
Universidad de Chile
Facultad de Ciencias Físicas y Matemáticas
Departamento de Ciencias de la Computación

REAL-TIME INTERACTIVE VISUALIZATION LIBRARY FOR CUDA
PROGRAMS

Propuesta de tema de tesis para optar al grado de Magíster en Ciencias, mención
Computación

Francisco Carter Araya

Profesores guía:
Nancy Hitschfeld K.
Cristóbal Navarro G.

Santiago de Chile
Junio, 2022



1. Introduction
Over the past decades, the scientific community has faced a need for processing data in

greater amounts than the computing capability needed to handle it. Likewise, these results
need to be presented in such a way that the information contained in them is conveyed effecti-
vely, which is often in visual form. Scientific visualizations allow researchers to exhibit results,
find patterns in large-scale data, detect local anomalies and discover bugs in data genera-
tion. The special hardware architecture of graphics processing units (GPUs) is able to handle
both needs at once. Visualizations are produced through graphics computing APIs such as
OpenGL, Vulkan, DirectX and Metal, while general-purpose programming on graphics cards
(GPGPU) is possible through platforms such as OpenCL and CUDA.

While there are multiple scientific visualization libraries, few of them can be used directly
with datasets residing in GPU memory, either by performance issues for large input sizes
or because they cannot read previously allocated GPU memory directly. In such cases, a
workaround is transferring the data from GPU memory to RAM (and maybe even exporting
to a file in some cases) and load it in a visualization software, which reduces performance
greatly. As a result, it is difficult to produce GPU visualizations of GPU data even though
the hardware is more than capable of performing both tasks, and it should be possible to
do so in a single pipeline. This work attempts to develop a GPGPU framework that would
make such a pipeline possible, by designing a library that connects data generated with
the CUDA platform to the modern Vulkan graphics API for displaying the results. Such a
library would prove useful for visualizing problems such as large-scale simulations, graphics
algorithms (e.g. raytracing) and iterative parallel algorithms, and for more specific sub-tasks
like result validation and presentation.

2. Problem statement
Currently there is no straightforward way to display GPU-allocated data in CUDA with

existing softwares or graphics libraries, which read data in RAM from a loaded file or gene-
rated from code in the same pipeline. The typical workaround consists in transferring data
from device to host, export it to a file, load it and display it with said libraries. For dynamic
visualizations such as time-based simulations, where the data changes constantly from one
timestep to another, achieving optimal (or even adequate) performance becomes unfeasible,
as the mentioned process would need to be repeated at every iteration. This defeats one of
the main purposes of GPU-accelerated visualizations, which is the interactive rendering of
complex large-scale data [1]

Another possibility is to use GPGPU capabilities provided by Vulkan and OpenGL with
Compute Shaders, which allow computation in a similar scheme to CUDA kernels. However,

1



as they are graphics-oriented APIs foremost, their setup, syntax and memory handling are
much less concise. Moreover, they don’t provide ways to use the latest architectural advan-
cements in CUDA-enabled GPUs such as Tensor Cores and/or Raytracing Cores. Also, from
an user standpoint, switching the experiment codebase from CUDA to Vulkan/OpenGL just
for enabling visualization capabilities requires a developing effort that is bigger than the
intended benefit. Instead, it would be expected to plug in said capabilities in the existing
code in the form of a library or extension, just as it would be in traditional host-code solutions.

A promising alternative consists in connecting the graphics API and the GPU computing
platform directly via interoperability between the two. Currently most graphics APIs can
interoperate with computing plataforms via explicit memory mapping operations. However,
the programming effort and learning curve required to produce visual output with these
graphics APIs is considerable, let alone to produce scientific visualizations with the mentioned
interop scheme. The code needed for visualization would end up bloating the original CUDA
experiment code, and is unlikely to be reusable due to amount of boilerplate and the specific
characteristics of the data to display. Overcoming those problems would need designing a
software architecture extensible enough to handle multiples types of visualizations, while
keeping performance and customization compared to Vulkan code written specifically to a
particular CUDA code.

3. Related work
3.1. Previous work

CUDA supports interoperability with Vulkan, starting from version 10 1. This process
allows CUDA to get a memory handle to GPU memory allocated by Vulkan, in the form
of raw pointers or texture objects depending on the memory usage. The mapped handles
can then be used by both platforms independently, though this raises obvious concurrency
issues between rendering and processing. As with all synchronization operations in Vulkan,
synchronization with CUDA must be managed explicitly, using the semaphore structures
provided by the interoperability API.

Arrayfire [2] Forge 2 represents a similar effort in connecting the computing and visualiza-
tion pipelines, using the native interoperability between OpenGL and CUDA, over the which
the Arrayfire library is built. It is focusing on large dataset plotting over visualization of raw
datasets, and since it requires the Arrayfire wrappers over CUDA memory, it cannot be easily
plugged in to any existing CUDA code that does not already use that library. However, it
represents a successful interoperability use case.

3.2. Visualization libraries
This section presents a list of existing scientific visualization libraries, with varying degrees

of specialization over specific problem domains, whose rendering and display techniques are
relevant to this problem.
1 https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html. Retrieved 2022-05-13.
2 https://github.com/arrayfire/forge. Retrieved 2022-06-17.

2

https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html.
https://github.com/arrayfire/forge


ParaView [3] is a high-performance framework for data analysis and visualization ba-
sed on VTK [4]. It supports both interactive visualization with a graphical front-end and a
programmable pipeline via Python scripts. It can display 3D data derived from regular and
adaptive resolution meshes, (un)structured and polygonal grids, data tables and composite
datasets from the mentioned types. It also supports visualizations derived from the original
data such as isosurfaces, vector fields and streamlines. It supports loading datasets with for-
mats common to most Python graphical libraries. It also has a CUDA plugin for performing
GPU-accelerated transformations of the previously loaded data.

Camarón [5] is a visualization tool focused on mesh rendering and analysis, written in
OpenGL/C++. Apart from reading meshes from various formats and displaying them with
their statistics, it can also display isolines and isosurface representations codified in the sour-
ce files. The library was updated in 2022 to perform 75 % faster while using 18 % less memory.

MayaVi [6] is a general-purpose 3D visualization library with interactive and scripted mo-
des, written in Python and VTK. It allows operation with raw Python data such as numpy
arrays and maps it implicitly to VTK structures, unlike ParaView. This allows for easier in-
tegration in existing Python-based scientific workflows such as scripts or Python notebooks.
Compared to the other alternatives listed here, it is not as well-optimized to display large
datasets.

BlastSight 3 is an interactive 3D visualization application for academic and industrial
mining uses, developed in Python and OpenGL. It can render meshes, points and lines or
tubes. As mining datasets such as block models require rendering a great number of elements,
it has been designed with performance measures such as a "turbo"mode for concatenating
meshes in a single logical mesh, in order to increase rendering performance for arbitrarily-
sized datasets. Its functionality can be considered as a high-performance subset of Mayavi.

Datoviz [7] is a performance-oriented scientific data visualization library and intermediate-
level graphics API, writen in Vulkan/C++ with native Python bindings. Part of its code and
design ideas are derived from VisPy [8], a higher-level API that uses OpenGL instead of Vul-
kan for its graphics backend. It supports display of markers, lines and meshes in 2D and 3D
space, while also providing plot generation capabilities similar to traditional Python plotting
libraries such as Matplotlib. CUDA-Vulkan interoperability is not currently supported, but
is a long-term planned feature.

4. Research questions
• Are dynamic Vulkan visualizations of CUDA-mapped memory more efficient in memory

use and frame rate than the traditional approach of generating the data in host memory
and transferring it for rendering? Is Vulkan performance at inter-operating with CUDA
better than OpenGL?

• Is it possible to add a visualization pipeline to CUDA code without altering the kernel
call workflow? What changes or replacements would need to be made to CUDA code in

3 https://repositorio.uchile.cl/handle/2250/176738. Retrieved 2022-05-13.

3

https://repositorio.uchile.cl/handle/2250/176738


order to integrate Vulkan visualizations to it?

• To which degree can Vulkan code be abstracted from CUDA code while interoperating
between both languages?

5. Hypothesis
A new high-performance Vulkan visualization library designed specifically for integration

with CUDA code will perform better in memory use and frame rate than existing alternatives
for the interactive display of GPU-generated data.

6. Main goal
Design and implement an interactive visualization library in Vulkan for displaying 2D and

3D sets of primitives (meshes, point clouds, textures and voxels), which are allocated in GPU
memory that can be processed by CUDA kernels.

7. Specific goals
• Research rendering algorithms and strategies for meshes, point clouds, textures and

voxels in 2D and 3D domains, how to implement them with the Vulkan API and how
to optimize them for Vulkan-specific features.

• Design a C++ architecture to visualize multiple CUDA-Vulkan memory mappings.

• Using the designed architecture, implement the visualization pipeline as a library.

• Provide interactive and customization capabilities for the visualizations generated by
the library, such as setting colors, illumination and camera position.

• Research the scope to which it is more advantageous to use the proposed library over
using OpenGL or Vulkan as a unified compute-rendering environment.

• Measure the improvement of generating mapped memory visualizations over doing ex-
plicit memory copies, in terms of memory use and frame rate.

8. Methodology
8.1. Research

The research process will start by reviewing the state of the art for HPC visualization,
including general visualization techniques and libraries. As Vulkan is a relatively new API
and there is not much research for using interoperability with CUDA, most of the reviewed
work will be focused on scientific visualization libraries and their respective software archi-
tectures. As such, the approaches listed in section 3.2 are part of the state of the art in that
area. The review scope will also be narrowed to visualization methods and libraries for single
workstations, rather than distributed systems or dedicated HPC servers.

4



It is also important to review the current state of the Vulkan and CUDA APIs, putting
special attention at the interoperability capabilities between the two. As Vulkan is a very
recent and actively developed library, new releases and extensions can change or improve the
interoperability behavior, which is at the core of the proposed solution. The official CUDA
Toolkit code samples include Vulkan interoperability examples 4 5, which can used as a base
for developing the library architecture and features.

Even though most of the reviewed libraries are not developed in C++/Vulkan, their al-
gorithms, data access patterns and shaders are a useful reference during the design of the
library and later comparisons between them and the developed result. By knowing imple-
mentation details of the reviewed libraries, it becomes easier to understand and explain the
performance differences that may arise.

8.2. Experimentation
All of the planned experiments will be performed with the proposed set of primitives:

meshes, point clouds, textures and voxels. Likewise, the measured variables for all experiments
will be frame rate and GPU memory use.

• For each primitive, gather datasets of varying input sizes and configurations, which
may include element size, density, color (global or per-element) and other parameters
of interest. Most of the listed primitives have publicly available datasets that should be
used instead of generating new data.

• Generate visualizations of the generated datasets with the proposed approach and the
state of the art libraries of softwares. Measure and compare the variables for static and
dynamic (when applying rotation, translation, zoom, etc.) visualizations.

• Perform scalability and stress tests for the proposed approach and the state of the
art libraries. Display large/multiple datasets up to hardware limits and measure the
variables for varying input sizes, generating plots for performance and memory use.

• Implement kernels for iterative processing of the datasets. Perform a large number of
iterations, monitoring the variables for possible performance degradation or memory
leaks. Visually inspect snapshots of the experiment at regular intervals in search of
rendering artifacts that may occur.

8.3. Current progress
Most of the work done consists on designing the interoperability architecture, genera-

ting visualizations and implementing both features into the proposed library. The library
currently supports CUDA-Vulkan interoperability for the full set of primitives proposed on
the previous sections. For each primitive, an expected CUDA data structure (that is, the
structure of the input data to visualize) was selected for library implementation. The input
data structures match common CUDA programming use cases; for example, mappings for

4 https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/simpleVulkan.
Retrieved 2022-05-13.

5 https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/vulkanImageCU
DA. Retrieved 2022-05-13.

5

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/simpleVulkan
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/vulkanImageCUDA
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/5_Domain_Specific/vulkanImageCUDA


linear memory buffers were implemented over opaque cudaArray layouts, which are typically
less used. However, the architecture design accounts for ease of integration of new memory
mappings which may be implemented in the future.

Sample CUDA programs containing use cases for each primitive were implemented and
tested with the library, for validation of the generated visualization and preliminary perfor-
mance analysis. With the current library design, a CUDA programmer would only need to
replace the GPU memory allocation calls, as mapped memory allocation must be done in
Vulkan. Moreover, interactive visualization operations such as adjusting the camera position
and changing colors are possible in real time even when the corresponding CUDA kernel is
running, with no detected visual artifacts or reduced performance. This is possible since the
library implements synchronization between the visual pipeline, the CUDA kernel and the
CPU control flow.

Ongoing work is focused on extending the library architecture to support visual parame-
ters such as primitive colors and illumination, which could be scripted on the experiment
code or changed at runtime with a graphical interface (GUI).

9. Expected results
The research is expected to produce the following results:

• An open source C++/Vulkan library for generating real-time visualizations of CUDA/-
Vulkan mapped GPU memory.

• A sample code demonstrating the library capabilities, based on a real-world use case of
an existing CUDA program that produces a visually meaningful result (that is, matching
at least one of the proposed primitives)

• A review of the state of the art methods and libraries for HPC scientific visualization
on workstations with consumer-grade GPUs.

• A report detailing the differences in performance and memory usage between the propo-
sed GPU memory-mapping scheme and performing explicit CPU-GPU data transfers,
defining the scope on the which memory mappings are more adequate over transfers.

6



Bibliografía

[1] Cao, Y., Wang, H., y Ai, Z., “Linking visualization and scientific understanding through
interactive rendering of large-scale data in parallel environment,” en 2015 International
Conference on Virtual Reality and Visualization (ICVRV), (Los Alamitos, CA, USA),
pp. 260–263, IEEE Computer Society, 2015, doi:10.1109/ICVRV.2015.59.

[2] Malcolm, J., Yalamanchili, P., McClanahan, C., Venugopalakrishnan, V., Patel, K., y
Melonakos, J., “ArrayFire: a GPU acceleration platform,” en Modeling and Simulation
for Defense Systems and Applications VII (Kelmelis, E. J., ed.), vol. 8403, pp. 49–56,
International Society for Optics and Photonics, SPIE, 2012, doi:10.1117/12.921122.

[3] Ahrens, J., Geveci, B., y Law, C., “Paraview: An end-user tool for large data visualiza-
tion,” Visualization Handbook, 2005.

[4] Schroeder, W., Martin, K., Lorensen, B., y Kitware, I., The Visualization Toolkit: An
Object-oriented Approach to 3D Graphics. Kitware, 2006, https://books.google.cl/book
s?id=rx4vPwAACAAJ.

[5] Canepa., A., Infante., G., Hitschfeld., N., y Lobos., C., “Camarón: An open-source visua-
lization tool for the quality inspection of polygonal and polyhedral meshes,” en Procee-
dings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - GRAPP, (VISIGRAPP 2016), pp. 130–137, INSTICC, SciTe-
Press, 2016, doi:10.5220/0005830501280135.

[6] Ramachandran, P. y Varoquaux, G., “Mayavi: 3D Visualization of Scientific Data,” Com-
puting in Science & Engineering, vol. 13, no. 2, pp. 40–51, 2011.

[7] Rossant, C. y Rougier, N. P., “High-performance interactive scientific visualization with
datoviz via the vulkan low-level gpu api,” Computing in Science Engineering, vol. 23,
no. 4, pp. 85–90, 2021, doi:10.1109/MCSE.2021.3078345.

[8] Campagnola, L., Klein, A., Larson, E., Rossant, C., y Rougier, N. P., “VisPy: Harnessing
The GPU For Fast, High-Level Visualization,” en Proceedings of the 14th Python in
Science Conference (Huff, K. y Bergstra, J., eds.), (Austin, Texas, United States), 2015,
https://hal.inria.fr/hal-01208191.

7

https://dx.doi.org/10.1109/ICVRV.2015.59
https://dx.doi.org/10.1117/12.921122
https://books.google.cl/books?id=rx4vPwAACAAJ
https://books.google.cl/books?id=rx4vPwAACAAJ
https://dx.doi.org/10.5220/0005830501280135
https://dx.doi.org/10.1109/MCSE.2021.3078345
https://hal.inria.fr/hal-01208191

	 
	1 Introduction
	2 Problem statement
	3 Related work
	3.1 Previous work
	3.2 Visualization libraries

	4 Research questions
	5 Hypothesis
	6 Main goal
	7 Specific goals
	8 Methodology
	8.1 Research
	8.2 Experimentation
	8.3 Current progress

	9 Expected results

	Bibliografía



