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Abstract Nonstationary extreme value analysis (NEVA) can improve the statistical representation of
observed flood peak distributions compared to stationary (ST) analysis, but management of flood risk relies
on predictions of out-of-sample distributions for which NEVA has not been comprehensively evaluated. In
this study, we apply split-sample testing to 1250 annual maximum discharge records in the United States
and compare the predictive capabilities of NEVA relative to ST extreme value analysis using a log-Pearson
Type III (LPIII) distribution. The parameters of the LPIII distribution in the ST and nonstationary (NS) models
are estimated from the first half of each record using Bayesian inference. The second half of each record is
reserved to evaluate the predictions under the ST and NS models. The NS model is applied for prediction by
(1) extrapolating the trend of the NS model parameters throughout the evaluation period and (2) using the
NS model parameter values at the end of the fitting period to predict with an updated ST model (uST). Our
analysis shows that the ST predictions are preferred, overall. NS model parameter extrapolation is rarely
preferred. However, if fitting period discharges are influenced by physical changes in the watershed, for
example from anthropogenic activity, the uST model is strongly preferred relative to ST and NS predictions.
The uST model is therefore recommended for evaluation of current flood risk in watersheds that have
undergone physical changes. Supporting information includes a MATLABVR program that estimates the
(ST/NS/uST) LPIII parameters from annual peak discharge data through Bayesian inference.

1. Introduction

Dynamic flood risk is common: both natural and anthropogenic influences can alter flood behavior. For
example, the rapid development of watersheds and physical alterations to rivers and coastlines contributed
to variable flood risk throughout the twentieth century [Villarini and Smith, 2009; Peel and Bl€oschl, 2011;
Vogel et al., 2011]. A warming climate increases the water holding capacity of the atmosphere which directly
affects precipitation extremes and flood risk over time [Karl et al., 2009; Trenberth, 2011; Cheng and
AghaKouchak, 2014]. Several studies have quantified societal exposure to current and intensified flooding in
the 21st century [Hallegatte et al., 2013; Hirabayashi et al., 2013; Milly et al., 2002; Apel et al., 2006], and in the
absence of adaptation strategies project a staggering global loss on the order of 1 trillion US dollars per
year by 2050 [Hallegatte et al., 2013]. Indeed, the threat of escalating exposure requires new approaches for
both flood risk management and characterization.

The most commonly applied method to characterize flood risk is known as flood frequency analysis (FFA),
which estimates the recurrence rate of rare flooding events based on the annual exceedance probability of
flood discharges. In the United States, engineers utilize FFA to determine the 100 year flood discharge,
which is a design consideration for hydraulic structures and used to delineate areas subject to mandatory
flood insurance. The 100 year discharge is expected to occur or be exceeded once every 100 years and has
an estimated annual exceedance probability of 1%. In general, there are two commonly applied methods to
estimate the exceedance probabilities necessary for FFA [Centre for Ecology and Hydrology, 2008]. In the first
approach, a computer model simulates the rainfall-runoff relationship by numerical solution of the govern-
ing hydrologic equations. The calibrated model then estimates the flood discharges for different rainfall
events with established exceedance probabilities. The second and alternative approach does not rely on a
numerical model but uses only historic observations of flood discharges. This method is based on extreme

Key Points:
� Stationary predictions of flood peak

distributions are preferred, overall
� Extrapolation of the nonstationary

model parameter trend rarely
improves the stationary prediction,
even if an observed trend continues
� Using the most recent nonstationary

parameters to predict with an
updated stationary model is
preferred for physically changing
watersheds

Supporting Information:
� Supporting Information S1
� Supporting Information S2
� Supporting Information S3
� Supporting Information S4
� Supporting Information S5
� Supporting Information S6
� Supporting Information S7
� Supporting Information S8
� Supporting Information S9
� Data Set S1

Correspondence to:
A. Luke,
aluke1@uci.edu

Citation:
Luke, A., J. A. Vrugt, A. AghaKouchak,
R. Matthew, and B. F. Sanders (2017),
Predicting nonstationary flood
frequencies: Evidence supports an
updated stationarity thesis in the
United States, Water Resour. Res., 53,
5469–5494, doi:10.1002/
2016WR019676.

Received 24 AUG 2016

Accepted 26 NOV 2016

Published online 5 JUL 2017

VC 2017. American Geophysical Union.

All Rights Reserved.

LUKE ET AL. (NON)STATIONARY FLOOD FREQUENCY ANALYSIS 5469

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2016WR019676
http://orcid.org/0000-0002-7883-2048
http://orcid.org/0000-0003-2599-1165
http://orcid.org/0000-0003-4689-8357
http://dx.doi.org/10.1002/2016WR019676
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


value analysis (EVA), where a probability distribution is fitted to the record of flood discharges themselves.
The fitted distribution is then used to estimate the exceedance probabilities of specific flood discharges.
The latter method is preferred in practice if sufficiently long records of flood discharges are available [Centre
for Ecology and Hydrology, 2008] and is therefore the subject of the present study.

Both of these commonly applied methods are built on the assumption of constant flood frequency with
respect to time, which implies the statistics of extreme discharges (e.g., mean and/or standard deviation)
are time invariant. This so-called stationary (ST) assumption is quite restrictive, since a warming climate cre-
ates the possibility of unprecedented changes to observed flood regimes [Min et al., 2011; Kunkel et al.,
2013], and anthropogenic watershed influences can alter the mean and variance of peak flood peaks
[Villarini and Smith, 2009; Vogel et al., 2011]. The known limitations of ST FFA, along with the alarming socie-
tal impacts of intensified flooding, have given rise to the development and use of nonstationary (NS)
approaches. This alternative FFA method does not rely on the ST assumption, but rather recognizes time
variant flood frequencies.

Several different approaches have been published in the literature to handle the so-called ‘‘NS issue’’ in FFA
[Olsen, 2002; Raff et al., 2009; Jain and Lall, 2001], and new national and state wide policies actually require
the consideration of changing flood frequencies for planning, design, and risk management [European
Commission, 2007; Salas et al., 2012]. An excellent review of such methods applied in Europe was reported
by Madsen et al. [2013]. The two NS FFA methods described in this review include (1) the use of precipita-
tion projections from future climate scenarios in rainfall-runoff models and (2) the use of a safety margin to
adjust the design flood estimates derived from ST extreme value analysis (SEVA). While countries such as
Norway, United Kingdom, Belgium, and Germany have adopted the safety margin approach in engineering
guidelines [Madsen et al., 2013], the underlying ST assumption is often challenged and relaxed in the scien-
tific literature to allow application of NS extreme value analysis (NEVA) [AghaKouchak et al., 2013; Begueria
and Vicente-Serrano, 2006; Begueria et al., 2011; Cheng et al., 2014; Cooley, 2009; Gilleland and Katz, 2011;
Griffis and Stedinger, 2007; Katz, 2010; Lopez and Frances, 2013; Salas and Obeysekera, 2014; Silva et al., 2015;
Stedinger and Griffis, 2011; Tramblay et al., 2014; Cheng et al., 2015; Villarini et al., 2009; Jakob, 2013;
Steinschneider and Lall, 2015]. Indeed, the review by Madsen et al. [2013] concludes on page 33 that moving
toward a new NS framework, based on the use of NEVA, is an ‘‘important aspiration within the European
hydrological science community.’’

NEVA is an important extension of SEVA which enables the parameters of the extreme value distribution to
vary with time. This allows the parameters of the distribution to capture trends in flood frequencies [Salas
and Obeysekera, 2014]. In theory, these trends can be extrapolated to estimate, for example, the distribution
of flood discharges in 2050. Numerous studies have shown that NEVA improves the statistical representa-
tion of historic hydroclimatic data [Lopez and Frances, 2013; Strupczewski et al., 2001; Villarini et al., 2009],
but the authors consistently caution against using NEVA for out-of-sample prediction. In this study, we
apply split-sample testing to 1250 annual maximum discharge records and compare the predictive capabili-
ties of NEVA relative to SEVA using a log-Pearson Type III (LPIII) distribution. Specifically, we reserve the sec-
ond half of each data record to evaluate predictions under the calibrated ST and NS models. We use two
different approaches to predict the out-of-sample data with the NS model, which are described along with
the ST/NS models in section 2. Section 3 includes a description of the United States Geological Survey
(USGS) records used in this study. The parameter estimation procedure is presented in sections 4.1–4.1.3,
where the parameters of the LPIII distribution in the ST and NS models are inferred from the first half of
each record using Markov Chain Monte Carlo (MCMC) simulation with the DREAMðZSÞ algorithm. The posteri-
or parameter distributions and model fit metrics are compared in section 4.1.4, along with a discussion of
issues associated with NS model section. Section 4.2 outlines our application of Bayesian hypothesis testing
which we use to evaluate, compare, contrast, and juxtapose the predictions made by the competing mod-
els. The results of this analysis are presented in sections 5 and 6, where we assess (1) which of the three pre-
dictions, under the LPIII distribution, describe most accurately the distribution of the out-of-sample flood
discharges and (2) which diagnostics are useful for model selection. The paper concludes in section 7 with
recommended applications of NEVA for prediction of flood discharges in the LPIII distribution. Appendix A
includes the mathematical definition of the LPIII distribution, and the supporting information includes a
MATLABVR program based on the methods outlined in sections 4.1–4.1.3 which can be used for inference of
the ST/NS LPIII model parameters.
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2. Stationary or Nonstationary?

FFA in the United States is conducted according to the guidelines outlined in Hydrologic Bulletin 17B
[Interagency Committee on Water Data, 1982], which are built on the ST assumption. NS extensions of the stan-
dardized FFA guidelines in the United States have been considered in several studies [Stedinger and Griffis, 2011;
Griffis and Stedinger, 2007]. For instance, Stedinger and Griffis [2011] use a time-dependent mean to account for
NS in the Pearson Type III (PIII) distribution used widely for FFA in the United States and Australia [Pilgrim, 2001]

log 10ðQÞ � PIIIðlt; r; cÞ (1)

where Q signifies the annual maximum discharge, t denotes time, and lt, r, and c characterize the mean,
standard deviation, and skewness of the PIII distribution, respectively. The log 10-transformation stabilizes
the variance of the annual peak discharges and makes the transformed data more amenable to the PIII dis-
tribution. We can assume a simple linear trend for the mean of the PIII distribution

lt5lo1at (2)

where lo signifies the intercept and a is the slope of the ðt;ltÞ relationship. The value of lo is equivalent to
the PIII mean of the first year of the discharge record. If flood peaks are assumed to be stationary then a 5 0
suffices in equation (2) and the resulting model simplifies to the ST PIII distribution. Joint Bayesian inference
of the PIII parameters fr; cg and latent variable a from a n-record, Q5fQ1; . . . ;Qng, of observed annual
peak discharges, would help judge which statistical model, NS or ST, would receive most support from the
data. This would require knowledge of the marginal likelihood, or model evidence, which integrates model
accuracy, uncertainty, and complexity. Appendix A lists analytic expressions for the probability density and
cumulative distribution functions of the PIII distribution. We adopt the notation LPIII to clarify the use of
log-transformed discharge data, and refer to equation (1) as ST LPIII model (a 5 0) or NS LPIII model (a > 0).
For clarity, we use l to denote the time invariant mean of log 10ðQÞ in the ST LPIII model.

The use of a linear time-dependency of the LPIII mean in equation (2) is rather convenient and simplistic, but
has several important implications. First, a trend in the logarithmic mean of Q equates to an exponential trend
in the mean of the flood peaks [Read and Vogel, 2016]. This assumption may seem questionable but is sup-
ported by analysis of flood trends in the United States [Vogel et al., 2011] and United Kingdom [Prosdocimi
et al., 2014]. Second, despite the use of a constant value for r, the standard deviation of the arithmetic flood
peaks will increase with the logarithmic mean, lt, of the LPIII distribution. This intrinsic property is desirable
since nonstationarity would likely not only alter the mean of the flood peaks but simultaneously also affect
their associated dispersion. Third, equation (2) does not provide guidance on the governing physical factors,
climate signals, and/or anthropogenic causes that may explain temporal changes in the frequencies of the
annual flood peaks. Fortunately, the parameter estimation methodology presented herein supports the use of
much more advanced ðt;ltÞ relationships with covariates other than time. Examples include changes in land-
use, urbanization, and variations in the North Atlantic Oscillation (NAO) and El Nino Southern Oscillation
(ENSO). Yet, these covariates are not always readily available, nor may they correlate sufficiently with flooding
events [Archfield et al., 2016]. We, therefore, resort herein to a purely statistical description of annual discharge
peaks and use time as a proxy and explanatory variable of nonstationarity. In fact, the LPIII model used herein
(with a > 0) is analogous to the simplest of NS models presented by Stedinger and Griffis [2011].

Figure 1 demonstrates the additional flexibility attained through NEVA relative to SEVA. Figure 1a shows the
effect of c on the ST LPIII model, while Figure 1b shows the effect of a on the NS LPIII model. Notice that the
traditional ST LPIII model represents different tailing behavior as c changes, but the distribution must
remain constant in time. Indeed, the NS LPIII model includes only one additional parameter, a, but adds the
dimension of time to our EVA. However, it is not clear if predictions of flood peak distributions under a NS
model are an improvement relative to ST predictions, despite the additional flexibility. The primary concern
is whether the NS signal is clear enough to accurately estimate trend parameters, such as a in this study.
Moreover, different NS models will lead to different predictions, and there are multiple approaches for pre-
diction under a single NS model. This raises the question of whether we actually do better by including NS
in our analysis [Stedinger and Griffis, 2011].

To illustrate these issues, Figure 2a shows the ST and NS LPIII models fit to the first half of the annual maxi-
mum discharge record from the Smith River near Crescent City, CA (for details see section 4). Here we use
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two different approaches to predict the out-of-sample data with the NS model. Under the first approach,
the trend of the NS model parameters is extrapolated throughout the evaluation period. In the second
approach, the NS model parameter values at the end of the fitting period are used to predict with a ST
model, or the ST parameters are ‘‘updated’’ by the NS model (hereafter denoted uST). Including the ST LPIII
model leads to three different representations of the out-of-sample density, which are shown relative to the
in-sample density in Figures 2b–2d. During the fitting period, the annual maximum discharge of the Smith
River exhibits a detectable trend at the 0.05 significance level (Mann-Kendall trend test) [Mann, 1945; Ken-
dall, 1976], which is reflected by the trend in lt. In the NS case, lt has substantially increased by the end of
the fitting period, indicating that the mean and scale of the annual maximum discharges have changed
throughout the record. In the ST case, l remains constant. The difference in l between the two approaches
is certainly significant for planning purposes and engineering design. The 99th percentile of the ST LPIII dis-
tribution (q99) is used to designate the special flood hazard area and design critical infrastructure such as
bridges and levees in the United States [Federal Emergency Management Agency, 2009; Interagency Commit-
tee on Water Data, 1982]. Under the NS LPIII model at the end of the fitting period (or uST model), q99 is

Figure 1. (A) ST LPIII distribution with variable shape parameter. The red, black, and blue lines correspond to c values of 1.5, 0, and 21.5,
respectively. (B) NS LPIII distribution with variable trend parameter. The red, black, and blue lines correspond to a values of 0.015, 0, and
20.015, respectively.
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equivalent to 9100 m3/s, which is 40% greater than the ST estimate (Figures 2b–2d). Assuming that flood
frequencies are indeed nonstationary, and the distribution of annual maximum discharges continues to
change according to the best fit NS model parameters, the value of q99 under the NS model is 14,700 m3/s
by the year 1992 and 2.3 times larger than its counterpart of the ST model.

The application of the NS LPIII model to stationary discharge records can lead to overestimation of flood
peaks, and hence overengineered structures. Even worse, falsely selecting the ST model could lead to
underdesigned infrastructure and potential disaster. In the absence of formal guidelines on NS model selec-
tion and lack of recommendations for FFA with a trend in the historic record, it would be difficult to judge
which model to use in practice. Moreover, it is unclear how to use a NS model for prediction. Is it better to
assume flood frequencies will continue to change according the trends inferred from the historic record, or
should we simply use the most recent NS parameterization for prediction? These issues motivate the split-
sample testing used herein, where the predictions of the calibrated ST, uST, and NS models are evaluated
using Bayesian hypothesis testing.

3. Stream Gage Records

We use a large data set of annual maximum discharge records to evaluate the predictive abilities of the ST,
uST, and NS models. The majority of records used in this study originate from the set of 1861 stream gages
which were selected for potential use in the Model Parameter Estimation Project (MOPEX) [Schaake et al.,
2006; Slack and Landwehr, 1992; Wallis et al., 1991]. The gages were believed to be unaffected by upstream
regulation and watershed development at the time the data set was compiled (1991/1992), suiting the
needs of MOPEX. Since then, many records experienced anthropogenic changes. We rely on the USGS data
flags ‘‘5’’, ‘‘6’’ and ‘‘C’’ to identify records affected by upstream regulation and/or diversion (flags ‘‘5’’ and ‘‘6’’),
or land-use changes and/or channelization (flag ‘‘C’’). In this study, watersheds that have experienced
anthropogenic influences are included in the analysis since the ST assumption is likely violated under these
circumstances. An additional 25 watersheds affected by land use changes or channelization were added to
the record pool since relatively few gages of this category were included in the original MOPEX data set.
Records with fewer than 60 observations were excluded to ensure the availability of at least 30 observations
in the fitting and evaluation period.

Figure 2. (a) Maximum a posteriori (MAP) estimate of the LPIII mean under the ST (blue line), uST (gold line), and NS (red line) models inferred from the Smith River fitting period Q (black
line). The colored shading represents the respective 95% credible intervals of the LPIII mean, and the black cross denotes the end of the fitting period. (b–d) Predictions of out-of-sample
density under the ST (blue line), uST (gold line), and NS (red line) models derived from the MAP parameter estimates. The black histograms represent the empirical density of the fitting
period. Notice that Figures 2c and 2d show predictions under the uST and NS models moving away from the observed density, and the 95% credible intervals are wider under the NS
and uST models relative to the ST model.
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We denote the full record of measured annual maximum discharges, Q, and the fitting period data, X. The
fitting period data include the first half of measured peak discharges, X5log 10ðfQ1; . . . ;QngÞ, where Q
denotes an observation within the full record, n5dN=2e, and N is the number of observations in the full
record. The evaluation data, X� , includes the remaining observations, or X�5log 10ðfQn11; . . . ;QNgÞ. Split
sampling in this manner resulted in variable fitting period lengths, with 40 observations representing the
average data availability for parameter inference. In this study, historic peaks were removed from the
record. Also, records with no-flow observations (i.e., zero discharge) were excluded from the analysis to sim-
plify the use of the LPIII distribution. This leads to a data set of 1250 annual maximum discharge records.
Figure 3a displays the geographic location of the different records, while Figures 3b–3d present various
characteristics of these basins and their fitting period discharge records. Trend analysis shown in Figure 3
was conducted according to the Mann-Kendall test for monotonic trends [Kendall, 1976; Mann, 1945]. Here-
after, a ‘‘significant trend’’ refers to a rejection of the null hypothesis of no trend by the Mann-Kendall trend
test at the 0.05 significance level. We acknowledge that there are no good statistical reasons to omit historic
peaks and records with zero flow observations from the data set [Reis and Stedinger, 2005; Interagency Com-
mittee on Water Data, 1982], yet the focus of this study is on systematically assessing predictions made
under ST, uST, and NS models.

Figure 3. (a) Location of annual maximum discharge records and trends detected according to the Mann-Kendall trend test at the 0.05 significance level. (b) Fitting period trend
characteristics as a percentage of all records tested. (c) Anthropogenic watershed influences as a percentage of all records tested. Land use changes or channelization refers to USGS
record flag ‘‘C,’’ while regulation and diversion refers to USGS record flag 5 or 6. (d) Fitting period length as a percentage of all records tested.
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4. Bayesian Inference

4.1. Parameter Estimation
Estimating the parameters of an extreme value distribution is important for reliable frequency analysis. This
process is further complicated by the introduction of NS models, where structural-trend parameters must also
be inferred from limited data. In this study, we are primarily interested in inferring the ST LPIII parameters,
hs5fl;r; cg, and the NS LPIII parameters, hn5flo;r; c; ag, where lt5lo1at. While there are certainly other
viable parameterizations of the NS LPIII model, we do not consider NS models describing changes in r and c
because it is unlikely that these trends can be estimated from common record lengths [Yu et al., 2015]. We
also do not consider trend models more complex than the simple linear model, due to the uncertainty intro-
duced by additional trend parameters. Uncertainty introduced by NS model complexity has been reported as
a major drawback to NEVA, which is the primary argument against widespread application made by Serinaldi
and Kilsby [2015]. Therefore, any meaningful comparison between flood discharge predictions based on ST
and NS models must account for parameter uncertainty introduced by the NS model. The issue of parameter
uncertainty motivates the Bayesian approach for parameter inference and model comparison. Bayesian
parameter estimation results in distributions of parameter values rather than point estimates, which is espe-
cially useful for hypothesis testing and uncertainty quantification. Thus, we adopt Bayesian inference and use
MCMC simulation with the DREAMðZSÞ algorithm to robustly estimate the posterior distribution of the NS/ST/
uST LPIII parameters and quantify model predictive uncertainty.

Under the Bayesian approach for parameter estimation, Bayes’ theorem is used to calculate the posterior
density of parameter values

pðhj jX;MjÞ5
pðhj jMjÞLðhj jX;MjÞ

pðXjMjÞ
(3)

where pðhjjX;MjÞ represents the posterior density of parameter vector, hj , given the fitting period data, X,
and the model of interest,Mj . The subscript j denotes competing model classes, and in this study, j 5 {‘‘s,’’ ‘‘n,’’
‘‘u’’}, which stand for the ST, NS, and uST models, respectively. Here pðhjjMjÞ represents the prior density of hj

givenMj , and LðhjjX;MjÞ represents the likelihood of parameter values hj , given X andMj . The denomina-
tor, pðXjMjÞ, is known as the marginal likelihood or evidence and acts as a normalization constant so that pð
hjjX;MjÞ integrates to one. The evidence is obtained through integration over the parameter space

pðXjMjÞ5
ð

pðhjjMjÞLðhjjX;MjÞdhj (4)

where pðXjMjÞ also quantifies the probability of seeing the data that were actually observed under the
competing models. Therefore, the evidence is particularly useful for model selection, because the model
which maximizes equation (4) is a better descriptor of the data. Bayesian hypothesis testing and the evi-
dence will be discussed further in section 4.2. However, Bayesian parameter estimation does not necessarily
require the value of pðXjMjÞ, since parameter inference can be made from the unnormalized density

pðhj jX;MjÞ / pðhj jMjÞLðhj jX;MjÞ (5)

when MCMC methods are used to sample from the posterior, as applied herein. For now, we are interested
in using equation (5) to estimate the unnormalized posterior density of both hs and hn given the first half of
annual maximum discharge records. Equation (5) is not directly applied to infer hu, since the parameters of
the uST model are derived from pðhnjX;MnÞ. In most practical applications, estimating pðhjjX;MjÞ is
accomplished by sampling from the posterior after specifying pðhjjMjÞ and LðhjjX;MjÞ.
4.1.1. Likelihood Function (Fitting Period)
Conceptually, LðhjjX;MjÞ represents how plausible a parameter combination is after observing X, which quanti-
fies the information content of the data. Specifically, LðhjjX;MjÞ is the probability density of X according toMj

with parameterization hj . For the parameter inference procedure, the likelihood function is defined as

Lðhj jX;MjÞ5
Yn

i51

pðXi jhj;MjÞ (6)

where n is the number of observations in the fitting period, and Xi represents the ith observation. In this
study, pðXijhj;MjÞ is obtained by evaluating an analytic expression of the PIII probability density function
(equation (A1) or (A3)) at observation Xi5log 10ðQiÞ and parameterization hj under Mj . Here j 5 {‘‘s,’’ ‘‘n’’},
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which distinguishes equation (6) applied to determine the likelihood of the ST and NS model parameters,
respectively.

UnderMs, the parameter values within hs5fl;r; cg are constant with respect to time, and therefore equa-
tion (6) is evaluated at a fixed parameterization of the PIII density function for i5f1; . . . ; ng. However, this is
not the case under Mn. When equation (6) is applied to calculate the likelihood of hn5flo;r; c; ag, the
parameterization of the PIII density functions changes with i5f1; . . . ; ng, according to the linear trend mod-
el. Therefore, at each observation Xi, there is a unique parameterization of the PIII density function

hi
n5flo1ati; r; cg (7)

where ti is the time (in years) between the first and the ith observation. In this study, ti is considered the
covariate, since Mn parameter values depend on, and change with, ti. For a more general description of
covariate modeling, see Renard et al. [2013] and Coles [2001]. There are several properties of Ms and Mn

with respect to the likelihood function that are worth noting.

First,Ms is a special case ofMn when hi
n is constant or a 5 0. For records without a strong trend, equation

(6) will be maximized near a 5 0 under Mn, and therefore the parameter values of hn will approach hs. In
this scenario, a becomes a nuisance parameter, and Mn is overparameterized. This suggests that if a is
inferred using maximum likelihood, there must be a time-dependent trend in X forMn to significantly dif-
fer from Ms. Second, assuming that a trend is observed in X;Mn has a much greater ability to maximize
equation (6) relative toMs. This is because in the NS case, the location of the distribution changes with the
trend in X, enhancing the probability density near the observations relative to the fixed l under Ms. The
NS model’s ability to maximize equation (6) relative to the ST model is problematic for comparison of Mn

andMs based on likelihood metrics alone, since likelihood based metrics will almost certainly favorMn for
records with detected trends.
4.1.2. Prior Distributions (Fitting Period)
While LðhjjX;MjÞ represents the plausibility of hj after considering the data, pðhjjMjÞ represents knowledge
of hj before the data are considered. Often, pðhjjMjÞ is referred to as the prior. The prior represents an ana-
lyst’s knowledge of hj before any data are collected, which is described mathematically by the joint proba-
bility of the parameters within hj . The formal inclusion of prior knowledge about hj in the parameter
inference process is unique to Bayesian inference. The choice of priors is subjective, but it allows the analyst
to use information other than the data for parameter inference.

While several studies have specified highly informative joint-priors for hydrologic data through regional
analysis or eliciting expert opinion [Behrens et al., 2004; Perreault et al., 2000; Renard et al., 2006a], we decid-
ed to employ relatively uninformative priors so that inferred values of hs are similar to parameterizations
produced following standard practice in the United States. In the United States, l and r are determined
entirely through consideration of X, while c is based on a regional and site specific estimate [Interagency
Committee on Water Data, 1982]. An analogous parameterization can be produced in a Bayesian framework
by using uninformative priors on l and r with an informative prior specified on c.

For uninformative, yet proper priors, the
marginal priors for l, lo, r, and a were speci-
fied as a uniform distribution, Uða; bÞ, where
a and b represent the lower and upper
bounds of the uniform priors, respectively.
Our primary reason for using bounded priors
is algorithmic efficiency. Indeed, such prior
enhances considerably the convergence
speed of the DREAMðZSÞ algorithm (section
4.1.3), a particularly important consideration
in the face of the relatively large number of
data records used in the present study.
Table 1 lists the selected bounds on the uni-
form priors, which were chosen based on
physical reasoning. For example, the bounds

Table 1. Model Parameters and Prior Distributionsa

Scale Units Prior a b

Mn Parameters
lo log 10 m3/s Uða; bÞ 210 10
r log 10 m3/s Uða; bÞ 0 2
c log 10 Nðcr; SDcr

Þ
a log 10 m3/(s yr) Uða; bÞ 20.15 0.15

Ms Parameters
l log 10 m3/s Uða; bÞ 210 10
r log 10 m3/s Uða; bÞ 0 2
c log 10 Nðcr; SDcr

Þ
aThe regional estimate of c and cr was taken from the Bulletin 17B

regional skew map for each record location, and SDcr
was set to 0.55

per Bulletin 17B guidelines. The multivariate prior density is simply the
product of the marginal distributions evaluated at a proposed
parameter combination.
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on l restrict the location of the distribution to values between 10210 and 1010 m3/s, which adequately
encompass realistic values of l. We confirmed that none of the posteriors were truncated by the prior
bounds following the fitting procedure.

Selecting a distribution that represents a lack of knowledge is challenging and subjective, and the bounded
uniform distribution is certainly not the only viable uninformative prior. For example, Reis and Stedinger
[2005] use Jeffrey’s prior as an uninformative prior on the scale parameter, and a normal a distribution with
a large variance for an uninformative prior describing the location parameter. Both approaches will lead to
inference of the location and scale parameters based on the likelihood of X, or the information content of
the data alone. In contrast, we use an informative prior on c because information other than X is typically
available and used to estimate the skewness of annual maximum discharge records.

Since c controls the tail behavior and extrapolation to the unobserved percentiles of the LPIII distribution, it
is difficult to determine from a single record. Therefore, estimates of c are usually based on a site specific
and regional approximation. Bulletin 17B approximates c by weighting the station estimate, cs, with a
regional estimate, cr. In the Bulletin 17B guidelines, cs is determined by calculating the sample skew of X,
and cr is typically taken from an isocline map of regional skews. The weights on cs and cr are inversely pro-
portional to their respective mean square errors. A Bayesian adaptation of this weighting process can be
accomplished forMn andMs through an informative marginal prior

pðcjMjÞ � N ðcr; SDcr
Þ (8)

where SDcr
is the root-mean-square error of the regional skew, cr, and N denotes the normal distribution.

Values of c close to the regional estimate are assigned a high prior probability, and thus the prior reflects
regional knowledge of c. In this study, cr was obtained for each record by extracting values of cr from a digi-
tized version of the Bulletin 17B Plate 1 generalized skew map. Here SDcr

was set equal to 0.55 per Bulletin
17B guidelines. Without considering the regional skews through the informative prior, posterior c would be
fairly different from c estimated in practice. We also note that using an informative prior for only the shape
parameter has been recommended for NS model parameter estimation in the generalized extreme value
distribution (GEV) [El Adlouni et al., 2007], and this approach was previously designated the generalized
maximum likelihood (GML) method in the ST case [Martins and Stedinger, 2000]. Ouarda and El-Adlouni
[2011] apply the GML method for inference of NS GEV parameters in a Bayesian framework, which parallel
the methods applied in this study. The difference herein is that the generalized prior on c has been adapted
to incorporate regional information.
4.1.3. MCMC Simulation With the DREAMðZSÞ Algorithm
Now that pðhjjMjÞ and LðhjjX;MjÞ have been defined, the posterior distribution of hs and hn can be
approximated using MCMC simulation with the DREAMðZSÞ algorithm [Vrugt et al., 2009; Laloy and Vrugt,
2012; Vrugt, 2016]. Sampling methods such as MCMC are required for most applications of Bayes’ theorem,
since pðhjjX;MjÞ is often analytically intractable. Essentially, MCMC methods provide a sample from the
posterior distribution, and parameter inference is made from the generated sample. A thorough explana-
tion of Monte Carlo simulation appears in Vrugt [2016, section 2], and interested readers are referred to this
publication for further details.

We use three different Markov chains to generate target samples and monitor convergence of the sampled
chains using the R̂-statistic of Gelman and Rubin [1992]. Specifically, for each model and record, 8,000 sam-
ples were created in each chain with a burn-in of 50%. This equates to a total of 12,000 realizations of hj

drawn from the target distribution. Parameter inference and model comparison is now based on the poste-
rior samples of hs and hn produced by the MCMC algorithm. The parameters of the uST distribution,
hu5fln;r; cg, are derived from the posterior sample of hn. Here ln represents the parameter value of lt at
the end fitting period underMn. The distribution of ln was obtained by applying equation (2) at each pos-
terior sample of hn, with t equal to the time between the first and the last year of the fitting period. The uST
r and c parameters were taken from the posterior sample of hn, and not hs.
4.1.4. Posterior Comparisons
We now return our attention to the Smith River data record, previously shown in Figure 2. Figure 4 presents
the marginal posterior distributions of hn (top row), hs (middle row), and hu (bottom row) given the data in
the Smith River fitting period. The prior density and maximum likelihood parameter estimates are repre-
sented by the black lines and black crosses, respectively. The maximum likelihood estimate (MLE) of hj ,
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denoted ĥ j , is taken as the parameter combination from the posterior sample which maximized equation
(6). This figure highlights several important results. First, Figure 4 shows that the informative prior on c
causes the marginal posterior distribution to be centered between the MLE and the mode of the informa-
tive prior. Since the MLE of c is the site specific skew, and the prior mode is the regional skew, posterior c
represents a combination of the site specific and regional information. This result demonstrates the utility
of informative priors for the inference of shape parameters.

Second, notice that the posterior underMn favors lower values of r than the posterior underMs. This dif-
ference can be explained by how the two models represent records that exhibit a strong trend. The appar-
ent trend in the data, which is shown in Figure 2, is simply variance about the mean of the data in the
context of a ST model. Therefore, the observable difference in the magnitude of the annual maximum dis-
charges from the beginning to the end of the fitting period is accounted for through a relatively large value
of r. However, under Mn, the trend causes lt to increase throughout the fitting period. Thus, the time-
dependent increase in the observed discharges is represented by a changing location parameter, not a
large variance. In the context ofMn, r does not describe the variance of the entire sample, but rather the
variance about the changing mean. This concept is further illustrated in Figures 1b–1d, where the ST distri-
bution exhibits a variance large enough to encompass all of the data, but the NS distributions do not. The
apparent difference in r between theMn andMs has implications for inference of c.

Third, let us compare the marginal posteriors of c between hs and hn. While the posterior distribution of c is
relatively similar between the two models, the marginal distribution underMn includes more density away
from the prior mode. This is due to the difference in the value of the MLE between the two models. Under
Ms, the MLE of c is closer to the regional estimate relative toMn. Indeed, the MLE of c underMn is found
in the tail of the prior distribution. In other words, the MLE is very unlikely according to our prior knowledge.

Figure 4. Marginal posterior distributions of hn under the NS model (red histograms), hs under the ST model (blue histograms), and hu under the uST model (gold histograms), given the
data in the Smith River fitting period. Black lines represent the marginal prior distributions, and the black crosses show the MLE of hj under the three models. Notice that the MLE of c
underMn is very unlikely according to the prior distribution, and posterior hn favors lower values of r than posterior hs .

Water Resources Research 10.1002/2016WR019676

LUKE ET AL. (NON)STATIONARY FLOOD FREQUENCY ANALYSIS 5478



As a consequence, the NS posterior is centered further to the right. This suggests that the likelihood func-
tion under Mn favors values of c that are unrealistic according to past studies, which can be explained by
the relatively low value of r. Previous studies have also shown that r and c are inversely related in the LPIII
distribution [Srikanthan and McMahon, 1981; Nozdryn-Plotnicki and Watt, 1979], so in general low r esti-
mates will produce large skews. Let us explore this further by comparing the MLE of c under Mn and Ms

for other records tested.

Figure 5a shows the empirical density of ĉ under Mn (red histogram) and Ms (blue histogram) for esti-
mates obtained from fitting periods with relatively large trends. Large trends are defined as â values one
standard deviation away from the mean value of zero, which were found for 236 fitting periods. Values
shown in Figure 5 were produced by the procedure outlined in section 4.1, except here the prior on c was
completely uninformative, or pðcjMjÞ � Uð25; 5Þ. This ensures that ĉ is adequately approximated, since
the MCMC algorithm is no longer constrained by the regional estimate. We show how ĉ is distributed for
records with large trends because the difference in the estimates under the two models generally increase
with increasing values of â. Figure 5b also compares the empirical cumulative distribution function (CDF) of
ĉ under Mn (red line) and Ms (blue line) and reveals that there is a greater probability of large ĉ values
(i.e., 61.4) when estimated under Mn relative to Ms. Indeed, the difference between the CDFs under the
two models is apparent at the 0.05 significance level, according to the two sample Kolmogorov-Smirnov
test [Massey, 1951]. While it appears that there is only a slightly higher probability of large ĉ values under
Mn, extreme percentiles of the LPIII distribution are very sensitive to c. Previous studies suggest c should
be with within 61.4 [Reis and Stedinger, 2005]. Therefore, estimation of hn should not be based solely on
MLE in the LPIII model. Incorporating regional information through an informative prior is an attractive
methodology to restrict the inference of c to realistic values.

Lastly, let us discuss how the posterior samples derived from the MCMC procedure can be used for model
comparison and selection. Several common model comparison metrics include the small sample Akaike
Information Criterion (AICc), the Bayesian Information Criterion (BIC), and the Deviance Information Criterion
(DIC) [Burnham and Anderson, 2003; Spiegelhalter et al., 2002]. Under all three metrics, the goodness of fit
term depends on LðhjjX;MjÞ, whereas each metric applies a different penalty for model complexity. The
model which minimizes the metric value is preferred given the data in the fitting procedure, and the differ-
ence in the metric values between competing models is used for model selection. The differences in AICc,
BIC, and DIC values betweenMs andMn for the Smith River fitting period are 23.7, 22.5, and 22.1, respec-
tively, each supporting Mn. Rules of thumb for interpreting these differences are given by Burnham and
Anderson [2003]. Based on the listed differences of each model selection metric, we conclude that there is

Figure 5. (a) Empirical density of ĉ under the NS model (red histogram) and the ST model (blue histogram) based on the estimates from fitting periods where â was one standard devia-
tion away from the mean of zero (236 total). The circumflex denotes the MLE of c and a. (b) Empirical CDF of ĉ under the NS model (red line) and ST model (blue line). The CDF of ĉ under
the NS model is different from the ST model counterpart, indicating that the likelihood function favors larger values of ĉ (i.e., 61.4) under the NS model. Indeed, there is a difference
between the two CDFs at the 0.05 significance level according to the two sample Kolmogorov-Smirnov test [Massey, 1951].
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essentially no empirical support forMs relative toMn given the data in the Smith River fitting period. Similar
conclusions are drawn for the other data records.

Figure 6 shows the differences in fit metric values between Ms and Mn for fitting periods with detected
trends (first row) and without detected trends (second row). Based on the differences presented in Figure 6,
it is clear that the presence of a trend in the fitting period causes AICc, BIC, and DIC to significantly favor
Mn. Indeed, even for records without a significant trend, fit metrics can still indicate considerably less sup-
port for Ms relative to Mn because of the ST model’s inferior ability to maximize the likelihood function.
Model selection based solely on goodness of fit metrics may cause an analyst to sensibly selectMn for pre-
diction given the presence of a trend in the data. However, goodness of fit metrics are primarily dependent
on LðhjjX;MjÞ, even if different penalties are applied for model complexity. Therefore, model selection rests
on the ability to reproduce the historic record. Yet this begs the question of whether the ability to repro-
duce historic records is relevant for NS model selection. When comparing multiple ST models, this paradigm
is useful, since we are not anticipating change in the historic distribution (by definition of stationarity). At
least for engineering applications, the value of NS models should be dependent on their predictive ability,
not their descriptive ability, as measured by goodness of fit. This issue of NS model selection and validation
has been raised by other authors [Renard et al., 2013], and Burnham and Anderson [2003] note that their pro-
posed guidelines for model selection cannot be expected to hold if observations are not independent. In
truth, the predictive capabilities of a model can only be properly quantified using data that were not used
in the fitting procedure. In this study, the out-of-sample predictions of the competing models are evaluated
using Bayesian hypothesis testing.

Figure 6. Comparison of model fit between the ST and NS models. (row a) Displays the differences in metric values for fitting periods with a detected trend (145 total) and (row b)
displays the differences for fitting periods without detected trends (1105 total). Each column represents a different goodness of fit metric. The magnitude of the differences represents
the level of empirical support for the ST model. Values from 0 to 2 in each figure indicate substantial support, values from 4 to 7 indicate considerably less, and values greater than 10
indicate essentially no empirical support the for ST model [Burnham and Anderson, 2003]. These results demonstrate that the presence of a trend substantially reduces the level of
empirical support for the ST model relative to the NS model.
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4.2. Bayesian Hypothesis Testing
Bayesian hypothesis testing depends on Bayes factor, which summarizes the evidence given by the data in
favor of one statistical model relative to another [Kass and Raftery, 1995]. The ‘‘evidence’’ was introduced in
equation (4), but here we are interested in determining the evidence given by the out-of-sample data, or
pðX�jMjÞ. The out-of-sample data, X� , were previously defined in section 3. In this study, the evidence rep-
resents the probability of seeing the out-of-sample data that were actually observed under the competing
models. Consequently, the evidence is extremely useful for model selection: models with larger values of
pðX�jMjÞ are statistically preferred for predicting the out-of-sample data. Model comparison is formally
accomplished using the Bayes factor

Bj;k52log e
pðX�jMjÞ
pðX�jMkÞ

� �
(9)

where Bj;k denotes the Bayes factor for Mj and against Mk . Here we present a log e-scale formulation of
the Bayes factor for simpler interpretation. Positive values of Bj;k mean the evidence supportsMj , and nega-
tive values supportMk . The Bayes factor can be viewed as a predictive score, which measures the relative
success ofMj andMk at predicting X� . Interpretation of this Bayes factor formulation is given by Kass and
Raftery [1995]. There are several important properties of Bayes factors and the evidence which make them
especially useful for model selection.

First, the evidence automatically penalizes model complexity and parameter uncertainty. As the prior densi-
ty diffuses through either larger parameter uncertainty or increasing dimensionality of the prior (i.e., increas-
ing complexity), the value of the evidence will generally decrease (equation (4)). However, if increasing the
dimensionality of the prior also causes the likelihood of the data to increase, the evidence could favor the
more complex model. In this light, Bayes factor offers a formal means to measure if increased model com-
plexity is justified by the data. Aside from favoring models with relatively concentrated priors, the evidence
will also favor models where the prior parameter knowledge agrees with the data, which means that the
likelihood function is maximized at or near the prior mode. This property allows different parameterizations
of identical models to be evaluated according to Bayes factor. Overall, the Bayes factor is very sensitive to
the choice of the prior, which is generally considered a downside of Bayesian hypothesis testing [Kass and
Raftery, 1995]. However, sensitivity to the prior also creates opportunities for flexible applications.
4.2.1. Likelihood Function (Evaluation Period)
To compute Bayes factor, the evidence must be calculated under the competing models. This requires spec-
ification of the evaluation period prior and likelihood function forMs;Mu, and Mn, as well as evaluating
the Bayes factor integral (equation (4)), which is a very challenging multi-dimensional integration. So let us
first define the likelihood function, since it is relatively intuitive. To measure the predictive ability of the
models, we must evaluate the likelihood function at the out-of-sample data

Lðhj jX�;MjÞ5
Yn�
i51

pðXi jhj;MjÞ (10)

where n� represents the number of observations in the evaluation data. Equation (10) is identical to the like-
lihood function of the fitting period, except here we are evaluating the PIII density function at the out-of-
sample data. Also, j 5 {‘‘s,’’ ‘‘n,’’ ‘‘u’’}, since we are evaluating the predictions of all three models. When equa-
tion (10) is applied to calculate the likelihood of hn underMn, again there is a time-dependent parameteri-
zation of the PIII density function (equation (7)), and ti represents the time between the first observation of
the fitting period and the ith observation of the evaluation period. We note this to emphasize that the trend
parameter underMn is extrapolated throughout the evaluation period.

Notice that the likelihood function distinguishesMn fromMs andMu but does not distinguishMu from
Ms. Remember, under both Ms and Mu, we predict future discharges are distributed according to a ST
LPIII model. This justifies identical likelihood function evaluations. However, the parameters of the ST LPIII
model are different under Ms and Mu, since hu was derived from the NS model. We can account for the
difference betweenMs andMu through specification of the prior.
4.2.2. Prior Distributions (Evaluation Period)
In this study, our prior knowledge of the evaluation period model parameters is based on the posterior dis-
tributions inferred from the fitting period data. Even though observations were used to create this prior
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knowledge, we can still consider this a prior belief about the evaluation period parameters, since the out-of-
sample data were not used in the fitting procedure. This technique provides informative, joint priors
describing the evaluation period model parameters, which allows for different parameterizations of the
same model to be tested according to Bayes factor. Of course, we still need to formalize this prior knowl-
edge as a probability distribution.

The evaluation period priors under Ms;Mu, and Mn were defined by a multivariate Gaussian mixture
model (GMM) fit to the posterior samples of hs; hu, and hn, respectively. A GMM was chosen to describe the
evaluation period priors since GMMs can represent a large class of distributions and approximate arbitrarily
shaped densities. This property is ideal for approximating the joint densities of the posterior samples, since
no assumption is required regarding the shape of marginal posteriors. In this study, the hyperparameters of
the GMM were inferred through the Expectation Maximization (EM) algorithm. The number of Gaussians in
the mixture, K, was determined by iteratively increasing the number of Gaussian components until
BICK 2BICK11 < 2. For more on mixture models and the EM algorithm, please see Picard [2007].

An example of the GMM fit to the posterior samples of the Smith River fitting period is shown in Figure 7.
Figure 7 shows marginal prior densities of hn (top row), hs (middle row), and hu (bottom row), although the
fitted GMM also defines the joint density of parameter values. Black lines represent the prior density defined
by the GMM, and the histograms are the posteriors from the Smith River fitting period. There are several
important properties of the evaluation period priors that are highlighted by Figure 7. First, notice the differ-
ence in the prior modes underMs compared toMu. UnderMs, the prior favors lower values of l relative
to the ln prior density. This is because Ms assumes no change in the location of the distribution, so the
out-of-sample l should be similar to the stationary l inferred from the fitting period. Conversely, under
Mu, a persistent shift in the distribution has occurred, so predictions are best made with the updated

Figure 7. Prior parameter density for the evaluation period (black lines) under (row a)Mn, (row b)Ms , and (row c)Mu defined by the GMM fit to the posterior distributions of the Smith
River fitting period (red, blue, and gold histograms). The additional complexity underMn is accounted for through its four dimensional prior. Increased parameter uncertainty of ln is
represented by its lower and more dispersed prior density relative to l.
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(larger) ln. The important concept here is that the predictions under Ms and Mu are set apart by their
respective priors. In this study, the evidence will generally favor the model where the prior mode is closest
to the out-of-sample l and r. However, this generalization does not consider how parameter uncertainty
affects the model comparisons.

Notice also that the posterior samples of ln are significantly more dispersed than l. Since samples of ln

depend on the uncertain intercept and trend parameter of the linear model (equation (2)), they are under-
standably more dispersed than l, which simply represents the mean of the fitting period. Figure 7 demon-
strates the larger parameter uncertainty under Mu, as shown by the lower and more dispersed prior
probability density of ln relative to l. Therefore, according to Bayes factor,Mu will only be favored relative
to Ms if the increased parameter uncertainty is offset by a substantially more accurate prediction of the
out-of-sample l and r. Following similar reasoning,Mn will only be favored relative toMs andMu if two
conditions are met. First,Mn must substantially improve the likelihood of X� in order to offset the diffusion
of prior density caused by the addition of the trend parameter, a. Second, the trend inferred from fitting
period must be similar to the out-of-sample trend, or else pðhnjMnÞ will not agree with LðhnjX�;MnÞ, thus
significantly diminishing the evidence. Therefore, Bayes factor will evaluate if predictions under the NS
model improve the statistical representation of the out-of-sample data enough to justify the additional
complexity and uncertainty introduced by extrapolation of the NS trend parameter. The last step toward
implementing the proposed test requires integration of equation (4).
4.2.3. Integration of the Bayes Factor Integral
Analytic evaluation of the Bayes factor integral is only possible for a narrow class of models. In the absence
of analytic solutions, the evidence is approximated using a variety of methods which are reviewed by Kass
and Raftery [1995]. In this study, Gaussian Mixture Importance Sampling (GAME) is applied for approxima-
tion of the evidence [Volpi et al., 2017]. Essentially, GAME is a Monte Carlo integration technique where the
efficiency is improved through importance sampling, and the importance distribution is defined by a GMM
fit to a posterior sample. The GAME estimator was calculated for each record and model by (1) generating
another posterior sample with DREAMðZSÞ using the evaluation period likelihood function and priors defined
in section 4.2, (2) fitting a GMM to the second generated sample using the EM algorithm, and (3) applying
the standard importance sampling integration strategy presented by Kass and Raftery [1995] using the fitted
GMM as the importance distribution. The strength of the GAME estimator is that it is free of theoretical
assumptions regarding the shape of the posterior, and it is computationally tractable through use of the
importance distribution.

5. Results: Evaluation of Predictive Ability

Let us begin by revealing the evaluation period of the Smith River record. Figure 8 shows the data in the
full Smith River record (Figure 8a), as well as predictions derived from the maximum a posteriori (MAP)
parameter estimates compared to the out-of-sample density (Figures 8b–8d). Undeniably, the trend that
was detected in the fitting period did not persist in the evaluation period. Thus, predictions made under
bothMn andMu drastically overestimate the out-of-sample mean. Bayes factor reflects these poor predic-
tions by very strongly supportingMs relative to bothMn andMu (values given in Figure 8c, interpretation
based on Kass and Raftery [1995]). Under Ms, the trend that occurred throughout the fitting period was
adequately represented through a large variance parameter, reflecting the variability of the hydrologic sys-
tem. The apparent increase in discharge magnitude from 1932 to 1972 could be considered long-term per-
sistence and not a significant ‘‘trend,’’ or the increase could be considered a significant trend which simply
did not persist throughout the prediction period. A proper physical understanding of the relationship
between climatology, land use, and flood discharges in the Smith River watershed is needed to elaborate
further. Indeed, the detection of a trend alone offers little insight toward persistence, and the significance
of detected trends is particularly uncertain for hydroclimatic data because dependency structures are poorly
understood [Cohn and Lins, 2005; Lins and Cohn, 2011]. This point is supported not only by previous studies
and Smith River watershed but also by the results of our evaluation for other records tested.

Figure 9 summarizes the Bayes factor results for all records tested (1250 total). The pie charts display the
Bayes factor value as a percentage of records tested. The columns compare the evidence between different
models, or Bayes factor for Mn and against Ms (Figure 9a), for Mu and against Ms (Figure 9b), and for
Mn and against Mu (Figure 9c). For example, blue to green colors in Figures 9a and 9b represent records
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where the evidence favors Ms for prediction, whereas yellow to red colors in Figures 9a and 9c favor Mn

for prediction. Interpretation of Bayes factor shown in Figure 9 legend is based on Kass and Raftery [1995].
Several important results are highlighted by examining the Bayes factor results over all records tested. First,

Figure 8. (a) The MAP estimate of the LPIII mean underMs (blue line),Mu (gold line), andMn (red line) shown over the full record length (black line). The colored shading represents
the respective 95% credible intervals of the the LPIII mean. (b–d) Predictions of out-of-sample density underMs (blue line),Mu (gold line), andMn (red line) derived from the MAP
parameter estimate. The black histograms show the empirical density in the evaluation period. For the Smith River record,Ms most accurately predicted the out-of-sample data, which
is reflected by Bn;s and Bu;s shown in Figure 8c.

Figure 9. Bayes factor value as a percentage of all records tested (1250 total). (a) Bayes factor forMn and againstMs . (b) Bayes factor forMu and againstMs . (c) Bayes factor forMn

and againstMu. Yellow to red values supportMj , which isMn in Figures 9a and 9c, andMu in Figure 9b. Green to blue colors supportMk , which isMs in Figures 9a and 9b andMu

in Figure 9c. Results in Figure 9a show that the evidence supports predictions underMs relative toMn for about 70% of records tested, with 40% of records exhibiting at least positive
evidence forMs . Results in Figure 9b show that predictions underMs are also preferred relative toMu, except here the majority of evidence only weakly supportsMs . Interpretation
of the Bayes factor values is based on Kass and Raftery [1995].
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Figure 9a shows that evidence favorsMs relative toMn for roughly 70% of all records tested, with 40% of
records exhibiting at least positive evidence towardMs. This means that the ST model was a better predic-
tor of the out-of-sample data relative to the NS model extrapolations for about 70% of records tested. Bayes
factor between Ms and Mu yield similar results (Figure 9b), except here the majority of tests offer only
weak evidence toward Ms for prediction. Second, notice also that the evidence is not strongly in favor of
any competing model when we examine the record pool as a whole, with the majority of the evidence fall-
ing within the weak to positive range. This is not surprising, since 88% of the records tested do not exhibit a
statistically significant trend in the fitting period. Therefore, predictions under both Mn and Mu will be
similar toMs for most records. When models produce similar representations of data, Bayes factor naturally
favors the simplest, so it is not surprising that the ST model is the apparent favorite for prediction over all
records tested. However, this result does raise an important point: Ms, or predictions of flood discharges
using a ST model, should remain the default technique. The majority of flood records in the United States
do not exhibit a statistically detectable trend, and therefore the trend parameter of the NS model is simply
a nuisance parameter in most situations. Now let us examine records where NS and uST model predictions
are substantially different from the ST model.

Figure 10 summarizes the results for subsets of the record pool with detected trends in the fitting period. The
subsets shown in Figure 10 include records with a detected trend in the fitting period and DIC significantly
favoring the NS model, or DICs2DICn > 2 (top row). The middle row shows the results for records with detected
trends and discharges affected by land use changes, regulation, or diversion. The bottom row shows records
where a trend was detected in the fitting period and full record length. Again, the columns compare the com-
peting models. First, let us discuss records where trends were accompanied by fit metrics favoring the NS model
(Figure 10a). Here the statistical metrics determined from the fitting period suggest that the ST assumption is
violated and the NS model is a preferred alternative. Despite these metrics, Figure 10a shows thatMs is strongly
preferred for prediction given records of this category. Bayes factor betweenMs andMn shows that the evi-
dence is in favor ofMs for roughly 75% of these trending records. Moreover, about 40% exhibit at least strong
evidence in favor of Ms. Remarkably, comparison between Figures 9a and 10a illustrates that Mn is less pre-
ferred relative toMs when a trend is detected and goodness of fit favors the NS model. Similarly, the evidence
favorsMs relative toMu for these records, althoughMu did perform better thanMn. This result confirms our
earlier assertion that a statistically significant trend offers little insight toward persistence, and therefore little
insight toward the predictive ability of the NS model. Furthermore, metrics of model fit measure the probability
of reproducing the historic record, which is not related to trend persistence. To illustrate this important point fur-
ther, Figure 11 shows the predictions under the three models compared to the data in the full record, given a
trend and fit metrics favoringMn. Indeed, trends in the shown fitting periods are visually apparent and statisti-
cally significant, yet bothMn andMu are poor predictors of the second half of the record. Thus, additional cri-
teria are needed to confidently and reliably select NS models for prediction. Let us now examine records where
trends were accompanied by indications of persistent change.

Figure 10b summarizes the results for trending fitting periods where anthropogenic influences were known
to affect discharges. Records in Figure 10b were affected by upstream regulation, diversion, land use
changes, or channelization during the fitting period. Again, we rely on USGS data flagging to find influ-
enced records (section 3). Only 34 records tested meet this criteria, primarily because the first half of USGS
records rarely contain data flags and significant trends. For these records, both Mu and Mn are preferred
relative toMs. Notably, the evidence is very strongly in favor ofMu relative toMs for more than a third of
the records in Figure 10b, with 50% of records exhibiting at least strong evidence forMu. The relative suc-
cess of the predictions derived from the NS model can be attributed to the permanent nature of anthropo-
genic watershed changes. Here we know the cause of the observed trend will persist without intervention,
so it is much more likely for NS and uST predictions to be successful. Figure 12 shows successful predictions
underMu relative toMs for selected records in Figure 10b. It is very important to note that Mn was pre-
ferred relative to Mu for only 2 of the 34 records in Figure 10b, and still the evidence only weakly sup-
ported Mn. Thus, for records with a detected trend in the fitting period likely caused by anthropogenic
influences, the uST model is preferred for prediction. This means that extrapolation of inferred NS model
parameters is almost never preferred, even when the physical cause of the observed trend is known to be
persistent. We emphasize this point through examination of one more subset of the record pool.
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Figure 10c summarizes the results for records where the trend detected in the fitting period was also
detected using the full record length. In other words, the monotonic trend detected in the fitting period
persists in the evaluation period, although not necessarily at the same rate. In total, 72 records meet this cri-
terion. Again, both Mu and Mn are preferred relative to Ms. Figure 10c also shows that Mn only signifi-
cantly improves predictions relative to Mu for about 10% of the records with an observed trend in the

Figure 10. Bayes factor value as a percentage of records with detected trends in the fitting period and (a) DIC significantly favoringMn (123 total), (b) discharges affected by land use
changes, regulation, or diversion (34 total), and (c) trend also detected using full record length (72 total). The columns compare the evidence between competing models in the same
manner as Figure 9. (a) Reveals that the presence of a trend and DIC favoring the NS model does not improve the relative success ofMn compared to all records tested in Figure 9. (b)
Shows thatMu is strongly preferred for prediction relative toMs andMn if a trend is accompanied by physical watershed changes.
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fitting period and full record length. The Bayes factor demonstrates that the NS model rarely enhances suffi-
ciently the statistical description of the out-of-sample data (evaluation period) to justify its additional com-
plexity and associated prediction uncertainty. This is most clearly illustrated in Figures 12e and 12f. The 90%
prediction ranges ofMn (light red) cover much better the observed annual peak flows than their intervals
in light orange from Mu, which appear to be systematically biased. Nevertheless, the Bayes factor only
weakly supports Mn relative toMu in Figure 12e, and strongly supports Mu relative toMn in Figure 12f.
This finding may seem contradictory at first, but the mean of flood peak data in the evaluation period is
within the 90% credible intervals of l underMu. Therefore, an out-of-sample trend could be accounted for
by making predictions with a conservative value of l selected from within the uncertainty bounds under
Mu, and this approach is likely preferred relative to extrapolations of an estimated trend underMn. Appro-
priate quantiles of uST l that are useful for prediction in the case of an out-of-sample (future) trend could
be recommend via simulation in future studies. While often overlooked, the ST assumption appears to have
some utility even in the context of NS [Matalas, 2012]. Before stating conclusions, let us discuss the implica-
tions and limitations of these results.

6. Discussion

Results from this study show that the extrapolation of parameter trends in the tested NS model does not
significantly improve prediction, even when the observed trend persists into the future. However, results
also show that extrapolation is not necessary to improve predictions relative to the traditional ST approach.
The uST model, derived from the most recent in-sample NS model parameters, is preferred for prediction
when a detected trend can be attributed to physical watershed changes (see Viglione et al. [2016] and

Figure 11. The MAP estimate of the LPIII mean underMs (blue line),Mu (gold line), andMn (red line) shown over the full data record (black line). The colored shading represents the
respective 90% credible intervals of the LPIII mean, and the black cross denotes the end of the fitting period. The Bayes factor values are shown in the text boxes. Records (a–f) belong to
category (a) of Figure 10, i.e., they exhibit a significant trend in the fitting period and DIC favors the NS model.
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references therein for recent NS attribution methods). Other authors have emphasized the importance of
considering NS when the causes are well understood [Lins and Cohn, 2011], and Vogel et al. [2011] stressed
that much greater attention should be given to anthropogenically influenced watersheds. Yet in the United
States, there are no federal guidelines for FFA in watersheds where documented physical alterations have
changed the local hydrology. Using NS models to update ST distributions is an attractive approach for the
statistical treatment of these watersheds. Predictions under the uST distribution only assume that there has
been a persistent change in the distribution of flood discharges, and our results show that even if the distri-
bution continues to change, the uST distribution is likely preferred relative to extrapolations of the NS mod-
el parameters conditioned on time. Also, by making predictions within the ST paradigm, the concepts of
return period and risk do not have to be extended to a fully NS framework for the design of hydraulic struc-
tures and hazard mapping. Until research shows how our prediction of flood peak distributions can be sig-
nificantly improved by the extrapolation of NS model trend parameters, the ST assumption still holds for
planning and design [Montanari and Koutsoyiannis, 2014].

For illustrative purposes, Figure 13b shows the return periods derived from the quantiles of the uST LPIII dis-
tribution using the full Whiteoak Bayou record near Houston, Texas for parameter inference (Figure 13a).
The uncertainty in the predicted 100 year discharge (q99) is also shown (Figure 13c), demonstrating the sig-
nificant uncertainty in the estimate and the advantage of the Bayesian approach for parameter inference.
We provide a MATLABVR program in the supporting information which can be used for inference of the uST
distribution parameters from complete stream flow records, but we must emphasize several limitations.
First, the Bayesian procedure applied herein measured the relative success of predicting the overall out-of-
sample distribution, and not the precision of extreme quantiles. While the Bayesian approach is particularly
useful for assessing the justified level of model complexity, traditional statistical techniques are more

Figure 12. The MAP estimate of the LPIII mean underMs (blue line),Mu (gold line), andMn (red line) shown over the full data record (black line). The colored shading represents the
respective 90% credible intervals of the LPIII mean, and the black cross denotes the end of the fitting period. The Bayes factor values are shown in the text boxes. Records (a–f) belong to
category (b) of Figure 10, i.e., they exhibit a significant trend in the fitting period and discharges are affected by land use changes or channelization (flag C), upstream regulation, or
diversion (flag 6).
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appropriate for testing the accuracy of specific quantiles. Under the traditional or frequentist approach, sim-
ulation is used to evaluate alternative quantile estimators in terms of bias and variance with respect to
design flood estimates (see Hosking and Wallis [1997, section 6.4] for a detailed example). Therefore, the
results show that the uST model is most appropriate among the tested models when NS behavior is obvi-
ous, but the uST model does not necessarily predict q99 accurately, for example. Future studies could

Figure 13. (a) The MAP estimate of the NS LPIII mean and 95% credible interval (red line and shading) inferred from the full record length (black line), shown outside of the log-space.
The black cross denotes the mean of the uST distribution. (b) Return level versus return period plot derived from the uST distribution. The solid black line represents the MAP estimate of
each return level, and the dashed black lines represent the 95% credible interval. The density of the return level estimates is shown on the color bar, which are readily available from the
posterior sample of hu. (c) Distribution of the q99 estimates (or 100 year return level) under the uST model.
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quantify the error in uST predictions of extreme percentiles through Monte Carlo simulation, similar to those
conducted by Yu et al. [2015]. Second, although the uST model is statistically preferred for prediction rela-
tive to NS extrapolations, this result ignores the flood damages associated with under prediction. If we con-
sidered the losses associated with exceedances of design flood estimates, a more conservative prediction
derived from the NS model extrapolations could be warranted, despite the additional complexity and
uncertainty. Indeed, if an observed trend continues, it is unlikely for any derived uncertainty intervals of the
uST quantiles to be accurate over a long time period (i.e., greater than 40 years). Therefore, we do not rec-
ommend basing design or insurance products on the return periods derived from the uST quantiles, but
they can be used for evaluation of present flood risk in urbanizing or significantly altered catchments. While
our results show that extrapolation of NS model parameters is not a statistically preferred alternative, this
conclusion is somewhat limited to the tested NS model.

The primary limitation of this study is that only one NS model was tested for prediction. The tested NS
LPIII model has notable advantages and disadvantages. From a practical point of view, modeling nonsta-
tionarity in the LPIII model is advantageous because of its widespread use in the United States and Aus-
tralia for FFA. The LPIII distribution will continue to be utilized in the United States moving forward,
since the forthcoming update to Hydrologic Bulletin 17B will not change the recommended distribution
for FFA [Lamontagne et al., 2013]. Working with the LPIII distribution allows us to take advantage of the
substantial prior knowledge of the distribution parameters. From a modeling point of view, the main
advantage of the tested NS LPIII model is that changes in the mean and standard deviation of annual
maximum discharges are captured with one additional trend parameter. This is a desirable property,
since hydrologic nonstationarity would likely result in changes to both the location and scale [Stedinger
and Griffis, 2011]. Therefore, the tested NS model is physically realistic and relatively simple. However,
the linear trend in the log-mean equates to an exponential trend in the arithmetic mean. Therefore,
extrapolation of the NS model parameters leads to nonlinear predictions of the changing mean. This is
not desirable for out-of-sample predictions, which is reflected by the relative failure of NS extrapolations.
It is possible that NS predictions would improve through extrapolation of a truly linear NS model. We
also note that the sample size available for NS model parameter inference was particularly limited.
Excluding half the available data was necessary for predictive analysis, but the annual maxima sampling
method is wasteful of data. Sample size can be increased using a peak over threshold approach for
extreme value sampling [Renard et al., 2006a; Kysel�y et al., 2010], or taking advantage of regional trend
information [Cunderlik and Burn, 2003; Renard et al., 2006b]. Both techniques would likely result in
improved parameter inference and more reliable trend detection. Short-term trends and cycles that
appear significant could also be avoided if the NS model incorporates additional information on historic
floods [Reis and Stedinger, 2005; Salinas et al., 2016]. Another limitation of the tested model is that
changes in the distribution of flood discharges are conditioned upon time.

By extrapolating a NS model for prediction using time as a covariate, we assume that the change in the dis-
tribution of flood discharges will continue at the same rate we have estimated from a limited sample. Fur-
thermore, we assume a change in the distribution without a physical understanding of what caused the
change. Extrapolations are therefore prone to failure since we have no insight toward the persistence of
observed trends. Other authors have discussed the problems associated with NS trend extrapolation
[Koutsoyiannis and Montanari, 2015], but the dominance of NS models in terms of traditional model selec-
tion metrics can be very misleading and actually cloud our judgment. The findings of this study largely sup-
port the claim by Merz et al. [2014] ‘‘Although statistical approaches have played and will play an important
role, they have to be complemented by the search for the causal mechanisms and dominant processes in
the atmosphere, catchment and river system that leave their fingerprints on flood characteristics.’’ An
understanding of the dominant mechanisms responsible for changes in flood discharge distributions allows
for the development of physically based covariates [Hall et al., 2014; Delgado et al., 2014; Steinschneider and
Lall, 2015; Machado et al., 2015; Lima et al., 2015]. Under this approach, the historic record is used to develop
a relationship between the distribution and a physical process, such as atmospheric circulation patterns.
Future changes to the distribution are then based on the inferred relationship and the prevalence of the
physical process under general circulation model (GCM) based climate change projections. Here the GCM is
applied to provide insight toward the trend of important flood generating mechanisms, rather than to predict
local and extreme precipitation events. For example, �Sraj et al. [2016] present a simple NS model where
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changes in the frequency distribution are conditioned on annual precipitation. Design discharges can
then be estimated for different projected values of annual precipitation that occur over the project life-
span. Indeed, physically based NS modeling is a promising direction toward meaningful extrapolation of
NS model trend parameters, but continued research aimed at identifying important climate related sig-
nals in flood records is needed [Archfield et al., 2016]. We note that extrapolation of inferred trends
should only be considered when there is strong evidence that the observed trend is likely to continue in
the future. Examples include frequency analysis of temperature [Cheng et al., 2015], sea level extremes
[Mudersbach and Jensen, 2010], or FFA in a watershed where urbanization is expected to continue in the
future.

7. Conclusions and Recommendations

Results show that the ST model is preferred for out-of-sample prediction, overall. Even for records with a
detected trend in the fitting period and goodness of fit metrics significantly favoring the NS model, the ST
predictions are preferred relative to the uST and NS predictions. Therefore, the Mann-Kendall trend test
applied to peak discharges and goodness of fit metrics alone are not sufficient to warrant the selection of a
NS or uST model for prediction. This conclusion has been stressed by other authors [Renard et al., 2013; Seri-
naldi and Kilsby, 2015], and our results demonstrate empirical evidence toward this important assertion. For
records with a detected trend and known physical watershed alterations (specifically USGS data flags 5/6 or
C), the uST distribution is strongly preferred for prediction over the average evaluation period length of 40
years. Extrapolation of the NS model parameters is rarely preferred for prediction, even for records with a
detected trend in the fitting period and full record. All things considered, we recommend the uST LPIII dis-
tribution for evaluation of current flood risk in watersheds with a detectable trend in annual maximum dis-
charges that can be attributed to persistent, physical watershed changes. At this time, we do not
recommend basing design or insurance products on predictions under the uST distribution because (1) the
accuracy of extreme percentiles has not been comprehensively evaluated and (2) if the trend continues it is
unlikely for any derived confidence bounds to encompass true quantiles over a long time period. We also
recommend a fully Bayesian approach for parameter estimation so that (1) the bias of the NS skew estimate
can be reduced with an informative prior and (2) parameter uncertainty is explicitly characterized. The sup-
porting information provides a MATLABVR program based on the methods outlined in section 4.1 (applied to
full record length) for inference of the ST, uST, and NS LPIII parameters. The program also includes basic
postprocessing options. In conclusion, we recommend that future research should focus on the evaluation
of predictions derived from promising NS models and the development of physically based covariates.
Many stochastic models have been proposed, but we need to learn how to use them for prediction.
Undoubtedly, practitioners are limited to standard statistical methods in the absence of accepted
alternatives.

Appendix A: The Log-Pearson Type III Distribution

A record of block maxima discharges, fQ1; . . . ;Qng, follows the LPIII distribution if random variable X5

log 10ðQÞ is distributed according to the PIII distribution. The PIII distribution parameters are defined by l, r,
and c, which represent the mean, standard deviation, and skewness of X, respectively. The probability densi-
ty function, f(x), and cumulative distribution function, F(x), are defined as

f ðxÞ5 ðx2nÞ�21e2ðx2nÞ=b

b�Cð�Þ (A1)

FðxÞ5G �;
x2n
b

� ��
Cð�Þ (A2)

where �54=c2; b5 1
2 rc, and n5l22r=c [Hosking and Wallis, 1997]. If c > 0, then n is a lower bound

ðn � x <1Þ. If c < 0, then n is an upper bound ð21 � x < nÞ and

f ðxÞ5 ðn2xÞ�21e2ðn2xÞ=b

b�Cð�Þ (A3)
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FðxÞ512G �;
n2x
b

� ��
Cð�Þ (A4)

In the special case where c 5 0, the distribution is normal and the range of x is 21 < x <1. Here Cð�Þ
and Gð�Þ represent the gamma and incomplete gamma functions, respectively. An analytical form of the
inverse PIII distribution, x(F), does not exist, thus it is often approximated to calculate discharges associated
with specific quantiles, p, or return periods, T

log 10ðqpÞ5l1rKpðcÞ (A5)

KpðcÞ5
2
c

11
cnp

6
2

c2

36

� �3

2
2
c

(A6)

where log 10ðqpÞ represents the pth quantile of the LPIII distribution, and np is the pth quantile of the stan-
dard normal distribution. KpðcÞ is the frequency factor, or the pth quantile of the PIII distribution with mean
0, standard deviation of 1, and shape c. The frequency factor is approximated by the Wilson and Hilferty
transformation in equation (A6), which is accurate for 22 < c < 2 and 0:01 � p � 0:99 or 1:01 � T � 100
[Kirby, 1972; Reis and Stedinger, 2005].

Because of the numerical difficulties in evaluating Cð�Þ at large values of � (c values near 0), evaluation of
the analytic PIII is often avoided. In this study, evaluation of the analytic PIII distribution near c 5 0 is accom-
plished using Chebyshev approximations for log e½Cð�Þ�, which do not require evaluation of Cð�Þ [Cody and
Hillstrom, 1967]. Conveniently, log e½Cð�Þ� can be computed using the MATLABVR function gammaln(), and
evaluating the analytic PIII pdf is achieved in the log-space.
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