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Abstract
Hydrometeorological predictions are not perfect as models often suffer either
from inadequate conceptualization of underlying physics or non-uniqueness of
model parameters or inaccurate initialization. During the past two decades, Data
Assimilation (DA) has received increased prominence among researchers and
practitioners as an effective and reliable method to integrate the hydrometeoro-
logical observations from in situ measure and remotely-sensed sensors into
predictive models for enhancing the forecast skills while taking into account all
sources of uncertainties. The successful application of DA in different disciplines
has resulted in an ever-increasing publications. This chapter provides a progres-
sive essay covering fundamental and theoretical underpinnings of DA techniques
and their applications in a variety of scientific fields. More detailed examples of
applications are presented in following chapters in this section.

Keywords
Hydrometeorological predictions · Uncertainty · Data Assimilation (DA)

1 Introduction

1.1 Purpose of Data Assimilation

Forecasting in hydrometeorology is challenging due to the complex, heterogeneous,
nonstationary, and nonlinear interactions between water and the environment. Such
complexities make precise modeling of hydrometeorological processes infeasible,
leading to persistent uncertainty in forecasting systems. Uncertainties are present
in all aspects of hydrometeorological modeling and forecasting, due to errors or
imprecision in observations of pertinent states and fluxes, gaps in knowledge of the
physical science, and spatiotemporal heterogeneities that complicate the highly
dynamic nature of water movement through the land and atmosphere. Such preva-
lence of uncertainty reduces a forecaster’s ability to determine the magnitude and
timing of catastrophic events (i.e., floods, droughts) and quantify variables of interest
(i.e., water supply, soil moisture). Due to these uncertainties, it is advantageous to
utilize the full extent of information about the state of the environment in a single
unified forecast. This unification of information from models and observations for
reduced uncertainty is the premise of data assimilation (DA).

Most generally, DA is defined as the application of Bayes’ theorem to probabi-
listically condition the states of a dynamical model on observations. There are many
different computational techniques for implementing DA, and each technique relies
on a different set of tractability approximations. Because no tractable DA technique
is perfect, it is important to understand the nature of the particular simulation model
and observation data set that are being used for a particular forecast problem.
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Most commonly, DA results in improvements to model forecasts by improving
initial states (DeChant and Moradkhani 2011a); however it is also possible to use DA
to improve model parameters (e.g., Moradkhani et al. 2005a, b; Vrugt et al. 2005;
Montzka et al. 2011; Pathiraja et al. 2016a, 2017; Abbaszadeh et al. 2018) and model
structures (e.g., Bulygina and Gupta 2011; Nearing and Gupta 2015). DA methods
that update initial states can typically be implemented sequentially in time; this
is called filtering, and filtering approximations make DA particularly applicable to
real-time forecasting problems. Forecasting agencies often want to make forecasts at
regular time intervals, and a method that sequentially improves initial states is
especially applicable to this type of situation.

In addition, many popular DA techniques use ensembles, which allow for prob-
abilistic representation of complex systems and quantification of uncertainties in
time-evolving simulations. Ensemble-based DA produces an ensemble of initial
states, which allows for initializing an ensemble forecast with a range of possible
state values. Ensemble-based DA techniques are therefore especially useful when
accurately accounting for forecast uncertainty is important.

1.2 State-Space Models

Since the primary purpose of DA is to improve state estimates within the model, it is
important to understand models from a state-space perspective. Dynamical models
solve systems of partial differential equations (PDEs), and in hydrology, this is
typically done in discrete time. We can therefore write a generalized state-transfer
function to represent our discrete-time PDE solution:

xt ¼ f xt�1, ut, θ
f

� �þ ωt (1)

In Eq. (1), f(.) is a function that governs the evolution of the model state vector
x in discrete time. Note that there are generally many model states, so xt is generally a
vector. Since Eq. (1) is an approximate PDE solution, the model requires some
boundary conditions, or time-dependent forcing data (ut), and also a (typically time-
independent) parameter vector (θf). Since it is unavoidable that the model will have
an error, this is accounted for by an additive error term ωt which is drawn from a
distribution. This is referred to as model error. The general DA problem is aimed at
reducing model error and therefore improving the accuracy of state estimates.

In addition to the forward model operator, f(.), an observation operator, h(.), is
necessary to relate observations with system states:

yt ¼ h xt, θ
h

� �þ ϵt (2)

In Eq. (2), h(.) is the observation operator, which relies on the current states (xt)
and a parameter vector (θh) to translate states into observation space. Similar to the
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forward model operator, the observation operator will have some error, which is
typically accounted for using an additive error term like ϵt. Although ϵt could be
specified to retrieve the “true” prediction, it is specified as the correction to reach the
observation, which will simplify the explanation of the DA process.

1.3 Types of Data Assimilation

As mentioned above, DA is aimed at improving modeled states by conditioning on
observation data. The most general expression for the DA problem is:

p x1:tj y1:t, u1:t, θf , θh
� � / ph y1:tj x1:t, θh

� �
pf x1:tj u1:t, θf
� �

: (3)

Equation (3) is Bayes’ theorem applied to the problem of estimating model states
conditional on observations. pf and ph are the probability density functions (PDF)
implied by Eqs. (1) and (2), respectively.

Analytical solutions to Eq. (3) are infeasible for almost any real-world problem.
In addition, x1:t is very high-dimensional (the dimension of the state vector, xt,
multiplied by the number of time steps), which makes it infeasible to estimate the
posterior (i.e., the PDF on the right-hand side of Eq. (3)) by sampling. Thus, to
implement Eq. (3) for real-world problems, we almost always require some tracta-
bility approximations.

1.3.1 Smoothers Versus Filters
The most common tractability approximation is to restrict information from assim-
ilated observations from moving backward in time. That is, an observation from
time t will not affect the state values at times t�s, where s > 0. When this
approximation is used in conjunction with a Markovian model, like Eq. (1), the
result is DA filtering; in contrast, the full DA problem in Eq. (3) is called smoothing.
The general filtering problem is as follows:

p xtj y1:t, u1:t, θf , θh
� � / ph ytj xt, θh

� �
pf xtj xt�1, ut, θ

f , y1:t�1

� �
: (4)

Notice that the dimension of the posterior is greatly reduced – by a multiplicative
factor in the number of time steps. This makes it (sometimes) feasible to sample the
posterior effectively at each time step. The Markovian property of the dynamical
systems model is explicit in the prior ( pf) in Eq. (4), and it is important to recognize
that the prior – i.e., pf (xt| xt�1, ut, θ

f, y1:t�1) – is conditional on past observations.

1.3.2 Linear Versus Nonlinear
One important category of tractability approximations involves treating all or part of
the system as linear. The distinction between linear and nonlinear DA methods is
historically important because the original method for DA (i.e., the Kalman filter;
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Kalman 1960) was based on strong linearity assumptions. This is limiting, as most
models in hydrometeorology are highly nonlinear. This has led to an increasing
focus on nonlinear methods in recent decades. If a system is truly linear, then
Gaussian uncertainties are preserved through the forward model operator, f(.), and
observation operator, h(.). In this case, the DA process is significantly simplified, and
there is a known analytical solution to Eq. (4). For dynamic systems that are truly
linear, and where uncertainty is truly Gaussian, the Kalman filter is an optimal
solution to the filtering problem.

Alternatively, in the presence of a partially nonlinear model/problem, a range
of techniques are available. These include Kalman filter-based methods (extended
Kalman filter, unscented Kalman filter, ensemble Kalman filter) and more general-
ized solutions (variational, particle filter). Although a number of techniques are
available, none may be considered optimal. Each nonlinear DA technique requires
some limiting assumptions, which may complicate the choice of technique when
applying DA. The main challenge in nonlinear DA is that there is no perfect inverse
model. Therefore, the relationship between the states and the observation must be
approximated prior to adjusting the states. Overcoming this challenge has been one
of the primary focuses of DA scientists in recent decades.

1.3.3 Deterministic Versus Ensemble
Another distinction is between deterministic and ensemble DA methods. Determin-
istic methods perform updates on a single model realization, and the result is some
metric (typically a mean field or maximum likelihood estimate) from the full
posterior of either Eq. (3) or (4). Examples of deterministic DA methods are the
Kalman filter, extended Kalman filter, and variational filters and smoothers. Deter-
ministic methods are often more computationally efficient than ensemble methods,
but have limitations when applied to complex models. Deterministic techniques
require stricter assumptions about the forms of model error distributions and some-
times require model derivatives (e.g., for maximum likelihood estimation over
nonlinear models). As a consequence, deterministic methods typically assume the
state space at any particular time step is represented by a multivariate Gaussian
distribution, which may be questionable in highly nonlinear models.

Alternatively, ensemble DAmethods utilize multiple stochastic realizations of the
model to represent uncertainties. Examples of ensemble DA methods include the
ensemble Kalman filter (EnKF), the particle filter (PF), and the maximum likelihood
ensemble filter (MLEF). Ensemble methods have the benefit of estimating the full
PDF over model error, as it manifests in the state and/or prediction variables. In
many cases, it is easier to apply ensemble methods, as opposed to deterministic
methods, to nonlinear models. The primary drawback of ensemble methods is the
increased computational demand of simulating the forward model and observational
operators multiple times. Although these simulations are easily parallelizable, which
reduces the computational demand, ensemble-based techniques still generally
require increased simulation run time.

Fundamentals of Data Assimilation and Theoretical Advances 5



2 Error Characterization

2.1 Uncertainty Quantification

Uncertainty quantification is a key component of many DA systems. Since the intent
of any DA system is to reduce uncertainty with respect to some pertinent model
value, it is essential to understand the prior probabilistic characteristics of that
uncertainty. This generally requires understanding the different sources of uncer-
tainty in the full modeling and DA system. Generally, uncertainties will break down
into three categories: boundary conditions, parameters, and model structure (i.e.,
process uncertainty). Boundary conditions include the initial state (x0) and the model
forcing data (ut). Boundary conditions are required for solving any PDE system, and
as mentioned previously, estimating improved initial conditions is one of the primary
motivations for state estimation with DA. Uncertainty in model forcing data (e.g.,
precipitation, temperature, radiation) is typically estimated a priori. It is theoretically
possible to use DA, or something like Eqs. (3) and/or (4), to condition PDFs over
model forcing data, but this is not done regularly in hydrology.

Model parameters (e.g., hydraulic conductivity, streambed roughness) also inev-
itably contribute some uncertainty to the forecast system. DA can also be used to
help reduce parameter uncertainty (see references above), but these methods are not
yet common in operational hydrology forecasting.

Finally, process uncertainty is the uncertainty due to incomplete knowledge of the
underlying processes within the model. This manifests as errors in the forward model
operator f(.) and observation operator h(.). Due to the requirement to discretize
processes both spatially and temporally, the model cannot perfectly simulate reality,
and therefore the model itself will have uncertainty. There are methods for using DA
to infer or condition model structural uncertainty distributions (e.g., Ghahramani and
Roweis 1999) – some of which have been applied to river forecasting models
(references above); however this is a relatively immature area of DA research and
will not be discussed further in this essay.

2.1.1 Probabilistic Simulations
Applying any approximation of either Eq. (3) or (4) requires estimating all relevant
uncertainties in the simulation system. Thus, DA inherently requires some type of
probabilistic simulation to quantify that uncertainty. Depending on the complexity of
this problem, that may be difficult or computationally expensive. Early DA methods
targeted linear systems, with the assumption that errors were Gaussian. Probabilistic
simulations for linear-Gaussian systems may be performed by propagating the
expected value and covariance structures of the modeled state estimates forward in
time. More generally, deterministic methods require partial derivatives of f(.) for
locating extremum of the posterior state PDF in nonlinear systems.

2.1.2 Ensemble Simulations
Ensemble simulations allow sampling of complex uncertainty distributions. This is
beneficial when working with strongly nonlinear models and/or non-Gaussian
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uncertainties. In an ensemble DA framework, the forecast PDF is represented by
multiple stochastic realizations of a model, where each ensemble member is a sample
from the forecast density. All of the input uncertainties (parameters, structure,
boundary conditions) to the model are sampled, and each sample is propagated
through the model, generating an ensemble forecast at each time step. This ensemble
forecast is made up of N ensemble members, each with a weight that may be
nonuniform, which is dependent on the DA technique applied. We can notate this
situation as follows:

p xtð Þ ¼
XN
i¼1

wt, iδ xt, xt, i
� �

: (5)

where xt, i is the state from ensemble member i of N, δ(.) is the Dirac delta function,
and wt, i is the weight of ensemble member i. To simulate the ensemble of states,
a model is run for N ensemble members, according to Eq. (6):

xt, i ¼ f xt�1, i, ut, i, θ
f
i

� �
þ ωt, i (6)

In Eq. (6), xt � 1, i is the state vector from the previous time step, ut, i, is the current
forcing sample, and ωt, i is the current model error sample, each for ensemble
member i. Each ensemble member represents a specific point within the state
probability distribution. From this ensemble of model states, an ensemble of
model-predicted observations may be generated:

yt, i ¼ h xt, i, θ
h
i

� �þ ϵt, i: (7)

In Eq. (7), yt, i and ϵt, i are the model prediction in observation space and error
sample, respectively, for ensemble member i. The quantity ϵt, i captures deficiencies
in the observation operator h and possibly also parameters θhi (in some cases, these
are considered separately with the parameters treated as random variables). Evalu-
ation of Eqs. (6) and (7) for a large ensemble size allows for propagation from
uncertainty distributions over parameters, forcing data, and model structure to
uncertainty in model states and model-simulated observations. The uncertainty
from the various aforementioned sources can be treated individually or lumped
together as a “total uncertainty” term quantified by the additive errors ωt and ϵt.
The total uncertainty approach can be useful whenever quantifying the uncertainty in
the individual sources is challenging. Often the additive errors are assumed to be
zero mean Gaussian, although this assumption is seldom appropriate for hydrologic
applications. Pathiraja et al. (2018a) presented a data-driven approach to estimate ωt

and ϵt from a total uncertainty perspective using only partial observations of the
system and without relying on distributional assumptions on the errors. The
approach is particularly suited to cases where model error characteristics are depen-
dent on the system states and when the model-observed variables are of principal
interest. It works by first generating a sample of additive errors on the latent states
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and observed variables using a sequential optimization approach. The probability
density of these errors is then estimated via nonparametric kernel conditional density
estimation, thereby allowing for the characterization of complex error densities.

3 Data Assimilation Methods

3.1 Linear Data Assimilation

3.1.1 Kalman Filter
The Kalman filter (Kalman 1960) was the first true DA technique. Although the
Kalman filter is rarely applied in hydrometeorology, due to its specific applicability
to linear filtering problems, it is the basis of many generalized filters, making it
a useful starting point for understanding many DA techniques. Kalman’s solution to
the filtering problem assumes the Gaussian distribution of errors, which greatly
simplifies the state-updating process. Since the model is linear, and the form of
uncertainty is known, the inversion of the model to estimate the optimal state value is
analytical. The Kalman filter is applicable to models with linear state transition
functions, of the form:

x�t ¼ Axþt�1 þ But þ ωt (8)

where the model error is drawn from a Gaussian (normal) distribution of known
covariance, Σm:

ωt � N 0,Σmð Þ: (9)

Within this linear model, A is a state transition matrix and B is an input transition
matrix. Equation (8) allows direct propagation of the mean field of the state uncer-
tainty distribution. When uncertainty in the initial states is also Gaussian, such that
covariance of xþt�1 is notated Pþ

t�1 , then we can also directly propagate the state
uncertainty variance:

P�
t ¼ APþ

t�1A
T þ Σo (10)

In addition, the Kalman filter requires a linear observational operator:

yt ¼ Hx�t þ et (11)

et � N 0,Σoð Þ (12)

In Eqs. (11) and (12), yt is the observation; H is the observational operator, which
is a function only of the modeled states; and et is Gaussian observation error with
covariance Σo. The Kalman filter only accounts for uncertainties due to model error
and observation error. Based on these approximations, the states are linearly corre-
lated with the observations and themselves have normally distributed uncertainty.

8 H. Moradkhani et al.



If all of these conditions are met, then we can solve the filtering problem
(i.e., Eq. (4)) exactly:

xþt ¼ x�t þ Kt yt � Hx�t
� �

(13)

Kt ¼ PtH
T HPtH

T þ Σm

� ��1
(14)

Kt is called the Kalman gain and xþt are the updated model states. The updated
state covariance is:

Pþ
t ¼ I � KtHð ÞPþ

t�1: (15)

where I is the identity matrix.

3.2 Partially and Fully Nonlinear Deterministic Data Assimilation

3.2.1 Kalman Filter Extensions

Extended Kalman Filter
The extended Kalman filter (EKF) is a method developed in an effort to apply the
Kalman filter to nonlinear dynamical systems models. Within the EKF, updates are
performed on linearized approximations of the nonlinear model and work with
nonadditive errors. Thus we will generalize Eqs. (1) and (2):

xt ¼ f xt�1, ut, θ
f ,ωt

� �
(16)

yt ¼ h xt, θ
h, et

� �
(17)

As in the Kalman filter, the EKF estimates the prior states by progressing the
model forward deterministically:

x̂�t ¼ f x̂þt�1, ut, θ
f

� �
(18)

where x̂þt�1 and x̂
�
t are the updated and forecast states at time t�1 and t, respectively.

The fact that the model is nonlinear makes estimating the Kalman gain significantly
more difficult. Application to this system requires linearization of the model, allo-
wing the Kalman update equation to effectively estimate the gradient of the state-
observation relationship. To update the states, four partial derivatives are required.
These partial derivatives will be taken from each model with respect to the states, as
shown in Eqs. (19) and (20), and with respect to the model and observational errors,
as shown in Eqs. (21) and (22):
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A ¼ df :ð Þ
dx

(19)

H ¼ dh :ð Þ
dx

(20)

W ¼ df :ð Þ
dω

(21)

V ¼ dh :ð Þ
dϵ

(22)

The partial derivatives in Eqs. (19), (20), (21), and (22) linearize the model, which
allows for application of the linear updating scheme of the Kalman filter. The error
covariance is estimated as:

Pt ¼ APt�1A
T þWΣmW

T , (23)

where Σm is the state error covariance and based on that the Kalman gain may be
estimated similarly to the standard Kalman filter, with a correction to the observation
variance:

Kt ¼ PtH
T HPtH

T þ VΣoV
T

� ��1
(24)

where Σo is the observation error covariance. With this Kalman gain, the states may
be updated in a way analogous to Eq. (13):

x̂þt ¼ x̂�t þ Kt yt � h x̂�t , θ
h, et

� �� �
(25)

The difference between the EKF update and the standard Kalman filter update is
that the innovation, yt � h x̂t, θ

h, et
� �

, is calculated from the nonlinear observational
operator.

Unscented Kalman Filter
The unscented Kalman filter (UKF) is similar to the EKF, but linearizes around a
set of state samples, instead of only one state estimate. The UKF can be thought of as
a hybrid between deterministic and ensemble DA techniques. Since the method uses
a sampling procedure to propagate uncertainty forward, error characterization is
similar to ensemble techniques, but it retains a strictly Gaussian assumption by only
updating the state expected value. This means that the posterior is a single deter-
ministic value, representing the mean of the distribution, with a corresponding state
error covariance. Due to the deterministic representation of the posterior, it cannot be
considered a purely ensemble-based technique.

To apply the sampling strategy, one will estimate multiple sigma points with the
model, allowing for calculation of the error covariance from a sample. Each of these
sigma points will be used for initialization of the model, as is shown in Eq. (26):

10 H. Moradkhani et al.



x̂�t, i ¼ f x̂þt�1, i, ut, θ
f

� �
(26)

In Eq. (26), x̂t�1, i is the ith sigma point estimate of the initial states, which is
described in Eqs. (27) and (28):

x̂�t�1, 1 ¼ x̂�t�1 (27)

x̂�t�1, i ¼
x̂�t�1 þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ λ

p ffiffiffiffiffiffiffiffiffi
P�
t�1

p
if 1 < i � n

x̂�t�1 �
ffiffiffiffiffiffiffiffiffiffiffi
nþ λ

p ffiffiffiffiffiffiffiffiffi
P�
t�1

p
if n < i

(
(28)

Sigma points are generated to capture the mean and covariance of the state
estimates. In Eq. (28), n is the length of the state vector,

ffiffiffiffiffiffiffiffiffi
P�
t�1

p
is the ith column

of the Cholesky decomposition of P�
t�1, and λ is a scaling factor. After initialization

of the model with each sigma point, the sigma point for the prior model states at the
current time step is available. At this point, the state expected value is estimated
according to Eq. (29), the expected value of the observation forecast is estimated in
Eq. (30), and the covariances are calculated according to Eqs. (31) and (32):

x̂�t ¼ 1

nþ λ
λx̂�t, 1 þ

1

2

X2nþ1

i¼2

x̂�t, i

 !
(29)

ŷ�t ¼ 1

nþ λ
λh x̂�t, 1, θ

h
� �

þ 1

2

X2nþ1

i¼2

h x̂�t, i, θ
h

� � !
(30)

CXX ¼ 1

nþ λ
λ x̂�t, 1 � x̂�t
� �

x̂�t, 1 � x̂�t
� �T

þ 1

2

X2nþ1

i¼2

x̂�t, i � x̂�t
� �

x̂�t, i � x̂�t
� �T !

(31)

CXY

¼ 1

nþ λ
λ x̂�t, 1 � x̂�t Þ h x̂�t, 1, θ

hÞ � ŷ�t
� �T

þ 1

2

X2nþ1

i¼2

h x̂�t, i, θ
hÞ � x̂�t

� �
h x̂�t, i, θ

hÞ � ŷ�t
� �T� ��   

(32)

From the above equations, the covariance of the states (CXX � P�
t H

T ) and the
covariance between the states and observations (CXY � HP�

t H
T ) are estimated,

allowing approximation of the optimal linear update. Following the standard Kalman
filter, the Kalman gain is estimated from the covariances, as shown in Eq. (33), and
the updated state vector is estimated from Eq. (34):

Kt ¼ CXY CYY þ Σoð Þ�1 (33)

x̂t ¼ x̂�t þ Kt yt � ŷ�t
� �

(34)
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Similar to the EKF, the UKF estimates the proper linear update for the model
states, allowing for approximation of the posterior state value of the nonlinear model.

3.2.2 Variational Data Assimilation
The premise of variational DA surrounds the idea of a cost function. A cost function
represents errors in the system, which we seek to minimize. Rather than requiring the
linearization of nonlinear models, as is performed in the Kalman filter extensions,
variational methods rely on optimization tools to find the optimal state values with
respect to a predefined cost function. The general form of the cost function, for
Gaussian error structures, is shown in Eq. (35):

C ¼ x̂t � x̂�t
� �X�1

m

x̂t � x̂�t
� �þ yt � h x̂t, θ

h
� �� �X�1

o

yt � h x̂t, θ
h

� ��
t

� �
(35)

In Eq. (35), C is the value of the cost function, and all other variables were defined
in earlier sections. In this form, the cost function compares the state error and the
forecast error, which may be minimized to find the optimal solution to the filtering
problem. Since a solution to the cost function may not be derived analytically,
inverse modeling must be performed.

One method for solving the cost function is through iterative optimization
techniques. These methods will search the state space for the state values that
optimize (minimize) the cost function. This optimal value is considered to be the
expected value of the states and therefore the best estimate available for the true
states. Although this strategy is effective, it requires multiple evaluations of the
model itself, increasing the computational burden. Since this is a deterministic DA
method, it is advantageous to avoid multiple model evaluations. In order to achieve
this goal, the derivative of the cost function is required:

∇C ¼
X�1

m

x̂t � x̂�t
� �þ J x̂tð Þ

X�1

o

yt � h x̂t, θ
h

� �� �
(36)

J x̂tð Þ is the Jacobian of the model, also referred to as the adjoint model. This
requires finding the partial derivatives of the model with respect to each state. Once
the adjoint model is available, Eq. (36) may be used to find the minimum of the cost
function by finding the x̂t vector that satisfies ∇C = 0. Therefore, the primary
challenge is developing the adjoint model. This is a separate topic of study, and the
reader is referred to Errico (1997). There are also software tools for developing
adjoint models, including the Tangent linear and Adjoint Model Compiler (TAMC)
(Giering 1997).

Four-dimensional variational DA (4D-Var) is a generalization of the variational
filter from Eq. (35) where the time dimension of the observations is taken into
account. This creates a smoothing methodology to account for more observations in
the cost function. By examining multiple observations simultaneously, more infor-
mation is available to reduce the state uncertainty, that is, information from
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observations can be projected backward in time. Through this reduction in uncer-
tainty, more accurate and precise estimates of the model states are expected. The
general form of the 4D-Var cost function is:

C ¼ x̂0 � x̂�0
� �

B�1 x̂0 � x̂�0
� �þXT

t¼1

yt � h x̂t, θ
h

� �� �X�1

o

yt � h x̂t, θ
h

� �� �
(37)

This cost function is applied to all observations over some time period of length
of T. Due to the increased information available to the technique, initial state
estimates generally become more accurate, and therefore 4D-Var is often preferred
to 3D-Var.

3.3 Ensemble Data Assimilation

3.3.1 Ensemble Filters

Ensemble Kalman Filter
Application of the ensemble Kalman filter (EnKF) has become highly popular within
the hydrometeorology forecast community. This popularity is due to several factors
including simplicity of application, efficiency of the method, and the explicit
treatment of complex and interacting uncertainties in the form of an ensemble. The
EnKF is relatively simple to apply, compared with other nonlinear DA techniques,
resulting from the use of an ensemble to quantify the covariances required for the
Kalman update equation (Evensen 2003). This removes the need to take model
derivatives, which is very challenging due to the complexity of hydrologic models.
With respect to model efficiency, the assumption of Gaussian error structure has been
shown to be reasonable in some applications, which leads to efficient updates of
model states. Finally, the ensemble nature of the EnKF explicitly quantifies the
uncertainty with the ensemble, where each ensemble member is equally weighted.

Application of the EnKF begins with an ensemble simulation, as described in
Eqs. (6) and (7). After performing these simulations, the covariances are estimated
directly from the ensembles:

E x̂�t
	 
 ¼ 1

N

XN
i¼1

x̂�t, i (38)

E ŷt½ � ¼ 1

N

XN
i¼1

ŷt, i (39)
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CXY ¼ E x̂�t � E x̂�t
	 
� �

ŷt � E ŷt½ �ð ÞT
h i

¼ 1

N

XN
i¼1

x̂�t, i � E x̂�t
	 
� �

ŷt, i � E ŷt½ �
� �T� �

(40)

CYY ¼ E ŷt � E ŷt½ �ð Þ ŷt � E ŷt½ �ð ÞT
h i

¼ 1

N

XN
i¼1

ŷt � E ŷt½ �ð Þ ŷt � E ŷt½ �ð Þð Þ (41)

With these covariances, the Kalman gain may be estimated according to:

Kt ¼ CXY CYY þ Σoð Þ�1 (42)

This formulation of the Kalman gain follows the original Kalman filter,
except that all model covariances are approximated with the ensemble. By applying
this approximation, there is no need to apply linearization of the model, greatly
simplifying the update process. Once the Kalman gain is available, each ensemble
member is updated as:

x̂t, i ¼ x̂�t, i þ K yt, i � ŷt, i

� �
(43)

In Eq. (43), yt, i is the ith sample of the observation, which is estimated as follows:

yt, i ¼ yt þ et, i et, i � N 0,Σoð Þ (44)

The additional error sampling in Eq. (44) is required to account for uncertainty in
the observations.

Ensemble Square Root Filter
The ensemble square root filter (EnSRF) was developed to remove the need to
perturb the observations in the updates of the EnKF (Whitaker and Hamill 2002).
By removing the need to perturb the observation, the necessary ensemble size is
reduced, as no sampling of the observation uncertainty is performed. This is
achieved by formulating the observation error into the Kalman gain. When explicitly
accounting for the observation uncertainty into Eq. (42), the Kalman gain formula-
tion becomes:

Kt ¼ CXY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CYY þ

X
o

q �1
� �T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CYY þ
X

o

q
þ

ffiffiffiffiffiffiffiffiffiX
o

qh i
(45)

With this formulation of the Kalman gain, each ensemble member may be
updated following Eq. (43).

3.3.2 Particle Filters
PFs were developed to overcome the challenges associated with the assumptions
required to apply the Kalman-based filters. Although Kalman-based filters have been
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shown to be effective in many applications, the imposition of a Gaussian error
structure can become problematic in some hydrometeorological applications. This
scenario motivates the use of an increasingly generalized filter, which can effectively
manage skewed, or even multimodal, distributions.

PFs are rooted more firmly in Bayes’ theorem than any of the methods we have
discussed so far.
According to Eq. (1), the model is known to be Markovian, and therefore the
Chapman-Kolmogorov equation may be used to expand the prior probability:

p xtj y1:t�1ð Þ ¼
ð
p xtj xt�1ð Þp xt�1j y1:t�1ð Þdxt�1 (46)

This makes the prior distribution the integration of the transition probability
( p(xt| xt�1)) and the posterior at the previous time step. Beyond the initial time
step, p(xt�1| y1:t�1) will be available, and the transition probability may be approx-
imated through the sequential Monte Carlo algorithms (described in following
sections). The implied proportionality constant in Eq. (4) comes from the observa-
tion probability, which may be expanded as:

p ytj y1:t�1ð Þ ¼
ð
p ytj xtð Þp xtj y1:t�1ð Þdxt (47)

Therefore, one may solve the observation probability through the integration of
the numerator of Eq. (4). This leads to Eq. (48), where only the likelihood, transition
probability, and posterior at the previous time step are required to solve sequential
Bayes’ theorem:

p xtj y1:tð Þ ¼ p xtj yt, y1:t�1ð Þ ¼ p ytj xtð Þ Ð p xtj xt�1ð Þp xt�1j y1:t�1ð Þdxt�1Ð
p ytj xtð Þ Ð p xtj xt�1ð Þp xt�1j y1:t�1ð Þdxt�1

	 

dxt

(48)

Sequential Importance Sampling
In general, it is often not possible to derive an analytical expression for the Bayesian
posterior from Eq. (48), but it is possible to utilize importance sampling to estimate
the probabilities sequentially. This is referred to as sequential importance sampling
(SIS), which is the most general solution available for the filtering problem (Gordon
et al. 1993). SIS relies on a weighted sample of “particles” to estimate the posterior
distribution. Similar to Eq. (5), the posterior sample may be represented by Eq. (49):

p xtj ytð Þ �
XN
i¼1

wt, iδ xt � x̂t, i
� �

(49)

Sampling directly from the posterior is often not possible, which necessitates
importance sampling. This is performed by sampling from a known distribution and
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weighting based on our knowledge of the system. Posterior importance weights may
be estimated according to Eq. (50), where q(xt, i| xt�1, i, yt) is the importance density:

wt, i /
p ytj x̂t, i
� �

p x̂t, ij x̂t�1, i
� �

q x̂t, ij x̂t�1, i, yt
� � (50)

The most common and convenient method for developing the importance density
is through Eq. (51), where the importance density is set equal to the transition
probability:

q x̂t, ij x̂t�1, i, yt
� � ¼ p x̂t, ij x̂t�1, i

� �
(51)

Through this choice of importance density, the posterior weights may be esti-
mated as the normalized product of the prior weights and the likelihood, as is shown
in Eq. (52).

wt, i ¼
p ytj x̂t, i
� �

wt�1, iPN
i¼1

p ytj x̂t, i
� �

wt�1, i

(52)

This provides a weighted sample at each model time step, representing the
posterior distribution of the model states.

Sampling Importance Resampling
Although SIS is the most generalized solution available to solving sequential Bayes’
law, it is subject to failures over long simulations. Over a large number of time steps,
it is common for many particles to drift from the observations, leading to weight
degeneracy. Weight degeneracy refers to the scenario in which the weight of nearly
all particles approach zero, with only a small portion of the sample having significant
weight (Arulampalam et al. 2002). During this occurrence, the filter will fail, as it is
unable to represent the posterior distribution. Weight degeneracy may be avoided
with increasingly large sample size to represent all possible model trajectories, but
this becomes limiting as the computational demand increases exponentially with
dimensionality. In order to overcome this issue, the novel approach of resampling
has been used. This is referred to as sampling importance resampling (SIR), where
the sample of particles is resampled, based on the weights of the particles.

When applying SIR, it is common to estimate the effective sample size after each
assimilation time step, to determine if resampling is required. The effective sample
size may be estimated from Eq. (53) and compared to some predefined threshold:

N eff ¼
XN
i¼1

1

w2
t, i

(53)
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where Neff is the effective sample size. If this value drops below a specified
value, it may be assumed that weight degeneracy is occurring, or about to occur, and
resampling is required to avoid failure in the filter. At this stage, a representative
posterior distribution may be developed by replicating higher probability particles
and discarding low probability particles, which is a method referred to as resampling.
The challenge when developing a resampling scheme is to create a representative
sample of the posterior from current posterior sample. A common method is
multinomial resampling.

Multinomial resampling is considered the simplest resampling technique for PFs
(Douc and Cappe 2005). The first step in this resampling scheme is the development
of the empirical cumulative density from the weights, as described in Eq. (54):

Fw Ið Þ ¼
XI
i¼1

wt, i (54)

where I is the specified index of the current sample, which may be any integer on
the range of [0,1]. With this cumulative density, it is possible to sample from the
density with the uniformly sampled random variables (U ), as described in Eq. (55):

I ¼ F�1
w Uð Þ U � U 0, 1ð Þ (55)

where F�1
w ðÞ is the inverse of the cumulative density. By putting a uniformly

distributed random variable into the inverse cumulative density of the weights, it is
possible to extract a corresponding index that should be sampled. This index may
then be sampled according to Eq. (56), to develop the corresponding resampled
value for ensemble member i (xrest, i):

xrest, i ¼ xt, I (56)

A resampled state vector for each of the N particles will be sampled, at which
point all weights are set uniformly, shown in Eq. (57), as the density of the particles
represents the posterior:

wt, i ¼ 1

N
(57)

According to Eq. (1), given that state variables are influenced by the forcing data
uncertainty and system noise, the parameters are more susceptible to sample impov-
erishment as they are not dynamic quantities. To circumvent this issue, Moradkhani
et al. (2005b) proposed a method to avoid sample impoverishment by perturbing the
resampled parameters:

θ�tþ1, i ¼ θþt, i þ γt, i γt, i � N 0, sVar θ�t, i
� �h i

(58)
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where θ�tþ1, i is the parameter at time step t + 1, Var θ�t, i
� �

is the variance of the prior

parameters, and s is the variance multiplier, which should be tuned.
Despite the successful application of PF-SIR in many hydrologic practices, the

convergence of parameters is dependent on the choice of tuning parameter s in the
perturbation process. Moradkhani et al. (2012) developed a method to reduce the
potential of sample impoverishment in PF-SIR by combining the strength of PF and
Markov chain Monte Carlo (MCMC).

Particle Filter-Markov Chain Monte Carlo (PF-MCMC)
The PF-MCMC uses the PF-SIR algorithm to resample the state variables and
parameters. Then, a proposal distribution is created to generate parameters θpt, i
allowing for larger move steps:

θpt, i ¼ θþt, i þ γt, i γt, i � N 0, sVar θ�t, i
� �h i

(59)

where s is the parameter variance tuning factor. To accept or reject the θi, pt

parameters, a metropolis acceptance ratio α is calculated:

α ¼ min 1,
p xpt, i, θ

p
t, ij y1:t

� �
p xþt, i, θ

þ
t, ij y1:t

� �
0
@

1
A (60)

where p xpt, i, θ
p
t, ij y1:t

� �
is the proposed joint probability distribution:

p xpt, i, θ
p
t, ij y1:t

� �
/ p y1:tj xpt, i, θpt, i
� �

:p xpt, ij θpt, i, y1:t�1

� �
:p θpt, ij y1:t�1

� �
(61)

xpt, i ¼ f xþt�1, i, ut, i, θ
p
t, i

� �
(62)

where xpt, i is a sample from the proposal state distribution at time step t.

Since the optimal tuning factor s is unknown in a sequential framework, it is
beneficial to treat the s as a time-varying parameter and estimate it automatically.
Moradkhani et al. (2012) modified the variable variance multiplier (VVM) method
proposed by Leisenring and Moradkhani (2012) to automatically obtain the most
fitting tuning factor s in Eq. 59.

Evolutionary PF-MCMC (EPFM)
The EPFM was proposed by Abbaszadeh et al. (2018) to characterize a more
accurate and reliable posterior distribution for state variables in data assimilation
applications. What distinguishes the EFPM approach from the PF-MCMC is the
utilization of hybrid genetic algorithm (GA) and MCMC (GA-MCMC) technique in
the importance sampling step of the PF-MCMC model. In fact, the GA-MCMC
expands the search space by implementing the crossover and mutation steps in the
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GA, and subsequently the search space is refined via the MCMC technique resulting
in more desirable prior distribution. This approach significantly minimizes the
particle degeneracy and sample impoverishment problems that have been the main
concerns in using the particle filters. The main structures of EPFM approach are
summarized below:

1. Particles are selected from the initial ensemble pool for the crossover operation.
To do this, one can use roulette wheel selection method, and a fitness value for
each ensemble member is assigned. The value of weights, as an appropriate
indication of ensemble member quality, can be directly used as the fitness value.

2. The arithmetic crossover is adopted for the crossover operation (Park et al. 2009;
Yin and Zhu 2015). For this, a pair of new particles (offspring) is generated by a
linear combination of a pair of selected particles in step 1:

xi
0
t�1 ¼ ξ:xit þ 1� ξð Þ:xjt�1 (63)

xj
0
t�1 ¼ 1� ξð Þ:xit�1 þ ξ:xjt�1 (64)

where xit�1 and x
j
t�1 are the parent particles, x

i0
t�1and x

j0
t�1are the pair of new offspring

particle, and ξ is a uniform random value in the range of [0, 1].
3. To further promote diversity of the particles, a mutation strategy is designed. It is

realized by Eq. 65 that xkt�1and xk
0
t�1 are the particles before and after mutation

process, respectively:

xk
0
t�1 ¼ xkt�1 þ η xkt�1 � xi

0
t�1, x

j0
t�1

n o
η � N 0,ψVar xk�t�1

� �� �
(65)

where η represents a random sample from a Gaussian distribution with mean zero
and variance ψVar xk�t�1

� �
, where Var xk�t�1

� �
is the variance of the prior states at the

time t � 1 and ψ is a small tuning parameter.
4. The MCMC algorithm is used to accept or reject the new particles generated by

GA operators. This step is similar to the one used in the PF-MCMC model.

4 Applications

4.1 Variational

Variational methods have become popular for atmospheric DA, but are less popular
in land surface applications. Although applicable to both, the atmospheric commu-
nity has more readily developed the adjoint models necessary for variational
methods, whereas the land surface community has generally relied on ensemble
methods. Within the atmospheric DA community, several examples of variational
DA applications are available (Barker et al. 2004; Dee et al. 2011; Hou et al. 2013;
Županski and Mesinger 1995). Although uncommon, there are a few examples of
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variational DA within the hydrologic community (Reichle et al. 2001; Seo et al.
2003). A few recent examples of land surface DAwith variational methods include
Hoppe et al. (2014), which assimilated soil moisture and temperature measurements
into the Community Land Model (CLM); Meng et al. (2009), which assimilated land
surface temperature into the CLM; and Lee et al. (2012), which assimilated
streamflow into the Sacramento Soil Moisture Accounting model.

4.2 Kalman-Based Filters

Kalman-based filters are the most commonly used DA methods in hydrometeorol-
ogy. This is a result of the combination of ease of application and effectiveness of the
technique. Of particular focus have been ensemble applications of the Kalman filter.
In the atmospheric and land surface DA communities alike, the EnKF has been
widely applied. Although variational methods would be advantageous from an
efficiency perspective, the development of an adjoint model can be challenging for
highly nonlinear models, making ensemble methods attractive. Alternatively, PFs
are highly robust estimators of the posterior distribution, but are subject to failure
in small ensemble sizes. This makes the EnKF a useful tool in large dimensional
problems. For atmospheric DA, applications typically involve observations of wind
speed, wind direction, temperature, and humidity from radiosondes and satellites
(Annan et al. 2005; Houtekamer and Mitchell 1998; Lorenc 2003). For land surface
and hydrologic DA, the observations and applications are much more varied.
Applications include soil moisture (e.g., Kumar et al. 2014; Reichle et al. 2002;
De Lannoy et al. 2007; De Rosnay et al. 2013), passive microwave brightness
temperature (Crow and Wood 2003; DeChant and Moradkhani 2011b; Durand and
Margulis 2008), snow cover fraction (Andreadis and Lettenmaier 2006; Slater and
Clark 2005), snow water equivalent (De Lannoy et al. 2012; Leisenring and
Moradkhani 2011; Liu et al. 2012), streamflow (Clark et al. 2008; Moradkhani
et al. 2005a; Noh et al. 2011; Samuel et al. 2014), and consideration of non-
stationarity in dynamic catchments (Pathiraja et al. 2016a, b).

4.3 Particle Filters

The DA community has been slow to adopt the PF methods, primarily due to the
understanding that PFs are overly demanding computationally (Snyder et al. 2008).
The “Curse of Dimensionality” has been termed to designate the exponential
scaling of necessary sample size for estimating the posterior with increasing degrees
of freedom in the system (Bengtsson et al. 2008). Although this criticism has shown
that certain PFs are subject to failure in large-scale systems, PFs are gaining popu-
larity in many applications. Due to improvements in filter efficiency, and the identi-
fication of applicable problems, the PF has become a viable method for DA
(Moradkhani et al. 2012). With the introduction of PF to hydrologic community,
the PFs have gained a considerable attention in a variety of land surface applications
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by assimilating variables including streamflow (e.g., Moradkhani et al. 2005b, 2012;
Weerts and El Serafy 2006; DeChant and Moradkhani 2011a; Yan and Moradkhani
2016; Abbaszadeh et al. 2018), soil moisture (Montzka et al. 2011, 2013; Guingla
et al. 2012; Yan et al. 2015, 2017), snow water equivalent (Leisenring and
Moradkhani 2011; DeChant and Moradkhani 2011b, 2012), sediment load
(Leisenring and Moradkhani 2012), flood inundation (Matgen et al. 2011;
Plaza et al. 2012), and multi-modeling (Parrish et al. 2012; DeChant and
Moradkhani 2014a).

4.4 Parameter Inference and Model Structures

In addition to the methods described above, there are several DA methods in
hydrology and from other branches of scientific literature that focus on more holistic
treatments of the problem of reducing uncertainties in dynamical systems models by
probabilistically conditioning model states on observations. Perhaps most notably,
there have been several applications of various methods that simultaneously estimate
model parameters and model states (e.g., Moradkhani et al. 2005a, b, 2012; DeChant
and Moradkhani 2012; Smith et al. 2013; Ruiz and Pulido 2015; Gharamti et al.
2017; Abbaszadeh et al. 2018).

The sequential estimation of temporally varying model parameters through DA
can also be used to improve hydrologic forecasting in systems with changing
catchment properties (such as land use or land cover change) (Pathiraja et al.
2016a, b). Such a time-varying parameter framework can be useful whenever the
catchment system is undergoing change in real time, that may be unknown to the
modeler. Model parameters are sequentially updated in response to signals of change
in observations, such that the model is improved as soon as an information about a
change becomes available. This can be done through a joint state-parameter estima-
tion DA framework with a careful choice on the parameter evolution model, i.e., the
method for generating prior distributions of the parameters at each time (Pathiraja
et al. 2016b). Additionally, the choice of the model structure itself is critical in
ensuring that such a time-varying parameter framework can be useful under chang-
ing conditions. Specifically, the model structure must be sufficiently flexible so that
it can represent the range of possible future changes to catchment conditions
(Pathiraja et al. 2018b). In other words, the entire feasible parameter space and
forcings must produce model states and outputs that capture all possible future
outcomes.

Additionally, state-updating DA has been used to help understand complex model
error distributions and to update model structures (Bulygina and Gupta 2009, 2010,
2011; Wilkinson et al. 2011; Nearing and Gupta 2015; Nearing et al. 2013). It is
often difficult to use observation data to directly infer structural errors in complex
systems models, because we often do not have observations related to all of the
interacting biogeophysical processes in a watershed or other hydrologic system.
Careful applications of DA can be used to update the internal states of the model
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given whatever partial observations are available, so long as the uncertainty due to
the model structure is appropriately quantified (Pathiraja et al. 2018a).

5 Conclusion

DA techniques are valuable tools for estimating initial conditions for hydrometeo-
rological forecasts. Due to the uncertainties in initial conditions (DeChant and
Moradkhani 2011a, 2014a), it is necessary to quantify and reduce these uncer-
tainties, and DA is widely seen as the forefront of the science in performing this
task. With developments in DA science in the last two decades, several assimilation
techniques are becoming standard tools for quantifying and reducing model uncer-
tainty. These tools have seen wide ranging applications, particularly in simulating
atmospheric and land surface processes.

Although DA is becoming a standard set of tools, the variety of techniques
requires significant thought in determining the proper technique for a given appli-
cation. If the underlying system is linear, or nearly linear, the Kalman filter will likely
be chosen as it will be an optimal filter. Alternatively, in highly nonlinear problems,
which are the norm in hydrometeorology, the choice in technique becomes much
more difficult. Choosing between deterministic and ensemble techniques is a chal-
lenge. Although generalized techniques (i.e., PFs) are preferred from a theoretical
perspective, they require the ability to execute the model enough times to sample
from the posterior. Assuming that a large number of simulations are possible, it is
likely that the PF will be preferred. If the model is highly computationally demand-
ing, this may be infeasible, and therefore it may be impossible to fully represent the
posterior distribution. In this scenario, the EnKF, and similar methods, may be used
to retrieve the expected value with smaller ensemble size. Another option is varia-
tional DA, which may also retrieve the expected value. Variational methods bring the
challenge of requiring an adjoint model, but are very competitive with the EnKF.
Overall, each DA technique will have benefits and drawbacks, which often makes
the choice of technique situation specific.
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