can be used for
screening experiment containing up to 11 parameters.

The sensitivity measure for PB screening is the same with FF screening. Main
effects of PB screening are clear of each other but aliased with two-way interactions.
Therefore, it is applicable when the two-way interactions are negligible. Besides, the
parameter-response relationship should be linear and additive. Beres and Hawkins
(2001) summarized the virtues of PB screening and gave a guide for performing

8 Y. Gan and Q. Duan



it. Applications of PB screening for SA can also be found in Cryer and Havens
(1999), Dion et al. (2011), and Grant et al. (2007).

2.1.4 Morris One-At-a-Time
The Morris one-at-a-time (MOAT) method (Morris 1991) was designed to overcome
the deficiency of the OAT method, which is location dependent, by including
multidimensional averaging of the local measures. The experimental plans consist
of individually randomized OAT designs (Fig. 2). Theoretic basis of this method is

Path 1: A1� A2� A3

Path 2: B1� B2� B3

Path 3: C1� C2� C3

C1

C2C3

A1
B1

B2

A2 A3

X1

X2

B3

Fig. 2 Illustration of four-level two-parameter Morris one-at-a-time (MOAT) design, where A1,
B1, and C1 are random points and all other points are generated following OAT paths

Table 3 A 12-run two-level Plackett-Burman design

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 + + � + + + � � � + �
2 � + + � + + + � � � +

3 + � + + � + + + � � �
4 � + � + + � + + + � �
5 � � + � + + � + + + �
6 � � � + � + + � + + +

7 + � � � + � + + � + +

8 + + � � � + � + + � +

9 + + + � � � + � + + �
10 � + + + � � � + � + +

11 + � + + + � � � + � +

12 � � � � � � � � � � �
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based on the elementary effect, which is representative of the change in a model
response due to the change in a particular parameter.

Assume that we have an n-dimension p-level orthogonal parameter space, where
each Ximay take on values from 0, 1= p� 1ð Þ, 2= p� 1ð Þ, � � �, 1f g. The elementary
effect of the ith parameter is defined as

di ¼ Y X 1, � � �, X i�1, X i � Δ, X iþ1, � � �, X nð Þ � Y Xð Þ
Δ

(3)

where the incrementΔ usually is set to p/[2( p� 1)] and p is an even number. Overall
and interaction effects of each parameter can then be approximated, respectively, by
the mean and standard deviation of the elementary effects from r OAT paths as

μi ¼
Xr

j¼1

di jð Þ=r (4)

and

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

j¼1

di jð Þ � μi½ �2=r
vuut (5)

The total number of experiments needed for a MOAT screening is (n + 1)r.
The MOAT screening method has been widely applied due to its efficiency for

high-dimensional problems (Francos et al. 2003; Kleijnen 1997). On the other hand,
improvements have also been made to this method. For example, van Griensven
et al. (2006) replaced the Monte Carlo (MC) sampling with the Latin hypercube
(LH) sampling for generating more uniform samples to improve the efficiency of the
MOAT screening, which is known as LH-OAT screening. Campolongo et al. (2007)
proposed a modified mean μ�, which is an estimate of the mean of absolute
elementary effects, to solve the problem of the compensating effect of opposite
signs in elementary effects as

μ�i ¼
Xr

j¼1

di jð Þj j=r (6)

Example 2.1

Situation. Consider the g-function proposed by Sobol’ (1993) as f ¼ Qn
i¼1

gi X ið Þ ,
where gi(Xi) = (|4Xi � 2| + ai)/(1 + ai) depends on a nonnegative parameter ai. Let
n = 15, a1 = 9, a2 = a3 = 15, a4 = a5 = a6 = 50, a7 = a8 = a9 = a10 = 0,
a11 = a12 = a13 = a14 = a15 = 70, and X i � 0, 1½ � with uniform distribution. Please
find the influential parameters of this function.

10 Y. Gan and Q. Duan



Solution. The MOAT screening method is adopted to analyze parameter sensi-
tivity of this 15-parameter problem. The range of each parameter is evenly divided
into four levels. We then design 320 (=(15 + 1) � 20) experiments to screen out the
insensitive parameters. The SA result is given in Fig. 3. It is easy to distinguish the
insensitive parameters (i.e., X1, X2, X3, X4, X5, X6, X11, X12, X13, X14, and X15) from
the sensitive ones (X7, X8, X9, and X10) from this figure.

2.2 Variance-Based Methods

Variance-based methods make quantitative decomposition of the variance of model
response into the contributions from individual parameters and their interactions.
They are model independent and accurate but computationally expensive. Sampling
techniques such as LH (McKay et al. 1979), quasi-MC (QMC) (Sobol’ 1990),
orthogonal array (OA) (Owen 1992), and orthogonal array-based Latin hypercube
(OALH) (Tang 1993) have been widely used to generate uniformly distributed
samples for variance-based SA.

2.2.1 Analysis of Variance
Analysis of variance (ANOVA) requires no assumptions for the relationship between
model parameters and responses, but the responses should be normally distributed
with same variance. Suppose we consider a problem with two independent factors
(i.e., parameters) A and B. Among them, factor A has a levels (or treatments) as A1,
A2, . . ., Aa, and factor B has b levels as B1, B2, . . ., Bb. Each level combination of
factors A and B is repeated n times (n�2). Each model response can be recorded as
Yijk, where i = 1, 2, . . ., a; j = 1, 2, . . ., b; k = 1, 2, . . ., n. Yijk is independent of each
other, and Y ijk 	 N μij, σ

2
� �

. The ANOVA model of this two-factor problem can be
presented in terms of a linear statistical model as

76543210

14
12
10
8
6
4
2
0

μ*

σ
x15x14x13x12x11

x10
x9x8 x7

x6x5x4
x3

x2

x1

Fig. 3 MOAT screening for
the 15-parameter g-function
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Y ijk ¼ μij þ eijk
μij ¼ μþ αi þ βj þ γij

�
(7)

where μ is the overall mean, αi is the main effect of the ith level Ai, βj is the main
effect of the jth level Bj, γij is the interaction effect of level combination Ai, Bj

� �
, μij

is the mean of level combination Ai, Bj

� �
, and eijk 	 N 0, σ2ð Þ is the random error

(or residual).
If we denote

�Y ¼ Y ���
abn

¼ 1

abn

Xa
i¼1

Xb
j¼1

Xn
k¼1

Y ijk (8)

�Y ij� ¼ 1

n
Y ij� ¼ 1

n

Xn
k¼1

Y ijk (9)

�Y i�� ¼ 1

bn
Y i�� ¼ 1

bn

Xb
j¼1

Xn
k¼1

Y ijk (10)

�Y �j� ¼ 1

an
Y �j� ¼ 1

an

Xa
i¼1

Xn
k¼1

Y ijk (11)

where abn is the total number of experiments and “dot” subscript notation represents
the summation over the subscript that it replaced. Thus, the total sum of squares ST
can be expressed and then decomposed as

ST ¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

Y ijk � �Y
� �2

¼
Xa
i¼1

Xb
j¼1

Xn
k¼1

�Y i�� � �Yð Þþ �Y �j� � �Y
� �þ �Y ij� � �Y i�� � �Y �j� þ �Y

� �þ Y ijk � �Y ij�
� �� �2

¼ bn
Xa
i¼1

�Y i�� � �Yð Þ2þan
Xb
j¼1

�Y �j� � �Y
� �2 þn

Xa
i¼1

Xb
j¼1

�Y ij� � �Y i�� � �Y �j� þ �Y
� �2

þ
Xa
i¼1

Xb
j¼1

Xn
k¼1

Y ijk � �Y ij�
� �2

(12)

The ANOVA table for this two-way fixed effects model is given in Table 4. F-test
can be used to determine whether there exists a significant difference among
treatment means of one factor or interactions between two factors, at a significance
level of α. The higher the F value, the more significant the main effect or interaction
effect is to the factor.
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Frey and Patil (2002) gave a detailed description of the ANOVA method,
including its advantages and disadvantages. Mokhtari and Frey (2005) showed
that ANOVA is more reliable than correlation and regression methods by applying
them for SA of a two-dimensional probabilistic risk assessment model. The reliabil-
ity of ANOVA method was also illustrated by Tang et al. (2007).

2.2.2 Fourier Amplitude Sensitivity Test
Fourier amplitude sensitivity test (FAST) was presented by Cukier et al. (1973) for
SA of multiparameter nonlinear model, in which conditional variances are
represented by coefficients from the multiple Fourier series expansion of the
response function and the ergodic theorem (Weyl 1938) is applied to transform the
multidimensional integral into a one-dimensional integral in the evaluation of the
Fourier coefficients. The FAST method is capable of computing the main effect of
each parameter to the response variance.

Let Y= f(X)= f(X1, X2, . . ., Xn), whereX i � 0, 1½ � and i ¼ 1, 2, � � �, n. Consider a
set of transfer functions

X i sð Þ ¼ Gi sin ωisð Þ½ � (13)

where {ωi} is a set of frequencies and s� �1, 1ð Þ. The key idea of FAST is to
apply the ergodic theorem to transform the n-dimensional integral

Ð 1
0

Ð 1
0 . . .

Ð 1
0 f Xð Þ

dX 1dX 2 . . . dXn into a one-dimensional integral lim
T!1

1

2T

ðT
�T

f sð Þ ds . Since the

numerical computation of this integral is impossible for an incommensurate set of
frequencies, an approximate numerical integration can be made by using a set of
positive integer frequencies, which makes the search curve s not space-filling but
periodic with a 2π period. By considering f(s) within the finite interval �π, πð Þ, the
expectation and variance of Y can then be approximated, respectively, by

Table 4 ANOVA table for the two-way fixed effects model

Source of
variation Sum of squares

Degree of
freedom Mean square F statistica

Factor A
SA ¼ bn

Pa
i¼1

�Y i�� � �Yð Þ2 a � 1 MSA ¼ SA
a�1 FA ¼ MSA

MSE

Factor B
SB ¼ an

Pb
j¼1

�Y �j� � �Y
� �2 b � 1 MSB ¼ SB

b�1 FB ¼ MSB
MSE

Interaction
SA�B ¼ n

Pa
i¼1

Pb
j¼1

�Y ij� � �Y i�� � �Y �j� þ �Y
� �2 (a � 1)

(b � 1)
MSA�B ¼ SA�B

a�1ð Þ b�1ð Þ FA�B ¼ MSA�B
MSE

Error
SE ¼ Pa

i¼1

Pb
j¼1

Pn
k¼1

Y ijk � �Y ij�
� �2 ab(n � 1) MSE ¼ SE

ab n�1ð Þ

Total
ST ¼ Pa

i¼1

Pb
j¼1

Pn
k¼1

Y ijk � �Y
� �2 abn � 1

aFA 	 F a� 1, ab n� 1ð Þ½ �, FB 	 F b� 1, ab n� 1ð Þ½ �, FA�B 	 F a� 1ð Þ b� 1ð Þ, ab n� 1ð Þ½ �
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E Yð Þ 
 1

2π

ðπ
�π

f sð Þds (14)

and

V Yð Þ 
 1

2π

ðπ
�π

f 2 sð Þds� E2 Yð Þ (15)

Following Parseval’s theorem, we have

1

π

ðπ
�π

f 2 sð Þds ¼ 1

2
A2
0 þ

X1
p¼1

A2
p þ B2

p

� 	
(16)

where Ap ¼ 1
2π

Ð π
�π f sð Þ cos psð Þds and Bp ¼ 1

2π

Ð π
�π f sð Þ sin psð Þds are the Fourier

coefficients. By applying the above equality to the formulas of expectation and
variance, we can get

V Yð Þ 
 2
X1
p¼1

A2
p þ B2

p

� 	
(17)

The first-order sensitivity index can be defined as

Si ¼ V i

V Yð Þ ¼
2
P1
q¼1

A2
q�ωi

þ B2
q�ωi

� 	

2
P1
p¼1

A2
p þ B2

p

� 	 


PM
q¼1

A2
q�ωi

þ B2
q�ωi

� 	

Pn
i¼1

PM
q¼1

A2
q�ωi

þ B2
q�ωi

� 	 (18)

where Vi is the estimated conditional variance of the ith parameter and M is the
maximum harmonic usually taken to be 4 or higher. A large index means a signif-
icant first-order effect.

A lot of transfer functions have been proposed to provide uniformly distributed
samples in the n-dimensional unit hypercube. Saltelli et al. (1999) suggested a
popular periodic transfer function

X i sð Þ ¼ 1

2
þ 1

π
arcsin sinωisþ φið Þ (19)

where φi is a random phase shift chosen uniformly in 0, 2π½ Þ. The advantage of this
function is that the starting point of the curve can be anywhere within the unit
hypercube. By selecting Nr sets{φ1, φ2, . . ., φn}, Nr search curves can then be
generated, and this procedure was named “resampling” by Saltelli et al. (1999). The
sample size of FAST is therefore
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N ¼ Nr 2Mωmax þ 1ð Þ (20)

where ωmax is the maximum frequency. The minimum sample size is 2Mωmax + 1
when there is only a single search curve.

Schaibly and Shuler (1973) applied FAST to two chemical reaction systems
involving sets of coupled nonlinear rate equations and verified its effectiveness in
determining the parameter sensitivities of nonlinear complex systems. FAST was
adopted by Collins and Avissar (1994) and Rodríguez-Camino and Avissar (1998) to
estimate the relative importance of land surface model (LSM) parameters to the
variability of surface heat fluxes.

2.2.3 Extended Fourier Amplitude Sensitivity Test
Saltelli et al. (1999) proposed an extension of the FAST to calculate parameter total
effect, which is known as extended FAST (EFAST). Assign a frequency ωi for the ith
( i ¼ 1, 2, � � �, n ) parameter and a different frequency ωi� for all the remaining
parameters, where i� means all parameters but the ith one. By evaluating the
spectrum at the frequency ωi� and higher harmonics q � ωi�, the total sensitivity
index of the ith parameter can be estimated by

STi ¼ 1� V i�
V Yð Þ ¼ 1�

2
P1
q¼1

A2
q�ωi� þ B2

q�ωi�

� 	

2
P1
p¼1

A2
p þ B2

p

� 	 
 1�

PM
q¼1

A2
q�ωi� þ B2

q�ωi�

� 	

Pn
i¼1

PM
q¼1

A2
q�ωi

þ B2
q�ωi

� 	 (21)

where Vi� is the estimated conditional variance except for the ith parameter. A large
index means a significant total effect. EFAST needs to choose two frequencies ωi and
ωi� for each parameter, and usually a higher value is assigned to ωi. Unlike FAST
method that all indices can be calculated from a single curve, EFAST requires
n curves for calculating all n STi. Therefore, the sample size needed by EFAST is

N ¼ nNr 2Mωmax þ 1ð Þ (22)

where ωmax = max {ωi, ωi�} � ωi and Nr is the number of resampling times as in
FAST. The minimum sample size for EFAST is n(2Mωmax + 1).

Wang et al. (2013) adopted the EFAST method to analyze the parameter sensi-
tivity of the World Food Studies (WOFOST) crop growth model. Other applications
of the EFAST method can be found in Confalonieri et al. (2010) and Reusser
et al. (2011).

2.2.4 McKay Correlation Ratios
McKay (1995) makes ANOVA-like decomposition of response variances for calcu-
lating correlation ratio, which is a ratio of the variance of expectation conditioned on
one parameter and the total variances and is the representation of parameter main
effect. Tong (2005) extended the idea for main effect analysis to two-way interaction
effect analysis for uncorrelated parameters.
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Let E(Y ) and V(Y ) be the expectation and variance of the response Y, respectively,
thus V(Y ) can be decomposed as

V Yð Þ ¼ V E Y X ijð Þ½ � þ E V Y X ijð Þ½ � ¼ V E Y X ij ,X j

� �� �þ E V Y X ij ,X j

� �� �
(23)

where Xi and Xj are the ith and jth parameter, respectively, V[E(Y|Xi)] is the variance
of the conditional expectation of Y conditioned on Xi, E[V(Y|Xi)] is the residual term
measuring the estimated variance of Y by fixing Xi, V[E(Y|Xi, Xj)] is the variance of
the conditional expectation of Y conditioned on Xi and Xj, and E[V(Y|Xi, Xj)] is the
residual term measuring the estimated variance of Y by fixing Xi and Xj. The
correlation ratios of McKay main effect and two-way interaction effect are defined,
respectively, as

Si ¼ V E Y X ijð Þ½ �
V Yð Þ ¼ V E Y X ijð Þ½ �

V E Y X ijð Þ½ � þ E V Y X ijð Þ½ � (24)

and

Sij ¼
V E Y X i,j X j

� �� �
V Yð Þ ¼ V E Y X i, X j



� �� �
V E Y X ij , X j

� �� �þ E V Y X ij , X j

� �� � (25)

The former measures the relative contribution of parameter Xi to the response
variance, while the latter measures the relative contributions of parameters Xi and
Xj together to the response variance. The higher the parameter correlation ratio is, the
more significant the parameter effect is.

2.2.5 Sobol’ Sensitivity Indices
The global method proposed by Sobol’ (1993, 2001) is a milestone for global SA of
nonlinear models, which makes ANOVA-like decomposition of response variances
for calculating specific order sensitivity indices. This method has received much
attention because it can provide accurate and robust sensitivity measures of any
orders (Nossent et al. 2011; Wagener et al. 2009).

Let the function Y= f(X)= f(X1, X2, . . ., Xn), whereX i � 0, 1½ � and i ¼ 1, 2, � � �, n.
Assume that the model response can be decomposed into 2n summands of increasing
dimensions as

Y ¼ f Xð Þ

¼ f 0 þ
Xn
i¼1

f i X ið Þ þ
Xn�1

i¼1

Xn
j¼iþ1

f i, j X i,X j

� �þ � � �

þ f 1, 2, ���, n X 1,X 2,� � �,X nð Þ (26)
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where f0 is a constant, fi(Xi) are the functions of one parameter, and fi, j(Xi, Xj) are the
functions of two parameters, etc. The above formula is called ANOVA representa-
tion of f(X) if the integral of every summand is zero

ð1
0
f i1, ..., is X i1 , . . . ,X isð ÞdX k ¼ 0, for k ¼ i1, . . . , is (27)

where 1 � i1 < � � � < is � n.
Assume that f(X) is square integrable. The total response variance can be written as

V Yð Þ ¼
ð1
0
. . .

ð1
0
f 2 Xð ÞdX� f 20 (28)

While the contribution of a generic term f i1,���,is 1 � i1 < � � � < is � nð Þ to the total

variance can be written as

V i1, ..., is ¼
ð1
0
. . .

ð1
0
f 2i1, ..., is X i1 , . . . ,X isð ÞdX i1 . . . dX is (29)

Thus the ANOVA-like decomposition of total variance can be expressed as

V Yð Þ ¼
Xn
s¼1

Xn
i1<���<is

V i1, ���, is ¼
Xn
i¼1

V i þ
Xn�1

i¼1

Xn
j¼iþ1

V i, j þ � � � þ V 1, ���, n (30)

The Sobol’ sensitivity indices are defined as

Si1, ���, is ¼
V i1, ���, is
V Yð Þ , 1 � i1 < � � � < is � n (31)

and the sum of all indices is
Pn
s¼1

Pn
i1<���<is

Si1,���,is ¼ 1.

Theoretically, this global method can compute sensitivity index of any order.
However, the computation for higher-order terms is impractical when the number of
parameters is large. Homma and Saltelli (1996) provided a simple way for comput-
ing the total effect of each parameter as

STi ¼ Si þ Si, ci ¼ 1� Sci (32)

where Si and Si, ci are representations of first-order effect and higher-order effect,
respectively, and Sci is the sum of all the Si1, ..., Sis terms that excludes the index i.

Example 2.2
Situation. Suppose that we are planning to join a bungee jumping club and would
like to enjoy real excitement but stay alive by approaching the ground as close as
possible. The minimum distance to the ground during the oscillation can be
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expressed as hmin = H0 � 2Mg/(kσ), where g ¼ 9:8 m=s2 is the acceleration of
gravity and k ¼ 1:5 N=m is the elastic constant of one strand. The uncertainties are
from the height of the platform H0 (40–60 m), the mass of our body M (67–74 kg),
and the number of strands in the cord σ (20–40). In view of uncertainties, please
evaluate the risk of safe jumps, and identify the main impact factors.

Solution. Assume that the uncertain factors H0, M, and σ are uniformly distrib-
uted in their ranges. One thousand LH samples are generated from the three-
dimensional parameter space with each of the three factors having ten levels.
Samples are then designed as separate experiments to run the model. The probability
distributions of the model response and parameters are shown in Fig. 4. In 980 cases
out of 1000, the jump is successful, that is, the risk of this bungee experiment is
about 2%.

It is observable from the function that the model is linear on factors H0 and M/σ,
but not on M and σ separately. Therefore, we use the model-independent method to
analyze parameter sensitivities. Fig. 5 shows the main effect and two-way interaction
effect of different experimental factors using McKay’s method. The analysis indicates
that the number of strands (σ) is the most important factor, the height of the platform
(H0) is of secondary importance, and the influence of the mass of our body (M) is
ignorable. The relative contribution of the first two factors (σ and H0) account for more
than 90% of the total variance. Hence, we should not waste much time on the accuracy
of our weight but focus on the accuracy of the number of strands and the height of the
platform.
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Fig. 4 Probability distributions of the model response and parameters for the bungee experiment
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2.3 Regression-Based Methods

Since today’s models are becoming more detailed and realistic and hence have many
parameters, high computational costs are prohibitive to quantitative SA using
variance-based methods. Therefore, regression-based methods, such as linear regres-
sion (LR) (Galton 1886), multivariate adaptive regression splines (MARS) (Fried-
man 1991), sum-of-trees (SOT) (Chipman et al. 2010), delta test (DT) (Pi and
Peterson 1994), and Gaussian process (GP) (MacKay 1998) models, are often
employed to screen out insensitive parameters by qualitatively evaluating parameter
overall effects. On the other hand, many researchers have also investigated the
possibility of replacing the original simulation models with computationally cheaper
surrogate models (also called response surface models, metamodels, or emulators)
that perform a similar function (Borgonovo et al. 2012; Shahsavani and Grimvall
2011). Regression-based methods are often used to construct surrogate models to
improve overall computational efficiency (Wang and Shan 2007). Quantitative SA
can then be applied to the surrogate model if it has been proved to be effective for
approximating the simulation model. Shahsavani and Grimvall (2011) demonstrated
the performance of variance-based SA using surrogate models. Detailed review of
available surrogate models can be found in Storlie et al. (2009) and Razavi et al.
(2012). A brief introduction of the LR, MARS, SOT, DT, and GP models is given as
follows:

2.3.1 Linear Regression
The generalized form of a LR model relating model parameters and response is
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Fig. 5 McKay main effect and two-way interaction effect analysis for the bungee experiment
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Ŷ ¼ b0 þ
Xn
i¼1

biX i (33)

While the actual simulation model response can be expressed as

Y ¼ b0 þ
Xn
i¼1

biX i þ e (34)

where b0 is the intercept, bi is the regression coefficient of the ith parameter Xi, and
e 	 N 0, σ2ð Þ is the error term between the simulation model response and the
regression model response. Under the assumption of Gaussian errors, the regression
coefficients can be obtained using the least squares approach. An example showing
the parameter-response relationship of the LR model is given in Fig. 6.

Utilizing the means and standard deviations of the parameter and response, the
LR model is usually normalized to

Ŷ
k � �Y

ŝ
¼

Xn
i¼1

biŝi
ŝ

X k
i � �X i

ŝi
(35)

where k represents the kth sample and biŝi=ŝ is defined as the standardized regression
coefficient (SRC), with

Fig. 6 (a) response surface and (b) contour plot for a two-parameter LR model
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ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

Yk � �Y
� �2

vuut (36)

and

ŝi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

X k
i � �X i

� �2
vuut (37)

as the standard deviations of Y and Xi, respectively. A positive value of SRC
indicates that Xi and Y tend to move in the same direction, otherwise in the opposite
direction. The larger the absolute value of SRC, the more sensitive is the
parameter Xi.

SRC is a sensitivity measure based on the linear parameter-response relationship,
and it cannot provide reliable indication of parameter sensitivity when the underly-
ing relationship is nonlinear. However, the transformation of raw data into ranks has
been proven to work quite well when the parameter-response relationship is mono-
tonic (Iman and Conover 1979). Therefore, standardized rank regression coefficient
(SRRC) can be used as parameter sensitivity measure for nonlinear but monotonic
problems.

2.3.2 Multivariate Adaptive Regression Splines
Multivariate adaptive regression splines (MARS) is an extension of LR models,
which makes use of the LR, the mathematical construction of splines, the binary
recursive partitioning, and brute search intelligent algorithms (Friedman 1991). The
general form of MARS can be represented as

Y ¼ f Xð Þ ¼ a0 þ
XM
m¼1

am
YKm

k¼1

skm X v k, mð Þ � tkm
� �� �q

þ (38)

where a0 is a constant, am are fitting coefficients,M is the number of basis functions,
Km is the number of factors in the mth basis function, skm takes on values of either
1 or� 1 and indicates the right or left sense of the associated step function, v(k, m) is
the label of the independent parameter and 1 � v(k, m) � n, tkm indicates the knot
location, and the exponent q is the order of the spline approximation. The subscript
“+” means the function is a truncated power function

skm X v k, mð Þ � tkm
� �� �q

þ ¼ skm X v k, mð Þ � tkm
� �� �q

skm X v k, mð Þ � tkm
� �

> 0
0 skm X v k, mð Þ � tkm

� � � 0

�

(39)

MARS builds a model in two phases: the forward pass and the backward pass,
which is the same as that used by recursive partitioning trees. The forward pass
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builds an overfit model using all parameters, while the backward pass prunes the
overfit model by removing one parameter from the model at a time. The lack-of-fit
criterion called generalized cross-validation (GCV) criterion is then computed for
both the overfit model and the pruned model

GCV Mð Þ ¼ 1

N

PN
l¼1

Y l � f̂ M Xlð Þ
h i2

1� C Mð Þ=N½ �2 (40)

with

C Mð Þ ¼ 1þ c Mð Þd (41)

where N is the number of observations in the data set, M is the number of non-
constant basis functions in the model f̂ M Xð Þ, d is the effective degrees of freedom,
and c(M ) is a penalty for adding a basis function. An example showing the
parameter-response relationship of the MARS model is given in Fig. 7.

The increase in GCV values between the pruned model and the overfitted model
can be considered as the importance measure of the removed parameter (Steinberg
et al. 1999). The most important parameter is the one that, when omitted, degrades
the model fit the most. The score of the ith (i = 1, 2, . . ., n) parameter is given by

Fig. 7 (a) response surface and (b) contour plot for a two-parameter MARS model
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Si ¼ Δg ið Þ
max Δg 1ð Þ, Δg 2ð Þ, . . . , Δg nð Þf � 100 (42)

where Δg(i) is the increase in GCV when ith parameter is removed. The larger the
GCV increase, the more important is the removed parameter.

2.3.3 Sum-of-Trees
Sum-of-trees (SOT) model is fundamentally a classification (or Bayesian) additive
regression tree model with multivariate components (Chipman et al. 2010). Let
T denotes a binary tree consisting of a set of interior node decision rules and a set
of terminal nodes, and let M = {μ1, μ2, . . ., μb} denotes a set of values associated
with each of the b terminal nodes of T. Thus the SOT model can be represented as

Y ¼
Xm
j¼1

g X; Tj,Mj

� �þ e (43)

where for each binary regression tree Tj and its associated terminal node valuesMj, g
(X; Tj, Mj) is the function which assigns μij�Mj to parameter set X; m is the total
number of trees, and e 	 0, σ2ð Þ . An example showing the parameter-response
relationship of the SOT model is given in Fig. 8.

The residual sum of squares is used as the criteria for node splitting. A parameter
that has the maximum decrease of residual sum of squares will be chosen to split the

Fig. 8 (a) response surface and (b) contour plot for a two-parameter SOT model
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node. The splitting process will not be stopped until per terminal node has minimum
number of data points. The total number of splits for each parameter is then taken as
the scoring criterion of sensitivity. The score for ith parameter is expressed as

Si ¼ p ið Þ
max p 1ð Þ, p 2ð Þ, � � �, p nð Þf g � 100 (44)

where p(i) is the number of splits for ith parameter. The more splits the parameter
has, the more sensitive is the parameter.

An illustration of the SOT model is given in Fig. 9. As can be seen from this
figure, the two-dimensional space is split into seven subspaces (i.e., subtrees) by six
splitting nodes, and the number of splits for X1 and X2 is four and two, respectively.
Therefore, the sensitivity scores for them are 100 and 50, respectively.

2.3.4 Delta Test
Delta test (DT) is based on the nearest neighbor method for estimating the variance
of the residuals (Pi and Peterson 1994). It is founded on the hypothesis of the
continuity of the regression function, i.e., if two sample points are close in the
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Fig. 9 Illustration of the SOT method for a two-parameter problem
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parameter space, the responses of these two points will be close enough in the
response space. Or else, it can be explained by the influence of noise. Assume that
we have n parameters and sample points Xk � 0, 1½ �n for 1 � k � N. Let Yk = f
(Xk) + ek, where f is a continuous function with bounded first and second partial
derivatives and the residuals ek 	 0, σ2ð Þ. Then the points Xk , Ykð ÞNk¼1 comprise
imitation data set. Let the DT metric that is restricted to the parameter subset space
S be

δs ¼ 1

N

XN
k¼1

Yk � YNs kð Þ
� �2 
 Var eð Þ (45)

where the nearest neighbor of kth sample is

Ns kð Þ ¼ arg min
l 6¼k

Xk � Xlk k2S (46)

and the semi-norm

Xk � Xlk k2S ¼
X
p� S

X pð Þ
k � X pð Þ

l

� 	2
(47)

Thus the DT metrics for all 2n � 1 non-empty parameter subsets can be calculated.
Fig. 10 presents an illustration of the nearest neighbors of a point in different subset
spaces. An example showing the parameter-response relationship of the nearest
neighbor model is given in Fig. 11.

DT was proposed for parameter selection by Eirola et al. (2008). It takes the
subset of parameters that minimize the noise variance from all the parameter
combinations as sensitive ones. However, this procedure needs an efficient search
algorithm to find this subset of parameter combinations. This search process can be
too time-consuming, and usually it is impossible to do an exhaustive search of all

X1

X2

A

B
C

O

Fig. 10 Illustration of the
nearest neighbor of DT
method for a two-parameter
problem, where points A, B,
and C are nearest neighbors of
point O in subset spaces {X1},
{X2}, and {X1, X2},
respectively
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combinations. DT assesses the final choice using forward sweep and uses genetic
algorithm to speed up the search. The first 50 subsets which have the lowest value of
DT metrics are taken for sensitivity scoring. The score of the ith (i ¼ 1, 2, � � �, n)
parameter is given by

Si ¼
P50
m¼1

δ mð Þ
S � I mð Þ

i

P50
m¼1

δ mð Þ
S

� 100 (48)

where δ mð Þ
S is the DT metric of the mth subset and I mð Þ

i ¼ 1 if the ith parameter is

included in the mth subset, or else I mð Þ
i ¼ 0. A higher score means a more sensitive

parameter.

2.3.5 Gaussian Process
Gaussian process (GP) method characterizes simulation responses over the param-
eter space as a multivariate Gaussian distribution (MacKay 1998). Let the training
data set consist of parameter vectors X1, X2, � � �, XNf g and the corresponding set of
response values Y 1, Y 2, � � �, YNf g, where N is the sample size. A GP is a collection
of variables Y ¼ Y 1, Y 2, � � �, YNf g which have a joint probability distribution

Fig. 11 (a) response surface and (b) contour plot for a two-parameter nearest neighbor model
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P Y μ Xð Þ, Cjð Þ ¼ 1

Z
exp � 1

2
Y� μ Xð Þ½ �TC�1 Y� μ Xð Þ½ �

� �
(49)

whereC ¼ C Xk ,Xl; Θð Þf gNk, l¼1 is a parameterized covariance function with hyper-

parameters Θ, μ(X) is the mean function of the distribution, and Z is the normaliza-
tion factor. That is, random function Y can be specified by its mean function μ(X)
and covariance function C X, X0ð Þ . An example showing the parameter-response
relationship of the GP model is given in Fig. 12.

Different kinds of mean and covariance functions lead to different GPs. Gibbs
and MacKay (1997) presented a software package called “Tpros” for regression
problem using GP. The form of covariance function given by them is

C Xk ,Xl; Θð Þ ¼ θ1exp � 1

2

Xn
i¼1

X ið Þ
k � X ið Þ

l

� 	2

r2i

2
64

3
75þ θ2 þ ekl Xk ,Xlð Þ (50)

where θ1 is the hyperparameter that gives the overall vertical scale, θ2 is the
hyperparameter that gives the vertical uncertainty, ekl(Xk, Xl) is the noise model,
X ið Þ

k andX ið Þ
l are the ith components of sample pointsXk andXl, respectively, and ri is

the length scale that characterizes the distance in the direction of ith parameter over
which Y is expected to vary significantly.

As can be seen from the covariance function that when two sample points are
close (with respect to their length scales) in parameter space, the exponent is small,

Fig. 12 (a) response surface and (b) contour plot for a two-parameter GP model
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and thus the covariance is large, which means their corresponding response values
are highly correlated. That is to say, points that are close in parameter space give rise
to similar response values. On the contrary, a smaller length scale of a parameter
leads to larger difference of response values for two close sample points, which
means a more significant influence of this parameter on model response. Therefore,
the length scales can be taken as the scoring criteria for parameter screening. The
score for ith parameter is expressed as

Si ¼ 1=ri
max 1=r1, 1=r2, � � �, 1=rnf g � 100 (51)

Example 2.3
Situation. Consider the artificial computational model proposed by Morris (1991)

which contains 20 parameters and has the form as Y ¼ β0 þ
P20
i¼1

βiwi þ
P20
i<j

βi, jwiwj

þ P20
i<j<l

βi, j, lwiwjwl þ
P20

i<j<l<s
βi, j, l, swiwjwlws , where wi = 2(Xi � 1/2) except for i

=3, 5, and 7, where wi = 2[1.1Xi/(Xi + 0.1) � 1/2]. Each parameter Xi is supposed to
be uniformly distributed in [0, 1]. Coefficients with relatively large values are as
follows: βi = 20, with i= 1, . . ., 10; βi, j = � 15, with i, j= 1, . . ., 6; βi, j, l = � 10,
with, i, j, l= 1, . . ., 5; and βi, j, l, s = 5, with i, j, l, s= 1, . . ., 4. The remainders of the
first- and second-order coefficients are independently generated from a standard
normal distribution. The remainders of the third- and fourth-order coefficients are set
to zero. Assess parameter sensitivity, and reduce parameter dimensionality to a
reasonable number.

Solution. We design 1000 LH experiments with each parameter having 1000
levels to run the model. Surrogate-based methods as MARS, SOT, DT, and GP are
then adopted to qualitatively evaluate parameter sensitivity scores and quantitatively
evaluate Sobol’ total sensitivity indices (Sobol’-t). Analysis results for the
20-parameter test function are shown in Fig. 13. As it can be seen from the figure,
parameter sensitivity rankings vary across SA methods, but parameter categories of
different methods are consistent, that is, parameters 11 to 20 have lower sensitivities
than the other 10 parameters. They can therefore be regarded as insensitive param-
eters and set to any fixed values over their ranges.

3 Which SA Methods to Use?

Many researchers have reviewed some popular SA methods in specific scientific
fields, such as chemical reactions (Saltelli et al. 2005; Turányi 1990), ecological
modeling (Cariboni et al. 2007), environmental modeling (Hamby 1994; Helton
1993), risk assessment (Frey et al. 2003; Frey and Patil 2002), linear programming
(Ward and Wendell 1990), surface hydrology, and water quality modeling (Reusser
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et al. 2011), among many other disciplines. Here we provide an extensive discussion
on suitability of some commonly used SA methods for different applications. Given
the myriad of SA methods, there is a need for further investigations regarding which
methods should be used for specific problems.

Various attempts have been made over the years to answer the above question.
Campolongo and Saltelli (1997) compared the performances of MOAT screening,
SRC, and Sobol’ sensitivity indices for SA of an environmental model. Their
comparison showed that MOAT screening is the most efficient method, while
Sobol’ sensitivity indices are the most robust method. Saltelli and Bolado (1998)
investigated the relationship between FAST method and Sobol’ sensitivity indices
and showed that FAST method is equivalent to the first-order Sobol’ sensitivity
indices but is computationally more efficient than Sobol’s method. Saltelli et al.
(1999) showed that EFAST method is more efficient than Sobol’s method in
computing the total-effect indices. By contrasting two variance-based global
methods – EFAST and Sobol’ sensitivity indices – with the most widely used local
method OAT, Saltelli et al. (2000) showed that the variance-based global SA
methods are robust, model independent, and computationally convenient. Further-
more, EFAST is numerically more efficient than Sobol’s method. By defining
different ranges of variation, Lenhart et al. (2002) compared two forms of a partial
derivative-based local method using the hydrologic model SWAT (Arnold et al.
1998). Results indicate that both approaches provide similar results and hence can be
considered as equivalent. Marino et al. (2008) reviewed and compared partial rank
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Fig. 13 Surrogate-based (a) parameter sensitivity scores and (b) Sobol’ total sensitivity indices for
the Morris 20-parameter test function
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correlation coefficient (PRCC) with the EFAST method. Their results show that
PRCC relies on the monotonicity assumption between parameter and response,
whereas EFAST is computationally more expensive. Reusser et al. (2011) compared
FAST, EFAST, and Sobol’ sensitivity indices by applying them to the hydrologic
model TOPMODEL (Beven 1997) in a small mountainous catchment. Their com-
parison shows that the three methods give comparable results, while FAST is
computationally more efficient. Tang et al. (2007) compared four SA methods,
including the local analysis using parameter estimation software (PEST), regional
SA (RSA), ANOVA, and Sobol’s method, for the application to the lumped Sacra-
mento soil moisture accounting model (SAC-SMA) (Burnash et al. 1973) coupled
with SNOW-17 (Anderson 1973). Their conclusion is that ANOVA and Sobol’s
method are overall superior to RSA and PEST, and ANOVA is more efficient but less
robust than Sobol’s method. Confalonieri et al. (2010) performed SA on a crop
model using the MOAT screening; regression-based methods with LH, MC, and
QMC sampling; and two variance-based methods: EFAST and Sobol’ sensitivity
indices. Their experiments demonstrate that the simplest method MOAT screening
produced results comparable to those obtained by methods more computationally
expensive. Sun et al. (2012) employed the OAT, MOAT, and RSA methods to assess
parameter sensitivities of a water quality model. They concluded that the three
methods are complementary, but the use of OAT method for interpreting parameter
behaviors should be avoided unless the model uncertainty is small. A comparison of
the interpretation and computational cost of the local SA method, MOAT screening,
and Sobol’s method was made by Wainwright et al. (2014) in the application to a
pressure propagation problem. The three SA methods were shown to give similar
interpretations and importance rankings of model parameters. Although Sobol’s
method is illustrated to be computationally less efficient than MOAT screening, it
is nonsubstitutable because of its capability of interpreting the contribution of each
parameter to the response uncertainty.

Generally, global, quantitative, and model-independent SA methods are advo-
cated for all problem settings where finite parameter variations are involved (Saltelli
1999). Considering the large computational cost of global SA, Foglia et al. (2009)
even argued that local SA is sufficient to identify insensitive parameters in prelim-
inary model evaluation. Wainwright et al. (2014) think the reason for this argument
is because the value of global methods has not been fully appreciated. Global
methods are often limited to parameter importance ranking, even though they can
provide additional information for systematic understanding of model behavior. The
strengths and limitations of several qualitative and quantitative global SA methods
were discussed by Gan et al. (2014). Overall, qualitative SA methods are more
efficient but less accurate and robust than quantitative ones. The stepwise SA
framework proposed by Gan et al. (2015), using qualitative SA method for prelim-
inary parameter screening and then quantitative SA method for assessing each
parameter’s contribution to the variance of model response, is an effective and
efficient solution for understanding and simplifying complex system models.
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4 Summary

The importance of SA for computer-based models is universally recognized. We
reviewed a number of commonly used SA methods as gradient-based, variance-
based, and regression-based methods. Features and applicability of those methods
were described and illustrated with a few examples. Merits and limitations were also
given by reviewing the literature on those different SA methods.

The choice of an appropriate SAmethod depends on (1) the number of considered
parameters, (2) the computational costs of the model and the SA method, (3) the
ability of the SA method to account for nonlinear and non-monotonic parameter-
response relationship, and (4) the ability of the SA method to account for parameter
interactions. We therefore emphasize several recommendations for SA based on the
selection criteria and characteristics of different methods: (1) local SA methods are
effective only for linear and monotonic problem, (2) qualitative global SA methods
should be adopted when a single model run takes a significant amount of time and/or
the model has a large number of uncertain parameters, (3) quantitative global SA
methods can be used to evaluate parameter main effect, interaction effect, and total
effect when the parameter dimensionality is low and the model is computationally
efficient, and (4) surrogate models are computationally cheaper than time-
consuming simulation models and can be used to obtain approximate results for
quantitative global SA.

Parameters are often ranked according to the values of specific SA measure,
which allows the analyst to focus research efforts on the most sensitive parameters
(factor prioritization) and simplify the model by fixing the least sensitive parameters
(factor fixing) (Saltelli et al. 2008). Parameter rankings may vary between different
SA measures under the same settings, but the sensitivity categories of the parameters
should be the same. Therefore, it is important that two types of errors should be
avoided in categorizing model parameters, that is, insensitive parameters are classi-
fied as sensitive ones (Type I error) and, conversely, sensitive parameters are taken as
insensitive ones (Type II error).
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