

Auxiliar 10: Teorema de la Función Inversa & Implícita

Profesor: Alexander Frank M.

Auxiliar: Maximiliano S. Lioi

 $oxed{\mathbf{P1}}$ [Teorema de la Función Inversa] Considere la función $f:\mathbb{R}^2 o\mathbb{R}^2$ dada por

$$f(x,y) = (x^2 - y^2, 2xy)$$

- (i) Pruebe que f no es inyectiva, y por lo tanto, no es invertible sobre todo \mathbb{R}^2 .
- (ii) Demuestre que para todo $(x,y) \neq (0,0)$ existen abiertos U,V en \mathbb{R}^2 con $(x,y) \in U$ y $f(x,y) \in V$ tales que $f:U \to V$ es biyectiva.

P2 [Teorema de la Función Implícita I] Considere el sistema de ecuaciones

$$x^{2} + y + \sin(xyz) + z^{2} = 1$$

$$e^{yz} + xz = 1.$$
(1)

Muestre que el sistema anterior define implícitamente dos funciones y = y(x) y z = z(x) en una vecindad de $(x_0, y_0, z_0) = (1, 0, 0)$ que satisfacen el sistema de ecuaciones anterior.

P3 [Teorema de la Función Implícita II] Considere el sistema de ecuaciones

$$2xz = y^{2} + w^{2}$$

$$z^{3} = x^{3} + y^{3} + w^{3}.$$
(2)

- (i) Mostrar que existe un abierto $A\subseteq\mathbb{R}^2$ que contiene a (1,1) y funciones $y,w:A\to\mathbb{R}$ de clase \mathcal{C}^∞ tales que y=y(x,z) y w=w(x,z) son soluciones del sistema de ecuaciones anterior, y además y(1,1)=-1, w(1,1)=1.
- (ii) Mostrar que $\nabla y(1,1) = \binom{-1}{0}$ y $\nabla w(1,1) = \binom{0}{1}$.
- (iii) [**Propuesto**] Calcular las matrices Hessianas Hy(1,1), Hw(1,1). Ind: Derive dos veces el sistema de ecuaciones (2) respecto de x y de z para deducir los Hessianos.
- (iv) [**Propuesto**] Muestre que los polinomios de Taylor de grado dos, que aproximan a y(x,z) y

$$p(x,z) = \frac{x^2}{2} + \frac{z^2}{2} - x - xz, \quad q(x,z) = -\frac{x^2}{2} - \frac{z^2}{2} + z + xz$$
 (3)

[P4 [Propuesto] Probar que el sistema de ecuaciones

$$y^{2} + z^{2} - x^{2} + 2 = 0$$

$$yz + xz - xy - 1 = 0.$$
(4)

define dos funciones implícitas y(x), z(x) en un entorno del punto (2,1,1) tales que (x,y(x),z(x)) es solución del sistema en dicho entorno.

Resumen

Teorema 1 (Teorema de la Función Inversa) Sea $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ una función de clase C^1 en Ω . Supongamos que para algún $x_0 \in \Omega$, la derivada $Df(x_0) \in \mathbb{R}^{n \times n}$ es invertible (i.e, $\det(Df(x_0)) \neq 0$). Entonces existen abiertos U, V con $x_0 \in U \subset \Omega$ e $y_0 := f(x_0) \in V$, tales que $f|_U: U \to V$ es un difeomorfismo de clase C^1 , esto es, una biyección tal que $f|_U^{-1}$ es de clase C^1 . Además, por ser $(f|_U)^{-1}: V \to U$ continua y diferenciable en todo punto de V, se tiene $Df|_U^{-1}(f|_U(x_0)) = (Df|_U(x_0))^{-1}$

Teorema 2 (Teorema de la Función Implicita) Sea $f: \Omega \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$ una función de clase C^1 y $(x_0,y_0) \in \Omega$ tal que $f(x_0,y_0) = 0$. Sea $Df(x_0,y_0) = [D_x f(x_0,y_0), D_y f(x_0,y_0)]$ la derivada de f en (x_0,y_0) , supongamos que $D_y f(x_0,y_0)$ es invertible. Entonces existen abiertos U, W con $(x_0,y_0) \in U \subset \mathbb{R}^{m+n}$ y $x_0 \in W$ tales que para cada $x \in W$ existe un único y tal que $(x,y) \in U$ y f(x,y) = 0, lo que define una función $g: W \to \mathbb{R}^n$ de clase C^1 , en particular $y_0 = g(x_0)$, de manera que

$$f(x,g(x)) = 0, \forall x \in W$$

además

$$Dg(x) = -D_y f(x, g(x))^{-1} D_x f(x, g(x))$$

Definición 1 (Matriz Hessiana) Sea $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ función de clase $C^2(U)$. Llamamos matriz Hessiana de f en x a la matriz $D(\nabla f)(x)^T$, que denotamos:

$$D^{2}f(x) := \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

otras formas comunes para denotar la matriz Hessiana son Hf(x) o bien f''(x).

Proposición 1 Para $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ función de clase $C^2(U)$ y $\bar{x} \in U, D^2f(\bar{x})$ es simétrica, y

por lo tanto sus valores propios son reales.

Teorema 3 (Teorema de Taylor) Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ de clase C^{k+1} en $A, k \ge 1$, con A abierto. Sean también $x_0 \in A$ y $h \in \mathbb{R}^n$ tal que $x_0 + th \in A$, para todo $t \in [0,1]$. Entonces, la siguiente expansión de f es válida:

$$f(x_0 + h) = P_k(x_0, h) + R_{k+1}(x_0, h)$$
 (5)

$$P_k(x_0, h) := \sum_{\ell=0}^{k} T_\ell(x_0, h)$$

donde $T_{\ell}(x_0, h)$ es el monomio de Taylor de orden ℓ , dado por la expresión

$$T_{\ell}\left(x_{0},h\right):=\frac{1}{\ell!}\sum_{i_{1}=1}^{n}\cdots\sum_{i_{\ell}=1}^{n}\frac{\partial^{\ell}f}{\partial x_{i_{1}}\cdots\partial x_{i_{\ell}}}\left(x_{0}\right)h_{i_{1}}\cdots h_{i_{\ell}},$$

para $1 \le \ell \le k$, y $R_{k+1}(x_0, h)$ es el resto de orden k+1 de la expansión (5), dado por

$$R_{k+1}(x_0,h) :=$$

$$\frac{1}{(k+1)!} \sum_{i_1=1}^{n} \cdots \sum_{i_{k+1}=1}^{n} \frac{\partial^{k+1} f}{\partial x_{i_1} \cdots \partial x_{i_{k+1}}} (x_0 + sh) h_{i_1} \cdots h_{i_{k+1}}$$

 $\it para\ cierto\ s \in [0,1].$

Corolario 1 Supongamos que $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ es una función de clase C^2 en A, y sean $x_0 \in A, h \in \mathbb{R}^n$ pequeño. Entonces, el polinomio de Taylor de orden dos para f en torno a x_0 , denotado $P_2(x_0, h)$ viene dado, explícitamente, por la expresión

$$f(x_0) + \nabla f(x_0) h + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x_0) h_i h_j,$$

Equivalentemente, se puede escribir

$$f(x_0 + h) = f(x_0) + \nabla f(x_0) h + \frac{1}{2} h^T D^2 f(x_0) h$$

o bien, escogiendo $h = x - x_0$ tenemos $f(x) \approx$

$$f(x_0) + \nabla f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T D^2 f(x_0)(x - x_0)$$

para x cerca de x_0 .