
1. Introduction
Snow is essential for water supply in mountain environments. In this context, numerical models are useful not 
only for understanding the physical processes that determine snow accumulation and melting (Clark et al., 2017; 
Lehning et al., 2006; Liston & Sturm, 1998) but also to make predictions that can be used for decision making 
(Schneider & Molotch,  2016), especially considering ongoing and future changes in climatic conditions 
(IPCC, 2021). Indeed, climate change is expected to impact mountain snowpack in many mountain regions of the 
world (Barnett et al., 2005), such as the Colorado Headwaters of USA (Rasmussen et al., 2014), the Appalachian 

Abstract The implementation of elevation bands is a popular strategy to account for topographic 
heterogeneities in snowpack modeling. Here, we characterize the implications of subgrid temperature 
distribution along elevation bands through numerical experiments in nine mountainous basins of the Andes 
Cordillera, central Chile. Specifically, we analyze outputs from the Variable Infiltration Capacity model with 
six different setups: no elevation bands (i.e., flat grid cells; benchmark model) and elevation bands with vertical 
discretizations of 1,000, 750, 500, 200, and 100 m. The analyses are conducted in a wet period (April/1982–
March/1987), dry period (April/2010–March/2015) and a climatological period (April/1982–March/2015). 
The results show that adding elevation bands yields little variations in simulated monthly or daily streamflow; 
however, there are important effects on the partitioning of precipitation between snowfall and rainfall, 
snowmelt, sublimation, and the spatial variability in 1 September snow water equivalent (SWE), suggesting 
a form of model-structure equifinality. Vertical temperature distribution generally yields less basin-averaged 
snowmelt and more (less) catchment-scale sublimation across water-limited (energy-limited) basins. Further, 
the implications of subgrid temperature distribution vary with the analysis period: fluxes are more affected 
during the wet period, while variations in 1 September SWE are more noticeable during the dry period. In 
general, the effects of topographic temperature distribution are reduced with increasing vertical discretization 
and can differ among catchments. Finally, the grid cells that yield the largest sensitivities to vertical 
discretization have relatively more humid conditions, large intra-annual variations in the water/energy budget, 
lower mean altitude, elevation ranges >1,000 m, and steep slopes (>15°).

Plain Language Summary Spatially distributed computer-based models are widely used to make 
predictions on water availability. In mountainous areas, it is common to distribute air temperature using 
elevation bands in modeling units with complex topography; however, the effects of the selected number 
of bands and/or elevation range on model results have not been assessed in detail. We use a suite of diverse 
Andean basins to document how the vertical distribution of air temperature along elevation bands affects the 
simulation of the water cycle at different spatial scales. Our results show that, although the incorporation of 
air temperature variability has little effects on the simulation of discharge at the basin outlets, similar results 
can arise from different spatial distributions of rainfall, snowfall, snowmelt, sublimation, and maximum annual 
accumulation. The implications of adding elevation bands may vary with the climate conditions (i.e., wet/dry) 
of the analysis period. Finally, we identify climate seasonality, mean altitude, elevation range, and slope as the 
key variables that should be examined carefully to decide where (i.e., which grid cells) the choice of elevation 
band configuration should be made with more caution.
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Mountains (Demaria et al., 2016), the eastern Himalayas of Nepal (Bhatta et al., 2019), the extratropical Andes 
(Vicuña et al., 2021), and the Spanish Pyrenees (López-Moreno et al., 2013). Hence, improving the realism of 
snow models is critical for reliable estimates of snow water equivalent (SWE) under current and future climatic 
conditions.

Because water resources applications in mountainous areas require model simulations at the watershed or regional 
scales (Mendoza et al., 2020), spatial discretization strategies are needed to address heterogeneities within the 
domain of interest. Common choices involve the delineation of grid cells (e.g., Beck et al., 2020; Liang et al., 1996), 
subcatchments (e.g., Bandaragoda et al., 2004; Tesfa et al., 2014) and, more generally, hydrologic response units 
(e.g., Markstrom et al., 2008; Newman et al., 2014) as spatial modeling units. Subunit variability can also be 
incorporated in hydrologic modeling to improve the spatial representation of states and fluxes within each mode-
ling element (e.g., Bajracharya et al., 2018; Hartman et al., 1999; L. Huang et al., 2022; Pradhanang et al., 2011) 
and to reduce the model sensitivity to changes in the spatial scale (Haddeland et al., 2002). Existing approaches 
include (a) “representative hillslopes” (e.g., Hazenberg et al., 2015; Swenson et al., 2019), which consists on 
identifying, for each modeling unit, hillslopes with a “typical” structure, dividing these into columns to represent 
lateral processes and (b) subgrid elevation bands (also referred to as “snow bands”; Hamman et al., 2018; Yeste 
et al., 2020), in which high-resolution topographic data are used to compute a hypsometric curve, and then discre-
tize each modeling unit into elevation classes (e.g., Nijssen et al., 1997; Tesfa & Leung, 2017), where water and 
energy balances can be estimated.

Despite their simplicity, subgrid elevation bands are widely used in hydrologic and land surface modeling because 
they enable the incorporation of orographic effects on precipitation and temperature (Abdulla et  al.,  1996), 
improving the timing of simulated snowmelt (e.g., Habets et  al.,  1999; Vicuña et  al.,  2011) and streamflow 
dynamics (Abbaspour et al., 2007). However, the literature provides limited guidance for their implementation, 
based on the effects on simulated hydrological variables (Grusson et  al.,  2015). Indeed, many studies using 
elevation bands only provide information on the number of snow bands (e.g., Abdulla et al., 1996; Andreadis & 
Lettenmaier, 2006; Bajracharya et al., 2018; Li et al., 2017; Newman et al., 2017) or the vertical discretization 
(e.g., Arora et al., 2008; Fontaine et al., 2002; Haddeland et al., 2002), without further details and/or justification 
of their choice.

Only a few studies have examined the effects of elevation band configurations on hydrologic model simulations. 
Some of these have shown that a subunit discretization with elevation bands can yield similar domain-averaged 
SWE than that obtained with a gridded distributed model (Arola & Lettenmaier, 1996; Essery, 2003). Incor-
porating elevation bands may reduce domain-averaged peak SWE, decrease melt rates, and extend the snow 
cover duration in comparison to spatially lumped configurations (Clark et al., 2011; Essery, 2003). Such effects 
propagate toward simulated evapotranspiration (ET), with higher values when elevation bands are used (Grusson 
et al., 2015; Haddeland et al., 2002), and also on runoff timing (Haddeland et al., 2002; Hartman et al., 1999). The 
vertical distribution of precipitation and air temperature can also yield improvements in streamflow compared 
to the case without bands (Grusson et al., 2015), with marginal benefits beyond a certain number of elevation 
classes (Bhatta et al., 2019; Pradhanang et al., 2011).

To the best of our knowledge, no previous studies have systematically assessed the effects of subgrid elevation 
bands (specifically, the choice of vertical discretization) on hydrological portrayals in mountain environments, 
isolating the impact of temperature variability. Despite being very simple, distributing only air temperature with 
elevation within each modeling unit is a widely used strategy in hydrological modeling (e.g., Bohn et al., 2010; 
Clark et al., 2011; Hirabayashi et al., 2010; Kang et al., 2014; Minder et al., 2010; Nijssen et al., 2001; Younas 
et al., 2017), since it enables to incorporate the effects of subunit topographic variability on freezing levels and, 
therefore, on the partitioning of precipitation into rainfall and snowfall, which affects simulated hydrological 
states and fluxes. Hence, this paper addresses the following research questions:

1.  How does subgrid temperature distribution along elevation bands affect simulated streamflow, catchment-scale 
water fluxes, and SWE near the date of maximum accumulation?

2.  What are the implications of adding elevation bands on simulated SWE at the grid cell scale?
3.  What attributes characterize those grid cells where representing subgrid temperature variability makes a large 

difference in simulated SWE?
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To seek for answers, we configure the Variable Infiltration Capacity (VIC; Liang et  al.,  1994, 1996) macro-
scale hydrological model in nine basins located along the western slopes of the extratropical Chilean Andes. 
We compare simulation results from a calibrated model with flat grid cells (benchmark) against alternative 
model  configurations considering vertical discretizations defined every 1,000, 750, 500, 200, and 100 m. In the 
latter configurations, only air temperature is distributed with elevation, while precipitation rates and the rest of 
meteorological forcings are assumed to be spatially constant in each grid cell. We select the VIC model given: 
(a) the global interest of users (Addor & Melsen, 2019; Sepúlveda et al., 2022), especially for snow hydrology 
studies (Andreadis et al., 2009; Chen et al., 2014; Houle et al., 2017; Islam et al., 2017; Li et al., 2017; Livneh 
& Badger, 2020; Marshall et al., 2019; Mote et al., 2005; Xiao et al., 2021), and (b) past and ongoing efforts to 
characterize the current and future hydrology across continental Chile (DGA, 2017; Vásquez et al., 2021; Vicuña 
et  al.,  2021). To disentangle the possible role of climatic conditions on intermodel differences, and partially 
motivated by the negative effects of the ongoing megadrought in central Chile (Garreaud et al., 2017, 2019), we 
conduct our assessments for a climatological period (April/1982 to March/2015), a wet period (April/1982 to 
March/1987), and a dry period (April/2010 to March/2015). Overall, the results presented here shed light on the 
state variables and fluxes that are most affected, and the type of modeling unit where it is critical to explicitly 
incorporate subgrid temperature distributions.

2. Study Domain
We conduct our analyses in nine mountainous basins located along the western slopes of the extra-tropical Andes 
Cordillera (32.5°–37°S, 70°–71.5°W, Figure 1). These basins were selected based on the following criteria: (a) 
a near-natural flow regime defined as a maximum threshold value of 5% for the relationship between annual 
volume of water assigned for permanent consumptive use and the mean annual flow (Table 3 in Alvarez-Garreton 
et al., 2018), (b) absence of large reservoirs within each catchment, and (c) small (<2%) glacierized area. Further-
more, these catchments span a wide range of hydroclimatic conditions (Table 1), from high aridity index (2.9) 
and relatively low mean annual precipitation (486 mm; Estero Pocuro en el Sifón) to low aridity index (0.7) and 
high mean annual precipitation (1,929 mm; Río Ñuble en La Punilla). The southern basins (35°–37°S in Figure 1) 
also have larger vegetation coverage (just forest fraction coverage shown) due to the lower aridity and increased 
precipitation, providing higher runoff ratios.

Despite snow being a key component of the water cycle in all case study basins, these encompass different hydro-
logical regimes. This is illustrated in Figure 1 (left and right panels), including catchment-scale precipitation and 
monthly averages of hydrologic variables simulated with the VIC model. Three dominant regimes can be seen: 
(a) rainfall-driven (Pocuro), with peak discharge values corresponding to months where precipitation events typi-
cally occur (April–September); (b) snow-dominated (Las Leñas), with peak discharge due to spring and summer 
snowmelt (October–March); and (c) mixed regimes characterized by two peaks in mean monthly runoff. The 
latter hydrological regimes can be further stratified into (a) pluvio-nival, where rainfall is the main control for 
runoff production (Claro), (b) fully mixed, with comparable rainfall and snowmelt-driven peak monthly runoff 
(Ñuble), or (c) nivo-pluvial, with snowmelt dominating catchment-scale hydrology (Arrayán, Mapocho, Colo-
rado, Palos, and Melado). The reader is referred to Baez-Villanueva et al. (2021) for further details on the classi-
fication criteria used here for hydrological regimes. Interestingly, there are catchments where the seasonal cycles 
of soil moisture and runoff are similar, regardless of their hydrological regimes (Las Leñas, Colorado, Palos, and 
Melado), and basins where these cycles are different (Arrayán, Mapocho, Claro, and Ñuble).

3. Data and Methods
3.1. Meteorological Forcings and Streamflow Data

Daily precipitation and temperature extremes are obtained from an updated version of the CR2MET data set 
(Boisier et  al.,  2018), which has a horizontal resolution of 0.05° × 0.05°, covering continental Chile for the 
1979–2016 period. The data set for precipitation was generated with a statistical postprocessing technique 
that uses topographic descriptors and large-scale climatic variables (water vapor and moisture fluxes) from 
ERA-Interim (Dee et al., 2011) and ERA5 (C3S and Copernicus Climate Change Service [C3S], 2017) as predic-
tors and observed daily precipitation from gauge stations as predictand. For the case of maximum and mini-
mum daily temperature, additional variables from MODIS land surface products were added as predictors. Daily 
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precipitation and temperature time series are disaggregated into 3-hourly time steps using the subdaily distribu-
tion provided by ERA-Interim. Relative humidity and wind speed are derived for the same horizontal resolution 
grid by spatially interpolating a blend between ERA-Interim and ERA5 data sets, because the latter was not 
available for the entire study period (1985–2015) at the moment of data acquisition (early 2018). Despite the short 
temporal coverage from ERA5 (2010–2016), the updated reanalysis information was included for a better spatial 
representation of the mega drought (Garreaud et al., 2019; Vicuña et al., 2021), and possible temporal inconsist-
encies with Era-Interim were addressed through linear regression models between daily variables obtained from 
both products (not shown). Shortwave and longwave radiation are estimated at each grid cell using the empirical 
algorithms in the Mountain Microclimate Simulation Model (MTCLIM; Bohn et al., 2013; Hungerford, 1989), 
which is implemented in the VIC model.

Streamflow data are obtained from stations maintained by the Chilean Water Directorate (DGA, available from 
the CR 2 Climate Explorer https://www.cr2.cl/datos-de-caudales/).

3.2. Hydrological Model

VIC is a macroscale, process-based, and semidistributed hydrologic model. Our VIC modeling unit is the grid 
cell, which is defined here to match the meteorological forcing data resolution (i.e., 0.05° × 0.05°). Interception is 
simulated with a one-layer canopy reservoir that is emptied by canopy evaporation, transpiration, or throughfall, 

Figure 1. Location and elevation of the nine case study basins (center panel), along with seasonal cycles with precipitation and simulated water balance variables 
(left and right panels) during a climatological period (April/1982 to March/2015) for the nine case study basins: (a) Estero Pocuro en el Sifón, (b) Estero Arrayán en 
la Montosa, (c) Río Mapocho en Los Almendros, (d) Río Las Leñas antes junta Río Cachapoal, (e) Río Claro en El Valle, (f) Río Colorado en junta con Palos, (g) Río 
Palos en junta con Colorado, (h) Río Melado en el Salto, and (i) Río Ñuble en La Punilla. For modeled soil moisture, we subtract the lowest mean monthly value of the 
year so that the plotted values show only the active range of variation.
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which occurs when additional precipitation exceeds the storage capacity of the canopy. Each grid cell has three 
soil layers: the two upper layers represent the interaction between soil moisture and vegetation, while the bottom 
layer simulates baseflow processes. It should be noted that VIC does not represent terrain-driven lateral flow nor 
considers lateral exchange of fluxes between grid cells, which implies that water can only enter a grid cell from 
the atmosphere. A two-layer energy balance model is used to simulate snowpack dynamics: the upper layer solves 
the energy balance between the atmosphere and the snowpack, and the bottom layer stores the excess snow mass 
from the upper layer (Andreadis et al., 2009; Cherkauer & Lettenmaier, 2003).

In VIC, different vegetation classes are allowed through a mosaic approach, where water and energy balance 
terms are computed independently for each land cover class. Subgrid variability in topography can be incorpo-
rated through elevation bands, using their mean elevations to lapse grid-averaged values of temperature and/or 
precipitation. In such case, the model assumes that the same soil type, vegetation classes, and fractional areas 
that were originally assigned to flat grid cells are preserved for each band. Hence, the snow model is run at each 
land cover/elevation tile separately, and the simulated water and energy states and fluxes are spatially averaged to 
obtain grid cell or elevation band estimates (Andreadis et al., 2009). Although increasing the number of elevation 
bands increases the computational cost, it can potentially improve the spatial representation of temperature and 
hydrologic model simulations.

Figure 2 illustrates how VIC represents topographic variability through elevation bands, and how these can be 
configured. It can be noted that the model lumps all areas within the same elevation range into one band and 
hence does not explicitly consider other topographic features such as slope or aspect in process representations. 
Therefore, subgrid topographic heterogeneities in each modeling unit are approximated by hypsometric curves, 
whose accuracy depends on the vertical discretization selected. This implies that, if fixed elevation band widths 
are used, very similar curves can be achieved beyond a specific vertical discretization (see example in Figure S3 
in Supporting Information S1).

3.3. Experimental Setup

3.3.1. Benchmark Model

To assess the effects of subgrid temperature distribution along elevation bands on simulated states and fluxes, we 
compare VIC simulations with different elevation band implementations against a benchmark model based on 
the work by Vásquez et al. (2021). In such implementation, a priori distributions for vegetation parameters were 

Catchment
Latitude a 

(°)
Longitude a 

(°)
Area 
(km 2)

Mean basin elevation and 
range (m a.s.l.)

Mean 
slope 

(°)

Mean annual 
precipitation 
(mm/year)

Mean 
annual 

AI 
(PET/P)

Mean 
annual 
runoff 
(mm/
year)

Mean 
annual 
runoff 
ratio 
(Q/P)

Forest 
fraction 

(%)

Estero Pocuro en el Sifón −32.92 −70.54 181 2,107 (1,002–3,695) 22.1 486 2.9 126 0.26 0.2

Estero Arrayán en la Montosa −33.33 −70.46 216 2,469 (969–3,833) 24.2 615 2.4 233 0.38 0.4

Río Mapocho en Los Almendros −33.37 −70.45 638 2,936 (970–5,428) 25.2 503 2.5 310 0.62 0.4

Río Las Leñas antes junta Río 
Cachapoal

−34.36 −70.31 172 2,865 (1,279–4,574) 30.4 1,266 1.1 752 0.59 0.2

Río Claro en El Valle −34.69 −70.87 349 1,596 (535–3,334) 22.2 1,422 0.9 862 0.61 27.1

Río Colorado en junta con Palos −35.28 −71.00 877 2,253 (594–4,073) 19.6 1,802 0.8 1,387 0.77 11.5

Río Palos en junta con Colorado −35.27 −71.02 490 2,013 (595–4,037) 19.9 1,891 0.7 1,689 0.89 16.7

Río Melado en el Salto −35.88 −71.02 2,127 2,010 (698–3,619) 23.5 1,766 0.8 1,232 0.70 1.9

Río Ñuble en La Punilla −36.66 −71.32 1,254 1,711 (566–2,617) 23.9 1,929 0.7 1,718 0.89 13.6

Note. Hydrologic variables correspond to the period April/1979 to March/2015. Mean slope and forest fraction were obtained from Alvarez-Garreton et al. (2018). AI, 
PET, P, and Q denote aridity index, mean annual potential evapotranspiration, precipitation, and total runoff, respectively.
 aThese coordinates are associated with the catchment outlet.

Table 1 
List of Catchment Attributes
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obtained using the land cover classes described in Zhao et al. (2016); spatial information on hydraulic conductiv-
ity values was obtained from the Natural Resources Data Center (CIREN for its acronym in Spanish) and all grid 
cells were considered flat (i.e., no elevation bands are defined). In our setup, all model simulations are conducted 
in full energy balance mode—dismissing frozen soil processes—and no horizontal runoff routing is performed 
since, for the contributing catchment areas examined here, routing effects are not expected to be important at 
the daily or longer time scales (Beck et al., 2020; Gericke & Smithers, 2014). Therefore, modeled streamflow is 
obtained from basin-averaged runoff.

The parameters for the benchmark model (Table 2) are calibrated using the Shuffled Complex Evolution global 
optimization algorithm (Duan et al., 1993) and streamflow data observed at each catchment outlet (see Section 3.1). 
All soil parameters are considered spatially constant within each catchment (i.e., no parameter regularization was 
performed). The objective function is the Kling-Gupta efficiency (KGE) metric (Gupta et al., 2009):

KGE = 1 −

√

(𝑟𝑟 − 1)
2
+ (𝛼𝛼 − 1)

2
+ (𝛽𝛽 − 1)

2 (1)

Figure 2. Spatial representation of subgrid topographic variability in VIC. The terrain heterogeneities obtained from 30-m 
resolution DEMs in each grid box (a) are approximated through elevation bands (b), where A, P, T, and Z denote area, average 
precipitation, air temperature, and terrain elevation for each band, respectively.

Parameter Description Units

Calibration range

Min Max

infilt Variable infiltration curve parameter (binfilt) – 0.001 0.162

Ds Fraction of Dsmax where nonlinear baseflow begins – 0.312 0.806

Dsmax Maximum velocity of baseflow mm/day 83.2 183.2

Ws Fraction of maximum soil moisture where nonlinear baseflow occurs – 0.108 0.900

C Exponent used in baseflow curve – 3.0 10.9

depth1 Thickness of each soil moisture layer m 0.014 2.169

depth2 m 0.418 5.281

depth3 m 0.173 3.753

Ksat Saturated hydraulic conductivity mm/day 1,499 2,565

Newalb Fresh snow albedo 0.725 0.950

Albacum a Snow albedo curve parameter – 0.725 0.950

Albthaw a Snow albedo curve parameter – 0.883 0.920

Train Minimum temperature for rainfall occurrence °C −2.735 3.446

rsnow Snow surface roughness m 1.24E−5 0.022

Table 2 
List of VIC Parameters and Limits Considered for Calibration
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where 𝐴𝐴 𝐴𝐴 is the Pearson correlation coefficient between simulated and observed runoff; 𝐴𝐴 𝐴𝐴 is the ratio of the standard 
deviation of simulated values to the standard deviation of observed values; and 𝐴𝐴 𝐴𝐴 is the ratio between the mean of 
the simulated values to the mean of observations.

The calibration process considers streamflow data for at least 4 years within the period April/1990 to March/2010, 
and if the minimum record length is not satisfied, the periods April/1985 to March/1990 and April/2010 to 
March/2015 are considered. All model simulations are conducted at 3-hourly time steps for the period Janu-
ary/1979 to December/2015, using the first 3 years to initialize model states. If two or more parameter sets 
yield the same KGE values, we select the one that maximizes the Nash-Sutcliffe efficiency (NSE; Nash & 
Sutcliffe, 1970). We do not use any other data sets than streamflow to assess model performance, and the same 
parameter sets found in this step are used for the modeling experiments with subgrid elevation bands described 
in Section 3.3.2.

3.3.2. Alternative Model Configurations

For each basin, we create five alternative model configurations by spatially disaggregating grid cells into eleva-
tion bands with fixed intervals. We use the following vertical discretizations because they span a reasonable range 
of options considered in previous studies: 1,000 m (e.g., Tesfa & Leung, 2017 in high-elevation areas), 500 m 
(e.g., M. Huang et al., 2013; Nijssen et al., 1997), 200 m (e.g., Haddeland et al., 2002; Hartman et al., 1999), and 
100 m (e.g., Clark et al., 2011; Ragettli et al., 2014). Additionally, we include a 750-m vertical discretization to 
assess an intermediate option between 500- and 1,000-m configurations. To delineate elevation bands, we use 
the 30-m Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global Digital Elevation Model 
(GDEM) version 2 (Tachikawa et al., 2011). To harmonize all these spatial configurations, we consider 0 m a.s.l. 
as the starting point of elevation bands for all catchments, instead of the lowest point of each catchment’s grid 
cell; hence, the same elevation classes are used to discretize all grid cells, regardless of their individual elevation 
ranges (similar to the global method used by Tesfa & Leung, 2017). We choose this type of configuration to facil-
itate future development and comparisons of SWE simulations between grid cells and elevation bands located in 
different basins across continental Chile. For the lowest and the highest elevation bands in each grid cell, we set a 
minimum fractional area of 5% (with respect to the grid cell’s area); if such a condition is not met, that band (i.e., 
the lowest and/or the highest) is merged to the closest one. This implies that peak elevations may be excluded 
from our representation of subgrid variability.

In all alternative model configurations, precipitation rates are assumed to be constant with elevation to focus our 
attention on the potential effects of subgrid temperature variability on the partitioning of precipitation between 
rainfall and snowfall, and how these propagate to spatially distributed estimates of hydrological states and fluxes. 
VIC lapses grid-averaged air temperature to each elevation band, assigning the same incoming shortwave and 
longwave radiation, air pressure, relative humidity, and wind speed to all the bands that belong to the same grid 
cell.

In VIC, snowfall (𝐴𝐴 𝐴𝐴s ) at each elevation band is computed following a temperature threshold approach (Andreadis 
et al., 2009):

𝑃𝑃s =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑃 𝑃𝑃a ≤ 𝑃𝑃min

𝑃𝑃max − 𝑃𝑃a

𝑃𝑃max − 𝑃𝑃min

× 𝑃𝑃 𝑃𝑃min < 𝑃𝑃a < 𝑃𝑃max

0 𝑃𝑃a ≥ 𝑃𝑃max

 (2)

where 𝐴𝐴 𝐴𝐴  is total precipitation, 𝐴𝐴 𝐴𝐴a is air temperature, and 𝐴𝐴 𝐴𝐴min and 𝐴𝐴 𝐴𝐴max are parameters.

In this work, we use local air temperature lapse rates. To obtain these, we cluster our basins into three groups 
(basins 1–3, 4–7, and 8–9 in Figure 1) based on spatial proximity and compute lapse rates using the mean annual 
temperatures obtained from the grid cells belonging to each cluster. Importantly, these lapse rates are not affected 
by the configuration of elevation bands, since they are computed from a meteorological product (CR2MET) that 
assumes flat grid cells. All simulations with elevation bands are performed in full energy balance mode, without 
horizontal runoff routing. Finally, we decide to use the same VIC parameters found in Section 3.3.2 to isolate the 
implications of subgrid air temperature distributions from potential compensatory effects that could arise from 
parameter calibration (e.g., Elsner et al., 2014).
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3.3.3. Analysis Framework

We select three continuous periods for analysis based on observed catchment-scale precipitation and runoff: (i) a 
5-year wet period, (ii) a 5-year dry period, and (iii) a climatological period that spans April/1982 to March/2015, 
including (i) and (ii). The choice of wet and dry periods is based upon visual inspection of annual precipitation 
time series and the calculation of 5-year moving averages of precipitation and runoff. The wet period (April/1982 
to March/1987) begins after a long epoch with a persistent negative trend in annual precipitation across semi-
arid central Chile (30°–35°S) from the beginning of the twentieth century until the mid-1970s (Quintana & 
Aceituno, 2012). The dry period (April/2010 to March/2015) covers the first half of the megadrought, when 
severe annual rainfall deficits (25%–45%) prevailed in central Chile (30°–38°S), diminishing the Andean snow-
pack and resulting in amplified declines of river flow (up to 90%), reservoir volumes, and groundwater levels 
(Garreaud et al., 2017).

First, we assess the capability of the benchmark model and each alternative model configuration (i.e., six model 
configurations in total) to reproduce observed daily runoff, flow duration curves, and runoff seasonality. In 
this analysis, flow duration curves and runoff seasonality graphs are calculated for the climatological period. 
We compute the KGE and NSE for modeled runoff at daily and monthly time steps. Additionally, we examine 
the percent bias for the midsegment slope (%BiasFMS)—which quantifies errors in representing the flashiness 
(i.e., variability) of runoff—and the low-segment volume (%BiasFLV)—which quantifies errors in baseflow 
volumes—of the flow duration curves (Yilmaz et al., 2008):

%BiasFMS =

[

log(QS�1) − log(QS�2)
]

−
[

log(QO�1) − log(QO�2)
]

[

log(QO�1) − log(QO�2)
] × 100 (3)

%BiasFLV = −1 ×
∑�

�=1

[

log(QS�) − log(QS�)
]

−
∑�

�=1

[

log(QO�) − log(QO�)
]

∑�
�=1

[

log(QO�) − log(QO�)
]

× 100 (4)

where QS is the simulated flow (m 3/s), QO is the observed flow (m 3/s), m1 and m2 are the lowest and highest 
flow exceedance probabilities (0.2 and 0.7, respectively), and L is the index of the minimum flow.

Then, we compute percent changes between alternative model configurations and the benchmark model results to 
quantify the effects of adding elevation bands on simulated input/output fluxes and SWE. Specifically, we exam-
ine mean annual rainfall, snowfall, runoff, sublimation, snowmelt, and ET, as well as 1 September SWE (SWE 
09/01 hereafter) at both catchment and grid cell (i.e., 0.05°) scales. We decide to use SWE 09/01 (instead of 
other dates) because the snow accumulation season ends (on average) by 1 September along the semiarid Chilean 
Andes. Accordingly, this variable is used as predictand for statistical models that provide operational seasonal 
streamflow forecasts in central Chile (Mendoza et al., 2014).

To analyze in detail the effects of snow bands with different vertical discretizations on simulated daily SWE, 
albedo, cumulative sublimation, and cumulative snowmelt, we select three grid cells with different locations, 
mean elevations, and elevation ranges within the Mapocho River basin (Figure  3). These comparisons are 
conducted for water years (WYs) selected from our wet and dry periods to examine the interplay between hydro-
climatic conditions and the configuration of elevations bands. We choose the Mapocho River basin for detailed 
analyses because (a) it has the largest elevation range (>4,400 m) among our case study basins and, therefore, 
topography is expected to play a key role on hydrology; (b) it has a mixed runoff regime dominated by snowmelt, 
which makes it an interesting case study to analyze, and (c) it is relevant for water resources planning, since it 
provides freshwater for populated districts in Santiago de Chile (Alvarez-Garreton et al., 2022).

To identify the most sensitive grid cells and model configurations in terms of snow accumulation, we compare 
SWE 09/01 (i.e., SWE at the beginning of snowmelt season) obtained from the 200-m configuration and the 
benchmark, for all WYs (i.e., 33) in the climatological period. We select the 200-m configuration because stream-
flow performance metrics do not improve considerably when moving from 200- to the 100-m discretization (see 
details in Section 4.2). We define a grid cell as sensitive if differences in simulated SWE 09/01 with respect to 
the benchmark model are larger than 10% for >50% of WYs. To seek for controls on different grid cell behav-
ior, we  compare the cumulative distribution functions (CDFs) of topographic and climatic attributes (Table 3) 
obtained from sensitive versus insensitive grid cells. Among the climate descriptors, we include the averaged 
storm temperature during the accumulation season (Tstorm)—obtained as the mean air temperature for daily 
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precipitation events throughout April–September—and mean Spring temperature (Tspring), obtained as the aver-
age temperature over October–December. To compute Tstorm, we use days when daily precipitation is larger than 
an arbitrary threshold of 5 mm to avoid artifacts of the gridded product (though the analysis was repeated using  a 
0 mm threshold, with very similar results). We select Tstorm and Tspring because these are relevant descriptors for 
liquid/solid precipitation fraction and snowmelt rates, respectively.

We also contrast CDFs of state variables and fluxes simulated with the 200-m model configuration in sensitive 
versus insensitive grid cells, including rainfall, snowfall, ET, runoff, snowmelt, and maximum SWE. In all these 
comparisons, we perform Kolmogorov-Smirnov tests and report associated p-values.

4. Results
4.1. Model Evaluation Against Observed Streamflow

Figure 4 compares modeled daily runoff time series against observations for WY 2009/2010 (as an example), as 
well as mean monthly runoff and daily flow duration curves for the climatological period. The results show small 
differences between the benchmark model (i.e., no elevation bands) and the alternative model configurations. 
Adding elevation bands provides a maximum KGE increment of 0.03 for daily streamflow throughout all basins 
during WY 2009/2010 (see Table 4). All model configurations underestimate daily peak flows during winter 
(e.g., Figures 4f.1 and 4h.1) and fail to capture streamflow recessions, providing slower (e.g., see Figure 4f.1 
between June and August) or faster (e.g., see Figure  4i.1 between July and August) responses compared to 
observed runoff. In the Palos River basin (Figure 4g.1), there are notable discrepancies in December arising 
from different vertical discretizations. Figure 4 also shows that all model configurations capture catchment-scale 
runoff seasonality reasonably well, excepting Estero Arrayán (Figure 4b.2), where rainfall contributions to runoff 
are underestimated, or the Las Leñas basin (Figure 4d.2), where modeled maximum monthly values are delayed. 
In some cases, observed monthly values are overestimated (e.g., Pocuro basin, Figure 4a.2) or underestimated 
(e.g., December–March at the Ñuble basin, Figure 4i.2; near August, Figure 4g.2).

The results for the percent bias in the midsegment slope of the flow duration curves (%BiasFMS, Table 5) show 
that all model simulations yield flashier responses compared to observed runoff in all basins. When adding 
elevation bands, %BiasFMS increases in the Pocuro and Arrayán basins compared to the benchmark model, with 
maximum variations of 2.1% and 3.7% using the 1,000-m configuration, respectively, and these changes do not 
necessarily correlate with increased vertical resolution. However, elevation bands provide improvements (i.e., 
decrease in %BiasFMS) in the rest of the basins, ranging from 0.3% for the Claro River basin (200-m configura-
tion) to 8.3% for Las Leñas River basin (200-m configuration).

The incorporation of elevation bands yields reductions in the percent bias in FDC low-segment volume (%Bias-
FLV, Table 5) in all catchments except the Mapocho River basin. As with %BiasFMS, improvements in %BiasFLV 

Figure 3. (a) Selected grid cells of the Mapocho River basin; the black dot represents the catchment outlet. (b) Hypsometric 
curves of the grid cells displayed in panel (a) (represented by gray lines), including the three selected for detailed analysis 
(highlighted with different colors).
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are not correlated with the vertical resolution, and they range from 0.01% for Pocuro (1,000-m configuration) 
to 1.03% for Las Leñas (200-m configuration). However, large negative biases in simulated long-term baseflow 
responses are obtained in some basins (Figures 4c.3, 4d.3, 4e.3, 4g.3, 4h.3, and 4i.3) with all model configurations.

Figure 5 illustrates the sensitivity of KGE to the configuration of elevation bands across basins and analysis 
periods, for daily (top panels) and monthly (bottom panels) runoff. In general, these results reinforce the idea that 
adding elevation bands has marginal effects on simulated basin-averaged runoff, yielding KGE improvements 
(ΔKGE) during the 5-year wet period that range from 0 to 0.05 (Palos basin) for both daily (Figure 5a) and 
monthly (Figure 5d) time scales. During the 5-year dry period (Figures 5b and 5e), the overall KGE improvement 
(average from all catchments) is 0.02, with the largest increments obtained for the Palos and Mapocho River 
basins (although the resulting KGE is still low), and negligible variations (∼0.01) in the remaining basins. Inter-
estingly, the improvements in KGE achieved during the wet (dry) period by increasing the vertical discretization 
in the Claro and Palos River basins (Mapocho River basin) are explained by higher KGE values during the Spring 
season (not shown).

Attributes name Description Units Formula

Altitude Mean elevation m a.s.l. –

Range Difference between maximum and minimum elevation m zmax – zmin

Aspect Average grid cell aspect, calculated counterclockwise from 
east

° 𝐴𝐴 tan−1
(

−
𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑

)

⋅

180

𝜋𝜋
 , where 𝐴𝐴

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)

 is the rate of 
change in the jth direction

Slope Mean slope across each grid cell °
−𝐴𝐴 tan−1

(
√

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)2

+

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)2

)

⋅

180

𝜋𝜋
 , where 𝐴𝐴

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)

 is 

the rate of change in the jth direction

Annually averaged storm temperature 
(Tstorm)

Mean air temperature for daily precipitation events during 
the accumulation season (April–September)

°C
𝐴𝐴

1

𝑁𝑁storm

𝑁𝑁storm
∑

𝑖𝑖=1

𝑇𝑇d [𝑃𝑃d > 5mm] 

Mean spring temperature (Tspring) Mean air temperature for spring days (October–December) °C
𝐴𝐴

1

𝑁𝑁
s

𝑁𝑁
s

∑

𝑖𝑖=1

𝑇𝑇d,Spring 

Annual precipitation (P) Annual P for a specific water year mm/year
𝐴𝐴

𝑁𝑁
∑

𝑖𝑖=1

𝑃𝑃d 

Annual moisture index (Im) a Indicates whether climatic conditions are arid (water 
limited) or humid (energy limited). Ranges from −1 to 
1, with negative and positive values for arid and humid 
conditions, respectively

–

𝐴𝐴

𝐼𝐼m =
1

12

𝑡𝑡=12
∑

𝑡𝑡=1

MI(𝑡𝑡),

where

MI(𝑡𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
𝐸𝐸p(𝑡𝑡)

𝑃𝑃 (𝑡𝑡)
𝑃𝑃 (𝑡𝑡) > 𝐸𝐸p(𝑡𝑡)

0 𝑃𝑃 (𝑡𝑡) = 𝐸𝐸p(𝑡𝑡)

𝑃𝑃 (𝑡𝑡)

𝐸𝐸p(𝑡𝑡)
− 1 𝑃𝑃 (𝑡𝑡) < 𝐸𝐸p(𝑡𝑡)

 

Moisture index seasonality (𝐴𝐴 𝐴𝐴m,r ) a Indicates intra-annual changes in the water/energy budget. 
Ranges from 0 (no intra-annual changes) to 2 (climate 
conditions fluctuate between fully arid and fully 
saturated)

–𝐴𝐴 𝐴𝐴m,r = max(MI(1, 2, . . .12)) − min(MI(1, 2, . . .12)) 

Fraction of annual precipitation that 
occurs as snowfall (𝐴𝐴 𝐴𝐴s ) a

Ranges from 0 to 1, where 0 indicates no snowfall in a year 
and 1 that all precipitation occurs as snow

–
𝐴𝐴 𝐴𝐴s =

∑

12

𝑡𝑡=1
𝑃𝑃
s
(𝑡𝑡)

∑

12

𝑡𝑡=1
𝑃𝑃 (𝑡𝑡)

 

Note. All calculations are performed using water years (April–March). 𝐴𝐴 𝐴𝐴d and 𝐴𝐴 𝐴𝐴d are daily precipitation and daily temperature, respectively. Nstorm is the number of days 
within the accumulation season (i.e., April–September, which spans Fall and Winter) when 𝐴𝐴 𝐴𝐴d  > 5 mm. Nspring and N are the number of spring (October–December) 
days and the total number of days in each water year, respectively. 𝐴𝐴 MI(𝑡𝑡) is a version of the Thornthwaite’s moisture index (Willmott & Feddema, 1992). 𝐴𝐴 𝐴𝐴 (𝑡𝑡) , 𝐴𝐴 𝐴𝐴s(𝑡𝑡) , and 

𝐴𝐴 𝐴𝐴p(𝑡𝑡) are mean monthly precipitation, snowfall, and PET, respectively, for month 𝐴𝐴 𝐴𝐴 .
 aThese climate indices were used in Knoben et al. (2018). It should be noted that the fraction of annual precipitation that occurs as snow (fs) was not calculated as in 
Knoben et al. (2018), because VIC computes snowfall considering a minimum temperature at which rainfall can occur and a maximum temperature at which snowfall 
can occur, rather than using a single temperature as threshold.

Table 3 
Attributes Considered for Each Grid Cell
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During the climatological period (Figures 5c and 5f), similar performance metrics are obtained for the 200- and 
100-m configurations. For daily runoff simulations (Figure 5c), adding elevation bands provides KGE improve-
ments ranging 0.02–0.03 in Las Leñas and Mapocho basins, and slight KGE reductions (less than 0.01) in the 
Colorado and Melado basins. KGE values obtained from monthly runoff simulations (Figure 5f) increase between 
0.01 and 0.03 in all basins when 200- and 100-m configurations are used.

The results displayed in Figure 5 show that distributing air temperature along elevation bands generally yields 
slight improvements in streamflow simulations in terms of KGE; however, a higher vertical resolution does not 
necessarily translate into increased KGE in all basins (e.g., see results for Estero Arrayán in Figures 5a–5c). 
A noteworthy result from Figure 5 is the constant, larger positive effect on KGE that adding elevation bands 
provides in the Palos River basin during the wet period compared to the dry period, which may be explained 

Figure 4. Comparison between simulated and observed runoff (Q) for all basins in terms of daily time series (April/2009 to March/2010, left panels), mean monthly 
runoff (center panels), and daily flow duration curves (right panels, vertical logarithmic scale). The results in center and right panels correspond to the climatological 
period. In the left panels, missing dots indicate the absence of runoff measurements.
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by the linear shape of its hypsometric curve over most of its fractional area (not shown), favoring more evenly 
distributed areas across elevation bands. More generally, Figure 5 shows that the effects of increased vertical 
resolution are not necessarily linear, that is, some “coarse” model configurations provide better KGE results than 
configurations with more elevation bands, yet both configurations are an improvement compared to the bench-
mark (see, e.g., 750-m configuration results for the Pocuro basin in Figure 5d, and 1,000-m configuration results 
of the Arrayán basin in Figure 5f). The analysis of KGE components (see Figures S5–S7 in Supporting Informa-
tion S1) reveals a similar behavior for these metrics, that is, slight variations of results with the choice of snow 
band configuration during the dry period and changes in both wet and climatological periods. The largest impacts 
of alternative model configurations are obtained for the α component (Figure S7 in Supporting Information S1), 
with a moderate reduction.

The results in Figure 5 also reveal model transferability problems toward drier periods. Indeed, the KGE decreases 
considerably during the dry period in the Pocuro, Palos, and Mapocho River basins. In the Pocuro basin (which 
is the most arid one), changes in KGE can be explained by a considerable decay in correlation (Figure S5 in 
Supporting Information S1) from 0.78 to values below (0.91) to 0.2 (0.3) in daily (monthly) simulations, and 
overestimation in flow volumes (β > 1.6, Figure S6 in Supporting Information S1), and also in flow variability 
(α > 2.5, Figure S7 in Supporting Information S1), especially at monthly time scales. Similar transferability 
issues are observed in the Palos and Mapocho River basins, though the decay in KGE is mainly explained by 
substantial overestimation of streamflow variability during the dry period (α > 1.8, Figure S7 in Supporting 
Information S1), and moderate deterioration of streamflow simulations in terms of timing (Figure S5 in Support-
ing Information S1) and volumes (Figure S6 in Supporting Information S1).

The effects of distributing air temperature along elevation bands are somewhat different for NSE, for which 
improvements during the wet and climatological periods are greater than the response of KGE, especially in 

Model configuration Pocuro Arrayán Mapocho Las Leñas Claro Colorado Palos Melado Ñuble

No bands (NB) 0.73 0.58 0.58 0.79 0.51 0.64 0.70 0.69 0.32

1,000 m 0.74 0.58 0.59 0.81 0.51 0.65 0.70 0.69 0.33

750 m 0.74 0.58 0.59 0.79 0.51 0.65 0.70 0.69 0.33

500 m 0.74 0.58 0.61 0.80 0.51 0.65 0.73 0.69 0.34

200 m 0.74 0.59 0.60 0.81 0.51 0.65 0.72 0.68 0.34

100 m 0.74 0.58 0.60 0.81 0.51 0.65 0.72 0.68 0.34

Table 4 
KGE Values for Simulated Daily Runoff—WY 2009/2010

Metric Config. Pocuro Arrayán Mapocho Las Leñas Claro Colorado Palos Melado Ñuble

%BiasFMS No bands (NB) 15.5 21.6 22.6 53.4 45.8 5.2 52.9 31.2 59.9

1,000 m 17.6 25.3 22.1 47.3 46.0 4.7 50.1 27.8 57.7

750 m 16.0 23.2 20.8 46.5 46.1 4.8 50.8 27.4 57.3

500 m 16.7 23.2 22.3 45.8 45.4 4.7 49.3 25.9 55.8

200 m 16.9 24.1 22.4 45.1 45.5 4.4 48.4 24.9 56.0

100 m 17.4 23.9 22.2 45.2 45.4 4.5 47.8 24.8 55.6

%BiasFLV No bands (NB) 2.0 5.4 6.9 6.5 14.4 0.8 6.3 14.2 16.1

1,000 m 2.0 5.3 7.2 5.7 14.3 0.8 6.2 13.6 15.9

750 m 1.9 5.2 6.9 5.6 14.3 0.8 6.2 13.6 15.9

500 m 2.0 5.2 7.1 5.5 14.2 0.7 6.1 13.4 15.8

200 m 2.0 5.1 7.0 5.5 14.2 0.7 6.0 13.2 15.7

100 m 2.0 5.1 7.1 5.5 14.2 0.7 6.0 13.1 15.7

Table 5 
Model Evaluation Metrics Derived From the Daily Flow Duration Curve (Period April/1982 to March/2015)
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the Arrayán River basin. Further, negligible changes in NSE are observed during the dry period (Figure S4 in 
Supporting Information S1). Again, the model performance decays considerably at the Pocuro River basin during 
the dry period.

4.2. Effects on Mean Annual Fluxes and 1 September SWE

4.2.1. Catchment-Scale Variations

Figure 6 illustrates the effects of adding elevation bands on simulated basin-averaged mean annual fluxes and 
SWE 09/01. Overall, changes in annual averages are smaller than 5% (with a few exceptions). Differences 
between alternative configurations are usually smaller than differences between the benchmark and any model 
configuration with elevation bands, and the effects of increasing the vertical resolution are very small beyond 
200-m. Further, variations produced by alternative model configurations are not necessarily proportional to the 
vertical resolution of elevation bands, and the sign of such impacts in a specific catchment may differ depending 
on the analysis period.

The alternative model configurations produce slight variations in mean annual runoff, with ∼0.15% reductions 
during the wet and climatological periods in most basins. During the dry period, small reductions (<0.1%) are 
obtained in the Colorado, Melado, and Ñuble River basins. The Arrayán River basin is the only catchment 
where the inclusion of elevation bands slightly increases (∼0.5%) the mean annual runoff in all analyses. These 
small variations in mean annual runoff—compared to the other variables displayed in Figure 6—suggest that the 
similarity in KGE values obtained for daily and monthly runoff with all model configurations (Figure 5) may be 

Figure 5. Kling-Gupta efficiency (KGE) results computed with daily (top) and monthly (bottom) runoff, obtained from the benchmark (NB: no bands) and the five 
alternative model configurations (i.e., using 1,000-, 750-, 500-, 200-, and 100-m elevation bands). Each curve displays individual basin results, and missing basins in 
some panels indicate the absence of verification (i.e., observed) data for that period.
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Figure 6. Percent changes (100 × [alternative − benchmark]/benchmark) in simulated basin-averaged mean annual fluxes and snow water equivalent (SWE) 09/01 
for different periods (columns) and all case study basins. In each panel, the bars holding the same color represent, from left to right, percent changes for model 
configurations with 1,000, 750, 500, 200, and 100 m elevation bands (as shown in panel i.1, above the bars with rainfall results). The numbers located over each set of 
bars indicate the values obtained with the benchmark model (in mm/year for fluxes and mm for SWE 09/01). Note that a different axis range is used for the Mapocho 
River basin during the dry period (c.2), due to overaccumulation on a grid cell with glacierized area (not shown here) which affects simulated SWE 09/01.
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attributed to very different reasons. Indeed, mean annual rainfall decreases in seven catchments (i.e., all basins 
except Las Leñas and Mapocho) around 0.7%–0.9% during the wet period, as the number of elevation bands 
increases due to changing the snow-rain partitioning of precipitation. Very similar variations are observed during 
the dry and climatological periods; even more, the inclusion of more elevation bands also yields less rainfall 
during the dry period in the Mapocho River basin. Conversely, average increases of 2%–3% in mean annual 
snowfall are obtained with the alternative model configurations.

The implementation of elevation bands yields mixed variations across catchments in basin-averaged SWE 09/01 
with respect to the benchmark model. Negative changes are obtained in Las Leñas and Colorado River basins 
during all analysis periods; and small (<0.5%) negative variations in SWE 09/01 are obtained in the Palos River 
basin during the dry period. In the remaining basins, more SWE 09/01 is simulated with the alternative model 
configurations, and variations depend on the analysis period and vertical discretization.

Interestingly, the results in Figure 6 show that more simulated snowfall does not necessarily yield more SWE 
09/01. For example, adding elevation bands increases snowfall in the Colorado River basin in all analysis peri-
ods, producing less SWE 09/01 compared to the benchmark model. Additionally, all alternative configurations 
provide more snowfall in the Pocuro River basin; however, more SWE 09/01 is obtained during the dry period 
and the climatological period, and less SWE 09/01 during the wet period.

Figure 6 also shows that incorporating subgrid elevation bands generally yields less snowmelt with a few excep-
tions (i.e., Figures 6b.2 and 6g.2) and mixed variations in annual sublimation amounts. Indeed, elevation bands 
tend to provide more sublimation in northern, water-limited (i.e., PET/P > 1) catchments (e.g., Figures 6a–6d) 
and generally less sublimation in energy-limited (i.e., PET/P < 1) basins. Additionally, part of the rainfall feeds 
the snowpack, providing liquid water that contributes to increase SWE during the winter season, which explains 
why VIC produces more annual snowmelt than annual snowfall. For example, the mean annual snowfall obtained 
with the baseline model at the Pocuro River basin is 93 mm/year, while the mean annual snowmelt for the same 
period is 196 mm/year.

Slight increases (∼0.6%) in simulated basin-averaged ET are obtained with the alternative model configurations 
during the wet (except Arrayán, with ∼0.5% decreases) and climatological periods. During the dry period, the 
addition of elevation bands yields less simulated ET in four basins (Pocuro, Arrayán, Claro, and Palos).

4.2.2. Intra-Catchment Variability

We now examine intra-catchment variability in changes induced by the alternative model configurations on 
simulated hydrological variables. Specifically, we assess percent changes (100  ×  [alternative  −  benchmark]/
benchmark) in simulated mean annual fluxes and SWE 09/01 at each grid cell across the Mapocho River 
basin (Figure 7). The same figures for the remaining catchments are included in Figures S8–S15 in Supporting 
Information S1. It can be noted that the effects of elevation bands on mean annual rainfall are more evident in 
high-elevation areas (over 3,000 m a.s.l.), where larger increments (all computed as the mean from the alternative 
configurations) are obtained during the wet period (∼9% average; Figure 7a) compared to the dry period (∼2% 
average; Figure 7b); additionally, rainfall increments are larger than 20% in some high-elevation grid cells during 
the wet period. Conversely, the incorporation of elevation bands yields less rainfall in low-elevation grid cells, 
with declines <5%.

As expected, simulated snowfall increases in grid cells located below 2,500 m a.s.l. when elevation bands are 
included, with larger increments for higher vertical resolutions. Snowfall variations in low-elevation areas are 
larger during the wet period using all alternative model configurations, spanning +20%–50%. Further, adding 
elevation bands in the Mapocho River basin decreases snowfall amounts less than 10% in some grid cells located 
above 2,500 m a.s.l. The largest variations in SWE 09/01 generally occur below 3,000 m a.s.l., and these are 
more pronounced during the dry period; however, this behavior is not observed in the rest of the basins (see 
from Figures S8–S15 in Supporting Information S1). Simulated annual sublimation and snowmelt can be largely 
affected by the inclusion of elevation bands. Interestingly, the sign and magnitude of snowmelt variations does 
not necessarily match the spatial patterns of changes in SWE 09/01. Finally, Figure 7 shows that the alternative 
model configurations do not induce substantial changes in mean annual ET and runoff across the basin of interest, 
which is also observed in the remaining basins.
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Overall, the main mechanistic explanation for intra-catchment variability seems to be precipitation partitioning. 
Indeed, the increase in rainfall (and decrease of SWE 09/01) over high-elevation grid cells obtained with the 
alternative configurations is explained by the appearance of elevation bands that are lower than the mean grid 
cell elevation, generating areas where air temperature is not cold enough to produce snowfall during precipitation 
events. Analogously, the increase in snowfall over low-elevation grid cells is explained by the appearance of 
elevation bands with higher mean altitudes (compared to grid cell averages) when using the alternative configu-
rations. During wet years, changes in sublimation and melt also seem to be related with precipitation partitioning, 
with an increase (decrease) of these fluxes associated with larger (lower) snow accumulation. However, during 
dry years, the changes in these variables are less clear and might be related to the specific dynamics of turbulent 
fluxes at each grid cell.

4.3. Differences in Simulated Daily SWE

We examine simulations of daily SWE and three related variables (albedo, cumulative sublimation, and cumula-
tive snowmelt) in three grid cells of the Mapocho River basin (Figure 3) during WYs 1984 and 2012, character-
ized by wet and dry conditions, respectively (Figure 8). Model simulations with elevation bands yield less SWE 
in all grid cells during WY 1984 (wet), and snow disappearance gets delayed in grid cells (2) and (3) compared 
to the benchmark model. In grid cell (1), this does not happen due to its high mean altitude (3,699 m a.s.l.), yield-
ing snow bands with similar altitudes and, therefore, a similar timing of simulated snow accumulation and melt. 
During WY 2012 (dry), the alternative model configurations also provide less average SWE than the benchmark 
model, with specific effects on simulated accumulation and melt events. For example, the 1,000-m configuration 
in grid cell (1) yields the largest melt rates before October, although it provides the highest SWE compared to the 
other configurations; in grid cell (2), a precipitation event at the end of July/2012 produces snow accumulation 
only if elevation bands are considered, even though it gets quickly melted; in grid cell (3), the alternative config-
urations provide less maximum SWE (∼20 mm in mid-June) than the benchmark model, despite they generate 
earlier (almost 2 weeks) snow accumulation and extend the snow season for more than a week in some cases. 

Figure 7. Spatial variability of percent changes (100 × [alternative − benchmark]/benchmark) in grid cell-scale simulated mean annual fluxes and snow water 
equivalent (SWE) 09/01 at the Mapocho River basin. Results are presented for (a) wet and (b) dry analysis periods. The various columns display, from left to right, 
results for mean annual rainfall, mean annual snowfall, mean SWE 09/01, mean annual sublimation, mean annual evapotranspiration (ET), mean annual snowmelt, and 
mean annual runoff. The top row displays results for the benchmark model in mm/year (excepting SWE 09/01, presented in mm), while the remaining rows show results 
for alternative model configurations (i.e., 1,000, 750, 500, 200, and 100 m elevation bands, from top to bottom). Black tiles indicate grid cells with benchmark model 
results equal to zero (or unbounded result), and the gray tiles represent grid cells that do not cover any portion of the catchment. The black dot in the top row represents 
the catchment outlet.
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Although alternative model configurations yield less SWE in grid cell (1) during WY 2012, lower and earlier 
snowmelt is obtained compared to the benchmark model, which provides fast, step-like responses.

For the albedo, the largest differences in grid cell (1) are observed in the dry period, especially during the melt 
season (after September). Around the same date, cumulative sublimation from the alternative configurations 
begins to depart from the benchmark model results.

Figure 9 displays time series of daily SWE simulated by individual elevation bands (gray lines) in grid cells 
(1), (2), and (3) (Figures 3.1, 3.2, and 3.3, respectively), using 1,000-m (top panel) and 200-m (bottom panel) 
configurations. These band widths are selected to illustrate the contrast between a coarse vertical discretization 
(1,000 m), and the band width beyond which no considerable improvements were obtained in streamflow simula-
tions (200 m). It can be noted that differences in grid cell averaged SWE between the benchmark model (red lines) 
and alternative configurations (black lines) are mainly attributed to little snow accumulation in low-elevation 
bands (represented by the lowest gray lines). Indeed, these bands provide the largest departures from the bench-
mark model because the fraction of precipitation occurring as snowfall is considerably smaller (not shown). The 
comparison between 1,000- and 200-m configurations shows that adding more elevation bands enhances differ-
ences with the benchmark model; for example, the 1,000-m (200-m) configuration yields 25 (39) mm less peak 
SWE than the benchmark in grid cell (1) during the dry period (Figure 9.1). Further, the 200-m configuration 
yields larger seasonally averaged SWE than the 1,000-m configuration due to more snow accumulation at high 
elevations. Increasing the vertical resolution affects the magnitude of simulated SWE, with higher values in Octo-
ber 2012 using the 200-m configuration (Figure 9.1, dry); indeed, the latter configuration provides a ∼50 mm 
reduction in October 20 SWE compared to the benchmark model, while the 1,000-m configuration reduces SWE 
for more than 80 mm the same day. This reveals another interesting feature: despite some high-elevation bands 

Figure 8. Simulated time series of daily snow water equivalent (SWE), albedo, cumulative sublimation, and cumulative snowmelt for the benchmark model and the 
alternative model configurations, for the selected grid cells. Panels (1), (2), and (3) correspond to grid cells (1), (2), and (3) in Figure 3, respectively. Each column 
displays results for a snow season belonging to a wet (WY 1984) and a dry (WY 2012) water year.
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accumulating more SWE than the benchmark model (see gray lines above the red line), this is not translated into 
increased spatially averaged SWE at the same grid cell, due to their low contributing area.

In the low-elevation grid cell (Figure 9.2), adding elevation bands yields a longer snow season, and the 200-m 
configuration enables more snow accumulation (compared to 1,000-m), getting closer to the benchmark model 
results. Finally, the simulations for both (the 200-m) configurations during WY 1984 (WY 2012; after Septem-
ber) in grid cell (3) (Figure 9.3) show that adding higher elevation bands (see the higher gray lines) can delay the 
occurrence of grid cell averaged snowmelt events. The highest elevation bands start accumulating snow earlier 
during WY 2012, compared to the benchmark simulation.

4.4. Identification of Sensitive Grid Cells

The results in Figure 7 and Figures S8–S10 in Supporting Information S1 show that adding elevation bands may 
have large effects on simulated SWE 09/01 in some grid cells, introducing considerable intra-catchment variabil-
ity. Nevertheless, this variability compensates in such a way that implementing elevation bands yields smaller (or 
negligible) effects at the basin scale (Figure 10a), compared to the grid cell scale (0.05°) used here (Figure 10b). 
Hence, we now turn our attention to the question: where does the implementation of elevation bands make a larger 
difference in simulated SWE? To seek for answers, we examine discrepancies in CDFs of 10 topographic and 
climate attributes (defined in Section 3.3.3) between sensitive and insensitive grid cells (Figure 11). The results 
show that sensitive grid cells have lower mean elevations (median of 1,700 m a.s.l.), larger elevation ranges and 
average slope, and smaller aspect in the range 120–240 (NW-SW) than insensitive ones. Further, sensitive grid 
cells show higher storm (Tstorm) and spring (Tspring) temperatures, a smaller fraction of precipitation falling as 
snowfall (fs), and higher values for annual average moisture index (Im)—indicating more humid conditions—and 
the moisture index seasonality (Im,r), which reflects more pronounced intra-annual variations in meteorological 
conditions, switching from fully arid to fully saturated.

Figure 12 displays the CDFs of states and fluxes simulated with 200-m elevation bands in sensitive and insensi-
tive grid cells, showing larger rainfall amounts in sensitive grid cells (median of ∼1,500 mm/year) compared to 
insensitive grid cells (median ∼1,250 mm/year); conversely, smaller snowfall amounts (median ∼190 mm/year) 

Figure 9. Comparison between simulated time series of daily snow water equivalent (SWE) at the grid cell scale (i.e., 0.05°) using the benchmark model (red line), 
versus an alternative model configuration (black line) with elevation bands (Δz = 1,000 m, top panel; and Δz = 200 m, bottom panels) for selected grid cells (panels (1), 
(2), and (3) correspond to grid cells (1), (2), and (3) in Figure 3, respectively). In each panel, the gray lines show simulated daily SWE at all elevation bands contained 
in the grid cell of interest, with larger SWE associated with higher band-averaged altitudes. Each column displays results for a snow season belonging to a wet (WY 
1984) and a dry (WY 2012) water year.
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are seen in sensitive grid cells compared to insensitive grid cells (median ∼330 mm/year). Accordingly, lower 
values of maximum SWE are reached in sensitive grid cells (median ∼370 mm) compared to insensitive grid 
cells (median ∼590 mm/year). This behavior is expected given the relatively lower mean elevation of sensitive 
grid cells (Figure 11). The results for annual snowmelt show large differences in the shape of the CDFs, similar 
to annual precipitation behavior (Figure 11). The sublimation of sensitive grid cells is higher (median ∼60 mm/
year) compared to insensitive grid cells (median ∼45 mm/year), and the shapes of the CDFs are similar to those 
of maximum SWE. Annual runoff discrepancies between sensitive and insensitive grid cells are only noticeable 
for values smaller than 1,600 mm/year, with a relatively larger p-value. Finally, we do not find considerable ET 
differences between sensitive and insensitive grid cells.

Figure 10. Simulated snow water equivalent (SWE) 09/01 using 200-m elevation bands versus the same variable obtained 
with the benchmark model at the (a) catchment scale and (b) individual 0.05° grid cells. Each dot indicates results for a 
specific combination of water year and spatial unit, and each panel comprises results from all the grid cells contained in 
the nine case study basins. Results are stratified for dry (red) and wet (blue) water years, defined using the mean annual 
precipitation (𝐴𝐴 𝑃𝑃a ) for the climatological period as threshold.

Figure 11. Cumulative distribution functions (CDFs) of selected topographic and hydroclimatic attributes for sensitive versus insensitive grid cells. Aspect values of 
180° (90°) represent west (north) facing grid cells. We identify grid cells as sensitive if differences in simulated snow water equivalent (SWE) 09/01 with respect to 
the benchmark model are larger than 10% for >50% of water years in the climatological period. The p-value is obtained from applying the Kolmogorov-Smirnov test 
between sensitive and insensitive groups. The results were obtained using the 200-m configuration.
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5. Discussion
5.1. Impacts on Streamflow Performance Metrics

The results presented in this paper unveil several implications that the delineation of elevation bands and verti-
cal temperature distributions may have on hydrological characterizations, including streamflow performance 
metrics. Indeed, the KGE results for daily and monthly streamflow (Table 4) do not differ considerably among 
the model configurations tested here. The maximum KGE improvement provided by alternative model configu-
rations (compared to the benchmark) is ΔKGE = 0.03 for the Mapocho and Palos River basins, which cannot be 
considered an improvement in streamflow simulations due to the inclusion of snow bands (Clark et al., 2021). 
Previous studies have also reported that streamflow efficiency indices become insensitive when the number of 
elevation bands exceeds a given threshold (e.g., Bhatta et al., 2019; Pradhanang et al., 2011). Further, the small 
changes in KGE found here suggest a form of model–structure–equifinality (Khatami et al., 2019), since spatial 
heterogeneities arising from different modeling alternatives compensate to produce very similar values for the 
same performance metric applied at the catchment scale. This is not observed, however, when analyzing the 
bias in the FDC midsegment slope (%BiasFMS). For Las Leñas and Melado River basins, the bias reductions 
(100-m − benchmark) are 8.2% and 6.4%, respectively. A reduction for the same metric is obtained in the remain-
ing basins when comparing the 100-m configuration with the benchmark, excepting the Pocuro and Arrayán 
River basins. For the FDC low-segment volume (%BiasFLV), small variations (<1.1%) are obtained.

In addition to the equifinality in KGE and NSE, similar errors in simulated flashiness of runoff and baseflow 
volumes are obtained with the 200- and 100-m configurations for most basins (Table 5), although these can 
provide different portrayals of the seasonal snowpack evolution (compare simulated time series for 200- and 
100-m in Figure 8). In some cases, the 100-m configuration (e.g., %BiasFMS in Las Leñas, Colorado, and Ñuble 
River basin; %BiasFLV in the Mapocho River basin) yields slightly larger errors than the 200-m configuration, 
which can be explained by the fact that VIC parameters were not recalibrated for each band configuration. Addi-
tionally, a higher vertical resolution provides a more accurate hypsometric curve for a given grid cell, but not 
necessarily a more realistic representation of topographic heterogeneities, since VIC does not consider local slope 
and terrain orientation.

5.2. Impacts on Simulated States and Fluxes

Despite the little differences among alternative configurations for KGE (and its components) and NSE, we found 
notable discrepancies in simulated basin-averaged variables, and spatial differences in rainfall, snowfall, SWE 
09/01, sublimation, ET, snowmelt, and runoff compared to the benchmark model (Table 4). In general, smaller 
variations in simulated hydrological variables are obtained as more elevation bands are added, especially beyond 

Figure 12. Same as in Figure 11, but for model states and fluxes.
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a 200-m vertical resolution, which agrees with past studies (e.g., Bhatta et al., 2019; Essery, 2003; Pradhanang 
et al., 2011). Interestingly, the direction (i.e., sign) of variations introduced by elevation bands (compared to the 
benchmark) is not the same for all catchments and hydroclimatic conditions of the analysis period. For example, 
introducing subgrid temperature distributions contributes to increased sublimation in water-limited (PET/P > 1), 
steep basins with a very small forest fraction (<0.5%), compared to energy-limited basins (PET/P < 1). Never-
theless, we did not find a general relationship between hydrological regimes and performance metrics (Figure 5 
and Figures S4–S7 in Supporting Information  S1) or variations in basin-averaged annual fluxes (Figure  6). 
However, we noticed that the inclusion of elevation bands in the rainfall-dominated basin (Pocuro, Figure 6a) 
produces the increase of snowfall, whereas the inclusion of elevation bands in the snow-dominated basin (Las 
Leñas, Figure 6d) yields an increase of rainfall. These results are similar to those obtained for snow-dominated 
(high-elevation) and rainfall-dominated (low-elevation) grid cells in the Mapocho basin (Figure 7a), suggesting 
that vertical temperature distributions along elevation bands enhance the contribution of other fluxes in areas that 
are mainly dominated by one runoff component, increasing the hydrological heterogeneity within the catchments.

As expected, the partitioning of precipitation into snowfall and rainfall and simulated daily SWE can vary consid-
erably when vertical heterogeneity in air temperature is included, and the effects generally increase with verti-
cal resolution. Such heterogeneity causes differences in snow accumulation across elevation bands, decreasing 
spatially averaged peak SWE in each grid cell, and delaying snow cover depletion (Figure 9). This aligns well 
with the findings of Essery  (2003), who concluded that the aggregated model (equivalent to our benchmark 
model) was unable to represent winter melt at low elevations and delayed spring melt at high elevations. Other 
studies have also highlighted the role of subgrid heterogeneity for more realistic SWE calculations, and therefore 
for improved snowmelt estimates (e.g., Clark et al., 2011; DeBeer & Pomeroy, 2017). Our results also show that 
low-elevation bands accumulate less SWE and melt earlier, in agreement with observations reported by Tong 
et al. (2008) for a watershed in western Canada, while the highest elevation bands yield lower melt rates, reducing 
the snow cover depletion rate (i.e., snow lasts longer). Such differences can be explained by changes in the energy 
balance (specifically, sensible and latent heat fluxes, Figures S16–S24 in Supporting Information S1) since, in 
our configuration, precipitation is spatially uniform in each grid cell for all model configurations.

A novel contribution of our study is the identification of climatic and topographic controls defining where it is 
more important to distribute air temperature along elevation bands. Our results show that the impacts for snow-
pack simulations are substantial in more humid grid cells, with a relatively smaller fraction of precipitation falling 
as snow (due to higher temperatures and lower elevation) and a more pronounced seasonality in meteorological 
conditions. Additionally, elevation range and spatially averaged slope also play a key role. It should be noted, 
however, that the emergence of topographic features different than elevation—and hence not explicitly consid-
ered in VIC—as relevant attributes to define subgrid representations of air temperature simply reflects the influ-
ence of horizontal topographic gradients in the development of CR2MET. Indeed, such gradients are included as 
predictors in the regression equations that distribute precipitation and temperature in space (Juan P. Boisier 2022, 
personal communication).

5.3. Limitations and Future Work

The results presented here depend on selected hydrological model structure, as well as related deficiencies in 
terms of process representations. In particular, VIC does not incorporate an aquifer at the bottom of the soil 
column, nor lateral exchange of fluxes between grid cells. In terms of subgrid variability, the model relies on 
hypsometric curves to represent orographic heterogeneities, ignoring other topographic features. Further, VIC 
does not have a mechanism to redistribute vegetation and soil attributes to each elevation band; that is, the same 
vegetation classes and their fractions, and the soil parameters associated with a specific grid box are assigned to 
each elevation band. Nevertheless, topography-related heterogeneities in vegetation and soil properties can also 
affect hydrologic model simulations (Hao et al., 2022).

A key limitation of this study is that subgrid variability in precipitation was not incorporated (Grusson et al., 2015; 
Pradhanang et al., 2011). Hence, future work could expand these analyses to account for orographic controls on 
precipitation. Moreover, snow accumulation on steep terrain does depend not only on orographic gradients but 
also on wind speed, wind direction, and slope orientations, which might vary strongly with elevation. Another 
limitation of VIC meteorological forcings is that each band uses radiative fluxes estimated at the corresponding 
grid cell using MTCLIM, instead of estimating these variables for each band using adjusted air temperature. 
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Nevertheless, this approximation is not far from what would be obtained if incoming shortwave and longwave 
radiation were also distributed with elevation using the empirical algorithms of MTCLIM. Figure 13 displays a 
comparison of incoming radiation fluxes and simulated snowpack variables obtained from (a) a model implemen-
tation with subgrid variability only for temperature along 200-m elevation bands (EB-VIC) and (b) an additional 
experiment considering subgrid variability in air temperature and incoming shortwave and longwave radiation 
along the same bands (EB-Individual). The results show that (a) grid-averaged simulated time series of radiation 

Figure 13. Simulated time series of fractional cumulative snowfall (computed as the ratio between cumulative snowfall and cumulative precipitation), incoming 
shortwave radiation, incoming longwave radiation, daily snow water equivalent (SWE), albedo, cumulative sublimation, and cumulative snowmelt for grid cell averages 
obtained from the following model configurations: (1) subgrid variability in temperature along 200-m elevation bands (i.e., red lines); and (2) subgrid variability in air 
temperature, incoming shortwave radiation and incoming longwave radiation along the same bands. The gray lines show the results for individual elevation bands using 
the latter configuration. The results in panels (1), (2), and (3) correspond to grid cells (1), (2), and (3) in Figure 3, respectively. Each column displays results for a snow 
season belonging to a wet (water year [WY] 1984) and a dry (WY 2012).
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fluxes are nearly identical; (b) SWE simulations are very similar, with the largest differences between EB-VIC and 
EB-individual during the ablation season; and (c) slight differences are obtained for simulated albedo, cumulative 
sublimation, and cumulative snowmelt. Moving beyond the elevation band approach, subgrid parameterizations 
could be considered to capture topographic effects on radiative fluxes (e.g., Lee et al., 2011), including topo-
graphic shadow and reflection to improve the simulations of surface energy fluxes (e.g., Hao et al., 2021, 2022). 
Moreover, the strategy to delineate snow bands should prioritize a proper representation of SWE at altitudes with 
the largest areas and high snow accumulation (Helfricht et al., 2012) and, therefore, the effectiveness of irregular 
spatial discretization based on other topographic variables than elevation such as slope and aspect (e.g., the local 
approach implemented by Tesfa & Leung, 2017) should be tested.

Despite the results presented in this paper are only valid for a sample of snow-influenced basins, these are 
located along a pronounced hydroclimatic gradient in the extratropical Andes, which provides diversity in terms 
of annual hydroclimatology and seasonal hydrological regimes. Additionally, the selected basins encompass a 
diverse sample of 399 grid cells in terms of climatic and topographic descriptors (Figure 11), enabling to draw 
robust conclusions regarding the factors that define sensitive grid cells to vertical temperature distributions and, 
therefore, freezing level estimates in mountain, snow-influenced environments. Future studies could expand the 
analyses presented here to other snow climates (e.g., Raleigh et al., 2015; Sturm et al., 1995), including more 
sophisticated approaches to represent subgrid heterogeneities (e.g., Hao et al., 2021; Hazenberg et al., 2015; L. 
Huang et al., 2022; Swenson et al., 2019; Tesfa & Leung, 2017).

6. Conclusions
We have examined the hydrological implications of representing subgrid air temperature variability in hydro-
logic modeling through elevation bands, in nine basins located along the western slopes of the Andes Cordillera. 
Specifically, we implemented five alternative model configurations in the VIC macroscale hydrological model, 
with elevation bands of 1,000, 750, 500, 200, and 100 m interval to distribute air temperature, and compared 
their results against a benchmark model (i.e., model without elevation bands) in terms of streamflow simulations, 
mean annual fluxes, and SWE 09/01, and daily SWE simulations in a suite of grid cells located across the Mapo-
cho River basin. Finally, we analyzed possible physical and climatic characteristics that define those grid cells 
where elevation bands are more impactful on SWE estimates. The results show that, although the incorporation 
of elevation bands does not appreciably affect model performance in terms of the KGE for daily and monthly 
streamflow, it does affect other fluxes and SWE at the catchment scale and the intra-basin variability of simulated 
variables, suggesting a form of model–structure–equifinality. Other findings are as follows:

•  Distributing air temperature along elevation bands yields larger effects in the partitioning of precipitation 
into rainfall and snowfall, for both catchment and grid cell scales during the wet period (WYs 1982–1986) 
compared to the dry period. Additionally, differences in ET and runoff between the alternative model configu-
rations and the benchmark are also more pronounced during the wet period, although not as evident as the case 
of rainfall and snowfall. On the other hand, impacts of vertical discretization on SWE 09/01 are comparatively 
more relevant during dry periods.

•  Adding elevation bands generally yields less basin-averaged snowmelt and more (less) catchment-scale subli-
mation across water-limited (energy-limited) basins.

•  The magnitude of variations in simulated hydrological variables induced by elevation bands is not propor-
tional to the vertical discretization or number of elevation bands adopted.

•  Adding elevation bands affects the duration of snow cover with the highest bands holding snow for a longer 
period and yields earlier snow accumulation during the WY compared to the benchmark model.

•  SWE 09/01 is generally more affected by elevation bands in grid cells with relatively lower mean altitude, and 
thus higher Tstorm/Tspring, elevation ranges >1,000 m, steep slopes (>15°), and annual precipitation amounts 
<1,000 mm with larger intra-annual variations in wetness conditions.
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Data Availability Statement
The VIC code; formatted meteorological forcing data; global, soil, and vegetation parameter files; and elevation 
band files used here for all model configurations and case study basins are publicly available on Zenodo (https://
doi.org/10.5281/zenodo.7080219). The streamflow data used for model calibration and evaluation were obtained 
from the CAMELS-CL data set (Alvarez-Garreton et al., 2018).
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