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Abstract
The majority of hydrological and environmental models contain parameters that
must be specified before the model can be used. Parameter estimation is hence a
very common problem in environmental sciences and has received tremendous
amount of research and industry attention. This chapter reviews some of the
key principles of parameter estimation, with a focus on calibration approaches
and uncertainty quantification. The distinct approaches of manual calibration,
optimization, multi-objective optimization, and probabilistic approaches are
described in terms of key theory and representative applications. Advantages
and limitations of these strategies are listed and discussed, with a focus on their
ability to represent parametric and predictive uncertainties. The role of posterior
diagnostics to check calibration and model assumptions that impact on parameter
estimation is emphasized. Auxiliary tricks and techniques are described to sim-
plify the process of parameter estimation in practical applications. The chapter
concludes with an outline of directions for ongoing and future research. It is
hoped that this chapter will help hydrologists and environmental modellers get to
the current state of research and practice in model calibration, parameter estima-
tion, and uncertainty quantification.

Keywords
Hydrological model · Parameter estimation · Model calibration · Optimization ·
Bayesian inference · Uncertainty quantification

1 Introduction

Hydrological (rainfall-runoff) models are widely used in environmental sciences and
engineering, including flood forecasting, water yield predictions, and so forth (e.g.,
Duan et al. 1992; Beven 1997; Lindstrom et al. 1997; Clark et al. 2008, 2015).
In addition to being useful in their own right, predictions from hydrological models,
particularly rainfall-runoff models, provide inputs to the planning and operation of
water resource systems (Loucks et al. 1981). The scales of these applications vary
from a single hillslope to entire continents (Archfield et al. 2015), and the prediction
lead times vary from minutes in operational flood forecasting (Neal et al. 2012)
to seasonal scales (Tuteja et al. 2011). Given the inherent uncertainty of environ-
mental predictions, uncertainty quantification and risk assessment is another key
aspect that is receiving increased attention in the literature (e.g., Vogel 2017;
Reichert et al. 2015).

2 D. Kavetski



Hydrological models are often classified on a spectrum from black-box models to
conceptual models to physical models. Typical black-box models are given by
artificial neural networks (e.g., Govindaraju 2000; Kingston et al. 2008); physical
“bottom-up”models can be defined as models based on contemporary understanding
of physical laws (e.g., Freeze and Harlan 1969; Ivanov et al. 2004; Clark et al. 2015),
with conceptual “top-down”models (e.g., Sivapalan et al. 2003a; Fenicia et al. 2011)
somewhere in between these bookends. This classification provides useful guidance
but is not always crisp, with most practical models not fitting neatly into a single
category and instead exhibiting a mix of different modelling philosophies (e.g.,
Clark et al. 2011). Irrespective of their philosophy and mathematics, hydrological
and environmental models almost always contain adjustable parameters, intended to
describe the invariant properties of the system. Before a model can be used for
simulation or prediction of a system of interest, its parameters must be specified.

This chapter deals with the problem of parameter estimation and uncertainty
quantification. Broadly speaking, two types of estimation strategies can be distin-
guished: a priori and calibration (inverse modelling). A priori estimation seeks
to assign parameter values based directly on observable physical quantities, e.g.,
soil properties, vegetation characteristics, and so forth (e.g., Koren et al. 2003).
Calibration, in this work, refers to any procedure for estimating model parameters
(and possibly their uncertainties) from available observations of quantities the model
is supposed to predict (e.g., Tarantola 2005). A priori estimation tends to depend on
model structure and physical basis (e.g., see the debates in Abbott et al. 2003;
Pappenberger and Beven 2006). Calibration in this respect represents a more general
mathematical operation. In principle any model can – or, as many have argued,
should – be calibrated, yet in practice it is often a formidable challenge to calibrate
a model suitable for extrapolation and reliably account for estimation uncertainties.
An important subset of parameter estimation is estimation under data-scarce condi-
tions, including in ungauged basins – these applications tend to use a combination of
a priori estimation and calibration (e.g., see Hrachowitz et al. 2013).

In recognition of these challenges, parameter estimation in hydrology and
environmental modelling is shifting from a reliance on manual expertise, especially
in research applications – initially to the largely mathematical task of finding
(optimizing) the “best” model parameters according to a given performance metric
(e.g., Ibbitt and O’Donnell 1971; Gupta and Sorooshian 1985; Duan et al. 1992) –
and ultimately to a more “holistic” treatment that seeks to reflect multiple competing
objectives in model calibration (e.g., Gupta et al. 1998; Efstratiadis and
Koutsoyiannis 2010), multiple sources of uncertainties (e.g., Beven and Binley
1992; Kavetski et al. 2002; Reichert and Mieleitner 2009; Renard et al. 2011),
stringent diagnostics of model “realism” (e.g., Gupta et al. 2008; Clark et al.
2011), operational reliability (e.g., Krzysztofowicz 1999; Cloke and Pappenberger
2009; Wang et al. 2009; McInerney et al. 2017), and so forth.

The aims of this chapter are to review the main types of parameter estimation
methods with a focus on calibration, to provide a rigorous but accessible summary of
key ideas and methods, and to direct the interested reader to the rich scientific and
operational literature. In the author’s experience, there is often a disconnect between

Parameter Estimation and Uncertainty Quantification in Hydrology 3



the intuitive objective function techniques used by practitioners and the statistically
motivated likelihood functions used in the research literature. This chapter attempts
to close this gap and provides a unified perspective that ties together seemingly
distant techniques such as single- and multi-objective optimization, Bayesian infer-
ence, residual error diagnostics, and numerical model implementation aspects.
Emphasis is placed on technical aspects and practical recommendations, including
discussions of pros and cons of individual techniques. However, philosophical
aspects are also relevant, and the practitioner should be aware of the types of
assumptions being made and limitations arising thereof.

The chapter is structured as follows. Section 2 establishes the notation and
background of parameter estimation, including a brief review of manual calibration
and goodness-of-fit functions. Section 3 motivates automatic calibration – using
digital computers rather than humans – and focuses on the optimization approach
and its advantages, challenges, and limitations. Section 4 considers multiple com-
peting objectives. Section 5 surveys the vast topic of probabilistic estimation and
uncertainty quantification, with a focus on Bayesian techniques. Section 6 considers
the critical topic of posterior diagnostics to check calibration assumptions. Section 7
picks up practicalities relevant to application, Sect. 8 describes ongoing research
directions, and Sect. 9 wraps up with conclusions.

2 Basic Concepts of Parameter Estimation

2.1 Basic Setup of the Calibration Problem

A hydrological model ℋ(x; θ) simulates catchment streamflow y over a series of
time steps t given forcing data x and parameters θ:

y ¼ ℋ x;θð Þ (1)

To keep notation simple for presentation purposes, it will be assumed that
ℋ = {ℋt, t = 1, .., Nℋ} is a vector of length equal to the number of time steps
in the forcing data x = {xt, t = 1, .., Nx}, i.e., Nℋ = Nx. A more general (but less
transparent) notation can be deployed if the responses include streamflow at loca-
tions other than the catchment outlet, water depth levels, water quality, and so forth.
Typical forcing required by hydrological models includes rainfall, potential evapo-
ration, irrigation schedules, pumping schedules, and so forth. Most models contain
internal states, typically storages across a collection of storage elements (conceptual
models) or grid cells/finite elements (physical models discretized in space) (e.g.,
Singh and Woolhiser 2002; Fenicia et al. 2011; Clark et al. 2015, and many others).

In addition to inputs, outputs, and internal states, which are typically variables,
models contain parameters, which are quantities intended to characterize the inher-
ent properties of the modelled system (including the physical system and the
observational system used to collect data). In Eq. (1), parameters are indicated as
θ = {θk, k = 1, .., Nθ}.
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Parameters are typically defined subject to lower and upper bounds

θ Lð Þ � θ � θ Hð Þ (2)

or more complex linear and nonlinear constraints (e.g., if parameters are mutually
constrained).

The numbers of parameters in hydrological models vary widely. Lumped con-
ceptual models, such as GR4J (Perrin et al. 2003), have just a handful of parameters
intended to describe max storage values, routing characteristics, and groundwater
exchange. Distributed physically based models such as SWAT (Arnold and Fohrer
2005) may have hundreds of parameters, describing soil hydraulic properties (such
as conductivity), surface lags, crop growth rates, and so forth. The distinction
between model parameters and states is not always clear-cut, and it frequently
depends on the context in which the variables appear. For example, in some
applications, parameters are defined as time- and/or state-dependent (e.g., Young
1998; Kuczera et al. 2006; Reichert and Mieleitner 2009; Young and Ratto 2009;
Westra et al. 2012). Note that the term “model parameterization” is sometimes used
to refer to the form of the model equations and their parametric dependencies and
other times to the actual parameter values, which can cause confusion.

When parameter values are unknown, a model will generally be unable to
reproduce even known data, let alone future unknown data. Hence, parameter
estimation is among the first steps of deploying a model.

The following sections describe the two main parameter estimation strategies,
namely, a priori estimation and calibration.

2.2 A Priori Estimation

A priori estimation refers to establishing parameter values from measured physical
system properties. This strategy presupposes that model parameters have a suffi-
ciently reliable physical interpretation (Abbott et al. 2003; Ivanov et al. 2004). For
example, consider the specification of channel geometry in flood models – in the
case of engineered channels, their width and length can be usually established from
maps and other records. Parameter estimation in models of natural systems may
require measurements and tests. For example, the hydraulic conductivity of soils, a
parameter within physically based groundwater models such as MODFLOW
(Harbaugh 2005), may be obtained from laboratory analysis of core samples, in
situ tests, and/or geology maps (Fetter 1994). Other examples of a priori estimation
might include the specification of channel roughness in hydraulic models using
Manning’s equation (e.g., Streeter and Wylie 1983).

A priori estimation can be effective, especially when modelling well-
instrumented locations using equations that embody our best current understanding
of environmental physics (e.g., Ivanov et al. 2004; Clark et al. 2015). In contrast,
when working with conceptual models, it has proven difficult to reliably relate their
parameters to available information (Koren et al. 2003; Duan et al. 2006), though in
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some cases, useful relationships appear possible (Samaniego et al. 2010). Parameter
estimation from observable catchment characteristics is challenged by the tremen-
dous spatial variability of soils and vegetation, both within and across basins (Miller
and White 1999), as well as by the frequent problem of non-commensurability of
modelled and observed quantities (Kuczera and Franks 2002). Another question
relates to the estimation of parameter and predictive uncertainties; model structural
errors are particularly difficult to estimate a priori without recourse to at least some
observed data. Advances in physical process representation notwithstanding, it has
been argued that models can only be described as “truly” physical if their parameters
are specified independently from observed responses (Grayson et al. 1992). That
said, even quantities currently seen to have a firm physical basis, such as Darcian
hydraulic conductivity, were established empirically by fitting to experimental data
(Brown 2002) – it can hence be argued that all practical environmental models begin
their life as empirical quantities. This observation leads us to the general class of
parameter estimation given by calibration (inverse modelling).

2.3 Calibration

The idea of model calibration is to find parameter values θ(cal) such that, given a set
of observed (“known”) inputs ~x , the model ℋ reproduces a set of known outputs
~y ¼ ~yt, t ¼ 1,::,N ~y

� �
, at least to a degree that is satisfactory for the application of

interest. In algorithmic/mathematical notation:

Calibration : Find θ calð Þ such that ℋ ~x;θ calð Þ
� �

� ~y

θ calð Þ : ℋ ~x;θ calð Þ
� �

� ~y

(3)

Figure 1, in conjunction with Eq. (3), illustrates the basics of going from an
uncalibrated to a calibrated model. While superficially simple, hydrological model
calibration is a rather challenging task, especially once we recognize that a perfect
model fit is unattainable and wish to characterize the attendant trade-offs and
uncertainties. Different calibration approaches are then distinguished by aspects
such as (i) how is the approximate equality in Eq. (3) expressed mathematically or
even visually, (ii) how is the search for parameters conducted, (iii) how many sets of
estimated parameter values are retained (e.g., to represent uncertainty), and so forth.

2.4 Manual Calibration

A hydrologist or engineer familiar with the model and catchment system of interest
will often be able to find parameter values for which the model behaves in a
reasonable way. For example, when working with a flood model, an engineer will
generally try to match the flood peak magnitude, the total flow volume, and ideally
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the timing (e.g., Maidment 1993). Characteristics such as the shape of recession
would also be considered, though usually to a lesser extent as these aspects have less
impact on flood damages. On the other hand, a water supply engineer working in an
arid area may be far less interested in flood peaks but will try to get the model to
reproduce low flows, which often contribute the most to cumulative flow volumes
and hence to water availability. Finally, a hydrologist interested in understanding
catchment dynamics may very well focus on the shape of recession, e.g., using
master recession analysis (Tallaksen 1995).

Manual calibration allows the modellers to exploit their experience and hydro-
logical understanding – which are formidable tools in the hands of an expert
(Savenije 2009; Hrachowitz et al. 2014). Trade-offs in the ability of the model to
reproduce different aspects of the data can be resolved based on the application
objectives, once again exploiting expert judgment where available.

On the other hand, the subjectivity of manual calibration also creates inevitable
weaknesses and limitations. Most notably, how do we establish if parameter set θ(1)
is closer or further away from θ(cal) than parameter set θ(2)? The eye of an experi-
enced modeller can provide superb expert judgment, but the resulting non-
transparency and irreproducibility pose problems, both in scientific and operational
contexts (Hill et al. 2015). Nor is it obvious how should a hydrologist quantify and
report the uncertainty in manually calibrated parameters, especially if these param-
eters have been selected on the basis of a fit to visual hydrograph characteristics.

The laboriousness of manual calibration is another major practical downside – a
human must select parameter values, run the model, inspect its output, suggest a new
trial parameter set, rinse and repeat, and eventually decide when to stop. Clearly this
is not only subjective but exhausting. Once again, these limitations become more
pronounced in the case of large-scale national forecasting services, e.g., the US
National Weather Service (NWS) (Demargne et al. 2014), the Australian Bureau of

Simple model y = q x

y

x
Observed data

x

Uncalibrated model
y

Predictive 
uncertaintyy

x

Calibrated fit

(a) (b) (c)

Fig. 1 Calibration concepts illustrated using a simple straight-line model. Panel a shows the
uncalibrated model (poor value of model parameter θ), panel b shows the same model with a
calibrated parameter θ, and panel c shows a more comprehensive application where model uncer-
tainty is quantified
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Meteorology (Tuteja et al. 2017), and other agencies tasked with modelling and
forecasting over hundreds and thousands of catchments spanning national- and
continental-scale areas.

These limitations lead us to automatic calibration. But first we must solve the
question of goodness-of-fit measures.

2.5 Goodness-Of-Fit Function as an Optimization Objective

The idea of a goodness-of-fit function Φ is to quantify how well the model repro-
duces the calibration data. Ideally we would like a perfect match of model to data,
but we need to handle discrepancies in some reasonable way.

The most widely used goodness-of-fit function is the sum of squared errors (SSE),
usually credited to Karl Gauss who developed it in the late eighteenth century
(Merriman 1877):

ΦSSE θð Þ ¼ ΦSSE θ;~x,~yð Þ ¼
XN ~y

t¼1

~yt �ℋt ~x;θ½ �ð Þ2 (4)

where to avoid clutter, the dependence ofΦ on ~x and ~y is omitted in the notation, and
it is understood that, for time stepping models, ℋt ~x;θ½ � only depends on inputs ~x1:t
up to and including time step t. Intuitively, the SSE function penalizes discrepancies
between model and observations in a “reasonable” way (a larger discrepancy at any
time step lowers the goodness of fit) and has the historical advantage that it is easy to
manipulate analytically.

Given a goodness-of-fit function, model calibration problem can be articulated as
an optimization problem:

θ optð Þ ¼ argmin
θ

Φ θð Þ (5)

subject to any external parameter constraints such as in Eq. (2).
In the optimization context given by Eq. (5), the goodness-of-fit function serves

as the “objective” function – a naming convention that, perhaps unintentionally,
hides that the choice of the error measure (e.g., the two-norm in Eq. (4)) is generally
subjective. That said, Sect. 6 offers avenues to test these assumptions as part of the
calibration process.

Figure 2 illustrates a typical least squares objective function of a hydrological
model, shown as a cross section with respect to two parameters. Panel A provides an
idealized schematic, with a well-defined optimum and smooth elliptic (quadratic)
contours. Intuitively, the shape of the objective function indicates not just the
optimal parameters but also parameter uncertainty: a peaky shape suggests well-
defined parameters, whereas a flat shape indicates substantial uncertainty.

Figure 2 also illustrates parameter dependence – elongation of the objective
function along certain parameter combinations. Parameter dependence is closely
related to parameter identifiability: the objective function contours indicate
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parameter sets that produce predictions “indistinguishable” from each other
according to the goodness-of-fit function. For example, consider the straight-line
model from Fig. 1: if we simultaneously increase its slope and reduce its intercept,
the changes could compensate for each other and maintain the same goodness-of-fit
value. Characterizing these parameter interactions can yield insight into model
deficiencies and is an important goal of parameter calibration and uncertainty
quantification.

The shape of SSE functions depends on the model ℋ. Eq. (4) indicates that, to
the extent that a model is linear with respect to its parameters, i.e., @2ℋ/@θ2 � 0, its
SSE objective function will be quadratic and have a single optimum irrespective of
the data. In addition, a model that is smooth with respect to its parameters is
guaranteed to have a smooth SSE objective function. In practice, most hydrological
models exhibit nonlinearities, which induce irregularities in the objective function
surface. Figure 2 panel b shows a well-behaved near-optimal region, as well as
regions of irregular geometry and flat (insensitive) regions. In some instances,
multiple optima can arise (e.g., Duan et al. 1992), which raises an even more
immediate question of parameter identifiability than insensitive parameters.

The use of an objective function makes manual calibration more systematic, but
its true power shines when used in conjunction with mathematical techniques such as
optimization, which can find parameter optima analytically or numerically. For
example, in the case of a straight-line model, ℋ(x; a) = ax, θ(opt) is obtained
analytically as

q 1

q2

Parameter optimum

U
nc

er
ta

in
ty

 in
 q

2

Uncertainty in q1
(a) (b)

Fig. 2 Diagram of representative least squares objective functions. Panel a shows the idealized
case of a two-parameter linear model, in which case the SSE objective function is exactly quadratic.
Panel b (reproduced with permission from Elsevier) shows a real case example from the hydrolog-
ical model case study of Kavetski et al. (2006c), where model nonlinearities lead to disturbances in
the shape of the SSE
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a optð Þ ¼
XN ~y

t¼1

~xt ~yt=
XN ~y

t¼1

~x2t (6)

Similar expressions exist for more general linear models. Nonlinear models, for
which the SSE function cannot be optimized analytically, can be handled using
numerical optimization (Sect. 3). Before considering these techniques, it is insightful
to consider alternative objective functions.

2.6 Other Objective Functions: How Different Are They?

The SSE objective function makes intuitive sense but is not without some limita-
tions. For example, its values (and units) are not easy to interpret or compare across
time series of unequal length. Two SSE-derived functions are common in hydrology,
the root mean squared error (RMSE) and the Nash-Sutcliffe efficiency (NSE).

The RMSE metric, widely used in engineering and physics, is defined as

ΦRMSE θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N ~y

XN ~y

t¼1

~yt �ℋt ~x;θ½ �ð Þ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N ~y
ΦSSE θð Þ

s
(7)

It offers the advantage of having the same units as the quantity of interest
(e.g., m3/s or mm/d in case of flowrates and catchment-average daily streamflow,
respectively), as well as being scaled with respect to record length.

The NSE metric is a modification of the SSE function with a long tradition in
hydrology (Nash and Sutcliffe 1970):

ΦNSE θð Þ ¼ 1�
PN ~y

t¼1
~yt �ℋt ~x;θ½ �ð Þ2

PN ~y

t¼1
~yt � ave ~y½ �ð Þ2

¼ 1� b�ΦSSE θð Þ (8)

where ave ~y½ � is the sample mean of observed data. The asymptotic identity

ΦNSE θð Þ !
N~y!1

1� ΦRMSE θð Þ
sdev ~y½ �

� �2

, where sdev[] denotes the standard deviation,

elucidates that the NSE quantifies the fraction of streamflow variability captured
by the hydrological model. Schaefli and Gupta (2007) suggest generalizing the
NSE by replacing ave ~y½ � with a reference model, e.g., seasonal means, to provide
a more informative and stringent benchmark.

The RMSE and NSE functions are related to the SSE kernel through monotonic
transformations, and hence their optimal parameter sets (both local and global) are
the same. Collectively, we shall refer to the optimization of these objective functions
as least squares estimation. Connections to probabilistic estimation will be made in
Sect. 5.2.

10 D. Kavetski



Genuinely different parameter estimates and objective function behavior are
obtained with non-quadratic goodness-of-fit functions, e.g., the sum of absolute
errors (SAE):

ΦSAE θð Þ ¼
XN ~y

t¼1

~yt �ℋt ~x;θ½ �j j (9)

An attractive feature of the SAE formulation is that it is more robust with respect
to outliers. SSE squares individual errors, which tends to exaggerate the influence of
outliers – the calibration can distort parameter values just to get the model closer to
the outlier. The idea of robust regression is to reduce the leverage of individual
points, and weighting functions exist that discount outliers altogether, such as
Tukey’s biweight and others (Press et al. 1992). That said, SAE functions are
relatively uncommon in hydrology: their benefits are not always demonstrable,
and the absolute value function is surely less smooth than SSE functions. Outlier
detection and leverage analysis appear more attractive from the perspective of
hydrological model setup and data analysis rather than just optimization (e.g.,
Wright et al. 2015; Hill et al. 2015).

The goodness-of-fit function framework allows the hydrologists to craft their
own objective functions to reflect modelling objectives of interest – mimicking
the hydrologist’s intuition mentioned in Sect. 2.4. For example, SSE and SAE
functions can be computed separately for high and/or low flows; response weights
and transformations such as logarithmic can be used to emphasize the fitting
of particular data points and so forth (Chapman 1970; Chiew et al. 1993;
Pushpalatha et al. 2012). These aspects are revisited in Sect. 5.4 from a statistical
perspective. Further examples of goodness-of-fit functions are provided by Legates
and McCabe Jr. (1999).

Several questions arise at this stage. Do we need to restrict attention to a single
goodness-of-fit function? Given that some objective functions, notably SSE, RMSE,
and NSE, have the same optimum but a different shape (curvature), how can we
unambiguously quantify parameter uncertainty? And more generally, how do we
navigate the vast range of potential performance measures? The following sections
will describe how to overcome some of the challenges and present objective
functions and calibration approaches from a more systematic perspective.

3 Automatic Calibration Via Optimization

The idea of automatic calibration is to reduce the need for human intervention and
tackle the calibration problem in Eq. (5) using mathematical algorithms. As even
simple goodness-of-fit function will be impossible to optimize analytically for most
hydrological models, numerical optimization is employed. A plethora of numerical
optimization algorithms have been employed in hydrological calibration, ranging
from local methods such as classical Newton and quasi-Newton methods that
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assume the objective function is smooth and near-quadratic (Gill et al. 1981) to
global evolutionary methods such as the shuffled complex evolution (SCE) algo-
rithm (Duan et al. 1992) and the dynamically dimensioned search (DDS) algorithm
(Tolson and Shoemaker 2007) that make few if any such assumptions.

The selection of an optimization algorithm depends on the hydrological model
and objective function. For example, Gauss-Newton-type algorithms are tailored to
(possibly transformed) sum of squared errors (SSE) objective functions and are
implemented in packages such as PEST (Doherty 2005), the Australian eWater
Source platform (Welsh et al. 2013), and the BATEAU toolkit (Kavetski 2005)
available to calibrate groundwater, water resources, and hydrological models.

In many cases, optimization works remarkably well. For example, a single-
reservoir nonlinear model can be fitted to the Maimai catchment data using the
Excel Solver tool, as shown in Fig. 3. For more complex modelling scenarios,
calibration toolkits such as PEST (Doherty 2005) and BATEAU (Kavetski 2005)
can be used, offering model coupling through ASCII input/output files and/or DLLs,
visual interfaces, scripts, and other productivity features. Research is advancing
into multi-start strategies and search randomization to increase the chance of finding
the global optimum (e.g., Skahill and Doherty 2006; Kavetski et al. 2007; Tolson
and Shoemaker 2007), as well as “multi-method” approaches that run multiple
optimizers in parallel and pick the ones making the most progress (Vrugt and
Robinson 2007).

That said, off-the-shelf optimization of hydrological models is not yet routinely
attainable. Hydrological models with highly nonlinear dependence on their param-
eters have markedly non-quadratic objective functions, often exhibiting macroscale

Fig. 3 Calibration of simple nonlinear reservoir bucket model, dS/dt= P� kSα� E, to the Maimai
catchment, New Zealand
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multi-optimality and microscale roughness (Duan et al. 1992). These problematic
features are often exaggerated by fragile numerical implementations, such as the
explicit Euler time stepping scheme, and by internal model thresholds (Kavetski and
Kuczera 2007; Kavetski and Clark 2010). Under these conditions, gradient-based
Newton-type algorithms typically converge only to the optimum nearest to the initial
search point and generally behave erratically. Although current wisdom in hydro-
logical modelling tends to favor evolutionary optimization methods, which tend to
exhibit more robust global convergence and are less susceptible to microscale
roughness, robust modifications of Newton-type methods offer the promise of
comparable robustness at a much lower computational cost (Qin et al. 2018).

However, consider the following questions:

1. Identifiability problems. For example, Jakeman and Hornberger (1993) reported
that typical rainfall-runoff data can support the identification of at most a “hand-
ful” of parameters in a lumped conceptual model. The optimization of distributed
models solely to input-output data at the endpoints of their domain is clearly
questionable – how would such data support the attribution of water flows
through multiple internal pathways?

2. The very idea of looking solely for the global optimum at the expense of
everything else can be questioned – nominally “slightly worse” optima may
also be relevant and in some cases may provide more “realistic” model perfor-
mance. In cases of pronounced multi-optimality, which could arise in case of
grossly over-parameterized models, the optimum that becomes global may ulti-
mately depend on data errors, subtle interplay of internal pathways, objective
function idiosyncrasies, etc.

3. How do we estimate parameter uncertainty? For example, consider the endpoints
of multiple optimization sequences – can these be treated as indicative of param-
eter uncertainty? Ultimately this approach gauges the effectiveness of the opti-
mization algorithm and (potentially) the presence of multiple optima – somewhat
counterintuitively, it would fail if the optimization algorithm is sufficiently robust
to find the global optimum from most initial points. To estimate parameter
uncertainty due to data and model errors, the shape of the objective function in
the vicinity of the optimum should be investigated, e.g., using χ2 methods (Press
et al. 1992), which are related to the statistical ideas of Sect. 5.2.

4. A single objective is mathematically convenient but does not reflect the reality
that multiple attributes might be of interest, e.g., low and high flows, timing of
peaks, flow volumes, etc. (Sect. 2.4). In principle, a single-objective function can
be constructed as a composite of multiple terms, e.g., separate SSE for low and
high flows, water quality, etc., and melded together using weights. This approach
goes some way toward recognizing the diverse nature of modelling objectives but
is not quite “truly” multi-objective.

For these reasons, single-objective optimization on its own cannot be considered
a complete solution to the calibration problem, even if it happens to be successful in
terms of finding the global optimum.
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4 Multi-Objective Optimization

Multi-objective optimization seeks to find the optimum of multiple objective func-
tions simultaneously:

θ optð Þ ¼ argmin
θ

Φ1 θð Þ,Φ2 θð Þ, . . . ,ΦNΦ θð Þ½ � (10)

It is well known that the optima of multiple general functions will not coincide
except in very special cases (notably if the model is perfect or at least flexible enough
to meet every objective – unlikely!). Instead, trade-offs arise between the degree to
which individual objectives are optimized. Multi-objective optimization revolves
around the concept of a “non-dominated” solution, which is a solution such that none
of its corresponding objective function values can be improved without worsening at
least one other objective. The Pareto front is defined as the set of non-dominated
solutions.

Multi-objective optimization is a huge field of research in engineering, sciences,
and mathematics; see Gupta et al. (1998) and the thorough review by Efstratiadis and
Koutsoyiannis (2010) in the context of hydrological model calibration. Examples of
multi-objective algorithms used in hydrology include MOSCEM (Vrugt et al. 2003),
AMALGAM (Vrugt and Robinson 2007), and generalizations of the DDS algorithm
(Asadzadeh and Tolson 2013). More generally, multi-objective optimization can be
used to incorporate performance metrics other than those that quantify the model fit
to observed data. For example, water resource model optimization may include
economic objectives, pollution factors, and so forth. These setups may not be
directly relevant to hydrological model calibration per se but are frequently used
in the setup of management models where cost-benefit analysis is a major consid-
eration (e.g., Marchi et al. 2014).

The ensemble of parameter sets comprising the Pareto front can be seen as
representing parameter nonuniqueness associated with the (nonunique) choice of
objective function. However, the interpretation of the Pareto front spread as param-
eter uncertainty is questionable. For example, the Pareto front does not, by itself,
represent sources of uncertainty such as observation errors in the data, etc. Some
advances along the direction of combining probabilistic and multi-objective tech-
niques have been reported by Reichert and Schuwirth (2012) and warrant further
investigation.

5 Probabilistic/Statistical Uncertainty Quantification

It is well known that hydrological modelling is affected by multiple sources of
uncertainty, entering at every stage of the modelling process. For example, rainfall
observations are subject to substantial sampling errors (e.g., McMillan et al. 2011),
and streamflow observations are affected by rating curve errors (e.g., Westerbeg et al.
2010), not to mention the approximation of natural systems by mathematical models
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(e.g., Beven 2005; Renard et al. 2010). These sources of uncertainty are depicted
schematically in Fig. 4.

Uncertainty is often classified as epistemic (i.e., due to model imperfections
arising from incomplete knowledge of reality) versus aleatory (i.e., due to inherent
randomness of the underlying phenomenon) – a distinction that is insightful yet not
always clear-cut. As noted by Ang and Tang (2007), both types of uncertainty are
tractable using probabilistic analysis, where uncertainty is described using probabil-
ity theory. In this chapter, our primary focus is on the Bayesian paradigm, which
provides a particularly appealing avenue for combining different sources of
information.

5.1 Bayesian Inference: General Principles

Bayesian inference is a general class of probabilistic techniques, based on the
premise that uncertainty in any quantity – including in model parameters – can be
represented using random variables (probability distributions). Bayesian inference
revolves around the posterior distribution of quantities of interest, p(θ| D), which is
given by Bayes equation:

p θjDð Þ ¼ p Djθð Þp θð Þ
p Dð Þ (11)

Fig. 4 Sources of uncertainty affecting parameter estimation in hydrological models
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Bayesian inference requires two key conceptual ingredients: a prior p(θ) and a
likelihood function p(D| θ). The term p(D) is independent from θ and represents a
normalizing constant, defined by the total probability integral p(D) =

Ð
p(D| θ)p(θ)

dθ; while it is often a bear to compute, luckily this is not necessary in most modern
Bayesian implementations (Sect. 5.3).

The prior distribution p(θ) is intuitively defined as what is known about param-
eters θ before data D has been observed. Prior information can come from multiple
sources, including previous quantitative studies, qualitative expert judgment, and
combinations of multiple such sources. For example, in flood frequency analysis, it
is common to use regional information derived from previous studies in neighboring
locations (e.g., Hailegeorgis and Alfredsen 2017). When developing rating curve
models, priors may come from the analysis of hydraulic controls (Le Coz et al.
2014). In hydrologic models, it is common to use the admissible range of parameter
values to specify flat (non-informative) priors. In some cases, when working with
widely used models such as GR4J, it may be reasonable to specify the prior based on
parameter values inferred in previous calibrations – either worldwide or in nearby or
similar locations (Perrin et al. 2001).

The likelihood function p(D| θ) represents, loosely speaking, the probability of
observing the data D given a particular set of model parameters θ. To obtain this, we
need to specify a statistical model that may have “reasonably” generated the
observed data. We are as free to specify this “reasonable” model just as hydrologists
are free to specify their bucket model – guided by knowledge and intuition – and
making practical judgments to simplify where appropriate. Section 5.2 will walk the
interested reader through such a derivation. Section 6 will consider how to test
calibration and model assumptions.

More formally, the likelihood function is the probability density function of the
data-generating model, evaluated at the observed data, and viewed as a function of
the model parameters. To emphasize its primary argument, the likelihood function is
often written asℒ θ;Dð Þ. This notation is convenient for defining multiple likelihood
functions depending on the specific assumptions made, e.g., as in Sects. 5.2 and 5.4.

The idea of Bayesian inference is that we start with a vague initial knowledge (the
prior) and use the information contained in the data to refine this knowledge and
obtain a (hopefully) sharper posterior. In this respect, posterior knowledge represents
prior knowledge updated using the data. This principle is illustrated schematically in
Fig. 5.

Note that in Bayesian methods, the outcome of the inference is the entire posterior
distribution – in contrast to single-objective optimization, where the outcome of the
inference is a single parameter set. That said, in practice, Bayesian posteriors are
often summarized using properties such as the (posterior) mean, mode, or median,
and their uncertainty (spread) is often summarized using the posterior covariance
and so forth (Sect. 5.3).
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5.2 Least Squares Techniques as Gaussian Error Models

Bayesian inference often appears mysterious to modellers with a deterministic
modelling background, especially when focusing solely on Eq. (11). Let us demys-
tify Bayesian inference with a basic example.

Suppose we hypothesize that the original (deterministic) hydrological model
provides a description of the observed data that is accurate on average but subject
to random errors. In this case, the probabilistic model can be articulated as

Y ¼ ℋ ~x;θð Þ þ E (12)

where the term E Eis the residual error, intended to represent the effect of all source
of uncertainty contributing to differences between observed and modelled
streamflow values.

Suppose these residual errors are independent and identically distributed (iid)
Gaussian with zero mean and variance σ2e :

et � N 0, σ2e
	 


(13)

Figure 6 illustrates this conceptualization. Equations (12 and 13) are referred to as
the error model equations, as they provide a description of the errors affecting the
model simulations and predictions.

The likelihood functionℒSLS θ, σe;~y,~xð Þ corresponding to this error model can be
derived as

ℒSLS θ,σe;~y,~xð Þ¼ p ~yjθ,~x,σeð Þ ¼
indep

YN ~y

t¼1

p ~ytjθ,σe,~xð Þ ¼
identic&Gauss

YN ~y

t¼1

f N ~yt;ℋt ~x;θð Þ,σ2e
	 


(14)

where f N y;μ,σ2ð Þ denotes the Gaussian probability density function (pdf). The
annotation “indep” refers to simplifications arising from the independence assump-
tion and “identic & Gauss” to the identical Gaussian assumption.

Equation (14) can be also articulated in terms of the residuals:

Fig. 5 Conceptual schematic of Bayesian inference. Parameter uncertainty is expressed using
probability distributions. The combination of the prior and the likelihood yields the posterior, which
represents the results of the inference
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ℒSLS θ, σe;~y,~xð Þ ¼
YN ~y

t¼1

f N ~yt �ℋt ~x;θð Þ;0, σeð Þ ¼
YN ~y

t¼1

f N et ~y;~x,θ½ �;0, σ2e
	 


(15)

et ¼ ~yt �ℋt ~x;θð Þ (16)

Note that the change of variables from Y to E in the pdfs given by Eqs. (14) and
(15) requires a Jacobian term @«=@yjy¼~y ; however, this term is unity in view of

Eq. (16) and is hence omitted.
If we substitute the Gaussian pdf expression into Eq. (15) and take logs, we get

logℒSLS θ, σe;~y,~xð Þ ¼ �N ~y

2
log2π � N ~y logσe � 1

2σ2e
ΦSSE θ;~x,~yð Þ (17)

which establishes the close correspondence of probabilistic inference under Gauss-
ian assumptions with the SSE objective function in Eq. (4). For example, it can be
readily shown that the parameter set θ(SLS) that maximizes the (log-) likelihood
function in Eq. (17) also minimizes the SSE objective function. This equivalence
holds whether the error varianceσ2e is inferred or assumed known. For this reason, we
can refer to Eqs. (14, 15, 16, and 17) as Bayesian least squares inference. The
derivations needed to arrive at these equations put the choice of error norm in Eq. (4)
on a more defined theoretical basis and in doing so highlight its implicit assumptions
(here, iid Gaussian errors).

Hydrological model

Observation

t

y

t1 t2 t3 t4

Fig. 6 Probabilistic model corresponding to Bayesian least squares inference. A Gaussian error
model is assumed around each value simulated by the hydrological model, with the error variance
being an error model parameter. The likelihood function is then defined as the (Gaussian) proba-
bility density of observation values of streamflow within this (joint) distribution, which in this case
is the product of the (Gaussian) densities of individual observations
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If the primary interest is in the model parameters θ, the error parameter σe can be
integrated out (Kavetski et al. 2006a):

logℒSLS2 θ;~y,~xð Þ ¼ log

ð
ℒSLS θ, σe;~y,~xð Þ dσe / N ~y þ 2

2
logΦSSE θ;~x,~yð Þ (18)

which still retains the SSE kernel within the (now lower-dimensional) likelihood
function. A similar expression holds for certain non-rectangular priors on σe.

5.3 Tools for Analyzing Bayesian Posteriors

The formulation of the posterior is only the first step of the inference. The equation
defining the posterior distribution in effect plays the role of the “objective function”
in Bayesian estimation. The same intuitive ideas established in Sect. 2.5 for
interpreting the shape of the objective function apply to the posterior distribution –
near-optimal regions suggest the most likely values of the parameters, the spread of
the distribution is indicative of posterior parameter uncertainty, and elongated
contours sloping with respect to the parameter axes indicate parameter correla-
tions/dependencies. Once we have derived the functional form of the posterior,
how do we use it to get a parameter value and its uncertainty?

In some simple cases, where the likelihood and prior are given by “conjugate”
distributions – which for the most part are common textbook distributions such as
Gaussian, Gamma, and so forth – the posterior will itself come out as a known
distribution, with parameters derived from the parameters of the prior and likelihood
(Box and Tiao 1992). However, this simplification is seldom possible with most
hydrological models.

In practice, Bayesian posteriors are either summarized by their estimated mode
(optimum) and covariance or explored wholesale using Markov Chain Monte Carlo
(MCMC) algorithms.

The posterior mode can be found using optimization asbθ ¼ mode θ½ � ¼ argmax
θ

p θj ~yð Þ , i.e., directly treating the Bayesian posterior as

an objective function (cf Sect. 5.2). The posterior covariance can then be approx-
imated as cov θ½ � � �H�1

θ logp θj ~yð Þ½ �θ¼θ̂ where Hθ = @2/@θ2 is the Hessian (second
derivative) matrix operator (Gelman et al. 1998), which can itself be approximated
using finite differences. The Hessian matrix reflects the curvature of the posterior
distribution (objective function) – peaky posteriors have large negative curvature
and hence represent little posterior uncertainty, whereas flat posteriors have near-
zero curvature and hence represent large uncertainty.

MCMC sampling provides an alternative – and very powerful – numerical
technique for uncertainty quantification. A challenge of Bayesian posteriors is that
they seldom take the form of common distributions. MCMC is a numerical sampling
technique that (asymptotically) produces samples from the (possibly un-normalized)
probability density function it is applied to (Gelman et al. 1998). It is most relevant to
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(i) nonstandard distributions for which off-the-shelf samplers are not available,
(ii) high-dimensional distributions, and (iii) distributions with pdf known only up
to a constant of proportionality. These are precisely the features of most Bayesian
posteriors, making MCMC a Bayesian’s best friend! MCMC algorithms used in
hydrology include multistage implementations of the classic Metropolis algorithm
(Thyer et al. 2009), methods based on differential evolution (Vrugt et al. 2009a), and
many others.

It is worth noting the important distinction between the choice of likelihood
function and prior versus the choice of tools used to compute and analyze the
posterior distribution. Just as the use of an optimization algorithm such as SCE to
find the posterior mode does not make SCE into a “Bayesian algorithm” neither does
the routine use of MCMC to sample from posterior distributions make MCMC into a
“Bayesian algorithm.” MCMC itself is not a Bayesian technique – it is a general
numerical method for sampling from any probability distribution. Provided the
MCMC algorithm is at all convergent, its results are determined by the function it
is applied to, not the MCMC algorithm itself. For this reason, statements such as “we
calibrated our model using MCMC” are about as informative (while still technically
correct) as “we calibrated our model using MATLAB” – what should be reported
first and foremost are the equations and assumptions defining the posterior distribu-
tion. A poorly chosen optimizer or MCMC sampler will surely degrade even the best
posed inference, but algorithmic sophistication can hardly rescue a calibration from a
poorly chosen objective function.

The next sections describe two distinct strategies for Bayesian inference, namely,
aggregational and decompositional approaches, which are distinguished by the way
they attempt to represent uncertainty.

5.4 Aggregational Methods

Aggregational approaches attempt to describe all sources of error using a single
term. The simple least squares technique from Sect. 5.2 represents the prototypical
implementation of this idea. However, its iid assumptions are questionable (e.g.,
Sorooshian and Dracup 1980). For example, errors of hydrological models typically
exhibit heteroscedasticity, meaning larger errors in larger flows, which invalidates
the assumption of identical distribution. In addition, errors typically exhibit persis-
tence, meaning multiple consecutive errors of similar sign and magnitude, which
invalidates the independence assumption. These statistical features can and should
be reflected in the likelihood function.

Heteroscedasticity can be dealt with using weighted least squares and trans-
formed least squares, in which case the assumption of identical distribution is
applied to “normalized” residuals η, rather than to raw residuals «:

ηt � N 0, σ2η

� �
(19)
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The use of weights (weighted least squares) corresponds to defining the normal-
ized residuals as

ηt ~y;θ,~xð Þ ¼ ~yt �ℋt ~x;θ½ �
σe tð Þ

(20)

which effectively gives some data points more influence than others. Under the
heteroscedastic assumption that large flows have larger errors, data points
corresponding to peak flows should receive reduced weight, so it is more accurate
to say the influence is being “balanced.”

If the residuals are assumed to represent all sources of error, their statistical
properties are generally unknown, and additional assumptions are required, e.g.,

σe tð Þ ¼ aþ b ℋt (21)

where a and b are unknown parameters inferred along with the hydrological model
parameters (Evin et al. 2014). Alternatively, the weights could be specified a priori,
e.g., as in the PEST package (Doherty 2005). In other words, probabilistic inference
often introduces parameters in addition to those of the hydrological model itself.

The use of response transformations (possibly with their own parameters θZ)
represents an alternative strategy, where

ηt ~y, θ, ~x; θZð Þ ¼ Z ~yt; θZð Þ � Z ℋt ~x;θ½ �; θZð Þ (22)

A common choice of transformation Z is the Box-Cox transformation:

Z y;λð Þ ¼
yλ � 1

λ
if λ 6¼ 0

logy if λ ¼ 0

(
(23)

which includes as special cases the logarithmic transformation (λ = 0), the inverse
transformation (λ= � 1), the square-root transformation (λ= 0.5), and, trivially, the
null transformation (λ = 1).

Despite superficial differences, weighting and transformational strategies are
closely related. Consider the likelihood function formulated in terms of normalized
residuals η:

logℒH θ, ση;~y,~x, θZ
	 
 ¼ p ~yjθ, ~x, ση, θZ

	 
 ¼ @η
@y

����
y¼~y

� f N η ~y;θ, θZ , ~xð Þ;0, σ2ηI
� �

(24)

where the Jacobian term @η=@yjy¼~y accounts for the change of variables from y to η
and I is the identity matrix. Taylor series can be used to establish a first-order
equivalence of linear weights in Eq. (21) and the log transformation given by
Eq. (23) with λ = 0 (McInerney et al. 2017). This equivalence holds in terms of
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variances, but there are important differences in terms of skew and kurtosis that can
impact practical performance (e.g., Schoups and Vrugt 2010; McInerney et al. 2017).

Persistence can be dealt with by incorporating autoregressive terms, e.g., the
simplest AR(1) assumption yields

ηt ¼ ϕηt�1 þWt (25)

Wt � N 0, σ2w
	 


(26)

If the AR(1) assumption is applied to residuals after the Box-Cox transformation,
the likelihood function is

logℒH θ,ϕ, σw;~y,~x,λð Þ ¼ p ~yjθ, ~x,ϕ, σw,λð Þ ¼ @w
@y

����
y¼~y

� f N w ~y;θ, ~x,ϕ,λð Þ;0, σ2wI
	 


(27)

where we allow for the autocorrelation parameter ϕ to be inferred along with the
error variance σ2w while keeping the BC transformation parameter λ fixed.

The practicalities of representing heteroscedasticity and persistence within the
likelihood function are often subtle and have a major impact on parameter estima-
tion. First, the order of treatment is important – it is best to start by stabilizing the
residual variance using a transformation (or weighting) and then treating persistence
(Evin et al. 2013). Second, the parameters of the error models, notably the error
variance and autocorrelation, can be inferred either jointly with the hydrological
parameters or in a separate post-processing step. Evin et al. (2014) considered a post-
processing approach that first estimated the hydrological parameters under the
assumption of no persistence and then separately estimated the error variance and
autocorrelation. Although the joint approach is a more pure application of the
Bayesian paradigm, it can suffer from multi-way interactions between the mass-
balance parameters, the autocorrelation coefficient, and the error variance, which
lead to poor quality predictions; the post-processing approach appears more robust,
as seen in Fig. 7 adopted from Evin et al. (2014). Third, in terms of transformation
parameter, values of the Box-Cox λ in the range 0–0.5 appear to provide the best
empirical performance (McInerney et al. 2017), with trade-offs arising between the
reliability, precision, and bias of the resulting predictions.

Many aspects of residual error modelling are of interest beyond Eqs. (19, 20, 21,
22, 23, 24, 25, 26, and 27). For example, Gaussian assumptions can be replaced with
more general skewed power exponential (SEP) distribution, which allows for skew-
ness and kurtosis parameters (Schoups and Vrugt 2010), and AR(1) assumptions can
be replaced with more general autoregressive models (e.g., Morawietz et al. 2011).
The treatment of zero and near-zero flows has been investigated using approaches
such as censoring (Wang and Robertson 2011) and “zero-flow inflation” (Smith et al.
2010). Residual error models based on mixtures (Schaefli et al. 2007) and condi-
tioned on covariates other than streamflow (e.g., Pianosi and Raso 2012) have also
been investigated.
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Aggregated strategies are well suited to operational applications, as the resulting
inference can produce reliable and precise predictions at a low-moderate cost in
terms of algorithm complexity and computational effort. In other words, aggregated
strategies allow the modeller to focus on the pragmatic goal of overall predictive
uncertainty quantification (e.g., Krzysztofowicz 1999; Lerat et al. 2015). The next
section details decompositional approaches – which are more ambitious in their
objectives yet are also harder and more expensive to implement.

5.5 Decompositional Methods

Decompositional approaches attempt to explicitly disentangle the contributions of
individual sources of error, such as those seen in Fig. 4 (e.g., Krzysztofowicz 1999;
Kavetski et al. 2002; Seo et al. 2006; Huard and Mailhot 2008; Vrugt et al. 2008;
Reichert and Mieleitner 2009). An example of the decompositional approach in
hydrological modelling is given by the Bayesian total error analysis (BATEA)
(Kavetski et al. 2006a; Kuczera et al. 2006). Decompositional approaches require
more data and are more complex than aggregated approaches. Notably, Renard et al.
(2010) established that the decomposition is inherently ill-posed in the absence of
(approximate) prior knowledge; as noted by Beven (2005), the problem can be
conceptualized as inferring individual error terms «x, «y, and «ℋ associated with
input data errors, output data errors, and model structural errors, respectively,

« ¼ «x þ «y þ «ℋ (28)

which is clearly ill-posed without at least some information about at least two of the
three error terms.

Renard et al. (2011) tackled this challenge in a case study of the Yzeron
catchment (France), where a dense rain gauge network, R13H, was available over
a 2-year period. Data from R13H was exploited using conditional simulation
(Tompson et al. 1989) to develop a prior error model for a sparse rain gauge network,
R3D, active over a much longer time period. The priors for parameters describing
streamflow observation errors were obtained using rating curve error analysis (Thyer
et al. 2009). The representation of model structural error is another major challenge
in a decompositional approach. Unlike data errors, which in principle can be
estimated by comparison to a more accurate data set, there is no analogous concept
for model structural errors – model comparison experiments do not provide much
evidence of a particular model being consistently more accurate than others (e.g.,
Duan et al. 2006). Renard et al. (2011) treated model structural errors as what’s left
behind after the other errors have been characterized. At the cost of setting them up,
decompositional approaches can offer fascinating insights into the relative contribu-
tions of different sources of error to total predictive uncertainty. For example, when
using GR4J and the R3D data set to predict streamflow in the Yzeron catchment,
structural errors dominated rainfall-induced errors, as shown in Fig. 8 adopted from
Renard et al. (2011). These insights can guide efforts to improve the predictions, e.g.,
in this instance by prioritizing improvements to model structure over looking for
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more accurate data sets (a statement specific to this case study and not intended to
detract from the general importance of data to hydrology!).

5.6 Methods Other than Bayesian and Other than Probabilistic

The presentation of probabilistic inference thus far has focused primarily on Bayes-
ian methods, which tend to be commonly used for hydrological models. This section
provides a brief summary of other related techniques.

Frequentist techniques are common in statistical estimation, particularly in flood
frequency analysis. The method of moments (MoM) can be used whenever the
parameters of a distribution can be related to the moments of the calibration data
(e.g., Salas 1993). Maximum likelihood (ML) methods (e.g., Martins and Stedinger
2000) are broadly similar to Bayesian methods (barring some philosophical differ-
ences in the interpretation of probability) but (generally) do not allow for a prior
distribution. Procedurally, MoM and ML proceed by first estimating the optimal
parameters and then estimating parametric uncertainty – as opposed to Bayesian
inference where the modeller must first derive the posterior distribution and then
summarize/use it. In many rainfall-runoff model applications, there is little differ-
ence between frequentist and Bayesian approaches, as the influence of the prior is
close to negligible for typical lengths of data. However, it is less clear how to
develop a decompositional approach, e.g., analogous to BATEA but without using
priors to handle the disaggregation exemplified by Eq. (28). Priors can also be
valuable in data-sparse contexts.

Fig. 8 Insights from the application of the BATEA decompositional parameter estimation
approach in the Yzeron catchment, France (Renard et al. 2011). In this case study, structural errors
of the GR4J model appear to dominate streamflow uncertainty due to the effects of rainfall errors.
Figure reproduced from Renard et al. (2009)

Parameter Estimation and Uncertainty Quantification in Hydrology 25



The generalized likelihood uncertainty estimation (GLUE) (Beven and Binley
1992) is an estimation technique common in conceptual hydrological modelling.
GLUE is often described as an “informal” technique, in the sense that it does not
seek to construct probabilistic descriptions of uncertainty such as the error models in
Sects. 5.2 and 5.4. For example, many GLUE publications have used the Nash-
Sutcliffe efficiency as if it were a likelihood function and have relied solely on
parametric uncertainty (without a residual error model) when generating prediction
limits (e.g., Freer et al. 1996). The motivation for GLUE has evolved since its
original development and has more recently focused on the challenges of describing
epistemic uncertainty using probability theory. The solutions suggested by GLUE
have elicited much debate, from the role of parameters and parametric uncertainty in
modelling to whether prediction limits should satisfy probabilistic criteria such as
enveloping a prescribed proportion of observations (e.g., Mantovan and Todini
2006; Stedinger et al. 2008; Beven 2006; Beven et al. 2012; Clark et al. 2012).
Despite many divergent perspectives, there is also important commonality. The
concept of equifinality, central to the original motivation for GLUE (Beven 2006),
corresponds broadly to non-identifiability and ill-posedness (Sects. 2.1 and 5.3).
More recently, the GLUE community has drawn attention to “disinformative data”
(Beven and Westerberg 2011), which in the context of probabilistic techniques
represents data that violates the assumed error models. Some work has attempted
to bridge the gap between GLUE and Bayesian methods (e.g., Vrugt et al. 2009b;
Nott et al. 2012; Kavetski et al. 2018).

Ultimately, conceptual and algorithmic similarities will necessarily arise between
all calibration approaches that work with (optimize and/or sample) functions of the
formℒ θ;~yð Þp θð Þ. From this perspective, genuine differences can only arise from the
wayℒ θ;~yð Þ and p(θ) are constructed: the use of probability theory leads to Bayesian
(and maximum likelihood) methods and probabilistic prediction, whereas the use of
other principles, such as fuzzy set theory (Freer et al. 2004) and others, leads to
correspondingly different interpretations (Smith et al. 2008). For this reason, a
modeller that wishes to obtain prediction limits that have a probabilistic interpreta-
tion is best advised to use the tools of probability theory. But the extent to which
a probabilistic interpretation is a desirable attribute of an estimate or prediction is a
much deeper question. This chapter takes the perspective that probability theory is a
suitable – indeed advantageous – platform for describing the data and model
uncertainties of relevance to scientific and engineering applications (Ang and Tang
2007); the interested reader is directed to discussions in the broader scientific
community (e.g., de Finetti 1964; Oberkampf et al. 2004; O’Hagan and Oakley
O’Hagan and Oakley 2004; Reichert et al. 2015, among others).

6 Model Diagnostics as Part of Parameter Estimation

The specific task of parameter estimation cannot be seen in isolation from the
broader modelling process of hypothesis testing, refinement, and prediction. As
vividly seen in Sects. 2, 3, 4, and 5, parameter estimation is necessarily based on
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assumptions, such as the applicability of data for a priori estimation, the selection of
an objective function for optimization or the selection of an error model for proba-
bilistic inference. In order to gain confidence that parameter estimation has been
successful, these assumptions should be scrutinized and, if necessary, replaced. In
the absence of such checks, there is little guarantee that, as eloquently noted by
Kirchner (2006), the calibrated models are not merely dancing like mathematical
marionettes to the tune of the calibration data. The topic of posterior diagnostics is
extensive in its own right; this chapter highlights some of the key principles and
practical implementations but does not attempt to be truly comprehensive.

We first consider what kind of model fit can be expected after calibration and how
should uncertainty limits behave. To this end, Fig. 9 shows the results of a GR4J
model calibration. For didactic reasons, synthetic data with Gaussian errors was
used, so that the inference assumptions are met by construction. Should parametric
uncertainty encompass the observations? In Fig. 9b, they clearly do not – does this
mean something is wrong? To answer this question, consider the error model
underlying the inference – Eqs. (12 and 13) clearly assume that differences between
the model simulations and the observed values are explained by an additive noise
term. Therefore, if we want to construct probability limits that encompass the data,
we need to account for the residual errors. Adding this term now produces the
expected results, as seen in Fig. 9c. Another questionable aspect is the “white
noisiness” of predictive limits seen in Fig. 9c – this is a consequence of the
independence assumption in the residual error model. Figure 9d illustrates, for a
different synthetic dataset, the much smoother and realistic (for a streamflow pre-
diction) behavior of the autocorrelated error model in Eq. (25). A different perspec-
tive is taken in an approach such as GLUE, where no probabilistic error model is
used (Sect. 5.6). In this case, parametric uncertainty is used to describe all sources of
error, which in turn requires a much flatter (“lenient”) pseudo-likelihood function.
Hence, depending on the assumptions made by the estimation framework, different
behaviors may be expected, and diagnostics much be crafted accordingly.

The individual assumptions underlying error models must also be tested. For
example, if the Box-Cox Gaussian AR(1) error model is used, the modeller should
test that (i) normalized residuals are approximately homoscedastic (e.g., no depen-
dence on magnitude of simulated response), (ii) innovations are approximately
independent (e.g., using PACF plots), and (iii) innovations are approximately
Gaussian (e.g., using histograms and Gaussian QQ plots) (e.g., Thyer et al. 2009;
Schoups and Vrugt 2010; Morawietz et al. 2011; McInerney et al. 2017). Model
diagnostics represent a form of hypothesis testing and are most effective when
applied in a structured and systematic way (Clark et al. 2011). For example,
diagnostics are most inquisitive and informative when applied to stratified data,
e.g., by flow magnitude, season, etc., as this can yield more insights into individual
model deficiencies without being masked by averaging effects, etc.

What period should these diagnostics be applied to? Testing over the calibration
period is generally weak. Arguably, one cannot claim a model to be “predicting” a
quantity (e.g., data period) already explicitly used in its calibration – at best, the
model is “simulating” or “reproducing” data already known to it. This perspective

Parameter Estimation and Uncertainty Quantification in Hydrology 27



Fig. 9 Optimization, parametric uncertainty, and total predictive uncertainty in a simple Bayesian
least squares framework. Panel a shows the optimal predictions; panel b shows the parametric
uncertainty. Under Gaussian error model assumption, discrepancies between observed and simu-
lated streamflows are described by the (Gaussian) residual error. Hence, residual error uncertainty,
shown in panel c, must be added in order for the predictive limits to envelop the observed data.
With reference to Fig. 6, panel c represents the use of the probability model to generate the
predictive distribution and reconcile it against the actual observations. Panel d illustrates (using a
different data set) the much “smoother” behavior of autocorrelated error models, which reduce the
unrealistic jitter in hydrograph replicates generated using white noise error models
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leads to the concept of a “validation” period, e.g., split-sample calibration where the
available data is split into calibration and validation periods (Kuczera and Franks
2002), and more complex cross-validation setups (Tuteja et al. 2017). Validation
mimics the way the model will be used in practice and arguably offers the best
chance to detect deficiencies in the model and calibration. However, testing on a new
period can create genuine complications in the case of non-stationarities (e.g., land-
use change and/or climate variability) (Westra et al. 2012) – which highlights the
formidable challenge of environmental prediction. Even the very semantics of the
term “validation” have been questioned (e.g., Konikow and Bredehoeft 1992), on
the grounds that it can provide a misleading impression of the model’s abilities to
make predictions.

Testing on validation periods can detect instances of over-parameterization,
where a model has been over-fitted to spurious features in the calibration data and
performs poorly on new data. A simple example is the fitting of a high-degree
polynomial to a few data points. While any model can in principle be over-fitted,
complex highly parameterized models are more susceptible, notably models based
on neural networks (Kingston et al. 2008), but also physically based distributed
models calibrated solely to catchment-average rainfall and runoff (e.g., Grayson
et al. 1992; Jakeman and Hornberger 1993). Parameter estimation – whether via
calibration or a priori estimation – is hence inevitably an exercise in balancing model
complexity with available data (e.g., Fenicia et al. 2008).

Finally, we note that diagnostics are generally based on comparing simulated and
observed responses and relating any deficiencies to the parameter estimates. In this
respect, response diagnostics work with “tangible” quantities (to an extent) and seek
to draw conclusions about parameters, which ultimately are “intangible” quantities.
Mantovan et al. (2007) go as far as to refer to parameters as “abstract devices,”which
is of course far from ideal from the perspective of physical interpretability of models.
Parameters, ultimately, do hold insights into systems, e.g., residence time, etc.
(Fenicia et al. 2010). Nevertheless, it should be clear that parameter estimation is
not as dependable as the prediction of observable quantities – while it may be
reasonable to rely on validated prediction of quantities such as streamflow, relying
on the corresponding parameter values requires a longer leap of faith!

7 Practicalities

This section lists some empirical “tricks” to supplement the theory of parameter
estimation in hydrology.

7.1 Parameter Transformations

Parameter transformations often improve numerical algorithm performance when
working with highly non-quadratic objective functions. Figure 10 shows an example
from hydrological modelling, where a “banana-shaped” objective function becomes
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much better behaved when expressed in log-transformed parameter space. In some
estimation problems, transformations are simply essential (Thyer et al. 2002).
Parameters of hydrological models often benefit from log transformations, especially
when appearing in exponents and multiplicative factors. Note the fundamental
distinction between transforming parameters and responses: the former is purely a
numerical device to improve the shape of the objective function “as seen” by an
analysis method, whereas the latter yields a genuinely different objective function.

7.2 Impact of Model Non-smoothness/Discontinuities

Section 3 alluded to the difficulties posed by non-smooth models. The effect can be
dramatic, especially on optimization algorithms that rely on gradients to establish the
search direction. Figure 11 shows an example of a discontinuous objective function,
due to internal model thresholds. When working with non-smooth models, hydrol-
ogists have two options: either use a more robust but slower algorithm or modify the
model to remove the thresholds (Kavetski and Kuczera 2007). As seen in Fig. 11,
model smoothing can successfully remove discontinuities from the objective func-
tion and substantially simplify the estimation process. Interestingly, previous work
on smoothing often reported an improvement in model performance, which suggests
that, at least on the large scale, environmental dynamics are not as threshold-driven
as the models themselves (Kavetski and Clark 2010). For this reason, Hill et al.
(2015) recommend a more concerted effort by environmental modellers to use robust
numerics and smooth constitutive functions; this philosophy has been adopted in

Fig. 10 Illustration of parameter transformation to improve the conditioning of the objective
function (Kavetski et al. 2006c). Panel a shows a least squares objective function exhibiting a
banana-type shape. Panel b shows the same objective function plotted in log-transformed parameter
space, exhibiting a much better-behaved near-quadratic shape. Reproduced with permission from
Elsevier

30 D. Kavetski



modelling frameworks such as FUSE (Clark et al. 2008), SUPERFLEX (Fenicia
et al. 2011), SUMMA (Clark et al. 2015), and RAVEN (Craig et al. 2017).

7.3 Initial Conditions: Estimate or Warm-Up

Most hydrological models are dynamic in time, and initial state values must be
specified before the model can be deployed. In practice, initial model states are
unknown. Three options can be considered:

(i) Use a warm-up period after setting the initial conditions to some arbitrary
values (e.g., 50% full). Warm-up periods are easy to implement but can chew
up a lot of data in slow-responding catchments. The warm-up period is suffi-
ciently long if the objective function (and hence calibrated parameters) exhibits
little sensitivity to the (arbitrary) initial states.

(ii) Estimate initial conditions along with the model parameters. This approach
does not waste data but can distort parameter values by favoring the fitting of

Fig. 11 Effect of non-smooth models on the objective function, illustrated using results from the
case study of Kavetski et al. (2006b). Both macro- and microscale irregularities are visible. Model
smoothing removes these artefacts and yields a remarkably well-behaved surface. Reproduced with
permission from Elsevier
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the initial data period, where the fitted initial conditions in effect provide
another degree of freedom.

(iii) Estimate initial conditions using other considerations, e.g., by solving the
model equations for the steady-state storage values. This approach avoids the
limitations of approaches (i) and (ii) but has the drawback that the theoretical
steady state may not be representative of actual catchment conditions at the
beginning of the calibration period. This approach is best used to inform the
selection of initial values to shorten (but not avoid) the warm-up period.

7.4 Estimation of Expensive Models

Distributed models, such as MODFLOW (Harbaugh 2005), SWAT (Arnold and
Fohrer 2005), and MHM (Samaniego et al. 2010), are increasingly used in environ-
mental work to generate distributed predictions. These benefits accrue at substantial
computational costs, with model runs taking as long as minutes or even hours per
simulation. Computational costs inevitably impose restrictions on parameter estima-
tion. For example, multi-start optimization and MCMC sampling may be severely
limited or perhaps precluded altogether. When working with expensive models, it
may be necessary to set a computational budget for analyses such as optimization,
e.g., as implemented in the DDS optimizer (Tolson and Shoemaker 2007); parallel
computing offers a pragmatic way to reduce wall-clock runtimes. Highly parame-
terized models can be handled using parameter regularization (Doherty 2003), model
emulation (e.g., Albert 2012; Laloy et al. 2013), multi-scale parameter estimation
techniques (Samaniego et al. 2010), and/or multistage estimation approaches where
parameters are calibrated step-by-step rather than all at once (Fenicia et al. 2016).

8 Research Directions

Parameter estimation is a huge field with many unresolved challenges. This section
lists some (not all) research directions of interest from practical and scientific
perspectives.

8.1 Operational Improvements

Environmental and water agencies are increasingly interested in tackling challenging
streamflow forecasting problems, including temporally consistent (“seamless”) pre-
dictions over seasonal (3 months) lead times (e.g., Tuteja et al. 2011). Achieving
these outcomes requires robust treatment of error persistence (e.g., Evin et al. 2014),
balancing predictive reliability and precision (McInerney et al. 2017), and finding
hydrological model parameters that perform well at multiple spatial and temporal
scales (e.g., Samaniego et al. 2010). Similar requirements hold when seeking
spatially coherent predictions over large catchment systems and river networks. In
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addition, since forecasting models are often calibrated using observed input-output
data (e.g., rainfall-streamflow) but produce response forecasts (e.g., streamflow
3 months ahead) using forecasted forcings (e.g., rainfall from a numerical weather
prediction model), better integration of multiple models representing individual
sources of uncertainty is also of interest – this is one of the operational motivations
for decompositional approaches (Sect. 5.5).

8.2 Sparse-Data Problems

Many locations around the globe are poorly gauged or ungauged. For example, in
Australia, as much as 90–95% of the subcatchments of the Murray-Darling basin are
ungauged (e.g., Chiew and Siriwardena 2005). Modelling these locations requires
estimating model parameters from a combination of local properties (if available)
and extrapolation from “similar” catchments. This was the theme of the Prediction in
Ungauged Basins (PUB) decade (Sivapalan et al. 2003b). Indirect calibration
approaches include non-concomitant calibration, where input and output data from
different time periods are utilized. Spectral methods (e.g., Montanari and Toth 2007;
De Vleeschouwer and Pauwels 2013; Schaefli and Kavetski 2017) and signature
calibration (e.g., Yilmaz et al. 2008; Shafii and Tolson 2015; Westerberg and
McMillan 2015; Fenicia et al. 2018) are of interest; e.g., signatures computed from
simulated responses in Period A can be compared to the corresponding signatures of
observed data in Period B. Computationally, signature calibration and uncertainty
quantification can be approached using the fascinating class of methods known as
approximate Bayesian computation (e.g., Nott et al. 2012; Vrugt and Sadegh 2013;
Kavetski et al. 2018) – these methods avoid the need to derive the likelihood
function in closed form and instead require sampling from the underlying probability
model (Toni et al. 2009). Estimation in ungauged basins, where no data is available
for model calibration, is being investigated using various parameter regionalization
approaches (e.g., Bulygina and Gupta 2009; Hrachowitz et al. 2013).

8.3 Recursive Estimation and Data Assimilation

In many cases, calibration data is not available all at once and/or arrives in real time.
For example, in applications such as flood forecasting, exploiting real-time infor-
mation such as local observations and/or satellite imagery is of interest (e.g., Neal
et al. 2007; Reichle 2008; Hostache et al. 2010; Giustarini et al. 2016; Revilla-
Romero et al. 2016). In the context of parameter estimation, one can then distinguish
between batch estimation (where the entire data set is used at once) and recursive
estimation (where data is ingested sequentially, e.g., one data point at a time).

One of the simplest recursive estimation algorithms is the classic Kalman filter
(KF) (Kalman 1960), which treats the problem of a linear model under conditions of
Gaussian errors. The KF equations comprise a propagation (forecast) step and a
correction (assimilation) step; the latter can be derived as a Bayesian inference not
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similar to the least squares problem but with a prior given by the posterior from the
previous (forecast) step. The beauty of the KF is that its equations have an elegant
and computationally fast solution (Gelb 1974). Since the assumptions of model
linearity and Gaussian errors are restrictive, various generalizations of the KF
equations have been proposed, including extended and ensemble Kalman filters
and particle filters (e.g., Arulampalam et al. 2002; Vrugt et al. 2005, 2013; Weerts
and El Serafy 2006); development, application, and improvement of these real-time
techniques is of practical interest.

9 Summary and Conclusion

Parameter estimation in hydrological modelling is a common scientific and opera-
tional task and has received a tremendous amount of research and industry attention.
This chapter has reviewed the broad classes of parameter estimation techniques,
namely, a priori estimation and calibration (inverse modelling), with an emphasis on
parameter estimation through calibration. Strategies reviewed include manual cali-
bration, optimization, multi-objective optimization, and probabilistic estimation,
with Bayesian inference receiving most attention. Manual calibration offers the
ability to exploit expert understanding of the model and fit features in an intuitive
way. However, reliance on expert knowledge makes it nontransparent and difficult to
reproduce independently. The formulation of a goodness-of-fit function allows a
modeller to quantify model performance for a given parameter set and lends itself to
automatic implementation using optimization algorithms. Multi-objective optimiza-
tion avoids one of the main limitations of single-objective work and allows exploring
trade-offs between different aspects of the model fit (e.g., low vs high flows, timing
of peaks, etc.). Probabilistic estimation, on the other hand, allows reflecting the
uncertainty in the modelling process, which leads to parameter uncertainty. Bayesian
inference supports probabilistic estimation from observed data while allowing for
the use of additional information through prior distributions. Bayesian estimation
can be implemented within aggregational approaches – where all sources of uncer-
tainty are lumped into a single residual error term – or decompositional approaches,
where there is an attempt to disentangle the effects of individual sources of errors
(such as observational errors in rainfall forcings and streamflow responses and
model structural errors). Irrespective of the calibration strategy, its assumptions
must be scrutinized using posterior diagnostics, including tests for assumptions
such as error heteroscedasticity, persistence, Gaussianity, and so forth. Practical
implementations may also benefit from tricks such as parameter transformations
and model smoothing. Directions of ongoing and future research include improve-
ments in error model specification and the development of approaches for parameter
estimation under sparse-data and ungauged conditions.
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